新能源汽车核心技术详解:电池包和BMS、VCU、
电动汽车VCU和BMS集成控制器硬件设计
一、概述
整车控制器是纯电动汽车控制系统的核心,它负责接收驾驶员的控制指令,根 据车辆的运行状态和电池的电量等信息,控制车辆的加速、减速、制动等动作, 同时还要监控电池的状态和充电情况,保证车辆的安全性和续航能力。
二、硬件设计
1、中央控制单元
中央控制单元是整车控制器的核心部件,它负责处理各种传感器和开关量信号, 根据车辆的运行状态和驾驶员的意图,控制车辆的加速、减速、制动等动作。 同时,中央控制单元还要与电池管理系统、充电控制系统等其他部件进行通信, 实现整车信息的实时监控和控制。
5、通信接口:BMS需要与VCU、充电桩等其他设备进行数据交换。因此,需要 配置相应的通信接口,如CAN、LIN等。考虑到电池管理系统的通信需求和数 据安全性,应选择具有高速、稳定、安全的通信接口。
6、故障诊断和处理单元:BMS应具备故障诊断和处理能力,能够对电池组进行 实时监测和故障预警。因此,需要配置相应的故障诊断和处理单元,包括故障 检测、故障处理、故障记录等功能。
电动汽车VCU和BMS集成控 制器硬件设计
目录
01 一、VCU硬件设计
03
三、VCU和BMS的集成 设计
02 二、BMS硬件设计 04 参考内容
随着环保意识的不断提高和电动汽车技术的不断发展,电动汽车在交通领域的 应用越来越广泛。作为电动汽车的关键部分,车辆控制单元(VCU)和电池管 理系统(BMS)的集成控制对于整车的性能和安全性具有至关重要的意义。本 次演示将探讨电动汽车VCU和BMS集成控制器的硬件设计。
(4)安全保护措施:采用防电击、防泄漏等安全保护措施确保人员的安全。
3、可维护性设计
可维护性是指控制系统出现故障时容易维修和恢复的程度。在硬件设计过程中, 应考虑以下几点:
新能源汽车关键技术简介_(纯电)
3、高压控制盒
高压控制盒主要用于 对动力电池中储存的电 能进行输出及分配,实 现对支路用电器件的切 断和保护。
高压控制盒共有5出 接线口,分别连接快充 、动力电池、电机控制 器和其它高压接插件。
13
高压控制盒—高压附件插件
A:DC/DC 电源正极 B:PTC 电源正极 C:压缩机电源正极 D:PTC-A 组负极 E:充电机电源正极 F:充电机电源负极 G:DC/DC 电源负极 H:压缩机电源负极 J:PTC-B 组负极 L:互锁信号线
11 动力电池故障指示灯
12 动力电池断开指示灯
13 系统故障灯
31
上汽荣威E50纯电动汽车基本组成
32
一、充电系统(动力电池系统)
由动力电池组件、车载充电器、高压配电单元、快充口 (直流)、慢充口(交流)、电池冷却系统等组成。
33
充电系统控制设计
34
高压配电单元
高压配电单元用于分 配电能。
整车控制器在下电前会存储行车过程中发生的故障信息。
29
3、电控系统故障诊断及处理 电控系统根据电机、电池、EPS、DC/DC等零部件故障、
整车CAN网络故障及VCU硬件故障进行综合判断,确定整车 的故障等级,并进行相应的控制处理。
等级 一级 二级 三级
四级
名称 致命故障 严重故障 一般故障
轻微故障
还有:电池管理控制器、电池高压电力分配单元、 电池检测模块、电池采集和均匀模块(大模块由2个采 集模块;小模块由1个采集模块)、高低压插件、水冷 却系统等
37
二、电驱系统
主要由电动机组件、电力电子箱组件、减速器组件、电驱 冷却系统组成;主要功能是驱动汽车行驶和制动能量回收。
38
新能源电池包组成 -回复
新能源电池包组成-回复新能源电池包是由多个电池单体组成的,其设计构成了电动汽车和可再生能源系统的核心部分。
本文将逐步解释新能源电池包的组成部分和各组件的功能,以帮助读者更好地了解电池包的工作原理。
第一部分:电池单体新能源电池包的核心是电池单体,这是电力储存的基本单位。
电池单体通常是锂离子电池,其能量密度高、充放电效率高,因此被广泛应用于电动汽车和可再生能源领域。
电池单体的具体化学成分可以根据不同的厂商和应用需求而有所不同。
第二部分:电池管理系统(BMS)电池管理系统是一个关键组成部分,它负责监控、控制和保护整个电池包。
BMS可以管理电池的温度、电流、电压和状态等参数,以确保电池的安全和性能。
它还能够实时监测电池的健康状态,并在需要时进行自动调节或报警。
BMS还可以提供电池剩余容量的估计和预测,以帮助用户合理规划电池的使用。
第三部分:电池冷却系统新能源电池包在工作过程中会产生大量的热量,为了保持电池单体的最佳工作温度,需要一个有效的冷却系统。
这个系统通常由冷却板、冷却剂和冷却风扇等组件组成。
冷却系统可以帮助电池包快速散热,确保电池温度在合理的范围内。
过高的温度会降低电池性能和寿命,甚至引发安全问题。
第四部分:电池包壳体电池包壳体是用于保护电池单体和其他组件的外壳,起到防护和支撑作用。
这个壳体通常由金属材料或高强度塑料制成,以确保电池组件在正常使用和意外情况下的安全性。
第五部分:连接电缆和插头电池包内部各组件之间需要通过电缆进行连接。
连接电缆的材料需要具备良好的导电性和绝缘性能,以确保电流传输的稳定性和安全性。
同样重要的是插头,它是连接电池包与车辆或能源系统的接口,必须具备可靠的接触和防护功能。
第六部分:功率电子器件新能源电池包中还需要一些功率电子器件,用于实现电池与车辆或能源系统之间的能量转换和控制。
这些器件包括直流-直流(DC-DC)变换器和直流-交流(DC-AC)变换器等。
DC-DC变换器用于调节电池单体输出的电压和电流,以适应特定负载的需求。
新能源汽车综合性能测试的关键技术
新能源汽车综合性能测试的关键技术新能源汽车的发展已经成为了现代社会的一种趋势,越来越多的人开始选择使用新能源汽车,以减少对环境的污染。
但是,针对新能源汽车的综合性能测试却是一个具有挑战性的任务。
本文将介绍一些关键的技术,用于测试新能源汽车的综合性能,并且帮助读者更好地理解新能源汽车的优势与不足。
1.能量存储系统测试技术新能源汽车的核心是其能量存储系统,包括电池组和超级电容器等。
为了确保新能源汽车的安全性和稳定性,测试能量存储系统的性能至关重要。
常见的测试技术包括电池循环寿命测试、温度特性测试、充放电效率测试等。
通过这些测试,可以评估能量存储系统的稳定性和性能表现。
2.动力系统测试技术动力系统是新能源汽车的驱动系统,包括电动机和电控系统等。
为了确保新能源汽车的动力性能和驾驶体验,测试动力系统的性能是必不可少的。
常见的测试技术包括马力输出测试、加速性能测试、能耗测试等。
通过这些测试,可以评估动力系统的效能和稳定性。
3.能耗与续航里程测试技术能耗和续航里程是新能源汽车用户最为关注的指标之一。
为了满足用户的需求并提供准确的数据,能耗与续航里程的测试必不可少。
常见的测试技术包括恒速行驶测试、实际道路驾驶测试、环境温度影响测试等。
通过这些测试,可以了解新能源汽车在不同条件下的能耗情况和续航里程表现。
4.安全性能测试技术安全性是每一位车主关心的问题,新能源汽车也不例外。
为了保障车辆的安全性能,在新能源汽车的测试中,安全性能的测试显得尤为重要。
常见的测试技术包括碰撞测试、电池过热保护测试、电池瞬时断路测试等。
通过这些测试,可以评估新能源汽车在意外情况下的安全性能。
5.环境适应性测试技术新能源汽车的使用环境多种多样,为了确保新能源汽车在各种复杂的环境条件下正常运行,环境适应性测试不可或缺。
常见的测试技术包括低温适应性测试、高温适应性测试、高原适应性测试等。
通过这些测试,可以评估新能源汽车在不同环境条件下的性能表现和适应能力。
新能源汽车三电系统详解(图文并茂)
新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。
下面详细讲解一下三电基础知识:一、电池电池是与化学、机械工业、电子控制等相关的一个行业。
电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。
正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。
动力电池是非常“年轻”的产品, 1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。
从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。
大部分自主品牌主机厂都没有自己的电芯与电池组设计能力跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。
与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。
但是我们更关心的是动力电池,也是就新能源汽车中的能量来源,目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。
(如下图)先介绍几个重要概念能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km,续航同样里程的电动车需要多少电池呢?(如下图)下表列出了四类锂电池的主要性能指标差别。
从表中可以看出,四类电池各有优劣。
那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?数码电子产品对锂电池安全性要求不高,钴酸锂电池最合适3C领域,特斯拉敢于使用此类电池也是未来得到超强的续航能力,但是同时其安全性能要打些折扣。
锰酸锂电池因其不偏不倚的特征赢得动力电池最大的市场占有率,虽然其能量密度不如钴酸锂和三元锂,但其他综合性能相当出色。
新能源汽车三电系统详解(图文并茂)
新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。
下面详细讲解一下三电基础知识:一、电池电池是与化学、机械工业、电子控制等相关的一个行业。
电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。
正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。
动力电池是非常“年轻”的产品, 1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。
从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。
大部分自主品牌主机厂都没有自己的电芯与电池组设计能力跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。
与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。
但是我们更关心的是动力电池,也是就新能源汽车中的能量来源,目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。
(如下图)先介绍几个重要概念能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km,续航同样里程的电动车需要多少电池呢?(如下图)下表列出了四类锂电池的主要性能指标差别。
从表中可以看出,四类电池各有优劣。
那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?数码电子产品对锂电池安全性要求不高,钴酸锂电池最合适3C领域,特斯拉敢于使用此类电池也是未来得到超强的续航能力,但是同时其安全性能要打些折扣。
锰酸锂电池因其不偏不倚的特征赢得动力电池最大的市场占有率,虽然其能量密度不如钴酸锂和三元锂,但其他综合性能相当出色。
电动汽车整车控制器(VCU)技术及开发流程深度剖析
电动汽车整车控制器(VCU)技术及开发流程深度剖析整车控制器(VCU),电动汽车的大脑,相当于电脑的Windows,手机的Andrio。
作为电动汽车上全部电气的运行平台,它的性能优劣,直接影响其他电气性能的发挥,是整车性能好坏的决定性因素之一。
1. 组成1.1结构组成VCU,结构上,由金属壳体和一组PCB线路板组成。
1.2硬件组成功能上由主控芯片及其周边的时钟电路、复位电路、预留接口电路和电源模块组成最小系统。
在最小系统以外,一般还配备数字信号处理电路,模拟信号处理电路,频率信号处理电路,通讯接口电路(包括CAN通讯接口和RS232通讯接口)2. 各电气与VCU之间是怎样工作的一些用于监测车体自身状态的信号或者车载部件中比较重要的开关信号、模拟信号和频率信号,由传感器直接传递给VCU,而不通过CAN总线。
电动汽车上的其他具有独立系统的电气,一般通过共用CAN总线的方式进行信息传递。
2.1直接传递的信号们开关信号包括:钥匙信号,档位信号,充电开关,制动信号等;模拟信号一般有:加速踏板信号,制动踏板信号,电池电压信号等;频率信号,比如车速传感器的电磁信号。
输出的开关量,动力电池供电回路上的接触器和预充继电器,在一些车型上,由VCU负责控制。
2.2通过CAN交互的电气单元CAN总线上的通讯参与者地位不分主从,随时随地向总线发动信息。
信息之间的先后顺序由发出信息者的优先级确定。
优先级在通讯协议中已经做出规定,每条信息里都有发信者的地址编码;通讯中的信息编码,都有相应的通讯协议予以明确规定。
谁发出什么样的代码提供哪些类型的信息,主要依据是供需双方的约定。
比如下面表格中的电气单元地址编码,就是来自一份整车厂与VCU供应商的技术协议。
CAN故障记录,是维修调试人员最好的小帮手。
下图是通讯协议中对故障代码的规定,常见的故障类型都位列其中,只要对照协议表格,大家都可以读懂故障记录了。
比较例外的是充换电相关的系统,由于通用性的强烈需求,通讯协议需要统一,有国家标准予以统一编码(下文列举了相关国标)。
纯电动汽车整车控制器(VCU)详细介绍
纯电动汽车整车控制器(VCU)详细介绍嘿,伙计们!今天我要给大家讲讲一个非常酷的东西——纯电动汽车整车控制器(VCU)。
别看它是个小小的东西,但它可是电动汽车的大脑,负责控制着整个车辆的运行呢!让我们一起来揭开它神秘的面纱吧!咱们来了解一下什么是VCU。
VCU是英文“Vehicle Control Unit”的缩写,翻译成中文就是“车辆控制单元”。
它是一种专门用于控制电动汽车的电子设备,可以实现对电池管理系统、电机控制系统、辅助系统等多种功能的综合控制。
有了VCU,电动汽车就可以像传统汽车一样行驶了!那么,VCU到底是怎么工作的呢?其实很简单,它就像是一个指挥家,指挥着电动汽车的各个部件协同工作。
当驾驶员踩下油门时,VCU会接收到这个信号,然后通过电池管理系统向电机控制系统发送指令,让电机产生动力;VCU还会根据车辆的速度、加速度等参数,调整能量回收系统的工作状态,确保电池的能量得到最大限度的利用。
接下来,我们再来聊聊VCU的一些重要功能。
首先就是电池管理系统。
这个系统负责监控和管理电动汽车的电池,确保电池在良好的状态下运行。
它可以实时监测电池的剩余电量、充电状态、温度等参数,并根据这些信息制定相应的充放电策略。
这样一来,不仅可以延长电池的使用寿命,还能提高电动汽车的续航里程。
其次就是电机控制系统。
这个系统负责控制电动机的转速和扭矩,从而实现对车辆的驱动。
VCU会根据驾驶员的需求和车辆的状态,向电机控制系统发送指令,让电动机产生合适的动力输出。
VCU还会对电机的工作状态进行监控和保护,防止因为过载或故障导致的损坏。
最后就是辅助系统。
这个系统包括了很多辅助功能,比如空调、音响、照明等。
VCU会根据驾驶员的需求和车辆的状态,向这些系统发送指令,实现各种功能的切换和调节。
这样一来,即使在没有发动机的情况下,电动汽车也可以享受到舒适便捷的驾驶体验。
VCU是电动汽车的核心部件之一,它的存在使得电动汽车变得更加智能、高效和环保。
新能源汽车的核心技术有哪些
新能源汽车的核心技术有哪些随着全球环境保护呼声的日益高涨,新能源汽车正成为汽车行业的热门话题。
与传统汽车相比,新能源汽车采用了一系列新兴的技术,以实现更高的能源利用效率和更低的碳排放。
本文将介绍新能源汽车的核心技术,并分析其对环保的积极意义。
一、电池技术电池技术是新能源汽车的核心之一。
电池是驱动电动汽车的重要能源储存装置,其性能直接决定了新能源汽车的续航里程和使用寿命。
目前,锂离子电池是最常用的电池技术,具有高能量密度、长循环寿命和较低的自放电率。
然而,锂离子电池还存在续航里程有限、充电时间长和成本高等问题。
因此,新型电池技术如固态电池和燃料电池的研发也备受关注,有望在解决上述问题的同时,提高新能源汽车的性能。
二、电动驱动技术电动驱动技术是新能源汽车的核心之二。
相比传统内燃机,电机驱动具有高效率、低噪音和零排放的特点。
电动驱动系统由电机、控制器和传动装置组成。
电机是电动汽车的动力源,根据不同的车型和功率需求,可采用直流电机或交流电机。
控制器负责调整电机的转速和扭矩输出,以满足驾驶员的需求。
传动装置根据车辆的不同需求,有单速传动、多速传动和无级变速等不同的设计。
通过不断提升电动驱动技术,新能源汽车在性能和驾驶体验上正逐渐接近传统汽车。
三、智能控制技术智能控制技术是新能源汽车的核心之三。
智能控制系统能够通过感知、决策和执行等环节,实现对车辆能量管理、动力分配和系统优化的精确控制。
其中感知系统包括传感器和摄像头等装置,用于收集车辆和环境信息。
决策系统则通过算法和模型,根据收集到的信息做出智能决策。
最后,执行系统将决策结果转化为动作,控制车辆运行。
智能控制技术的应用可以提高新能源汽车的行驶安全性、能源效率和用户体验。
四、充电技术充电技术是新能源汽车的核心之四。
电动汽车的续航里程直接与充电设施的覆盖范围和充电速度相关。
目前,有慢充和快充两种充电方式,慢充适用于长时间停放的场景,而快充则能迅速补充电力。
为提高充电效率和用户体验,快充充电桩的覆盖面积正逐渐扩大,同时充电设备的智能化和远程监控技术也得到了广泛应用。
新能源汽车的各种常用术语解读
新能源汽车的各种常用术语解读新能源汽车,是指采用了先进的动力技术和节能环保的能源,以减少对传统能源的依赖和减少对环境的污染。
在新能源汽车领域,有许多专业术语常常让人感到头疼。
下面将为大家详细解读新能源汽车领域中的一些常用术语。
1. 锂电池锂电池是新能源汽车中常用的电池之一,具有轻便、高能量密度、长寿命等优点。
它是通过锂离子的在正极和负极之间来进行电荷和放电。
2. 电动车电池包电动车电池包指的是新能源汽车中用来储存电能的一种设备,由多节锂电池串联而成。
它是电动车的重要组成部分,决定了电动车的续航里程和性能。
3. 充电桩充电桩是新能源汽车的充电设备,用来给电动车电池充电。
充电桩分为普通充电桩和快速充电桩两种,能够满足不同用户的充电需求。
4. 光伏发电光伏发电是一种通过太阳能将光能转换为电能的技术,可以为新能源汽车提供清洁能源。
光伏发电被广泛应用于新能源汽车充电设备中。
5. 节能减排节能减排是新能源汽车的重要理念,指的是通过采用先进技术和节约能源的方式减少能源消耗、降低排放物的排放。
这是新能源汽车发展的关键所在。
6. 超级电容超级电容是一种高能量密度的储电器件,常用于新能源汽车中。
它可以存储大量电能并迅速释放,为电动车提供强劲动力。
7. 氢燃料电池车氢燃料电池车是指通过氢气和空气的反应产生电能,驱动电动机运行的车辆。
氢燃料电池车零排放,是环保的代表。
8. 报废电池回收利用报废电池回收利用是对新能源汽车中电池的再生利用过程,通过回收报废电池中的有价值的材料,减少资源浪费并保护环境。
9. 公共充电站公共充电站是新能源汽车的重要充电设施,分布于城市街道、停车场等公共场所,方便用户随时充电,推动新能源汽车的普及和发展。
10. 智能网联智能网联是指新能源汽车具备物联网技术,可以实现车辆之间以及与互联网的互联互通,提高驾驶安全性和行车效率。
以上是关于新能源汽车领域中的一些常用术语的解读,相信通过了解这些术语,对新能源汽车有了更深入的了解。
乘用车电池包组成结构
乘用车电池包是电动汽车的核心组成部分,它主要由以下几个主要部分组成:
1. 电池单体:这是电池包的基本构成单元,可以是锂离子电池、镍氢电池、铅酸电池等。
电池单体通过串并联的方式组合成电池模块,以满足车辆对电压和容量的要求。
2. 电池管理系统(BMS):它是电池包的大脑,负责监控和控制电池的充放电状态、温度、电压等,确保电池安全、高效地工作。
BMS还负责平衡电池单体之间的电量,防止因电量不一致而引起的问题。
3. 热管理系统:电动汽车电池在充放电过程中会产生大量热量,热管理系统通过冷却液、风冷或者热管等技术,确保电池工作在合适的温度范围内,以提高性能和延长寿命。
4. 结构件:包括电池包的外壳、框架等,它们为电池包提供机械保护,并确保电池包的稳定性。
这些结构件通常由高强度材料制成,以承受车辆在行驶过程中的各种力学冲击。
5. 电气连接组件:包括高压连接器、低压连接器等,它们确保电池与车辆其他电气系统(如电机、逆变器、车载充电器等)之间的可靠连接。
6. 安全装置:如熔断器、气体释放装置等,它们在电池发生异常时切断电路,防止事故扩大。
7. 控制单元:除了BMS之外,电池包可能还包括其他控制单元,如充电控制单元,它们协同工作,确保电池包的优化运行。
8. 传感器:如温度传感器、电压传感器等,它们提供电池工作状态的实时数据,供BMS 和其他控制单元使用。
新能源汽车核心技术详解:电池包和BMS、VCU、MCU
新能源汽车核⼼技术详解:电池包和BMS、VCU、MCU新能源汽车核⼼技术详解:电池包与BMS、VCU、 MCU电⼦创新⽹|2001—15—20 11:542014年国内新能源汽车产销突破8万辆,发展态势喜⼈。
为了使新能源爱好者与初级研发⼈员更好地了解新能源汽车得核⼼技术,笔者结合研发过程中得经验总结,从新能源汽车分类、模块规划、电控技术与充电设施等⽅⾯进⾏了分析。
1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类⽅法令⾮业内⼈⼠感到困惑,其实这些名称就是从不同⾓度给出得解释、并不⽭盾。
1、1消费者⾓度消费者⾓度通常按照混合度进⾏划分,可分为起停、弱混、中混、强混、插电与纯电动,节油效果与成本增等指标加如表1所⽰。
表中“-”表⽰⽆此功能或较弱、“+"个数越多表⽰效果越好,从表中可以瞧出随着节油效果改善、成本增加也较多。
1、2技术⾓度图1技术⾓度分类技术⾓度由简到繁分为纯电动、串联混合动⼒、并联混合动⼒及混联混合动⼒,具体如图1所⽰。
其中P0表⽰BSG(Belt startergenerator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机与发电机⼀体化装置)系统、电机处于发动机与离合器之间,P2中电机处于离合器与变速器输⼊端之间,P3表⽰电机处于变速器输出端或布置于后轴,P03表⽰P0与P3得组合。
从统计表中可以瞧出,各种结构在国内外乘⽤或商⽤车中均得到⼴泛应⽤,相对来说P2在欧洲⽐较流⾏,⾏星排结构在⽇系与美系车辆中占主导地位,P03等组合结构在四驱车辆中应⽤较为普遍、欧蓝德与标致3008均已实现量产.新能源车型选择应综合考虑结构复杂性、节油效果与成本增加,例如由通⽤、克莱斯勒与宝马联合开发得三⾏星排双模系统,尽管节油效果较好,但由于结构复杂且成本较⾼,近⼗年间得市场表现不尽如⼈意。
2 新能源汽车模块规划尽管新能源汽车分类复杂,但其中共⽤得模块较多,在开发过程中可采⽤模块化⽅法,共享平台、提⾼开发速度。
汽车中VCU HCU ECU的区别与含义
汽车中VCU HCU ECU的区别与含义电控是电动汽车三大核心零部件之一,包括整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)。
1. VCU(Vehicle Control Unit)电动汽车整车控制器电动汽车整车控制器(VCU,Vehicle Control Unit)是电动汽车(混合动力汽车、纯电动汽车)动力系统的总成控制器,负责协调发动机、驱动电机、变速箱、动力电池等各部件的工作,具有提高车辆的动力性能、安全性能和经济性等作用。
电动汽车整车控制器VCU(Vehicle Control Unit)是电动汽车整车控制系统的核心部件,是用来控制电动车电机的启动、运行、进退、速度、停止以及电动车的其它电子器件的核心控制器件。
VCU作为纯电动汽车控制系统最核心的部件,其承担了数据交换、安全管理、驾驶员意图解释、能量流管理的任务。
VCU采集电机控制系统信号、加速踏板信号、制动踏板信号及其他部件信号,根据驾驶员的驾驶意图综合分析并作出响应判断后,监控下层的各部件控制器的动作,对汽车的正常行驶、电池能量的制动回馈、网络管理、故障诊断与处理、车辆状态监控等功能起着关键作用。
技术VCU是实现整车控制决策的核心电子控制单元,在传统汽车上需求很小。
整车控制器的开发包括软、硬件设计。
核心软件一般由整车厂研发,硬件和底层驱动软件可选择由汽车零部件厂商提供。
VCU采集电机控制系统信号、加速踏板信号、制动踏板信号及其他部件信号,根据驾驶员的驾驶意图综合分析并作出响应判断后,监控下层的各部件控制器的动作,对汽车的正常行驶、电池能量的制动回馈、网络管理、故障诊断与处理、车辆状态监控等功能起着关键作用。
整车控制系统能够实现对汽车动力、舒适度、安全性以及能耗等多方面进行调整优化,配合大数据让电动汽车拥有更好的操作性和可靠性,具体来讲整车控制器对电动汽车主要有以下功能:1)数据交互管理:整车控制器要实时采集驾驶员的操作信息和其他各个部件的工作状态信息,这是实现整车控制器其他功能的基础和前提。
新能源汽车的核心:三电系统详解
新能源汽车的核心:三电系统详解新能源汽车区别于传统车最核心的技术是“三电”,包括电驱动,电池,电控。
下面详细讲解一下三电基础知识:一、电池电池是与化学、机械工业、电子控制等相关的一个行业。
电池的关键在电芯,电芯最重要的材料便是正负极、隔膜、电解液。
正极材料广为熟知的有磷酸铁锂、钴酸锂、锰酸锂、三元、高镍三元。
动力电池是非常“年轻”的产品,1996年通用推出EV-1采用的是铅酸电池,它是现代电动汽车架构雏形,从铅酸电池到日系混动的镍氢电池,再到现在流行的锂电池,也才20多年。
从第四批《新能源汽车推广应用推荐车型目录》新能源乘用车配置电池来看,32款车型采用了17家企业的电池,其中16家是电池厂商,另外一家是长安新能源的,这说明其它乘用车的动力电池直接外购,包括电芯、电池组与电池管理系统等。
大部分自主品牌主机厂都没有自己的电芯与电池组设计能力跨国车企,虽然没有自己的电芯,但是它们却坚持自己设计生产电池组件与管理系统,这是为了加强动力电池的核心竞争力。
与大多自主品牌的差别是,即使不采用这家的电芯,它们可以换个电芯品牌照样能够设计电池组,核心技术还是掌握在自己手里。
但是我们更关心的是动力电池,也是就新能源汽车中的能量来源目前动力电池中,镍氢电池面临淘汰,铅酸电池全凭保有量在支撑,故目前以锂电池最为主要。
(如下图)先介绍几个重要概念能量密度方面电池肯定不如汽油,但是究竟差别多大呢?一箱50L的汽油可以大概跑600km续航同样里程的电动车需要多少电池呢?(如下图)下表列出了四类锂电池的主要性能指标差别从表中可以看出,四类电池各有优劣。
那各汽车厂商究竟是凭什么选择其中某种电池呢?哪种电池又将是未来的主流呢?数码电子产品对锂电池安全性要求不高,钴酸锂电池最合适3C领域,特斯拉敢于使用此类电池也是未来得到超强的续航能力,但是同时其安全性能要打些折扣。
锰酸锂电池因其不偏不倚的特征赢得动力电池最大的市场占有率,虽然其能量密度不如钴酸锂和三元锂,但其他综合性能相当出色。
新能源汽车动力电池包的组成
新能源汽车动力电池包的组成
新能源汽车动力电池包一般由以下几个主要组成部分构成:
1. 电池单体:电池单体是动力电池包的基本组成单元,是多个电池模块串联组成电池包的基础。
电池单体一般由正负极材料、电解质和隔膜等组成。
2. 电池管理系统(BMS):电池管理系统是电池包的主控制
系统,负责监控电池单体的电压、温度、电流等状态,并进行数据采集、处理和控制。
BMS还能对电池包进行故障检测和
故障管理,从而确保电池包的安全性和性能。
3. 散热系统:新能源汽车动力电池包工作过程中会产生大量的热量,如果不能及时散热,会影响电池的寿命和性能。
因此,电池包通常还配备有散热系统,包括散热片、散热管路、冷却液等,以保持电池温度的稳定。
4. 结构支持和保护:电池包需要具备一定的结构强度和稳定性,以保护电池单体免受外界环境的影响和机械振动的冲击。
常见的结构支持和保护装置包括外壳、挡板、防护板等。
5. 充电和放电接口:电池包需要通过充电接口与外部电源相连接,以进行电池充电。
同时,电池包内部还需要提供放电接口,连接到动力系统,以将电能输出给电动机供动力使用。
总而言之,新能源汽车动力电池包的组成包括电池单体、电池管理系统、散热系统、结构支持和保护以及充放电接口等多个
组成部分。
这些部分相互配合,形成一个功能完整的电池系统,为电动汽车提供动力供应。
新能源电动汽车之电池管理系统基础知识培训
电池管理系统基础知识培训
前言/PREFACE
在电动汽车中,电池管理系统是其中不可或缺的重要组成部分,它对 电动汽车的续航里程、加速能力、和最大爬坡度都会产生直接的影响,由 于蓄电池特性高度的非线性、结构的特殊性,故容易导致电池寿命的缩短 以致损坏。所以电池管理系统是电动汽车的必备重要组成部分,所以电池 管理系统是电动汽车必要的组成部件,与电池系统、整车控制系统共同构 成电动汽车的三大核心技术。它能保护电动汽车电池的安全可靠使用,发 挥电池的能力和影响其使用寿命,通过一系列的管理和控制,从而保证了 电动汽车的整车运行
低压件上电完毕后,VCU发出高压上电命令给BMS,BMS执行高压上电命令,BMS控制器上电后检测交流CC信号为不使能状态发送给整车CAN, VCU进入驱动模式。BMS执行高压上电顺序为主负继电器→ 预充继电器→ 主正继电器→ 断开预充继电器;然后BMS发送上电完成指令给VCU, 然后VCU吸合DCDC、MCU使能信号驱动上电完成。
管理由电池模组组成的电池包,负责采集电池包的单体电压、温度、热管理、均衡管理、报警、及信息的通 讯上传至BCU;
LDM:漏电模块检测
检测电池组的总正、总负及所有的电池极柱对电池箱体的绝缘电阻,并判断电池组是否漏电,并发送信息至 BCU对电池组进行保护;
HALL:霍尔电流传感器
负责采集电池组的充电、放电、回馈、巡航的电流; 线束:负责连接整个管理系统各组件,内部连接BMU和电池,BMU和BCU,外部BCU和整车和充电设备,完成 BMS具有的检测、控制、供电、通讯功能;
PDU:强电控制单元、高压箱
高压在汽车上我们定义超过直流电压60V的为高压的范畴,针对绝缘和耐压都会有相应的设计要求。一般的电 动大巴车高压箱通常将充电继电器、放电继电器、保险丝、MSD、油泵、气泵、转向助力、空调等的保险回路置 于高压箱内,大部分高压箱集成了BMS的BCU模块,并在高压箱外壳上安装高压及通讯连接器,以方便安装及维护, 而乘用车的高压箱存在形式一般在电池PACK箱体内;
新能源汽车动力电池管理系统构成
新能源汽车动力电池管理系统构成BMS主要包括硬件、底层软件和应用层软件三部分。
1.硬件构成(1)架构。
BMS硬件的拓扑结构分为集中式和分布式两种类型:①集中式是将所有的电气部件集中到一块大的板子中,采样芯片通道利用最高且采样芯片与主芯片之间可以采用菊花链通信,电路设计相对简单,产品成本大为降低,只是所有的采集线束都会连接到主板上,对BMS的安全性提出更大挑战,并且菊花链通信稳定性方面也可能存在问题。
比较合适电池包容量比较小、模组及电池包形式比较固定的场合。
②分布式包括主板和从板,可能一个电池模组配备一个从板,这样的设计缺点是如果电池模组的单体数量少于12个会造成采样通道浪费(一般采样芯片有12个通道),或者2~3个从板采集所有电池模组,这种结构一块从板中具有多个采样芯片,优点是通道利用率较高,节省成本,系统配置的灵活性,适应不同容量、不同规格形式的模组和电池包。
(2)硬件功能硬件的设计和具体选型要结合整车及电池系统的功能需求,通用的功能主要包括采集功能(如电压、电流、温度采集)、充电口检测(CC和CC2)和充电唤醒(CP和A+)、继电器控制及状态诊断、绝缘检测、高压互锁、碰撞检测、CAN通信及数据存储等要求。
①主控制器。
处理从控制器和高压控制器上报的信息,同时根据上报信息判断和控制动力电池运行状态,实现BMS相关控制策略,并做出相应故障诊断及处理。
②高压控制器。
实时采集并上报动力电池总电压、电流信息,通过其硬件电路实现按时积分,为主板计算荷电状态(State of Charge,SOC)、健康状态(State of Health,SOH)提供准确数据,同时可实现预充电检测和绝缘检测功能。
③从控制器。
实时采集并上报动力电池单体电压、温度信息,反馈每一串电芯的SOH和SOC,同时具备被动均衡功能,有效保证了动力使用过程中电芯的一致性。
④采样控制线束。
为动力电池各种信息采集和控制器间信息交互提供硬件支持,同时在每一根电压采样线上增加冗余保险功能,有效避免因线束或管理系统导致的电池外短路。
汽车bms的名词解释
汽车bms的名词解释随着科技的进步和社会的发展,电动汽车的普及越来越多。
其中一个关键的部件就是电池管理系统(Battery Management System,简称BMS)。
本文将对汽车BMS进行名词解释,以便于更好地理解电动汽车技术的核心。
一、什么是汽车BMS汽车BMS是一种电子系统,主要用于监控、控制和保护电动汽车的电池组。
它可以对电池组进行实时的状态监测,包括电池的电压、电流、温度等参数。
同时,BMS也能确保电池组的平衡充放电,防止单体电池的过充或过放,从而延长电池的使用寿命并提高整个电动汽车系统的安全性能。
二、汽车BMS的主要功能1. 电池状态监测:BMS可以实时监测电池组的电压、电流、温度、SOC(State of Charge)等状态。
通过对这些参数的监测,BMS能够判断电池的健康状态,预测电池寿命并及时报警,提醒车主进行维护和保养。
2. 电池平衡管理:由于电池组是由多个单体电池串联而成,不同单体电池之间的性能会存在一定的差异。
BMS可以通过对每个单体电池进行精确的电压调节,使电池组中的每个单体电池始终处于相同的电压水平,从而实现电池组的平衡充放电,提高整体能量利用率。
3. 充放电控制:BMS可以根据电池的状态以及车辆所需的动力情况,控制电池的充放电过程。
它能够监测电池的电流,避免电池的过充和过放,从而保护电池的安全性能。
4. 故障诊断与保护:BMS能够检测电池组中的故障,并及时报警。
它可以识别故障的原因,准确判断故障程度,并采取相应的措施,例如切断电池组与车辆的连接,避免故障的扩大。
5. 温度管理:电池的工作温度是影响电池性能和寿命的重要因素。
BMS可以监测电池的温度变化,并根据实时数据进行控制。
它可以通过将电池组与散热系统连接,实现散热和温度控制,保证电池组在合适的温度范围内运行。
三、汽车BMS的重要性汽车BMS在电动汽车中的作用不可忽视。
它承担着监测、控制和保护电池组的重要任务。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子创新网| 2001-15-20 11:542014年国内新能源汽车产销突破8万辆,发展态势喜人。
为了使新能源爱好者和初级研发人员更好地了解新能源汽车的核心技术,笔者结合研发过程中的经验总结,从新能源汽车分类、模块规划、电控技术和充电设施等方面进行了分析。
1 新能源汽车分类在新能源汽车分类中,“弱混、强混”与“串联、并联”不同分类方法令非业内人士感到困惑,其实这些名称是从不同角度给出的解释、并不矛盾。
消费者角度消费者角度通常按照混合度进行划分,可分为起停、弱混、中混、强混、插电和纯电动,节油效果和成本增等指标加如表1所示。
表中“-”表示无此功能或较弱、“+”个数越多表示效果越好,从表中可以看出随着节油效果改善、成本增加也较多。
技术角度图1 技术角度分类技术角度由简到繁分为纯电动、串联混合动力、并联混合动力及混联混合动力,具体如图1所示。
其中P0表示BSG(Belt starter generator,带传动启停装置)系统,P1代表ISG(Integrated starter generator,启动机和发电机一体化装置)系统、电机处于发动机和离合器之间,P2中电机处于离合器和变速器输入端之间,P3表示电机处于变速器输出端或布置于后轴,P03表示P0和P3的组合。
从统计表中可以看出,各种结构在国内外乘用或商用车中均得到广泛应用,相对来说P2在欧洲比较流行,行星排结构在日系和美系车辆中占主导地位,P03等组合结构在四驱车辆中应用较为普遍、欧蓝德和标致3008均已实现量产。
新能源车型选择应综合考虑结构复杂性、节油效果和成本增加,例如由通用、克莱斯勒和宝马联合开发的三行星排双模系统,尽管节油效果较好,但由于结构复杂且成本较高,近十年间的市场表现不尽如人意。
2 新能源汽车模块规划尽管新能源汽车分类复杂,但其中共用的模块较多,在开发过程中可采用模块化方法,共享平台、提高开发速度。
总体上讲,整个新能源汽车可分为三级模块体系、如图2所示,一级模块主要是指执行系统,包括充电设备、电动附件、储能系统、发动机、发电机、离合器、驱动电机和齿轮箱。
二级模块分为执行系统和控制系统两部分,执行部分包括充电设备的地面充电机、集电器和车载充电机,储能系统的单体、电箱和PACK,发动机部分的气体机、汽油机和柴油机,发电机的永磁同步和交流异步,离合器中的干式和湿式,驱动电机的永磁同步和交流异步,齿轮箱部分的有级式自动变速器(包括AMT、AT和DCT等)、行星排和减速齿轮;二级模块的控制系统包括BMS、ECU、GCU、CCU、MCU、TCU和VCU,分别表示电池管理系统、发动机电子控制单元、发电机控制器、离合器控制单元、电机控制器、变速器控制系统和整车控制器。
三级模块体系中,包括电池单体的功率型和能量型,永磁和异步电机的水冷和风冷形式,控制系统的三级模块主要包括硬件、底层和应用层软件。
图2三级模块体系根据功能和控制的相似性,三级模块体系的部分模块可组成纯电动(含增程式)、插电并联混动和插电混联混动三种平台架构,例如纯电动(含增程式)由充电设备、电动附件、储能系统、驱动电机和齿轮箱组成。
各平台模块的通用性较强,采用平台和模块的开发方法,可共享核心部件资源,提升新能源系统的安全性和可靠性,缩短周期、降低研发及采购成本。
3 新能源三大核心技术在三级模块体系和平台架构中,整车控制器(VCU)、电机控制器(MCU)和电池管理系统(BMS)是最重要的核心技术,对整车的动力性、经济性、可靠性和安全性等有着重要影响。
VCUVCU是实现整车控制决策的核心电子控制单元,一般仅新能源汽车配备、传统燃油车无需该装置。
VCU通过采集油门踏板、挡位、刹车踏板等信号来判断驾驶员的驾驶意图;通过监测车辆状态(车速、温度等)信息,由VCU判断处理后,向动力系统、动力电池系统发送车辆的运行状态控制指令,同时控制车载附件电力系统的工作模式;VCU具有整车系统故障诊断保护与存储功能。
图3为VCU的结构组成,共包括外壳、硬件电路、底层软件和应用层软件,硬件电路、底层软件和应用层软件是VCU的关键核心技术。
图3 VCU组成VCU硬件采用标准化核心模块电路( 32位主处理器、电源、存储器、CAN )和VCU 专用电路(传感器采集等)设计;其中标准化核心模块电路可移植应用在MCU和BMS,平台化硬件将具有非常好的可移植性和扩展性。
随着汽车级处理器技术的发展,VCU从基于16位向32位处理器芯片逐步过渡,32位已成为业界的主流产品。
底层软件以AUTOSAR汽车软件开放式系统架构为标准,达到电子控制单元(ECU)开发共平台的发展目标,支持新能源汽车不同的控制系统;模块化软件组件以软件复用为目标,以有效提高软件质量、缩短软件开发周期。
应用层软件按照V型开发流程、基于模型开发完成,有利于团队协作和平台拓展;采用快速原型工具和模型在环(MIL)工具对软件模型进行验证,加快开发速度;策略文档和软件模型均采用专用版本工具进行管理,增强可追溯性;驾驶员转矩解析、换挡规律、模式切换、转矩分配和故障诊断策略等是应用层的关键技术,对车辆动力性、经济性和可靠性有着重要影响。
MCUMCU是新能源汽车特有的核心功率电子单元,通过接收VCU的车辆行驶控制指令,控制电动机输出指定的扭矩和转速,驱动车辆行驶。
实现把动力电池的直流电能转换为所需的高压交流电、并驱动电机本体输出机械能。
同时,MCU具有电机系统故障诊断保护和存储功能。
MCU由外壳及冷却系统、功率电子单元、控制电路、底层软件和控制算法软件组成,具体结构如图4所示。
图4 MCU组成MCU硬件电路采用模块化、平台化设计理念(核心模块与VCU同平台),功率驱动部分采用多重诊断保护功能电路设计,功率回路部分采用汽车级IGBT模块并联技术、定制母线电容和集成母排设计;结构部分采用高防护等级、集成一体化液冷设计。
与VCU类似,MCU底层软件以AUTOSAR开放式系统架构为标准,达到ECU开发共同平台的发展目标,模块化软件组件以软件复用为目标。
应用层软件按照功能设计一般可分为四个模块:状态控制、矢量算法、需求转矩计算和诊断模块。
其中,矢量算法模块分为MTPA控制和弱磁控制。
MCU关键技术方案包括:基于32位高性能双核主处理器;汽车级并联IGBT技术,定制薄膜母线电容及集成化功率回路设计,基于AutoSAR架构平台软件及先进SVPWM PMSM控制算法;高防护等级壳体及集成一体化水冷散热设计。
表3为世界主流 MCU硬件供应商的技术参数,代表着MCU的发展动态。
电池包和BMS电池包是新能源汽车核心能量源,为整车提供驱动电能,它主要通过金属材质的壳体包络构成电池包主体。
模块化的结构设计实现了电芯的集成,通过热管理设计与仿真优化电池包热管理性能,电器部件及线束实现了控制系统对电池的安全保护及连接路径;通过BMS实现对电芯的管理,以及与整车的通讯及信息交换。
电池包组成如图5所示,包括电芯、模块、电气系统、热管理系统、箱体和BMS。
BMS能够提高电池的利用率,防止电池出现过充电和过放电,延长电池的使用寿命,监控电池的状态。
图5 电池包组成BMS是电池包最关键的零部件,与VCU类似,核心部分由硬件电路、底层软件和应用层软件组成。
但BMS硬件由主板(BCU)和从板(BMU)两部分组成,从版安装于模组内部,用于检测单体电压、电流和均衡控制;主板安装位置比较灵活,用于继电器控制、荷电状态值(SOC)估计和电气伤害保护等。
BMU硬件部分完成电池单体电压和温度测量,并通过高可靠性的数据传输通道与BCU 模块进行指令及数据的双向传输。
BCU 可选用基于汽车功能安全架构的32 位微处理器完成总电压采集、绝缘检测、继电器驱动及状态监测等功能。
底层软件架构符合AUTOSAR标准,模块化开发容易实现扩展和移植,提高开发效率。
应用层软件是BMS的控制核心,包括电池保护、电气伤害保护、故障诊断管理、热管理、继电器控制、从板控制、均衡控制、SOC估计和通讯管理等模块,应用层软件架构如图6所示。
图6 应用层软件架构表4为国内外主流 BMS供应商的技术参数,代表着BMS的发展动态。
4 充电设施充电设施不完善是阻碍新能源汽车市场推广的重要因素,对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案、剖析充电系统组成。
特斯拉充电方案分析特斯拉超级充电器代表了当今世界最先进的充电技术,它为MODEL S充电的速度远高于大多数充电站,表5为特斯拉电池和充电参数。
特斯拉具有5种充电方式,采用普通110/220V市电插座充电,30小时充满;集成的10kW充电器,10小时充满;集成的20kW充电器,5小时充满;一种快速充电器可以装在家庭墙壁或者停车场,充电时间可缩短为5小时; 45分钟能充80%的电量、且电费全免,这种快充装置仅在北美市场比较普遍。
特斯拉使用太阳能电池板遮阳棚的充电站,既可以抵消能源消耗又能够遮阳。
与在加油站加油需要付费不同,经过适当配置的 MODEL S 可以在任何开放充电站免费充电。
特斯拉充电技术特点可总结如下两点:1)特斯拉充电站加入了太阳能充电技术,这一技术使充电站尽可能使用清洁能源,减少对电网的依赖,同时也减少了对电网的干扰,国内这一技术也能实现。
2)特斯拉充电时间短也不足为奇,特斯拉的充电机容量大90~120kWh,充电倍率,跟普通快充一样,并没有采用更大的充电倍率,所以不会影响电池寿命;20分钟充到40%,就能满足续航要求,主要原因是电池容量大。
充电解决方案图7充电系统组成图7为一种可参考的新能源汽车充电解决方案,充电系统组成:配电系统(高压配电柜、变压器、无功补偿装置和低压开关柜)、充电系统(充电柜和充电机终端)以及储能系统(储能电池与逆变器柜)。
无功补偿装置解决充电系统对电网功率因数影响,充电柜内充电机一般都具备有源滤波功能、解决谐波电流和功率因数问题。
储能电池和逆变器柜解决老旧配电系统无法满足充电站容量要求、并起到削峰填谷作用,在不充电时候进行储能,大容量充电且配电系统容量不足时释放所储能量进行充电。
如果新建配电系统容量足够,储能电池和逆变器柜可以不选用。
风力发电和光伏发电为充电系统提供清洁能源,尽量减少从电网取电。
5 总结从消费者和技术角度分别对新能源汽车结构进行归纳分类,分析各种结构的优势,以及国内外各主机厂的应用情况。
分析新能源汽车的模块组成和平台架构,详细介绍了三级模块体系中相关的执行系统和控制系统。
分析VCU、MCU和BMS 的结构组成及关键技术,以及世界主流供应商的技术参数和发展动态。
对特斯拉成功的解决方案进行分析,并提出新能源汽车的充电解决方案。
作者:杨伟斌文章来源:OFweek‹ MCU厂商基本实现了物联网云连接即插即用基于Kinetis微控制器的三相电表设计›。