第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组a卷)

合集下载

2020年第二十二届“无悔金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)

2020年第二十二届“无悔金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)
2017 年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)
决赛试卷(小高组)
一、填空题
1.(10 分)计算:2017
÷2019+Fra bibliotek=.
2.(10 分)如图,圆周上有 12 个点,将圆周 12 等分.以这些等分点为四个顶点的矩形共

个.
3.(10 分)如图,已知 ABCDEFGHI 为正九边形,那么∠DIG=
每个格点上标的数等于这点左、下所有格点各数之和, 所以 4 枚白棋 2 枚黑棋共有 208 种不同拿法. 故答案是:208. 11.(10 分)熙熙军团的胸章是如图所示的正八边形图案,已知正八边形的边长为 18,那么 阴影部分的面积是多少?
第 8页(共 11页)
【分析】按题意,将图等积变形,将阴影部分的面积转化为求其它三角形的面积,最后
第 6页(共 11页)
定理,可以求得约数的个数.
【解答】解:根据分析,n 有 10 个约数,2n 有 20 个约数,
按约数和定理,又∵
,∴n 的质因数分解式中含有 0 个 2;
设 n=3amx,又∵
,∴n 的质因数分解式中含有一个 3,
根据约数和定理,得 n 的约数和为:(a+1)(x+1)=10, 解得:a=1,x=4,此时 n=3×m4; 故 6n=2×3×n=2×3×3×m4=2×32×m4, 其约数和为:(1+1)×(2+1)(4+1)=2×3×5=30, 故答案是:30. 7.(10 分)甲乙两人进行 10 公里赛跑,甲跑完全程用了 50 分钟,此时乙离终点还差 500 米.为了给乙一次机会,两人约定,第二次赛跑时甲退后 500 米起跑.假设两次跑步两 人速度都不变,则第二次跑步第一个人到达终点时,另一人离终点还差 25 米. 【分析】首先找到不变量是时间,两人两次赛跑的时间是相同的,路程是成比例关系. 【解答】解:依题意可知: 当甲跑全程 10 公里时即 10000 米,乙跑全程的 10000﹣500=9500 米,两人跑的时间相 同,路程成比例关系. 即 10000:9500=20:19=(10000+500):9975. 当甲跑完 10500 米时,乙跑 9975 米. 还差 10000﹣9975=25(米) 故答案为:25 8.(10 分)对于两位数 n,A、B、C、D 四人有以下的对话: A:“n 能被 24 整除.” B:“n 能被 33 整除.” C:“n 能被 62 整除.” D:“n 的各位数字之和为 15.” 其中只有 2 人的话是正确的,那么 n 的取值为 96 . 【分析】四个人只有两个人的话是正确的,B、C 的话都要求 n 的数字和是 9 的倍数,与 的 D 的话矛盾,从四个人的话中找到共同点和不同的,以及矛盾的点,即可判断谁的话 是正确的.

第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小中组)

第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小中组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小中组)一、填空题1.(10分)计算:(888+777)÷(666+555+444)=.2.(10分)在下面加法竖式中,八个不同的字母分别代表2~9这八个数字,其中相同的字母代表相同的数字,不同的字母代表不同的数字,那么=.3.(10分)如图,在两张大小相同的大长方形纸片上,分别在角和边上各剪下一个大小相同的小正方形.若图②阴影部分的周长比图①阴影部分的周长多17厘米,那么剪下的小正方形周长为厘米.4.(10分)如图是兰兰家到学校的街道示意图.兰兰沿街道从家到学校共有种不同的最短路线.5.(10分)胡老师手中原有红卡与蓝卡各100张.胡老师可以用2张红卡换1张蓝卡与1张紫卡;也可用3张蓝卡换1张红卡与1张紫卡.那么经过若干次交换后,胡老师最多可持有张紫卡.6.(10分)如图,形ABCDEF.如果正六边形ABCDEF的面积为80平方厘米,那么用来组成正六边形ABCDEF的所有菱形的面积总和是平方厘米.7.(10分)将1~25分别填入如图所示的5×5表格中.在每一行中选出最大数,在每一列中选出最小数,这样我们一共选择了10次.这10次选出的数中至少有个不相同的数.8.(10分)如图所示,用64个棱长为1的小立方体组成一个棱长为4的大立方体,再从上到下取走4个小立方体(图中阴影部分).将剩余立体图形的内外表面都染成红色,那么恰有两个面染色的小立方体共有个.二、简答题9.(15分)12位小朋友共同购买一套书,购书的费用由大家平均承担.由于购买时,其中2位小朋友没有带钱,所以其余的10位小朋友每人多付了10元那么购买这套书共需多少元?10.(15分)小袋鼠甲和乙在如图的区域中跳动,甲按ABCDEFGHIABC…的顺序循环跳动,乙按照ABDEGHABD…的顺序跳动,如果开始时两只袋鼠都从A出发,并且这算是第一次他们同跳到了一起,问经过2017跳跃,他们一共跳到了一起多少次?11.(15分)某次数学竞赛中,必答题答对1题得3分、答错1题倒扣2分;选答题答对1题得5分、答错1题得0分.小明回答了所有的题且答对了其中15道,共得49分.那么该数学竞赛中共有几道必答题?12.(15分)如图是某社区的街道示意图,一辆洒水车从A点出发不重复地经过所有街道又回到A点.那么洒水车有多少种不同的路线?2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小中组)参考答案与试题解析一、填空题1.(10分)计算:(888+777)÷(666+555+444)= 1 .【分析】先提取公因数111,然后再根据乘法的结合律简算即可.【解答】解:(888+777)÷(666+555+444)=111×(8+7)÷[111×(6+5+4)]=111×15÷111÷15=(111÷111)×(15÷15)=1故答案为:1.2.(10分)在下面加法竖式中,八个不同的字母分别代表2~9这八个数字,其中相同的字母代表相同的数字,不同的字母代表不同的数字,那么=2526 .【分析】首先找到题中的特殊情况,结果中的首位字母只能是数字2,再看个位数字满足O+X=10,同时十位满足W+I=9,枚举即可排除.【解答】解:依题意可知:首先分析数字是从2﹣9的,那么3个不同数字相加最大进位是2,所以N =2;再根据个位数字为E,那么O+X=10.向前进位1,然后得出W+I=9;分析数字和为9的数字有3+6或者是4+5.数字和为10的有3+7或者4+6.那么得出结论根据4和6的数字重复,得数数字10的一定是3+7.当O=3时.I的数字是4或者是5,T+S结果需要为20或21,没有满足条件的数字.当O=7,I的数字是4或5.T+S结果需要为16或者17.那么9+8满足条件.剩下的数字E=6.故答案为:2526.3.(10分)如图,在两张大小相同的大长方形纸片上,分别在角和边上各剪下一个大小相同的小正方形.若图②阴影部分的周长比图①阴影部分的周长多17厘米,那么剪下的小正方形周长为34 厘米.【分析】观察图发现,图①阴影部分的周长就是大长方形的周长,图②阴影部分的周长是大长方形的周长再加上2条小正方形的边长,即图②阴影部分的周长比图①阴影部分的周长多了2条小正方形的边长,先用17厘米除以2,求出小正方形的边长,再根据正方形的周长=边长×4求解.【解答】解:17÷2×4=34(厘米)答:剪下的小正方形周长为 34厘米.故答案为:34.4.(10分)如图是兰兰家到学校的街道示意图.兰兰沿街道从家到学校共有18 种不同的最短路线.【分析】按题意,由标数法可把走法标出来,要求最短路线,则兰兰必须会总中间的那条斜线,故只需算出走斜线前的走法和走斜线后到达学校的走法路线即可.【解答】解:根据分析,有标数法(每个格点上的数是左边和下面相邻的两个数之和)得,由A至C有3种不同路线,由D到B有6种不同路线,故兰兰从家到学校共有3×6=18种最短路线,故答案是:18.5.(10分)胡老师手中原有红卡与蓝卡各100张.胡老师可以用2张红卡换1张蓝卡与1张紫卡;也可用3张蓝卡换1张红卡与1张紫卡.那么经过若干次交换后,胡老师最多可持有138 张紫卡.【分析】按题意,可以利用交换前后总分值不变,因为到最后不可能全换成紫卡,而5分不能表示为若干个3与4的和,10=3+3+4,故最多可获得紫卡:(700﹣10)÷5=138(张).【解答】解:根据分析,假定蓝卡每张3分,红卡每张4分,紫卡每张5分,则每次交换后总分值不变.总分值为:3×100+4×100=700(分),因为到最后不可能全换成紫卡,而5分不能表示为若干个3与4的和,10=3+3+4故最多可获得紫卡:(700﹣10)÷5=138(张),可操作如下:(100,100,0)→(0,150,50)→(50,0,100)→(0,25,125)→(8,1,133)→(0,5,137)→(1,2,138)故答案是:138.6.(10分)如图,形ABCDEF.如果正六边形ABCDEF的面积为80平方厘米,那么用来组成正六边形ABCDEF的所有菱形的面积总和是45 平方厘米.【分析】按题意,可以将图形等积变形,再图中用虚线标出所有的小棱形,再数一下有多少个小棱形,即可求得棱形的面积.【解答】解:根据分析,如图,将正六边形ABCDEF分割成若干个面积相等的小棱形,共有48个小棱形,每个小棱形的面积为:80÷48=平方厘米,则画实线的棱形面积为:=45平方厘米.即:那么用来组成正六边形ABCDEF的所有菱形的面积总和是45平方厘米.故答案是:45.7.(10分)将1~25分别填入如图所示的5×5表格中.在每一行中选出最大数,在每一列中选出最小数,这样我们一共选择了10次.这10次选出的数中至少有9 个不相同的数.【分析】首先根据题意,判断出一定存在一个数,它既是所在行的最大数,又是所在列的最小数;然后应用假设法,判断出:不存在两个既是所在行的最大数,又是所在列的最小数的数,推得这10次选出的数中至少有9个不相同的数即可.【解答】解:(1)一定存在一个数,它既是所在行的最大数,又是所在列的最小数,例如:图1中的数字10既是第5行的最大数,又是第1列的最小数,.(2)若存在两个这样的数,则这两个数必不在同一行也不在同一列,如图2中的A与B,由题意,可得:B>C>A>D>B,这是不可能的,所以不存在两个既是所在行的最大数,又是所在列的最小数的数,所以这10次选出的数中至少有:10﹣1=9个不相同的数,.故答案为:9.8.(10分)如图所示,用64个棱长为1的小立方体组成一个棱长为4的大立方体,再从上到下取走4个小立方体(图中阴影部分).将剩余立体图形的内外表面都染成红色,那么恰有两个面染色的小立方体共有28 个.【分析】首先分析棱上的小块,面上的除了空心通道以外其他是没有的,空心通道的数字计算出来相加即可.【解答】解:依题意可知:在大正方体的棱上的,上下各有6个,侧面棱上8个,棱上共20个.空心通道产生的上下各有2个,通道内有4个共8个.共20+8=28(个).故答案为:28.二、简答题9.(15分)12位小朋友共同购买一套书,购书的费用由大家平均承担.由于购买时,其中2位小朋友没有带钱,所以其余的10位小朋友每人多付了10元那么购买这套书共需多少元?【分析】首先根据数量差找到10位小朋友多花了多少钱,然后平均分给2位小朋友,即可求解.【解答】解:依题意可知;10位小朋友多付的是2位小朋友的钱数即,10×10=100元,每位小朋友应该付款为100÷2=50元.共12小朋友应该付款为:12×50=600元.答:购买这套书共需要600元.10.(15分)小袋鼠甲和乙在如图的区域中跳动,甲按ABCDEFGHIABC…的顺序循环跳动,乙按照ABDEGHABD…的顺序跳动,如果开始时两只袋鼠都从A出发,并且这算是第一次他们同跳到了一起,问经过2017跳跃,他们一共跳到了一起多少次?【分析】首先找到2次跳跃的周期6和9的最小公倍数为18,在这一个周期中有2次相遇,找到组数和余数即可求解.【解答】解:依题意可知:枚举法列表可知:甲A B C D E F G H I A B C D E F G H I A …乙A B D E G H A B D E G H A B D E G H A …周期数为18.每一个周期有两次相遇.2017÷18=112…1.所以经过2017次跳跃两只袋鼠共有1+2×112+1=226(次);答:经过2017跳跃,他们一共跳到了一起有226次.11.(15分)某次数学竞赛中,必答题答对1题得3分、答错1题倒扣2分;选答题答对1题得5分、答错1题得0分.小明回答了所有的题且答对了其中15道,共得49分.那么该数学竞赛中共有几道必答题?【分析】首先假设全是选答题,根据数量差进行求解.【解答】解:依题意可知:假设该数学竞赛全为选答题,则小明答对15题得分5×15=75分;而将一道选答题换成一道必答题无论对错小明都减少2分.所以3分的必答题有(75﹣49)÷2=13(题).答:该数学竞赛中共有13道必答题.12.(15分)如图是某社区的街道示意图,一辆洒水车从A点出发不重复地经过所有街道又回到A点.那么洒水车有多少种不同的路线?【分析】按题意,从A点出发既可以向左也可以向右,2种,然后再分类计算路线即可得出所有路线的总和.【解答】解:根据分析,洒水车从A点出发可以选择向左或向右,2种,①若向左,走到B点时,有3种选择,走到C点后有2种选择回到B点,最后剩下1种选择回到C,最后返回A;②若向右,走到C点时,有3种选择,走到B点后有2种选择回到C点,最后剩下1种选择回到B,最后返回A;综上,共有:2×(3+3)=12种路线.故答案是:12.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:12;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)

第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)

2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.192.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.123.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.204.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.27545.(10分)在序列 20170…中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.20176.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么 A 的值是.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是平方厘米.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是.2017年第二十二届“华罗庚金杯”少年数学邀请赛初赛试卷(小高组)参考答案与试题解析一、选择题(每小题10分,共60分.以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内.)1.(10分)两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值.A.16 B.17 C.18 D.19【分析】两个小数的整数部分分别是7和10,那么这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88,所以,这两个小数的积的整数部分在70与88之间,包括70,单不包括88,共有18种可能,据此解答.【解答】解:根据题意与分析:这两个小数的积的整数部分最小是7×10=70;这两个小数的积的整数部分最大不超过8×11=88;所以,这两个小数的积的整数部分在70与88之间,包括70,但不包括88,共有:88﹣70=18种可能;答:这两个有限小数的积的整数部分有18种可能的取值.故选:C.2.(10分)小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟.某天小明因故先乘地铁,再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟.A.6 B.8 C.10 D.12【分析】总共用时是40,去掉换乘6分钟.40﹣6=34分钟.地铁是30分钟,客车是50分钟,实际是34分钟,根据时间差,比例份数法即可.【解答】解:乘车时间是40﹣6=34分,假设全是地铁是30分钟,时间差是34﹣30=4分钟,需要调整到公交推迟4分钟,地铁和公交的时间比是3:5,设地铁时间是3份,公交是5份时间,4÷(5﹣3)=2,公交时间为5×2=10分钟.故选:C.3.(10分)将长方形ABCD对角线平均分成12段,连接成如图,长方形ABCD 内部空白部分面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米.A.14 B.16 C.18 D.20【分析】设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);同理,那么阴影部分面积总和是:3+7+11=21,然后进一步解答即可.【解答】解:设把中间最小的空白长方形的面积看作单位1=ab,那么与它相邻的阴影部分的面积就是2a×2b﹣ab=3ab=3,同理,相邻的空白部分的面积就是5ab=5,依此规律,面积依次下去为7,9,11,则空白部分的面积总和是1+5+9=15,而实际空白部分面积总和是10平方厘米,可得单位1的实际面积是10÷15=(平方厘米);那么阴影部分面积总和是:3+7+11=21,则实际面积是:21×=14(平方厘米);答:阴影部分面积总和是14平方厘米.故选:A.4.(10分)请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是()A.2986 B.2858 C.2672 D.2754【分析】根据特殊情况入手,结果中的数字2如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾,那么就是没有进位.根据已知数字进行分析没有矛盾的就是符合题意的.【解答】解:首先根据结果中的首位数字是2,如果有进位那么0上边只能是9,根据910多除以7得130多,7前面只能是1,与数字0矛盾那么乘数中的三位数的首位只能是1或者2,因为乘数中有7而且结果是三位数,那么乘数中三位数首位只能是1.那么已知数字7前面只能是2,根据已知数字0再推出乘数三位数中的十位数字是0.再根据乘数中的数字7与三位数相乘有1的进位,尾数只能是2.所以是102×27=2754.故选:D.5.(10分)在序列 20170…中,从第 5 个数字开始,每个数字都是前面 4 个数字和的个位数,这样的序列可以一直写下去.那么从第 5 个数字开始,该序列中一定不会出现的数组是()A.8615 B.2016 C.4023 D.2017【分析】分析结果中的奇数偶数的性质,如果四个数字中出现一个奇数,那么下一个数字的结果一定是奇数,则2个奇数加两个偶数结果就是偶数.分析枚举找到规律即可.【解答】解:枚举法0170的数字和是8下一个数字就是8.1708的数字和是16下一个数字就是6.7086的数字和是21下一个数字就是1.0861的数字和是15下一个数字是5.8615的数字和是20下一个数字是0.6150的数字和为12下一个数字就是2.20170861502…规律总结:查看数字中奇数的个数,奇数一出现就是2个.故选:B.6.(10分)从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的.这句话里有()个数大于1,有()个数大于2,有()个数大于3,有()个数大于4.A.1 B.2 C.3 D.4【分析】首先考虑共4个空的数字不相同而且还有1,2,3,4一共是8个数字,如果有0和1,那么至少大于1的数字还有5个,大于4的数字最多是4个,最少是1个,根据这些条件进行枚举筛选.【解答】解:依题意可知:设有a个数是大于1的,有b个数是大于2的,有c个数是大于3的,有d个数是大于4的.因为1,2,3,4各有一个,还有4个空,那么有a>b>c>d.且a≥5,1≤d≤4①若d=4,那么在这8个数字中需要有4个数字大于4,目前只有a,b,c是大于4的不满足条件.②若d=3时,那么在这8个数中需要有3个数是大于4的,a,b,c都是大于4的满足条件.则大于3的数字共个4.与c>4矛盾③若d=2时,则a,b大于4,c不大于4,c则是取3或者4,分析a,b,c,d依次是7,5,3,2或者7,5,4,2④若d=1时,则a是大于4的,b,c是不大于4的,由3,4,a都是大于2的,所以b≥3,则大于2的数共4个,所以b=4,此时大于3的数有a,b,4此时c≥3,那么大于2的数字共5个,矛盾故选:B.二、填空题(每小题10分,共40分)7.(10分)若[﹣]×÷+2.25=4,那么 A 的值是 4 .【分析】先把繁分数化简,求出关于未知数A的方程,然后根据等式的性质解方程即可.【解答】解:[﹣]×÷+2.25=4[﹣]×÷+2.25=4[﹣]×÷=[﹣]×=﹣=×﹣==+=24=6AA=4故答案为:4.8.(10分)如图中,“华罗庚金杯”五个汉字分别代表1﹣5这五个不同的数字.将各线段两端点的数字相加得到五个和,共有10 种情况使得这五个和恰为五个连续自然数.【分析】根据“每条线段两端点上的数字和恰为5个连续自然数”可以看出这5个和比原来1、2、3、4、5要大些;五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;然后结合最小和最大的自然数即可确定每个顶点处有几种选值,再确定共有几种情况.【解答】解:五角星5个顶点的数都算了两次,所以可以算出5个和的总和为:2×(1+2+3+4+5)=30,原来5个自然数的和是:1+2+3+4+5=15,新的5个连续自然数比原来5个连续自然数多了:30﹣15=15,平均每个多15÷5=3,则新的5个连续自然数为:1+3、2+3、3+3、4+3、5+3,即4、5、6、7、8;观察这新的5个连续自然数,最小的自然数4只能是4=1+3,最大的自然数8只能是5+3,并且2与1,4与5不能组合,这样就有如下组合:因为每个顶点有2种不同的选值,所以共有2×5=10种;答:共有 10种情况使得这五个和恰为五个连续自然数.故答案为:10.9.(10分)如图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE的交点为H,AC和BD的交点为G,四边形EHGF的面积是15平方厘米,则ABCD的面积是180 平方厘米.【分析】如图,连接EG,,根据三角形的面积和底的正比关系,判断出S△BDE、S△DEF、S△BGH与S四边形ABCD的关系,推出S四边形EHGF 与S四边形ABCD的关系,再根据四边形EHGF的面积是15平方厘米,求出ABCD 的面积是多少即可.【解答】解:如图,连接EG,,因为E为CD的中点,所以DE=CD,所以S△BDE=S△ADE=S四边形ABCD;因为AC和BD的交点为G,所以G为AC的中点,因为E为CD的中点,所以EG∥AD,且=,所以==,所以S△DEF=S△ADE=S四边形ABCD;因为EG∥AD,且AD∥BC,所以EG∥BC,=,所以==,所以S△BGH=S△BCG=S四边形ABCD;所以S四边形EHGF=S△BDE﹣S△DEF﹣S△BGH=S四边形ABCD,所以S四边形ABCD=S四边形EHGF×12=15×12=180(平方厘米)答:ABCD的面积是180平方厘米.故答案为:180.10.(10分)若2017,1029与725除以d的余数均为r,那么d﹣r的最大值是35 .【分析】根据题意可得,2017﹣r,1029﹣r,725﹣r,均能被d整除,则(2017﹣r)﹣(1029﹣r),(2017﹣r)﹣(725﹣r),(1029﹣r)﹣(725﹣r),这三个数也能被d整除,即988,1292,304均能被d整除,不难得出,三个数的最大公因数是76,即d的值可能是:76,38,19,4,2,1(被1除余数可看成0);然后分别用725除以d的可能值,求出d﹣r的值,选取d﹣r的最大值即可.【解答】解:根据题意可得,2017﹣r,1029﹣r,725﹣r,均能被d整除,则(2017﹣r)﹣(1029﹣r),(2017﹣r)﹣(725﹣r),(1029﹣r)﹣(725﹣r),这三个数也能被d整除,即988,1292,304均能被d整除,988=2×2×19×131292=2×2×19×17304=2×2×2×2×19所以三个数的最大公因数是:2×2×19=76,d为76的因数,即d的值可能是:76,38,19,4,2,1(被1除余数可看成0),当d=76时,此时:725÷76=9…41,即r=41,即此时d﹣r=76﹣41=35;当d=38时,此时:725÷38=19…3,即r=3,即此时d﹣r=38﹣3=35;当d=19时,此时:725÷19=38…3,即r=3,即此时d﹣r=19﹣3=16;当d=4时,此时:725÷4=182…1,即r=1,即此时d﹣r=4﹣1=3;当d=2时,此时:725÷2=362…1,即r=1,即此时d﹣r=2﹣1=1;当d=1时,此时:725÷1=725,即r=0,即此时d﹣r=1﹣0=1;则,d﹣r的最大值是35.故答案为:35.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:25;用户:小学奥数;邮箱:pfpxxx02@;学号:20913800。

2017年第22届华杯总决赛小高组一试及详解

2017年第22届华杯总决赛小高组一试及详解

么甲第 10 次到达山顶前,有 2 次(第 3 次和第 9 次)当甲到达山顶时,乙正爬向
山顶,且距离山脚 5 处(小于 1 ).
18
3
(法 2): v甲上 : v乙上 : v甲下 : v乙下 6 : 5 : 6 1.5 : 5 1.5 =12 :10 :18 :15
易求: t甲上 : t乙上 : t甲下 : t乙下 15 :18 :10 :12
20174 20172 12 2 20162 2
20174 20174 2 20172 1 20162 2
2 20172 20162 1
2 2017 2016 2017 2016 1
2 4033 1 8065
2017kb b 2016kb 2016k kb b 2016k
k 1b 2016k
匠人之心 精致教学 5

k

1 时,无解.当
k

1
时,
b

2016k
k 1

k 1,k 1 , b 是整数,所以 k 1 是 2016 的因数.
2016 25 32 7
20174 20162 20172 2 2017 3 20174 20162 20172 2 2017 12 2
20174 20162 2017 12 20162 2 20174 2017 1 2017 12 20162 2
即 a 与 b 有 36 种不同的数值. 综上所述,有 36 种不同的方法.
6. 甲、乙锻炼身体,从山脚爬到山顶,再从山顶跑回山脚,来回往返不断运动.己知甲、 乙下山速度都是上山速度的 1.5 倍,甲的速度与乙的速度之比是 6 : 5 .两人同时从山脚 开始爬山,经过一段时间后,甲第 10 次到达山顶.问:在此之前,甲在山顶上有多少 次看到乙正爬向山顶,且此时乙距离山顶尚有多于从山脚到山顶路程的三分之二?

第二十二届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)

第二十二届华罗庚金杯少年数学邀请赛决赛试题B参考答案(小学高年级组)

第二十二届华罗庚金杯少年数学邀请赛决赛试题B 参考答案 (小学高年级组)一、填空题(每小题 10 分, 共80分)二、解答下列各题(每小题 10 分, 共40分, 要求写出简要过程)9. 【答案】9【解答】若每两条直线有1个交点, 则5条直线最多有4+3+2+1=10个交点.最少有0个交点. 其中2个交点、3个交点的情况是不存在的.五条直线考虑多线共点与多线平行, 有以下9种可能情况:10. 【答案】201311311111个【解答】最大正整数是201311311111个。

既然是寻求最大的正整数,从极端情况考虑20171111111个,但是,20171111111个不是7的倍数, 又2016个奇数的和是偶数,不等于2017. 所以,需考虑2015位数, 且各位数字是奇数,和等于2017, 由于7111111, 2015=305×6+5,只需判断最高的5位数能否被7整除即可, 7不整除31111, 整除13111, 所以, 所求最大正整数为201311311111个.11. 【答案】66【解答】共有奇数五个, 偶数四个要得和是偶数, 则有:偶数+偶数+偶数+偶数;或者:偶数+偶数+奇数+奇数; 或者:奇数+奇数+奇数+奇数;从四个偶数中取4个有1种选法; 从四个偶数中取2个偶数, 从五个奇数中取二个奇数有: 4×3÷[2×1]×5×4÷[2×1]=60种 , 从五个奇数中取4个奇数有5种 , 所以共有:1+60+5=66种 12. 【答案】70950【解答】设d 是3n+2和5n+1的最大公约数, 则 由辗转相除知)7,4()3,4()3,12()23,12()23,15(-=+-=+-=+-=++=n n n n n n n n n d ,若7d =, 则原式不为最简分数, 即有,2,1,0,74==-k k nn 为三位数时, 即 999100≤≤n , 则有142.k 14 ,99947100≤≤≤+≤k其和=.70950129414215147=⨯++++)(三、解答下列各题(每题 15 分, 共30分, 要求写出详细过程)13. 【答案】:不可以【解答】证明:如右图,7个顶点标上字母A, B, C, D, E, F, G 代表所填的整数。

2020年第二十二届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2020年第二十二届“无悔金杯”少年数学邀请赛决赛试卷(小高组b卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=20341442.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD 边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)120171022243145499514561457101866977101341111212661388141451513416991713418134198820123211122255237724123251012644275528992914530145311013266由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0的有:12,21,24,36,42,45,48,54,63,84.故答案为:198.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m 的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是1311黑豆网https://黑豆网涵盖电影,电视剧,综艺,动漫等在线观看资源!金马医药招商网:金马医药招商网是专业提供医药代理招商的资讯信息发布平台,科技新闻网:科技新闻网每天更新最新科技新闻,这里有最权威的科技新闻资料。

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷一、选择题(每小题10 分, 共60 分. 以下每题的四个选项中, 仅有一个是正确的, 请将表示正确答案的英文字母写在每题的圆括号内.)1. 两个有限小数的整数部分分别是7 和10,那么这两个有限小数的积的整数部分有(C)种可能的取值.(A)16 (B)17 (C)18 (D)19【解】:如果这两个有限小数的十分位是0,百分位小于6,那么它们的积就可能是7.05×10.05=70.8525;如果这两个有限小数的小数部分是0.999,那么它们的积就可能是:7.999×10.999≈87.981.(这两个有限小数,无论小数部分有多少个9,积的整数部分都小于88)可知,它们的积的整数部分最小可能是70,最大可能是87.从70 到87共有:87-70+1=18,所以,这两个有限小数的积的整数部分有18种可能的取值.2. 小明家距学校,乘地铁需要30 分钟,乘公交车需要50 分钟.某天小明因故先乘地铁,再换乘公交车,用了40 分钟到达学校,其中换乘过程用了 6 分钟,那么这天小明乘坐公交车用了(C)分钟.(A)6 (B)8 (C)10 (D)12【解】:这是一道变形的鸡兔同笼问题。

从家到学校,乘地铁每分钟能行全程的130,乘公交每分钟能行全程的150。

他从家到学校坐车实际花了40-6=34(分钟),假设全程都是乘地铁,那么,乘坐公交车用了(130×34-1)÷(130-150)=10(分钟)3. 将长方形ABCD 对角线平均分成12 段,连接成右图,长方形ABCD 内部空白部分面积总和是10 平方厘米,那么阴影部分面积总和是(A)平方厘米.(A)14 (B)16 (C)18 (D)20【解】连接对角线上的各个分点并延长,使之分别和长方形的长边与宽边平行、相等,这样,把长方形ABCD平分成了12×12=144个小长方形最外圈每边有小长方形12-1=11(个)最外圈(黑)11×4=44(个)第二圈(白)(11-2)×4=36(个)第三圈(黑)(11-2-2)×4=28(个)第四圈(白)(11-2-2-2)×4=20(个)第五圈(黑)(11-2-2-2-2)×4=12(个)第六圈(白)(11-2-2-2-2-2)×4=4(个)所以,阴影部分面积总和是:10×44281236204=14(平方厘米).4. 请在图中的每个方框中填入适当的数字,使得乘法竖式成立.那么乘积是(D).(A)2986 (B)2858 (C)2672 (D)2754【解】由于一个三位数乘以两位数,积为四位数,可知三位数的百位数字与两位数的十位数字都不可能很大,只可能是1、2。

【小高组】第22届华杯赛决赛卷(B)

【小高组】第22届华杯赛决赛卷(B)

第二十二届华罗庚金杯少年数学邀请赛决赛(B )卷【小高组】一、填空题(每小题10分,共80分) 1.______2017120161201512017120151514131513131211311=⨯⨯-+⋅⋅⋅+⨯⨯-+⨯⨯-。

2.甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点.相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了______分钟.3.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有_______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.小于1000的自然数中,有______个数的数字组成中最多有两个不同的数字.5.右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,ο90=∠MHB .已知AB=20厘米.则MH 的长度为______厘米.6.一列数,,,,,21⋅⋅⋅⋅⋅⋅n a a a 记)(i a S 为i a 的所有数字之和,如422)22(=+=S 。

若)()(,22,20172121--+===n n n a S a S a a a ,那么2017a 等于_______.7. 一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有______个.8.如右图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有_______种.二、解答下列各题(每题10分,共40分,要求写出简要过程)9.平面上有5条不同的直线,这5条直线共形成m 个交点,则m 有多少个不同的数值?10.求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12. 使1523++n n 不为最简分数的三位数之和等于多少. 三、解答下列各题(每小题15分,共30分,要求写出详细过程)13.一个正六边形被剖分成6个小三角形,如右图.在这些小三角形的7个顶点处填上7个不同的整数.能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.如果可以,请给出一种填法;如果不可以,请说明理由.14.7×7的方格网黑白染色,如果黑格比白格少的列的个数为m ,黑格比白格多的行的个数为n ,求n m +的最大值.。

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)一、填空题(每小题10分,共80分)1.(10分)++…+=.2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有个.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)++…+=2034144.【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:===2×(2+4+6+8+ (2016)=2×=2018×1008=2034144【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了52分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(1+20%):4=3:2,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5=x:3,x=甲在行驶AC的爆胎位置到中点的正常时间为:×==(小时);甲乙爆胎前后的速度比为:5:5(1+20%)=5:6;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:6:5=:y,y=;修车时间为:3﹣×=(小时)=52(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有352个数的数字组成中最多有两个不同的数字.【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:9×9×8=648个,则最多有两个不同数字的数有:1000﹣648=352个.故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M 为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH的长.6.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S(22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10.【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.【点评】本题重点是弄清楚S(a i)的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有19个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决.【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90.(2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84.故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有4种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数m=4;③若有三条直线互相平行,则m=5,6,7;④若有两条直线互相平行,则m=5,6,7,8,9;⑤若没有直线平行,则m=1,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数.又有:2017=6×336+1=6×335+7当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下:21,490+21=511,700+511=1211,5600+511=6111,7000+6111=13111,35000+6111=41111,70000+41111=111111,70000+41111=111111,我们注意到,7000+6111=13111是能被7整除且各位数字之和等于7 的最大正整数.所以,各位数字和为2017 的最大正整数13111…11,其中1的个数是335×6+4=2014,即.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可.【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是=60种.当选择4个奇数时有5种.60+5+1=66(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)7×7的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m+n的最大值.【分析】在m取最大值的条件下n尽量取最大值可使m+n的值最大.【解答】解:根据分析,1≤黑格和白格的行数≤7;1≤列数≤7,当m=7时,可以设7列之中黑格个数为3,则黑格总数为:3×7=21.然后,可以把21个黑格在1﹣5行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以n=5,从而使得m+n=12为最大.如下图1所示:当m=6时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为3×6+7=25.然后,我们使得1﹣6行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以n=6,从而使得m+n=12,如图2所示:当m≤5时,m+n≤12.综上,m+n的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。

a2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)

a2017年第二十二届“华罗庚金杯”少年数学邀请赛(武汉赛区)决赛试卷(小高组)

篇章专练
Work seriously
it is 3 most important thing for an animal to be good at getting food.Some animals like to eat 4 their right hand, but some animals just use their left hand instead.That’s 5 the animals are left-handed or right-handed.The scientists have discovered that the male cats and dogs are almost left-handed, while the female cats and dogs are right-handed 6 they work differently in their daily lives.Of course,
句子专练
Work seriously
5.如果是那样的话,我就不去参加聚会了。 _I_n_t_h_a_t_c_a_s_e_,__I_w__o_n_’t__g_o_t_o_t_h_e__p_a_rt_y_._____
目录 contents
4 篇章专练
篇章专练
Work seriously
四、篇章专练 Passage 1
话题19 自然
动物和植物
目录 contents
词汇专练 短语专练 句子专练 篇章专练
目录 contents
词汇专练
词汇专练
Work seriously
一、词汇专练 (pet, different, animal, smart, habit) ●用括号里的单词的适当形式填空,每词只能用 一次。 1.I think I should read more because it will make me__s_m_a_r_t_e_r___. 2.The best way is to change your eating__h_a_b_it_(__s_)__ to a low- sugar and highfibre diet.

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)

(完整word版)2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组b卷)

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ . 2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 分钟.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)小于1000的自然数中,有 个数的数字组成中最多有两个不同的数字. 5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 厘米.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 .7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 个.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m n+的最大值.2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组B 卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)1111113352015201711111111123345201520162017---++⋯+=⨯⨯⨯⨯⨯⨯ 2034144 . 【分析】观察一下,首先把分子的两个分数变换一下形式,变成两个分数的乘积,恰好能和分母约分,这样就把原来的繁杂的分数变成简单的整数加减运算.【解答】解:1111113352015201711111111123345201520162017---++⋯+⨯⨯⨯⨯⨯⨯ 31532017201513352015201711111111123345201520162017---⨯⨯⨯=++⋯+⨯⨯⨯⨯⨯⨯111122221335572015201711111111132354576201520172016⨯⨯⨯⨯⨯⨯⨯⨯=+++⋯+⨯⨯⨯⨯⨯⨯⨯⨯ 2(24682016)=⨯++++⋯+ (22016)2016222+=⨯⨯20181008=⨯ 2034144=【点评】本题考查了分数的拆项运算知识,本题突破点:把分子拆分成两个分数的乘积形式,从而和分母约分2.(10分)甲、乙两车分别从A 、B 两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久,甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提高20%,结果在出发后3小时,与乙车相遇在AB 两地中点,相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A 地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了 52 分钟.【分析】首先分析后半程冲中点到A的过程,求出两人的速度比就可知道路程比,找到爆胎位置.然后再根据原来的速度比求出正常行驶的时间减去爆胎前的时间.最后根据甲前后两次的速度比求出时间比做差即可.【解答】解:依题意可知:甲乙两车的后来速度比:5(120%):43:2+=,甲回来走3份乙走两份路程.得知甲车爆胎的位置是AC的13处.如果不爆胎的甲行驶的时间和速度成反比:设甲行驶的时间为x则有:4:5:3x=,125 x=甲在行驶AC的爆胎位置到中点的正常时间为:121248(1)53155⨯-==(小时);甲乙爆胎前后的速度比为:5:5(120%)5:6+=;路程一定时间和速度成反比:设爆胎后到中点的时间为y则有:86:5:5y=,43y=;修车时间为:121413353315-⨯-=(小时)13605215⨯=(分)故答案为:52分【点评】本题考查对比例应用题的理解和运用,关键是根据不变量判断正反比,找到甲原来不受影响的时间,再和后面的进行比较做差即可,问题解决.3.(10分)在33⨯的网格中(每个格子是个11⨯的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE 、BE ;②当两颗棋子都不在正中间E 处时,而其中有一颗在顶点处时,有4种不同摆法,即AB 、AF 、AH 、AD ;③当两颗棋子都在顶点处时,有2种不同摆法,即AC 、AI ;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD 、BH .综上,共有:242210+++=种不同摆放方法.【点评】本题考查了排列组合,突破点是:分情况讨论,根据不同的位置求出总的不同摆放方法.4.(10分)小于1000的自然数中,有 352 个数的数字组成中最多有两个不同的数字. 【分析】可以先求出有三个同数字的数的个数,再用总数1000减去后就是符合题意“数字组成中最多有两个不同的数字”的个数.【解答】解:根据分析,小于1000的自然数中,有三个不同数字的数有:998648⨯⨯=个, 则最多有两个不同数字的数有:1000648352-=个. 故答案是:352.【点评】本题考查了数的问题,突破点是:先求有三个不同数字的数的个数,用总数减去即可.5.(10分)如图,ABC ∆的面积为100平方厘米,ABD ∆的面积为72平方厘米.M 为CD 边的中点,90MHB ∠=︒,已知20AB =厘米,则MH 的长度为 8.6 厘米.【分析】可以利用面积公式分别求出ABC ∆、ABD ∆的高,而已知20AB =厘米,再利用MH 的中位线性质求出MH 的长度.【解答】解:根据分析,过D ,C 分别作DE AB ⊥交AB 于E ,CF AB ⊥交AB 于F ,如图:ABD ∆的面积11722022DE AB DE ==⨯⨯=⨯⨯,7.2DE ∴=厘米,ABC ∆的面积111002022CF AB CF ==⨯⨯=⨯⨯,10CF ∴=厘米;又11()(7.210)8.622MH DE CF =⨯+=⨯+=厘米.故答案是:8.6.【点评】本题考查了三角形面积,本题突破点是:利用三角形面积公式先求出高,再利用中位线的关系求出MH 的长.6.(10分)一列数1a 、2a ⋯,n a ⋯,记()i S a 为i a 的所有数字之和,如(22)224S =+=,若12017a =,222a =,12()()n n n a S a S a --=+,那么2017a 等于 10 .【分析】首先要分析清楚()i S a 的含义,即i a 是一个自然数,()i S a 表示i a 的数字和,再根据n a 的递推式列出数据并找出规律.【解答】解:()i S a 表示自然数i a 的数字和,又12()()n n n a S a S a --=+,在下表中列出1n =,2,3,4,⋯时的n a 和()n S a ,nn a ()n S a1 2017 102 22 43 145 4 9 9 5 14 56 14 57 10 1 866由上表可以得出:4289a a ==,428()()9S a S a ==;52914a a ==,529()()5S a S a ==;⋯可以得到规律:当4i 时,24i i a a +=,24()()i i S a S a +=, 201732014-=,2014248322÷=⋯,所以:20173222510a a a +===.【点评】本题重点是弄清楚()i S a 的含义,通过地推找到规律,再进行求解.7.(10分)一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数的个数共有 19 个.【分析】首先看所有的10的倍数都是满足条件的,再找出尾数不为0的满足条件的数字即可,数字不多枚举法解决. 【解答】解:枚举法:(1)尾数为0的有:10,20,30,40,50,60,70,80,90. (2)尾数不为0 的有:12,21,24,36,42,45,48,54,63,84. 故答案为:19【点评】本题是考察因数和倍数的关系,同时关键是在枚举过程中按照顺序,可以是数字和也可以是首位数字的大小,问题解决.8.(10分)如图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F .开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法. 【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1124++=种不同摆放方法.故答案是:4.【点评】本题考查排列组合,突破点是:分情况讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后求和.二、解答下列各题(每小题10分,共40分)9.(10分)平面上有5条不同的直线,这5条直线共形成m个交点,则m有多少个不同的数值?【分析】分情况讨论m的值,有5条直线平行、4条直线平行,三条直线平行,两条直线平行,0条直线平行,五条直线交于一点,四条直线共点,三条直线共点,分别求得m的数值.【解答】解:根据分析,①若5条直线互相平行,则形成的交点为0,故m为0;②若有4条直线互相平行,则交点个数4m=;③若有三条直线互相平行,则5m=,6,7;④若有两条直线互相平行,则5m=,6,7,8,9;⑤若没有直线平行,则1m=,5,6,7,8,9,10.综上,m的可能取值有:0、1、4、5、6、7、8、9、10共9种不同的数值.故答案是:9.【点评】本题考查了组合图形的计数,本题突破点是:分类讨论,确定m的取值的种类.10.(10分)求能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数.【分析】要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1;据此分析解答即可.【解答】解:要使整数最大,且每一位数字都是奇数,必须保证整数的位数足够多,且含有尽量多的1.根据能被7整除的数的特征可得,111111是每个数位均为1且能被7整除的最小数. 又有:20176336163357=⨯+=⨯+当有336个111111组成时,因为所有数字之和要是2017,首位数字只能是1,不能被7整除;当有335个111111组成时,前面还需要加上一个正整数,使得它各位数字之和等于7,且这个数最大.满足这个条件的最大整数是13111.说明:我们可以用以下方法,构造一个能被7整除且除了首位数之外,其余数字均为1的数列如下: 21,49021511+=, 7005111211+=, 56005116111+=, 7000611113111+=, 35000611141111+=, 7000041111111111+=, 7000041111111111+=,我们注意到,7000611113111+=是能被7整除且各位数字之和等于7 的最大正整数. 所以,各位数字和为 2017 的最大正整数1311111⋯,其中1的个数是335642014⨯+=,即201311311111⋯个.答:能被7整除且各位数字均为奇数,各位数字和为2017的最大正整数是201311311111⋯个.【点评】本题关键是根据能被7整除的数的特征得到由数字“1”组成的最小数是111111;难点是寻找同时满足数字和是7的最大整数是13111.11.(10分)从1001,1002,1003,1004,1005,1006,1007,1008,1009中任意选出四个数,使它们的和为偶数,则共有多少种不同的选法.【分析】首先分析如果结果是偶数可以分为0,2,4个奇数,把每一种结果加起来即可. 【解答】解:依题意可知:根据四个数的结果是偶数.那么必定是0个奇数,2个奇数或者是4个奇数.在1001,1002,1003,1004,1005,1006,1007,1008,1009奇数的个数为5个,偶数的个数为4个.当0个奇数时有一种情况.当是2个奇数2个偶数时是225460C C=种.当选择4个奇数时有5种.605166++=(种)答:共有66种选择方法.【点评】本题考查对奇偶性的理解和综合运用,同时关键是分类中的排列组合.问题解决.12.(10分)使3251nn++不为最简分数的三位数n之和等于多少.【分析】3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,我们可以用51n+尝试来锁定答案,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:3251nn++不为最简,表明(51,32)1n n a++=≠,根据辗转相除原理有1|(51)3(32)5a n n≠+⨯-+⨯即1|7a=≠,则a只能等于7,一次尝试可知511n+=或6或11或16或21,因为2137=⨯,所以5121n+=时7|51n+成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102109116998+++⋯+(102998)1292=+⨯÷70950=答:使3251nn++不为最简分数的三位数n之和等于70950.【点评】考查了辗转相除原理,等差数列求和公式,关键是得到符合条件的三位数,最小为102,最大为998.三、解答下列各题(每小题15分,共30分)13.(15分)一个正六边形被剖分成6个小三角形,如图,在这些小三角形的7个顶点处填上7个不同的整数,能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列,如果可以,请给出一种填法;如果不可以,请说明理由.【分析】首先分析最小数字的位置,可以放在圆心出也可以放在外边,两种情况分析即可.【解答】解:依题意可知:分两种情况讨论:假设将最小数放在中心位置,我们只能在外圈顺时针依次从小到达放数字.但是只能满足五个三角形,最后一个三角形无法满足条件.假设将最小的数字放在外圈,然后在周边顺时针依次从小到大放数字,如果想要五个三角形都满足条件,则中心位置必须放大数字,但这样的话,最后一个又不能满足条件.综上所述:不能找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.【点评】本题是对凑数谜的理解和运用,关键问题是找最小数字的位置.问题解决.14.(15分)77⨯的方格黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的+的最大值.行的个数为n,求m n+的值最大.【分析】在m取最大值的条件下n尽量取最大值可使m n【解答】解:根据分析,1黑格和白格的行数7;1列数7,当7⨯=.然后,可以把21个m=时,可以设7列之中黑格个数为3,则黑格总数为:3721黑格在15-行之中每行放4个,第6行放1个,第7行不放.这样就有5行中黑格数量超过白格,所以5+=为最大.如下图1所示:m nn=,从而使得12当6m =时,可以设6列之中黑格个数均为3,其余一列黑格个数为7,这样黑格总数为36725⨯+=.然后,我们使得16-行黑格个数为4个,最后一行只有1个.这样就有6行中黑格数列超过白格,所以6n =,从而使得12m n +=,如图2所示:当5m 时,12m n +.综上,m n +的最大值为12.故答案是:12.【点评】本题考查了最大与最小,本题突破点是:在行数和列数的最小与最大的范围内,确定最大值.。

第二十二届“华杯赛”决赛小高组试题A详细解答

第二十二届“华杯赛”决赛小高组试题A详细解答

第二十二届华罗庚金杯少年数学邀请赛决赛试题A(小学高年级组)详细解答【解】:∵201711=183+411∴[201711×3] = [183×3+411×3]= 183×3+1类似地,可知:[201711×4]= 183×4+1;[201711×5]= 183×5+1[201711×6]= 183×6+2;[201711×7]= 183×7+2;[201711×8]= 183×8+2∴原式= 183×[3+4+5+6+7+8]+1+1+1+2+2+2=6048【答】:所求值为6048。

【解】:假设原来四个整数分别为a,b,c,d,则按照题意所求的四个数的表达式分别为:a+b+c3+d,a+b+d3+ca+c+d3+b,b+c+d3+a∵a+b+c3+d+a+b+d3+c+a+c+d3+b+b+c+d3+a=3(a+b+c+d)3+(a+b+c+d)=2(a+b+c+d)∴a+b+c+d=12×(8+12+1023+913)=12×(20+20) =20【答】:原来给定的4个整数的和为20。

【解】:分三种情形,共有10种不同摆法,如下图:(1)两个点都在第一行;(2)两个点不在同一行但相邻;(3)两个点不在同一行且不相邻;【答】:共有10种不同的摆放方法。

【解】:设甲的速度为V甲,乙的速度为V乙,AB两地距离为SAB,BC两地距离为SBC 根据题意可知:V甲=80÷2=40 (千米/小时) ,甲原来的速度的2倍为80(千米/小时) 所以,BC两地距离:SBC=2×80=160 (千米)又,乙从B地到C地花了2.5小时,所以,乙的速度为:V乙=SBC÷2.5=160÷2.5=64(千米/小时)【答】:乙的速度为64 千米/小时。

第22届华杯赛小学高年级组初赛试题及答案解析

第22届华杯赛小学高年级组初赛试题及答案解析

第22届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)一、选择题(每小题10分,共60分。

以下每题的四个选项中,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内。

)1、两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有()种可能的取值。

A、16B、17C、18D、192、小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟。

某天小明因故先乘地铁,再乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟,那么这天小明乘坐公交车用了()分钟。

A、6B、8C、10D、123、将长方形ABCD对角线平均分成12段,连接成下图,长方形ABCD内部空白部分的面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米。

A、14B、16C、18D、204、请在上图中每个方框中填入适当的数字,使得乘法竖式成立,那么乘积是()。

A、2986B、2858C、2672D、27545、在序列20170……中,从第5个数字开始,每个数字都是前面4个数字和的个位数,这样的序列可以一直写下去,那么从第5个数字开始,该序列中一定不会出现的数组是()。

A、8615B、2016C、4023D、20176、从0至9中选择四个不同的数字分别填入方框中的四个括号中,共有()种填法使得方框中话是正确的。

A、1B、2C、3D、4二、填空题(每小题10分,满分40分)7、若1532÷ 2.254553923741A⎛⎫⎪⎪⎪⨯⎪⎪⎪⎝⎭—+=+,那么A的值是。

8、下图中,“华罗庚金杯”五个汉字分别代表1—5这五个不同的数字,将各线段两端点的数字相加得到五个和,共有种情况使得这五个和恰为五个连续自然数。

9、上图中,ABCD是平行四边形,E为CD的中点,AE和BD的交点为F,AC和BE 的交点为H,四边形EFGH的面积是15平方厘米,则ABCD的面积是平方厘米。

10、若2017,1029和725除以d的余数均为r,那么d—r的最大值是。

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第二十二届华罗庚金杯少年数学邀请赛决赛(A )卷【小高组】一、填空题(每小题10分,共80分)1.用][x 表示不超过x 的最大整数,例如3]14.3[=,则⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯+⎥⎦⎤⎢⎣⎡⨯118201711720171162017115201711420171132017的值为_______.2. 从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样可以得到4个数:8,12,3210和319,则原来给定的4个整数的和为_______.3.在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子最多放一枚棋子,共有_______种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4. 甲从A 地出发去找乙,走了80千米后到达B 地,此时,乙已于半小时前离开B 地去了C 地,甲已离开A 地2小时,于是,甲以原来速度的2倍去C 地,又经过了2小时后,甲乙两人同时到达C 地,则乙的速度是_______千米/小时.5.某校开设了书法和朗诵两个兴趣小组,已知两个小组都参加的人数是只参加书法小组人数的72,是只参加朗诵小组人数的51,那么书法小组与朗诵小组的人数比是_______.6.右图中,三角形ABC 的面积为100平方厘米,三角形ABD 的面积为72平方厘米.M 为CD 边的中点,o 90=∠MHB .已知AB=20厘米.则MH 的长度为_______厘米.7.一列数,,,,,21⋅⋅⋅⋅⋅⋅n a a a 记)(i a S 为i a 的所有数字之和,如422)22(=+=S 。

若 )()(,22,20172121--+===n n n a S a S a a a ,那么2017a 等于_______.8.如右图,六边形的六个顶点分别标志为A ,B ,C ,D ,E ,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A ,B ,C ,D ,E ,F 顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有_______种.9.平面上有5条不同的直线,这5条直线共形成n 个交点,则n 有多少个不同的数值?10.某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐。

2016第二十二届华罗庚金杯少年数学邀请赛初赛试题解析(小学高年级)

2016第二十二届华罗庚金杯少年数学邀请赛初赛试题解析(小学高年级)

2016第二十二届华罗庚金杯少年数学邀请赛初赛试题解析(小学高年级)第二十二届华罗庚金杯少年数学邀请赛初赛试卷(小学高年级组)(时间:2016年12月10日10:00-11:00)一、选择题(每小题10分,共60分,以下每题的四个选项,仅有一个是正确的,请将表示正确答案的英文字母写在每题的圆括号内)1、两个有限小数的整数部分分别是7和10,那么这两个有限小数的积的整数部分有( )种可能的取值。

(A)16 (B)17 (C)18 (D)19解析:此题主要考察学生思维是否缜密细心我们取最小值7×10=70,取不能达到的最大值8×11=88,那么就有整数部分的可能值范围是:70,71,72,...,87显然共有18个值,故选(C)2、小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟。

某天小明因故先乘地铁,再换乘公交车,用了40分钟到到学校,其中换乘过程用了6分钟,那么这天小明乘公交车用了()分钟。

(A)6 (B)8 (C)10 (D)12解析:此题可用两种方法。

(1)分析转换法;(2)列方程法。

建议用第一种方法,因为第一种方法是锻炼小学生思维能力的重要方法。

分析如下:第一步:首先确定乘地铁与乘公交车的总时间:40-6=34分钟第二步:建立乘地铁与乘公交车的时间关系S地铁30分种=S公交车50分钟,即S地铁3分钟=S公交5分钟这是等式表明少乘3分钟地铁将会浪费5-3=2分钟,或者也可以说多乘公交车5分钟将会多出时间2分钟。

而总共耗时34分钟,比原地铁时间浪费34-30=4(分钟),则可知少乘地铁3×(4÷2)=6(分钟),即乘地铁30-6=24分钟,公交车时间5×(4÷2)=10(分钟)故选(C)3、将长方形ABCD对角线平均分成12段,连接成右图,长方形ABCD内部空白面积总和是10平方厘米,那么阴影部分面积总和是()平方厘米。

(A)14 (B)16 (C)18 (D)20解析:此题考察学生的归纳分析能力。

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷

详解第二十二届华罗庚金杯少年数学邀请赛小学高年级组初赛试卷1.两个有限小数的整数部分分别为7和10,求这两个有限小数的积的整数部分可能的取值数。

解:如果这两个有限小数的十分位是小于6的,那么它们的积可能是7.05×10.05=70.8525.如果这两个有限小数的小数部分是0.999,那么它们的积可能是:7.999×10.999≈87.981(这两个有限小数,无论小数部分有多少个9,积的整数部分都小于88)。

因此,这两个有限小数的积的整数部分最小可能是70,最大可能是87.从70到87共有18种可能的取值,因此答案为(C)18.2.小明家距学校,乘地铁需要30分钟,乘公交车需要50分钟。

某天小明先乘地铁再换乘公交车,用了40分钟到达学校,其中换乘过程用了6分钟。

求这天小明乘坐公交车用了多少分钟。

解:从家到学校,乘地铁每分钟能行全程的$\frac{1}{11}$,乘公交每分钟能行全程的$\frac{1}{30}$。

他从家到学校坐车实际花了34(分钟)。

假设全程都是乘地铁,那么乘坐公交车用了$\frac{3}{30}\times(40-6-30)=4$分钟。

因此,小明乘坐公交车用了(C)10分钟。

3.将长方形ABCD对角线平均分成12段,连接成图中所示的形状,长方形ABCD内部空白部分面积总和是10平方厘米。

求阴影部分面积总和。

解:连接对角线上的各个分点并延长,使之分别和长方形的长边与宽边平行、相等,这样,把长方形ABCD平分成了$12\times12=144$个小长方形。

最外圈每边有小长方形11个。

最外圈(黑)有$11\times4=44$个,第二圈(白)有$(11-2)\times4=36$个,第三圈(黑)有$(11-2-2)\times4=28$个,第四圈(白)有$(11-2-2-2)\times4=20$个,第五圈(黑)有$(11-2-2-2-2)\times4=12$个,第六圈(白)有$(11-2-2-2-2-2)\times4=4$个。

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第22届华罗庚金杯少年数学邀请赛小高组决赛(A)卷

第二十二届华罗庚金杯少年数学邀请赛决赛〔A〕卷【小高组】一、填空题〔每题10分,共80分〕I .用[x]表示不超过x的最大整数,例如[3.14] 3,那么2021 3 2021 4 2021 5 2021 6 2021 7 2021 8 /------ ------ ---------- --------- ---------- --------- 的值为.II 11 11 11 11 112.从4个整数中任意选出3个,求出它们的平均值,然后再求这个平均值和余下1个数的和,这样2 1可以得到4个数:8, 12, 10』和91,那么原来给定的4个整数的和为^3 33 .在3X3的网格中〔每个格子是个1X1的正方形〕放两枚相同的棋子,每个格子最多放一枚棋子,共有种不同的摆放方法.〔如果两种放法能够由旋转而重合,那么把它们视为同一种摆放方法〕4 .甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来速度的2倍去C地,又经过了2小时后,甲乙两人同时到达C 地,那么乙的速度是千米/小时.5 .某校开设了书法和朗诵两个兴趣小组,两个小组都参加的人数是只参加书法小组人数的2 ,是只参加朗诵小组人数的1 ,那么书法小组与朗诵小组的人数比是 .7 56 .右图中,三角形ABC的面积为100平方厘米,三角形ABD的面积为72平方厘米.MMHB 90o .AB=20厘米.那么MH的长度为厘米.为CD边的中点,7 .一列数a i,a2, ,a n,,记S(a i)为a i的所有数字之和,如S(22) 2 2 4.假设a l 2021, a2 22,a n S(a n i) S(a n 2 ) ,那么a2021 等于.8 .如右图,六边形的六个顶点分别标志为A, B, C, D, E, F.开始的时候华罗庚金杯赛〞六个汉字分别位于A, B, C, D, E, F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,那么不同的摆放方法共有二、解答以下各题〔每题10分,共40分,要求写出简要过程〕9 .平面上有5条不同的直线,这5条直线共形成n个交点,那么n有多少个不同的数值?庚金10 .某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多项选择统计结果显示:70%的学生选择苹果,40%的学生选了香蕉,30%的学生选了梨.那么三种水果都选的学生数占学生总数至多是百分之几 .11..箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2021克,求两种珠子的数量和所有可能的值.12 .使3^二不为最简分数的三位数n之和等于多少5n 1三、解答以下各题〔每题15分,共30分,要求写出详细过程〕13 .班上共有60位同学,生日记为某月某号.问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同〔比方生日为1月12日与12月12日的号数是相同的〕结果发现,在所得到的答复中包含了由0到14的所有整数,那么,该班至少有多少个同学生日相同14 .将1至9填入右图的网格中,要求每个格子填一个整数, 不同格子填的数字不同, 且每个格子周围的格子〔即与该格子有公共边的格子〕所填数字之和是该格子中所填数字的整数倍.左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?第二十二届华罗庚金杯少年数学邀请赛决赛(A)卷参考答案【小高组】一、填空题(每题10分,共80分)I .解析:【知识点】计算原式(2021 4) 3 (2021 4) 4 (2021 4) 5 (2021 4) 6 (2021 4) 7 (2021 4) 8 II 11 11 11 11 114 3 4 4 45 46 47 4 8183 (3 4 5 6 7 8)11 11 11 11 11 11183 33 1 1 1 2 2 26039 960482.解析:【知识点】平均数设这四个整数分别是a、b、c、d,根据题意,可以得到:1-(a b c) d 81-(a b d) c 1231 2(a c d) b 103 31 1(b c d) a 93 31 ............四个式子相加得到一(3a 3b 3c 3d) a b c d 40,化间得到a b c d 20, 3那么原来给定的4个整数的和为20.3 .解析:【知识点】如下图,图1中,当一枚棋子确定后,另一枚棋子有7个位置可以选择,故有7种摆放方法;图2中,当一枚棋子确定后,另一枚棋子有3个位置可以选择,其余均与图1重复,故有3种摆放方法;图3中,所有的摆法均与图1,图2中的重复;所以一共有7+3=10种不同的摆放方法.4 .解析:【知识点】行程问题 假定A 、B 、C 三地在同一条直线上,从A 至ij B, 80千米,甲用了两小时,那么甲的速度为40千米/小时;设乙的速度为化,乙离开B 地半小时,距B 地的距离为0.5v 乙; 乙再用2小时到达C 地,那么B 、C 两地的距离为2.5v 乙; 2V 甲80千米/小时,甲用两小时从 B 地到达C 地,那么80 2 2.5v 乙 v 乙64千米/小时5 .解析:【知识点】容斥如图,a 表示只参加书法兴趣小组的人数, c 表示只参加朗诵兴趣小组的人数,b 表示既参加书法兴趣小组又参加朗诵兴趣小组的人数;6 .解析:【知识点】平面几何过 D 点作 DE BC ,过 C 点作 CF BC , BC 20cm , S ABC那么 DE 7.2 cm , DE//MH //CF , M 为 CD 的中点,那么 MH 为梯形 CDEF 的中位线,1MH (i (10 7.2) 8.6cm,根据题意,可以得到b -ab 1c 57a -b 那么(a b) 3.5b b 4.5 32 '、(b c) 5bb 6 4c 5b那么书法小组与朗诵小组的人数比 3:4.2 2100cm ,贝U CF 10cm, S ABD 72 cm ,那么MH的长度为8.6厘米.7 .解析:【知识点】周期问题要求22021的值,将该数列多写几项,寻找其中的规律;a12021a1111a2111a222a126a225a314a138a237a49a1414a2412a514a1513a2510a614a169a264a710a1713a275a86a1813a289a97a198a2914a1013a2012a3014最小周期为24,(20213)24 83 22,那么a2021等于108 .解析:【知识点】计数,逻辑推理每个点都有两个相邻位置,需要分类讨论;假设重新摆放后,“华〞在B位置,“罗〞在A位置,那么“庚〞只能在D位置,“金〞可在C位置, “杯〞在F位置,“赛〞在E位置,这是一种情况,假设“金〞在E位置,不符合条件;“华〞在B位置,“罗〞在C位置,那么“庚〞只能在D位置,“金〞可在E位置,“杯〞在F位置, “赛〞在A位置,这是另一种种情况;同样的,“华〞如果在F位置,同样也有两种情况,所以总共有4种不同的摆放方法.二、解答以下各题(每题10分,共40分,要求写出简要过程)9 .解析:【知识点】图论5条直线,最多可以有十个交点,最少可以没有交点, 0〜10,共11种可能,但是2个交点和3个交点的情况不可能出现,所以总共有11-2=9种;所以交点n的个数有9个不同的取值.10 .解析:【知识点】容斥设学生总数为100人,那么70人选择苹果,40人选择香蕉,30人选择梨;只选择苹果的人数为70 (a b c),只选择香蕉的人数为40 (a b d),只选择梨的人数为30 (a c d),可以得到70 (a b c) 40 (a b d) 30 (a c d) (a b c d) 100化简得到2a b c d 40,那么a 40 (b c d)当b c d 0时,a可以取最大值20.211解析:【知识点】不定方程设19克的珠子有x个,17克的珠子有y个,根据题意,可以得到:19x 17y 2021根据余数的性质,19x 17y 2021(mod17), 17x 0(mod17), 2021 11(mod17),那么19x 11(mod17),那么2x 11(mod17),可以得到最小的x值,及对应的y值,并在此根底上加减系数即可;x 14 x 31 x 48 x 65 x 82 x 99y 103‘ y84' y 65 ' y 46 ' y 27 ' y 8珠子和分别为117,115,113,111,109,107.12 .解析:【知识点】辗转相除根据题意,(3n 2)和(5n 1)的最大公约数不为1,设其最大公约数为k,即(3n 2,5n 1) k,(k 1),根据辗转相除,可得:k (3n 2,5n 1) (3n 2,2n 1) (n 3,2n 1) (n 3,n 4) (n 4,7)因此,k等于7,且7能够整除n 4,满足条件的最小三位数是102,依次加7即可满足条件,n构成等差数列102,109,116, ,998,总共129个数字;那么满足条件的三位数的和为102 998 129 70950.2三、解答以下各题(每题15分,共30分,要求写出详细过程)13 .解析:【知识点】抽屉原理60位同学,每人答复两个问题,所以总共有120个答复,这些答复中包含0〜14的所有整数,也就是说每种答复包含白^学生数量为1〜15,由于1 2 3 15 120 ,也就是说不管是答复同月还是同号,月和号的数字不会重复,正好每个数字都仅用了一次〔即不会出现同月的有 3个,同号的也有三个的情况〕;为了满足题目至少的要求,那么一个根本的考虑就是同月的分布要尽量分散,这样生日相同的可能性就 能尽量少;因此,答复同月的共有 60个学生,在1〜15中,用1,2,3,4,5,7,8,9,10,11这10个数字构造出60,即回 答同月为0的有1人,答复同月为1的有2人等等,共有10个月有学生;此时,还剩下15,14,13,12,6是答复同号的,取15来分析,这15名同学是包含在上面答复同月的学生 中的,也就是说,这15个同号的学生最极端的情况会尽量分散在 10个月份中,也就是必然存在至少有2个人同月同日;所以至少有两名同学生日相同. 14 .解析:【知识点】组合数学除去4和5,剩余7个数字的和是36,设x y 36,即图中空白格子的数字之和为 y,根据题意,x y 36, x 的取值可以是1,2,3,6,9; y nx既然要求x 可能取的最大值,先假设 x 9,b c 1 7, e f 2 8时,可以构造出符合题意的情况;(1)假设 b c 1 3, e f (2)假设 b c 1 7, e f(3)假设 b c 26, e f x 9不符合条件,再假设x2 8或7 8,填入原图后无解; 2 3或2 8,填入原图后无解;3 7或7 8,填入原图后无解;6 ,因此,x可以取的最大值为6.第二十二届华罗庚金杯少年数学邀请赛决赛〔B〕卷【小高组】、填空题〔每题10分,共80分〕J 1 1111 -2 3 3 4 51 12021 20211 1 1~ 2021 2021 20212 .甲、乙两车分别从A、B两地同时出发,相向而行,出发时甲乙两车的速度比为5:4.出发后不久, 甲车发生爆胎,停车更换轮胎后继续前进,并且将速度提升20%,结果在出发后3小时,与乙车相遇在AB两地中点.相遇后,乙车继续往前行驶,而甲车掉头行驶,当甲车回到A地时,乙车恰好到达甲车爆胎的位置,那么甲车更换轮胎用了分钟.3 .在3X3的网格中〔每个格子是个1X1的正方形〕放两枚相同的棋子,每个格子最多放一枚棋子,共种不同的摆放方法.〔如果两种放法能够由旋转而重合,那么把它们视为同一种摆放方法〕5 .右图中,三角形ABC的面积为100平方厘米,三角形ABD的面积为72平方厘米.M为CD边的中点, MHB 90 .AB=20厘米.那么MH的长度为厘米.4.小于1000的自然数中,有个数的数字组成中最多有两个不同的数字.6 .一列数ai0, ,a n ,,记S(a i )为a i 的所有数字之和,如 S(22) 2 2 4.假设 a i 2021,a 2 22,不 S(a n i ) S(a n 2),那么 a 20i7 等于7 . 一个两位数,其数字和是它的约数,数字差(较大数减去较小数)也是它的约数,这样的两位数8 .如右图,六边形的六个顶点分别标志为 A, B, C, D, E, F.开始的时候“华罗庚金杯赛〞六个汉字 分别位于A, B, C, D, E, F 顶点处.将六个汉字在顶点处任意摆放, 一个汉字,每个字在开始位置的相邻顶点处,那么不同的摆放方法共有、解答以下各题(每题 10分,共40分,要求写出简要过程)9 .平面上有5条不同的直线,这5条直线共形成m 个交点,那么m 有多少个不同的数值?的个数共有个.H最终结果是每个顶点处仍各有10 .求能被7整除且各位数字均为奇数,各位数字和为2021的最大正整数11 .从1001, 1002, 1003, 1004, 1005, 1006, 1007, 1008, 1009 中任意选出四个数,使它们的和为偶数,那么共有多少种不同的选法.12 .使生二不为最简分数的三位数之和等于多少5n 1三、解答以下各题〔每题15分,共30分,要求写出详细过程〕13 .一个正六边形被剖分成6个小三角形,如右图.在这些小三角形的7个顶点处填上7个不同的整数. 能否找到一个填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.如果可以,请给出一种填法;如果不可以,请说明理由.14 .7 X的方格网黑白染色,如果黑格比白格少的列的个数为m,黑格比白格多的行的个数为n,求m n 的最大值.第二十二届华罗庚金杯少年数学邀请赛决赛〔B 〕卷参考答案【小高组】、填空题〔每题10分,共80分〕 1 .解析:【知识点】计算 原式2 .解析:【知识点】行程问题 设甲最初的速度为5v,乙的速度为4v,甲提速后的速度为6v, 行程图如下,C 点为爆胎处,D 点为中点,设C 、D 的距离为x,3 .解析:【知识点】计数如下图,图1中,当一枚棋子确定后,另一枚棋子有 7个位置可以选择,故有 7种摆放方法;图2中,当一枚棋子确定后,另一枚棋子有3个位置可以选择,其余均与图 1重复,故有3种摆放方图3中,所有的摆法均与图1,图2中的重复; 所以一共有7+3=10种不同的摆放方法.1 1 31111 一 一 1 一一 2 3 (2 2 3 1 1) 4 2 3 2 4 5 3 2 (2 1) 2 6 2 3 4 5 3 4 2021 4 (4 1) 4 2021 24 5 2021 (4 1)12021 1 1 1 2021 2021 2021 2021 202112021 2021 2021 20212021 (2021 1) 2021 (2021 1)2021 2 20341442021 2 2乙车用了 3小时,从B 地到D 地,走过的距离为 3 4v 12v,即为半程的距离;相遇以后,甲掉头返回,乙继续行驶, 可以得到 那么甲从A 到D,行车所用的时间为 4v 8v 5v 6v一 一 、, 32 13 13 那么换轮胎所用的时间为3+ 13h, 13 6015 1515所以甲车更换轮胎用了 52分钟.12v — x 8v,那么A 、C 两地距离为4v6v 4v 4 32 — 一, 3 15 52min ,4 .解析:【知识点】计数0〜99这100个数字都符合题意,主要研究三位数,分为含0和不含0分类讨论;只含一个0,总共有18个;含两个0,总共有9个;不含0,只含一种数字的总共有9个;不含0,由两种数字组成的总共有C; 3 2 216个;那么满足条件的数总共有100+18+9+9+216=352个.5 .解析:【知识点】平面几何过D点作DE BC ,过C点作CFBC , BC 20cm , S ABC 100cm2, M CF 10cm, S ABD 72 cm2 ,那么DE 7.2 cm , DE//MH //CF , M 为CD的中点,那么MH 为梯形CDEF 的中位线, 1MH - (10 7.2) 8.6cm,那么MH的长度为8.6厘米.6 .解析:【知识点】周期问题要求22021的值,将该数列多写几项,寻找其中的规律;a 1 2021 a 11 11 a 21 11 a 2 22a 12 6a 22 5a 314 a 138 a 237 a 4 9 a 14 14 a 2412 a 5 14a 15 13a 2510 a 614 a 169 a 264 a 710a 〞 13a 275a 8 6 a 18 13 a 28 9 a 9 7a 198a 2914a 1013 a 2012 a 3014最小周期为 24,(2021 3) 24 8322,贝U a 2021M 107 .解析:【知识点】计数 设这个两位数是ab , ab 10a b;所以,满足条件的两位数总共有19个.8 .解析:【知识点】计数,逻辑推理 每个点都有两个相邻位置,需要分类讨论;假设重新摆放后, 华〞在B 位置,罗〞在A 位置,那么庚〞只能在D 位置,金〞可在C 位置, 位置,赛〞在E 位置,这是一种情况,假设 金〞在E 位置,不符合条件;华〞在B 位置, 罗〞在C 位置,那么庚〞只能在D 位置,金〞可在E 位置,杯〞在F 位置,段 置,这是另一种种情况;1时, 2时, b20 b18, 解得 3时, b30 b, b27, 解得4时, b40 b36, 5时, b50 b, b45, 6时, b60 b54, 7时, b70 b63, 8时, b80 b, b72, 9时,b900、2、8,验算 10、 0、1、4、7 ,验算 0、6 ,验算 30、 解得b 解得b 解得b 解得b 解得b 解得b 0、2、5 8,验算 12可以,18不可以;20、21、24可以,27不可以; 36可以;40、42、45、48 可以; 0、4 ,验算50、54可以; 0、3,验算60、63可以; 02 ,验算70可以,72不可以;0、1、4 ,验算80、84可以,81不可以;0,验算90可以; 杯〞在F〞在A位同样的, 华〞如果在F位置,同样也有两种ft况,所以总共有4种不同的摆放方法.二、解答以下各题(每题10分,共40分,要求写出简要过程)9 .解析:【知识点】图论5条直线,最多可以有十个交点,最少可以没有交点, 0〜10,共11种可能,但是2个交点和3个交点的情况不可能出现,所以总共有11-2=9种;所以交点n的个数有9个不同的取值.10 .解析:【知识点】数论要使得所求的数尽可能大,那么所求整数的位数就尽可能多,且每一位数字都是奇数,就要含有尽量多的1;根据能被7整除的数的特征可得,111111是每个数位均为1,且能被7整除的最小数, 而2021=6X 336+1=6X 335+7当有336个111111时,由于所有数字之和是2021,首位数字只能是1,不能被7整除;当有335个111111时,前面还需要再加上一个正整数,使得数字之和等于2021,且要求最大,满足条件的最大整数是13111,;所以满足条件的最大正整数就是13111--111.2021 个111 解析:【知识点】计数这9个数里面有5个奇数,4个偶数,要使得选出来的4个数之和为偶数,有下面几种情况;选出的数为四个偶数, C44 1 ,只有1种;选出的数为四个奇数, C54 5, 总共5种;选出的数为两奇两偶, C42 C" 6 10 60 种;所以总共有1+5+60=66种不同的选法.12 .解析:【知识点】辗转相除根据题意,(3n 2)和(5n 1)的最大公约数不为1,设其最大公约数为k,即(3n 2,5n 1) k,(k 1),根据辗转相除,可得: k (3n 2,5n 1) (3n 2,2n 1) (n 3,2n 1) (n 3,n 4) (n 4,7)因此,k等于7,且7能够整除n 4,满足条件的最小三位数是102,依次加7即可满足条件,n构成等差数列102,109,116, ,998,总共129个数字;那么满足条件的三位数的和为102 998 129 70950.2三、解答以下各题〔每题15分,共30分,要求写出详细过程〕13 .解析:【知识点】操作类根据中央位置数的大小,分两种情况进行讨论:第一种情况,将最小数放在中央位置,这样只能在外圈根据顺时针从小到大的顺序填数字,但是最多只能满足5个三角形,最后一个三角形不能满足;第二种情况,将最小数放在外圈位置,然后在周边顺时针依次从小到大填数字,要使得尽可能多的三角形满足条件,中央位置要填较大的数,但是最多也只能满足5个三角形;所以,不能找到一种填法,使得每个小三角形顶点处的3个数都按顺时针方向从小到大排列.14 .解析:【知识点】操作类由于是7X7的方格网,所以1 m 7, 1 n 7,当m 7时,可以设这7列中,每一列中黑格的个数是3个,那么黑格总数为3X7=21个,将这21个黑格在1〜5行每行放4个,第6行放1个,第7行不放,这样就有5行中的黑格数多于白格数, 即n 5, 那么m n 12;当m 6时,可以设这6列中,每一列中黑格的个数是3个,其余1列黑格数是7个,那么黑格总数为使得1〜6行黑格数量都是4个,最后1行黑格数量为1个,这样就有6行中黑3X6+7=251,然后,格数量多于白格,即n 6 ,当m 5时,m n 12,所以,m n的最大值为12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是千米/小时.5.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为厘米.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有种.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.12.(10分)使不为最简分数的三位数n之和等于多少.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?2017年第二十二届“华罗庚金杯”少年数学邀请赛决赛试卷(小高组A卷)参考答案与试题解析一、填空题(每小题10分,共80分)1.(10分)用[x]表示不超过x的最大整数,例如[3.14]=3,则[]+[]+[]+[]+[]+[]的值为6048 .【分析】可以先将原式化简,将每项化成带分数的形式,然后取整数部分,即可得出和.【解答】解:根据分析,原式为:[]+[]+[]+[]+[]+[]=[]+[]+[]+[]+[]+[]=550+733+916+1100+1283+1466=6048.故答案是6048.2.(10分)从4个整数中任意选出3个,求出它们的平均值.然后再求这个平均值和余下1个数的和,这样可以得到4个数:8、12、10和9,则原来给定的4个整数的和为20 .【分析】根据题意,设原来给定的4个整数分别是a、b、c、d,则+d =8(1),+c=12(2),+b=10(3),+a=9(4),据此求出原来给定的4个整数的和是多少即可.【解答】解:设原来给定的4个整数分别是a、b、c、d,+d=8(1),+c=12(2),+b=10(3),+a=9(4),(1)+(2)+(3)+(4),可得2(a+b+c+d)=8+12+10+9,所以a+b+c+d=20,所以原来给定的4个整数的和为20.故答案为:20.3.(10分)在3×3的网格中(每个格子是个1×1的正方形)放两枚相同的棋子,每个格子中最多放一枚棋子,共有10 种不同的摆放方法.(如果两种放法能够由旋转而重合,则把它们视为同一种摆放方法).【分析】可以分情况讨论,四个顶点的位值一样,正中间的一个方格一个位值,剩下的四个方格位值相同,故可以分次三种情况分别计算不同的摆放方法.【解答】解:根据分析,份三种情况:①当正中间即E处放一颗棋子,然后另一颗棋子放在外围任意一个位置,除去对称性因素,有2种不同的摆放方法,即AE、BE;②当两颗棋子都不在正中间E处时,而其中有一颗在顶点处时,有4种不同摆法,即AB、AF、AH、AD;③当两颗棋子都在顶点处时,有2种不同摆法,即AC、AI;④当两颗棋子都在除顶点和正中间之外的4个方格中,有2种不同摆法,即BD、BH.综上,共有:2+4+2+2=10种不同摆放方法.4.(10分)甲从A地出发去找乙,走了80千米后到达B地,此时,乙已于半小时前离开B地去了C地,甲已离开A地2小时,于是,甲以原来的速度的2倍去C地.又经过了2小时后,甲乙两人同时到达C地,则乙的速度是64 千米/小时.【分析】首先知道甲在2小时的路程是80千米,那么甲现在的速度和后来的速度都是可求的,再根据甲的时间和速度可求从B到C的路程,用路程除以乙的时间即是速度.【解答】解:甲在2小时走80千米,甲速为:80÷2=40(千米/时);甲速度加速变成40×2=80(千米/时);甲再经过2小时路程为:2×80=160(千米/时)乙路程共是160千米,时间是2.5小时,乙速为:160÷2.5=64(千米/时)故答案为:645.(10分)某校开设了书法和朗诵两个兴趣小组.已知两个小组都参加的人数是只参加书法小组人数的,是只参加朗诵小组人数的,那么书法小组与朗诵小组的人数比是3:4 .【分析】把两个小组都参加的人数看作单位“1”,则只参加书法小组人数的分率是1÷=,只参加朗诵小组人数的分率是1÷=5,则参加书法小组人数的分率是1+=,参加朗诵小组人数的分率是1+5=6,然后根据比的意义解答即可.【解答】解:把两个小组都参加的人数看作单位“1”,(1+1÷):(1+1÷)=:6=3:4答:书法小组与朗诵小组的人数比是3:4.故答案为:3:4.6.(10分)如图,△ABC的面积为100平方厘米,△ABD的面积为72平方厘米.M为CD边的中点,∠MHB=90°,已知AB=20厘米,则MH的长度为8.6 厘米.【分析】可以利用面积公式分别求出△ABC、△ABD的高,而已知AB=20厘米,再利用MH的中位线性质求出MH的长度.【解答】解:根据分析,过D,C分别作DE⊥AB交AB于E,CF⊥AB交AB 于F,如图:△ABD的面积=72=,∴DE=7.2厘米,△ABC的面积=100=,∴CF=10厘米;又∵MH==×(7.2+10)=8.6厘米.故答案是:8.6.7.(10分)一列数a1、a2…,a n…,记S(a i)为a i的所有数字之和,如S (22)=2+2=4,若a1=2017,a2=22,a n=S(a n﹣1)+S(a n﹣2),那么a2017等于10 .【分析】首先要分析清楚S(a i)的含义,即a i是一个自然数,S(a i)表示a i的数字和,再根据a n的递推式列出数据并找出规律.【解答】解:S(a i)表示自然数a i的数字和,又a n=S(a n﹣1)+S(a n﹣2),在下表中列出n=1,2,3,4,…时的a n和S(a n),n a n S(a n)1 2017 102 22 43 14 54 9 95 14 56 14 57 10 18 6 69 7 710 13 411 11 212 6 613 8 814 14 515 13 416 9 917 13 418 13 419 8 820 12 321 11 222 5 523 7 724 12 325 10 126 4 427 5 528 9 929 14 530 14 531 10 132 6 6 由上表可以得出:a4=a28=9,S(a4)=S(a28)=9;a5=a29=14,S(a5)=S(a29)=5;…可以得到规律:当i≥4时,a i=a i+24,S(a i)=S(a i+24),2017﹣3=2014,2014÷24=83…22,所以:a2017=a3+22=a25=10.8.(10分)如图,六边形的六个顶点分别标志为A,B,C,D,E,F.开始的时候“华罗庚金杯赛”六个汉字分别位于A,B,C,D,E,F顶点处.将六个汉字在顶点处任意摆放,最终结果是每个顶点处仍各有一个汉字,每个字在开始位置的相邻顶点处,则不同的摆放方法共有 4 种.【分析】显然,只有两种情况,分别讨论,相邻两个字互换,以及顺时针移动一个位值,或逆时针移动一个位值,最后可以求得总的不同的摆放方法.【解答】解:根据分析,分两类情况:①按顺序移动一个位置,顺时针移动一个位置,有1种不同摆放方法,逆时针移动一个位置,有1种不同摆放方法;②相邻两个位置互换,则共有:2种不同的摆放方法.综上,共有:1+1+2=4种不同摆放方法.故答案是:4.二、解答题(每题10分,共40分,要求写出简要过程)9.(10分)平面上有5条不同的直线,这5条直线共形成n个交点,则n 有多少个不同的数值?【分析】按题意,可以分类讨论,最后确定n的取值.【解答】解:根据分析,n=0,即5条直线互相平行;n=1,即五条直线交于一点;n=2,3,不存在;n=4,5,6,7,8,9,10的情况分别如下图:n的取值共有9种不同的数,故答案是:9.10.(10分)某校给学生提供苹果、香蕉和梨三种水果,用作课间加餐.每名学生至少选择一种,也可以多选.统计结果显示:70%的学生选择苹果,40%的学生选择了香蕉.30%的学生选了梨,那么三种水果都选的学生数占学生总数至多是百分之几?【分析】将所有学生分成四种,即三种水果都选的人数a、同时选苹果和香蕉的人数b、同时选梨和苹果的人数c、同时选香蕉和梨的人数d,再根据选每种水果的人数列关系式,2a+b+c+d=70+40+30﹣100=40,再利用各个取值范围求出三种水果都选的人数最大值.【解答】解:根据分析,设学生总数为100人,故70人的学生选择苹果,40人的学生选择了香蕉.30人的学生选了梨,三种水果都选的学生人数有a人,同时选了苹果和香蕉的人数有b人,同时选了梨和苹果的人数有c人,同时选了香蕉和梨的人数有d人,则:2a+b+c+d=70+40+30﹣100=40⇒a =,又∵b+c+d≥0,∴a≤=20,故当b+c+d=0时,a取最大值20,即占总数的20%故答案是20%.11.(10分)箱子里面有两种珠子,一种每个19克,另一种每个17克,所有珠子的重量为2017克,求两种珠子的数量和所有可能的值.【分析】按题意,可以设每个重量的数量为未知数,19克的珠子有x个,17克的珠子有y个,再列出关系式,根据正整数的范围逐步取值,最后找出符合题意的值.【解答】解:根据分析,设有x个19克的珠子,y个17克的珠子,则有:19x+17y=2017,又∵x,y均为正整数∴1≤x≤<106,1≤y≤<118;19x+17y=2017⇒x=,由余数定理,要使x为正整数,2017﹣17y 必须能被19整除,即余数为0,而2017被9除余数为3,故17y被19除余数也为3,在所有被19除余数为3既小于2017又能被17整除的数只有:①136,即17y=136⇒y=8,x==99,x+y=99+8=107;②459,即17y=459⇒y=27,x==82,x+y=82+27=109;③782,即17y=782⇒y=46,x==65,x+y=65+46=111;④1105,即17y=1105⇒y=65,x==48,x+y=48+65=113;⑤1428,即17y=1428⇒y=84,x==31,x+y=31+84=115;⑥1751,即17y=1751⇒y=103,x==14,x+y=14+103=117.综上,两种珠子的数量和即x+y所有可能的值是:107、109、111、113、115、117.故答案是:107、109、111、113、115、117.12.(10分)使不为最简分数的三位数n之和等于多少.【分析】不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,我们可以用5n+1尝试来锁定答案,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,其它值即可顺次找出,只需要将4递加7即可,题中让我们求的是符合条件的三位数,那么最小为102,最大为998,此后利用等差数列求和即可.【解答】解:不为最简,表明(5n+1,3n+2)=a≠1,根据辗转相除原理有1≠a|(5n+1)×3﹣(3n+2)×5即=1≠a|7,则a只能等于7,一次尝试可知5n+1=1或6或11或16或21,因为21=3×7,所以5n+1=21时7|5n+1成立,此时n为最小值,且为4,将4递加7即可,符合条件的三位数,那么最小为102,最大为998,102+109+116+…+998=(102+998)×129÷2=70950答:使不为最简分数的三位数n之和等于70950.三、解答题(每小题15分,共30分,要求写出详细过程)13.(15分)班上共有60位同学,生日记为某月某号,问每个同学两个同样的问题:班上有几个人与你生日的月份相同?班上有几个人与你生日的号数相同(比如生日为1月12日与12月I2日的号数相同的).结果发现,在所得到的回答中包含了由0到14的所有整数,那么,该班至少有多少个同字生日相同?【分析】同月份和同号数的回答取遍0到14,即同月份和同号数的人数取遍1到15,进而分析求解.【解答】解:回答中包含了由0到14的所有整数,也就是说每种回答包含的学生数量是1到15.由于1+2+3+…+15=120=2×60,因此不论是回答同月,还是回答同号,同月份和同号数的人数的数字不会重复(比如说,某一月份生日的人有3个,就不会出现生日号数为某一号的人数有3个),因此统计同月份或同号数的人数时,1~15这15个数字每个数字都只出现一次.要使同月同日的人尽量少,则可以使月份情况或者号数情况尽量分散,例如可以将60拆分成:60=1+2+3+4+5+7+8+9+10+11这一种分散情况,不妨设这是同月份的人数,和另一种情况:60=6+12+13+14+15,这是同号数的人数,分析最大数字15,将15个同号数的人,分配到上面10个月份中,可知,同月同日最少会有两人.所以:该班生日相同的人数至少有2人.14.(15分)将1至9填入图的网格中.要求每个格子填一个整数,不同格子填的数字不同,且每个格子周围的格子(即与该格子有公共边的格子)所填数字之和是该格子中所填数字的整数倍.已知左右格子已经填有数字4和5,问:标有字母x的格子所填的数字最大是多少?【分析】按题意,1至9的数字中,填入4和5之外,只剩下7个数,可以先求出7个数的和,即为36,中间的x只可能是3,6,9,故一一检验,即可得知x的值.【解答】解:根据分析,1+2+3+6+7+8+9=36,填入的x是其它五个数的因数,故x只能是3、6、9,若x=9,则,不能每个数的周围的数字之和是该格子中所填数字的整数倍;x=6时,如图所示,易知x=6符合题意.故答案是:6.声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2019/5/7 11:03:00;用户:小学奥数;邮箱:****************;学号:20913800。

相关文档
最新文档