第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每小题10分,共80分)
1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则
[]+[]+[]+[]+[]+[]的值
为.
2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为.
3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).
4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是千米/小时.
5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是.
6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为
厘米.
7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.
8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.
二、解答题(每题10分,共40分,要求写出简要过程)
9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?
10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?
11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.
12.(10分)使不为最简分数的三位数n之和等于多少.
三、解答题(每小题15分,共30分,要求写出详细过程)
13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?
14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?
2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析
一、填空题(每小题10分,共80分)
1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则
[]+[]+[]+[]+[]+[]的值为6048 .
【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.
【解答】解:根据分析,原式为:
[]+[]+[]+[]+[]+[]
=[]+[]+[]+[]+[]+[]
=550+733+916+1100+1283+1466
=6048.
故答案是6048.
2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为20 .
【分析】根据题意,设原来给定的4个整数分别是a、b、c、d,则+d =8(1),+c=12(2),+b=10(3),+a=9(4),据此求出原来给定的4个整数的和是多少即可.
【解答】解:设原来给定的4个整数分别是a、b、c、d,
+d=8(1),
+c=12(2),
+b=10(3),
+a=9(4),
(1)+(2)+(3)+(4),可得
2(a+b+c+d)=8+12+10+9,
所以a+b+c+d=20,
所以原来给定的4个整数的和为20.
故答案为:20.
3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).
【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.
【解答】解:根据分析,份三种情况:
①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;
②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;
③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;
④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.
综上,共有:2+4+2+2=10种不同摆放方法.
4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64 千米/小时.
【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.
【解答】解:甲在2小时走80千米,甲速为:80÷2=40(千米/时);甲速度加速变成40×2=80(千米/时);
甲再经过2小时路程为:2×80=160(千米/时)
乙路程共是160千米,时间是2.5小时,乙速为:160÷2.5=64(千米/时)
故答案为:64
5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是3:4 .
【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是1÷=,只参加朗诵小组人数的分率是1÷=5,则参加书法