七年级数学下册《相交线与平行线》尖子生测试题(新人教版)
(完整版)人教版初一数学下册相交线与平行线试题(带答案)解析
一、选择题1.如图,//AB CD ,P 为平行线之间的一点,若AP CP ⊥,CP 平分∠ACD ,68ACD ∠=︒,则∠BAP 的度数为( )A .56︒B .58︒C .66︒D .68︒ 2.将一张边沿互相平行的纸条如图折叠后,若边//AD BC ,则翻折角1∠与2∠一定满足的关系是( )A .122∠=∠B .1290∠+∠=︒C .1230∠-∠=︒D .213230∠-∠=︒ 3.直线//AB CD ,直线EF 与AB ,CD 分别交于点E ,F ,EG EF ⊥.若155∠=︒,则2∠的度数为( )A .25︒B .35︒C .45︒D .55︒4.一副直角三角板如图放置,其中∠F =∠ACB =90°,∠D =45°,∠B =60°,AB //DC ,则∠CAE 的度数为( )A .25°B .20°C .15°D .10°5.下列几个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等;②如果1∠和2∠是对顶角,那么12∠=∠;③一个角的余角一定小于这个角的补角;④三角形的一个外角大于它的任一个内角.A .1个B .2个C .3个D .46.如下图,在“A ”字型图中,AB 、AC 被DE 所截,则A ∠与4∠是( )A .同位角B .内错角C .同旁内角D .邻补角 7.如图,直线12//l l ,23216∠+∠=°,则1∠的度数为( )A .216︒B .36︒C .44︒D .18︒8.如图,//AB CD ,AC 平分BAD ∠,B CDA ∠=∠,点E 在AD 的延长线上,连接EC ,2B CED ∠=∠,下列结论:①//BC AD ;②CA 平分BCD ∠;③AC EC ⊥;④ECD CED ∠=∠.其中正确的个数为( )A .1个B .2个C .3个D .4个9.如图,//AB CD ,点E 为AB 上方一点,,FB CG 分别为,EFG ECD ∠∠的角平分线,若2210E G ∠+∠=︒,则EFG 的度数为( )A .140︒B .150︒C .130︒D .160︒ 10.如果两个角的两边分别平行,而其中一个角比另一个角的3倍少20°,那么这两个角是( )A .50°、130°B .都是10°C .50°、130°或10°、10°D .以上都不对 二、填空题11.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.12.如图,已知AB ∥CD ,点E ,F 分别在直线AB ,CD 上点P 在AB ,CD 之间且在EF 的左侧.若将射线EA 沿EP 折叠,射线FC 沿FP 折叠,折叠后的两条射线互相垂直,则∠EPF 的度数为 _____.13.如图,在平面内,两条直线1l ,2l 相交于点O ,对于平面内任意一点M ,若p ,q 分别是点M 到直线1l ,2l 的距离,则称(,)p q 为点M 的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有________个.14.如图,AB ∥CD ,CF 平分∠DCG ,GE 平分∠CGB 交FC 的延长线于点E ,若∠E =34°,则∠B 的度数为____________.15.如图,AB ∥CD,BF 平分∠ABE,DF 平分∠CDE,∠BFD=35°,那么∠BED 的度数为_______.16.如图,AB ∥CD ,点P 为CD 上一点,∠EBA 、∠EPC 的角平分线于点F ,已知∠F =40°,则∠E =_____度.17.如图,已知直线l 1∥l 2,∠A =125°,∠B =85°,且∠1比∠2大4°,那么∠1=______.18.已知,//BC OA ,100B A ∠=∠=︒,点E ,F 在BC 上,OE 平分BOF ∠,且FOC AOC ∠=∠,下列结论正确得是:__________.①//OB AC ;②45EOC ∠=︒;③:1:3OCB OFB ∠∠=;④若OEB OCA ∠=∠,则60OCA ∠=︒.19.已知//AB CD ,ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,请直接写出α、β、γ的数量关系________.20.如图,在长方形ABCD 中,4AB =,6BC =,将长方形ABCD 沿着BC 方向平移得到长方形A B C D ''''.若ABB A ''是正方形,则四边形ABC D ''的周长是______.三、解答题21.已知:AB //CD .点E 在CD 上,点F ,H 在AB 上,点G 在AB ,CD 之间,连接FG ,EH ,GE ,∠GFB =∠CEH .(1)如图1,求证:GF //EH ;(2)如图2,若∠GEH =α,FM 平分∠AFG ,EM 平分∠GEC ,试问∠M 与α之间有怎样的数量关系(用含α的式子表示∠M )?请写出你的猜想,并加以证明.22.已知,如图1,射线PE 分别与直线AB ,CD 相交于E 、F 两点,∠PFD 的平分线与直线AB 相交于点M ,射线PM 交CD 于点N ,设∠PFM =α°,∠EMF =β°,且(40﹣2α)2+|β﹣20|=0(1)α= ,β= ;直线AB 与CD 的位置关系是 ;(2)如图2,若点G 、H 分别在射线MA 和线段MF 上,且∠MGH =∠PNF ,试找出∠FMN 与∠GHF 之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM 绕着端点P 逆时针方向旋转(如图3),分别与AB 、CD 相交于点M 1和点N 1时,作∠PM 1B 的角平分线M 1Q 与射线FM 相交于点Q ,问在旋转的过程中1FPN Q∠∠的值是否改变?若不变,请求出其值;若变化,请说明理由. 23.汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况.如图1,灯A 射出的光束自AM 顺时针旋转至AN 便立即回转,灯B 射出的光束自BP 顺时针旋转至BQ 便立即回转,两灯不停交叉照射巡视.若灯A 射出的光束转动的速度是a ︒/秒,灯B 射出的光束转动的速度是b ︒/秒,且a 、b 满足20)34(a b a b -++-=.假定这一带水域两岸河堤是平行的,即//PQ MN ,且45BAN ∠=︒.(1)求a 、b 的值;(2)如图2,两灯同时转动,在灯A 射出的光束到达AN 之前,若两灯射出的光束交于点C ,过C 作CD AC ⊥交PQ 于点D ,若20BCD ∠=︒,求BAC ∠的度数;(3)若灯B 射线先转动30秒,灯A 射出的光束才开始转动,在灯B 射出的光束到达BQ 之前,A 灯转动几秒,两灯的光束互相平行?24.已知//AB CD ,点E 在AB 与CD 之间.(1)图1中,试说明:BED ABE CDE ∠=∠+∠;(2)图2中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请利用(1)的结论说明:2BED BFD ∠=∠.(3)图3中,ABE ∠的平分线与CDE ∠的平分线相交于点F ,请直接写出BED ∠与BFD ∠之间的数量关系.25.已知//AB CD ,定点E ,F 分别在直线AB ,CD 上,在平行线AB ,CD 之间有一动点P .(1)如图1所示时,试问AEP ∠,EPF ∠,PFC ∠满足怎样的数量关系?并说明理由. (2)除了(1)的结论外,试问AEP ∠,EPF ∠,PFC ∠还可能满足怎样的数量关系?请画图并证明(3)当EPF ∠满足0180EPF ︒<∠<︒,且QE ,QF 分别平分PEB ∠和PFD ∠, ①若60EPF ∠=︒,则EQF ∠=__________°.②猜想EPF ∠与EQF ∠的数量关系.(直接写出结论)【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】过P点作PM//AB交AC于点M,直接利用平行线的性质以及平行公理分别分析即可得出答案.【详解】解:如图,过P点作PM//AB交AC于点M.∵CP平分∠ACD,∠ACD=68°,∠ACD=34°.∴∠4=12∵AB//CD,PM//AB,∴PM//CD,∴∠3=∠4=34°,∵AP⊥CP,∴∠APC=90°,∴∠2=∠APC-∠3=56°,∵PM//AB,∴∠1=∠2=56°,即:∠BAP的度数为56°,故选:A.【点睛】此题主要考查了平行线的性质以及平行公理等知识,正确利用平行线的性质分析是解题关键.2.B解析:B【分析】根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出1290∠+∠=︒.【详解】解:由翻折可知,∠DAE=21∠,∠CBF=22∠,∵//AD BC,∴∠DAB+∠CBA=180°,∴∠DAE+∠CBF=180°,∠+∠=°,即2122180∴1290∠+∠=︒,故选:B.【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.3.B解析:B【分析】由对顶角相等得∠DFE =55°,然后利用平行线的性质,得到∠BEF =125°,即可求出2∠的度数.【详解】解:由题意,根据对顶角相等,则155DFE ∠=∠=︒,∵//AB CD ,∴180DFE BEF ∠+∠=︒,∴18055125BEF ∠=︒-︒=︒,∵EG EF ⊥,∴90FEG ∠=︒,∴21259035∠=︒-︒=︒;故选:B .【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握平行线的性质,正确的求出125BEF ∠=︒.4.C解析:C【分析】利用平行线的性质和给出的已知数据即可求出CAE ∠的度数.【详解】解:90F ∠=︒,45D ∠=︒,45DEF ∴∠=︒,90ACB ∠=︒,60B ∠=︒,30BAC ∴∠=︒,//AB DC ,∴∠=∠=︒,BAE DEF45∴∠=∠-∠=︒-︒=︒,CAE BAE BAC453015故选:C.【点睛】本题考查了平行线的性质,解题的关键是熟记平行线的性质.5.B解析:B【分析】根据平行线的性质对①进行判断;根据对顶角的性质对②进行判断;根据余角与补角的定义对③进行判断;根据三角形外角性质对④进行判断.【详解】解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;一个角的余角一定小于这个角的补角,所以③正确;三角形的外角大于任何一个与之不相邻的一个内角,所以④错误.故选:B.【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.A解析:A【分析】根据同位角,内错角,同旁内角和邻补角的定义判断即可.【详解】解:在“A”字型图中,两条直线AB、AC被DE所截形成的角中,∠A与∠4都在直线AB、DE的同侧,并且在第三条直线(截线)AC的同旁,则∠A与∠4是同位角.故选:A.【点睛】本题主要考查了同位角,内错角,同旁内角和邻补角的定义,正确理解定义是解题的关键.7.B解析:B【分析】记∠1顶点为A,∠2顶点为B,∠3顶点为C,过点B作BD∥l1,由平行线的性质可得∠3+∠DBC=180°,∠ABD+(180°-∠1)=180°,由此得到∠3+∠2+(180°-∠1)=360°,再结合已知条件即可求出结果.【详解】如图,过点B作BD∥l1,∵12//l l ,∴BD ∥l 1∥l 2,∴∠3+∠DBC =180°,∠ABD +(180°-∠1)=180°,∴∠3+∠DBC +∠ABD +(180°-∠1)=360°,即∠3+∠2+(180°-∠1)=360°,又∵∠2+∠3=216°,∴216°+(180°-∠1)=360°,∴∠1=36°.故选:B .【点睛】本题考查了平行线的性质,正确作出辅助线,熟练掌握平行线性质是解题的关键. 8.D解析:D【分析】结合平行线性质和平分线判断出①②正确,再结合平行线和平分线根据等量代换判断出③④正确即可.【详解】解:∵AB //CD ,∴∠1=∠2,∵AC 平分∠BAD ,∴∠2=∠3,∴∠1=∠3,∵∠B =∠CDA ,∴∠1=∠4,∴∠3=∠4,∴BC //AD ,∴①正确;∴CA 平分∠BCD ,∴②正确;∵∠B =2∠CED ,∴∠CDA =2∠CED ,∵∠CDA =∠DCE +∠CED ,∴∠ECD =∠CED ,∴④正确;∵BC //AD ,∴∠BCE+∠AEC= 180°,∴∠1+∠4+∠DCE+∠CED= 180°,∴∠1+∠DCE = 90°,∴∠ACE= 90°,∴AC⊥EC,∴③正确故其中正确的有①②③④,4个,故选:D.【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用性质定理判断是关键.9.A解析:A【分析】过G作GM//AB,根据平行线的性质可得∠2=∠5,∠6=∠4,进而可得∠FGC=∠2+∠4,再利用平行线的性质进行等量代换可得3∠1=210°,求出∠1的度数,然后可得答案.【详解】解:过G作GM//AB,∴∠2=∠5,∵AB//CD,∴MG//CD,∴∠6=∠4,∴∠FGC=∠5+∠6=∠2+∠4,∵FG、CG分别为∠EFG,∠ECD的角平分线,∴∠1=∠2=12∠EFG,∠3=∠4=12∠ECD,∵∠E+2∠G=210°,∴∠E+∠1+∠2+∠ECD=210°,∵AB//CD,∴∠ENB=∠ECD,∴∠E+∠1+∠2+∠ENB=210°,∵∠1=∠E+∠ENB,∴∠1+∠1+∠2=210°,∴3∠1=210°,∴∠1=70°,∴∠EFG=2×70°=140°.故选:A.【点睛】此题主要考查了平行线的性质,关键是正确作出辅助线,掌握两直线平行同位角相等,内错角相等.10.C解析:C【分析】首先由两个角的两边分别平行,可得这两个角相等或互补.然后设其中一角为x°,由其中一个角比另一个角的3倍少20°,然后分别从两个角相等与互补去分析,即可求得答案,注意别漏解.【详解】解:∵两个角的两边分别平行,∴这两个角相等或互补.设其中一角为x°,若这两个角相等,则x=3x﹣20,解得:x=10,∴这两个角的度数是10°和10°;若这两个角互补,则180﹣x=3x﹣20,解得:x=50,∴这两个角的度数是50°和130°.∴这两个角的度数是50°、130°或10°、10°.故选:C.【点睛】此题考查了平行线的性质与一元一次方程的解法.此题难度适中,解题的关键是掌握如果两个角的两边分别平行,则这两个角相等或互补,注意方程思想的应用.二、填空题11.【分析】过点,做平行于,根据平行线的传递性及性质得,同理得出,令,则,,则,通过等量关系先计算出,再根据角平分线的性质及等量代换进行求解.解:过点,做平行于,如下图:,,则,解析:153︒【分析】过点,,E F G ,做,,EH FK GJ 平行于AB ,根据平行线的传递性及性质得MEN BME DNE ∠=∠+∠,同理得出∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,通过等量关系先计算出18+=︒a b ,再根据角平分线的性质及等量代换进行求解.【详解】解:过点,,E F G ,做,,EH FK GJ 平行于AB ,如下图://,//AB EH AB CD ,//EH CD ,则,∠=∠∠=∠BME HEM DNE HEN ,∴∠=∠+∠=∠+∠MEN HEM HEN BME DNE ,同理可得:∠=∠+∠MGN AMG CNG ,令5∠=BME a ,则3∠=BMF a ,5∠=DNE b ,则3∠=DNF b ,则5590∠=∠+∠=+=︒MEN BME DNE a b ,18∴+=︒a b ,1801803∠=︒-∠=︒-AMF BMF a ,1801803∠=︒-∠=︒-CNF DNF b , MG 平分AMF ∠,NG 平分CNF ∠,131390,902222AMG AMF a CNG CNF b ∴∠=∠=︒-∠=∠=︒-, 3180()1532∴∠=∠+=︒-+=︒MGN AMG CNG a b , 故答案是:153︒.本题考查了平行线的性质、角平分线的性质,解题的关键是添加适当的辅助线,找到角之间的关系,利用等量代换的思想进行计算求解.12.45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过作,,,,,,,同理可得,由折叠可解析:45°或135°【分析】根据题意画出图形,然后利用平行线的性质得出∠EMF 与∠AEM 和∠CFM 的关系,然后可得答案.【详解】解:如图1,过M 作//MN AB ,//AB CD ,////AB CD NM ∴,AEM EMN ∴∠=∠,NMF MFC ∠=∠,90EMF ∠=︒,90AEM CFM ∴∠+∠=︒,同理可得P AEP CFP ∠=∠+∠,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 1()452P AEM CFM ∴∠=∠+∠=︒, 如图2,过M 作//MN AB ,//AB CD , ////AB CD NM ∴,180AEM EMN ∴∠+∠=︒,180NMF MFC ∠+∠=︒,360AEM EMF CFM ∴∠+∠+∠=︒,90EMF ∠=︒,36090270AEM CFM ∴∠+∠=︒-︒=︒,由折叠可得:12AEP PEM AEM ∠=∠=∠,12PFC PFM CFM ∠=∠=∠, 12701352P ∴∠=︒⨯=︒, 综上所述:EPF ∠的度数为45︒或135︒,故答案为:45°或135°.【点睛】本题主要考查了平行线的性质,关键是正确画出图形,分两种情况分别计算出∠EPF 的度数.13.4【分析】到的距离是2的点,在与平行且与的距离是2的两条直线上;同理,点在与的距离是1的点,在与平行,且到的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:解析:4【分析】到1l 的距离是2的点,在与1l 平行且与1l 的距离是2的两条直线上;同理,点M 在与2l 的距离是1的点,在与2l 平行,且到2l 的距离是1的两直线上,四条直线的距离有四个交点.因而满足条件的点有四个.【详解】解:到1l的距离是2的点,在与1l平行且与1l的距离是2的两条直线上;到2l的距离是1的点,在与2l平行且与2l的距离是1的两条直线上;以上四条直线有四个交点,故“距离坐标”是(2,1)的点共有4个.故答案为:4.【点睛】本题主要考查了到直线的距离等于定长的点的集合.14.68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意解析:68°【分析】如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.构建方程组证明∠GMC=2∠E即可解决问题.【详解】解:如图,延长DC交BG于M.由题意可以假设∠DCF=∠GCF=x,∠CGE=∠MGE=y.则有22x y GMCx y E=+∠⎧⎨=+∠⎩①②,①-2×②得:∠GMC=2∠E,∵∠E=34°,∴∠GMC=68°,∵AB∥CD,∴∠GMC=∠B=68°,故答案为:68°.【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟悉基本图形,学会添加常用辅助线,学会利用参数构建方程组解决问题,属于中考填空题中的能力题.15.70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥A解析:70°【分析】此题要构造辅助线:过点E,F分别作EG∥AB,FH∥AB.然后运用平行线的性质进行推导.【详解】解:如图所示,过点E,F分别作EG∥AB,FH∥AB.∵EG∥AB,FH∥AB,∴∠5=∠ABE,∠3=∠1,又∵AB∥CD,∴EG∥CD,FH∥CD,∴∠6=∠CDE,∠4=∠2,∴∠1+∠2=∠3+∠4=∠BFD=35°.∵BF平分∠ABE,DF平分∠CDE,∴∠ABE=2∠1,∠CDE=2∠2,∴∠BED=∠5+∠6=2∠1+2∠2=2(∠1+∠2)=2×35°=70°.故答案为70°.【点睛】本题主要考查了平行线的性质,根据题中的条件作出辅助线EG∥AB,FH∥AB,再灵活运用平行线的性质是解本题的关键.16.80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA,即∠E=2∠F=2×40°=80°.故答案为80.解析:80【详解】如图,根据角平分线的性质和平行线的性质,可知∠FMA=12∠CPE=∠F+∠1,∠ANE=∠E+2∠1=∠CPE=2∠FMA ,即∠E=2∠F=2×40°=80°.故答案为80.17.【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l1∥l2,∠A =125°,∠B =85°,∴,,,∴,∴,解析:17︒【分析】延长AB ,交两平行线与C 、D ,根据平行线的性质和领补角的性质计算即可;【详解】延长AB ,交两平行线与C 、D ,∵直线l 1∥l 2,∠A =125°,∠B =85°,∴4285∠+∠=︒,13125∠+∠=︒,34180∠+∠=︒,∴852*******︒-∠+︒-∠=︒,∴1230∠+∠=︒,又∵∠1比∠2大4°,∴2=14∠∠-︒,∴2134∠=︒,∴117∠=︒;故答案是17︒.【点睛】本题主要考查了平行线的性质应用,准确计算是解题的关键.18.①④【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=∠BO 解析:①④【分析】①由BC∥OA,∠B=∠A=100°,∠AOB=∠ACB=180°-100°=80°,得到∠A+∠AOB=180°,得出OB∥AC.②OE平分∠BOF,得出∠FOE=∠BOE=12∠BOF,∠FOC=∠AOC=12∠AOF,从而计算出∠EOC=∠FOE+∠FOC=40°.③由∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,得出∠OCB:∠OFB=1:2.④由∠OEB=∠OCA=∠AOE=∠BOC,得到∠AOE-∠COE=∠BOC-∠COE,∠BOE=∠AOC,再得到∠BOE=∠FOE=∠FOC=∠AOC=14∠AOB=20°,从而计算出∠OCA=∠BOC=3∠BOE=60°.【详解】解:∵BC∥OA,∠B=∠A=100°,∴∠AOB=∠ACB=180°-100°=80°,∴∠A+∠AOB=180°,∴OB∥AC.故①正确;∵OE平分∠BOF,∴∠FOE=∠BOE=12∠BOF,∴∠FOC=∠AOC=12∠AOF,∴∠EOC=∠FOE+∠FOC=12(∠BOF+∠AOF)=12×80°=40°.故②错误;∵∠OCB=∠AOC,∠OFB=∠AOF=2∠AOC,∴∠OCB:∠OFB=1:2.故③错误;∵∠OEB=∠OCA=∠AOE=∠BOC,∴∠AOE-∠COE=∠BOC-∠COE,∴∠BOE=∠AOC,∴∠BOE=∠FOE=∠FOC=∠AOC=14∠AOB=20°,∴∠OCA=∠BOC=3∠BOE=60°.故④正确.故答案为:①④.【点睛】本题考查了平行线的性质及判定,以及角的计算,熟练掌握平行线的判定与性质是解本题的关键.19.(上式变式都正确)【分析】过点E作,过点F作,可得出(根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图解析:90γαβ+=︒+(上式变式都正确)【分析】过点E 作//EM AB ,过点F 作//FN AB ,可得出//////AB EM FN CD (根据平行于同一直线的两条直线互相平行),根据平行线的性质,可得出各个角之间的关系,利用等量代换、等式的性质即可得出答案.【详解】解:如图所示,过点E 作//EM AB ,过点F 作//FN AB ,∵//AB CD ,∴//////AB EM FN CD ,∵//AB EM ,∴ABE BEM ∠=∠,∵//EM FN ,∴MEF EFN ∠=∠,∵//NF CD ,∴NFC FCD ∠=∠,∴ABE EFN NFC BEM MEF FCD ∠+∠+∠=∠+∠+∠,∴ABE EFC BEF FCD ∠+∠=∠+∠,∵ABE α∠=,FCD β∠=,CFE γ∠=,且BE EF ⊥,∴90αγβ+=︒+,故答案为:90αγβ+=︒+.【点睛】题目主要考察平行线的性质及等式的性质,作出相应的辅助线、找出相应的角的关系是解题关键.20.28【分析】根据平移的性质求出,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形是正方形,∴,,又∵长方形由长方形平移得到,∴∵∴四边形的周长为:故答案为:28【点解析:28【分析】根据平移的性质求出10BC '=,再由长方形的周长公式求解即可.【详解】解:由题意可知,四边形ABB A ''是正方形,∴4BB AB '==,642B C BC '==-=,又∵长方形A B C D ''''由长方形ABCD 平移得到,∴6B C BC ''==∵4610BC BB B C ''''=+=+=∴四边形ABC D '的周长为:(104)228+⨯=故答案为:28【点睛】此题主要考查了平移的性质,求出10BC '=是解答此题的关键.三、解答题21.(1)见解析;(2)902FME α∠=︒-,证明见解析. 【分析】(1)由平行线的性质得到CEH EHB ∠=∠,等量代换得出GFB EHB ∠=∠,即可根据“同位角相等,两直线平行”得解;(2)过点M 作//MQ AB ,过点G 作//GP AB ,根据平行线的性质及角平分线的定义求解即可.【详解】(1)证明://AB CD ,CEH EHB ∴∠=∠,GFB CEH ∠=∠,GFB EHB ∴∠=∠,//GF EH ∴;(2)解:902FME α∠=︒-,理由如下:如图2,过点M 作//MQ AB ,过点G 作//GP AB ,//AB CD ,//MQ CD ∴,AFM FMQ ∴∠=∠,QME MEC ∠=∠,FME FMQ QME AFM MEC ∴∠=∠+∠=∠+∠,同理,FGE FGP PGE AFG GEC ∠=∠+∠=∠+∠,FM 平分AFG ∠,EM 平分GEC ∠,2AFG AFM ∴∠=∠,2GEC MEC ∠=∠,2FGE FME ∴∠=∠,由(1)知,//GF EH ,180FGE GEH ∴∠+∠=︒,GEH α∠=,180FGE α∴∠=︒-,2180FME α∴∠=︒-,902FME α∴∠=︒-.【点睛】此题考查了平行线的判定与性质,熟记平行线的判定与性质及作出合理的辅助线是解题的关键. 22.(1)20,20,//AB CD ;(2)180FMN GHF ∠+∠=︒;(3)1FPN Q∠∠的值不变,12FPN Q =∠∠ 【分析】(1)根据2(402)|20|0αβ-+-=,即可计算α和β的值,再根据内错角相等可证//AB CD ; (2)先根据内错角相等证//GH PN ,再根据同旁内角互补和等量代换得出180FMN GHF ∠+∠=︒;(3)作1PEM ∠的平分线交1M Q 的延长线于R ,先根据同位角相等证//ER FQ ,得1FQM R =∠∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,得出12EPM R ∠=∠,即可得12FPN Q=∠∠. 【详解】解:(1)2(402)|20|0αβ-+-=,4020α∴-=,200β-=,20αβ∴==,20PFM MFN ∴∠=∠=︒,20EMF ∠=︒,EMF MFN ∴∠=∠,//AB CD ∴;故答案为:20、20,//AB CD ;(2)180FMN GHF ∠+∠=︒;理由:由(1)得//AB CD ,MNF PME ∴∠=∠,MGH MNF ∠=∠,PME MGH ∴∠=∠,//GH PN ∴,GHM FMN ∴∠=∠,180GHF GHM ∠+∠=︒,180FMN GHF ∴∠+∠=︒;(3)1FPN Q ∠∠的值不变,12FPN Q=∠∠; 理由:如图3中,作1PEM ∠的平分线交1M Q 的延长线于R ,//AB CD ,1PEM PFN ∴∠=∠,112PER PEM ∠=∠,12PFQ PFN =∠∠, PER PFQ ∴∠=∠,//ER FQ ∴,1FQM R ∴∠=∠,设PER REB x ==∠∠,11PM R RM B y ==∠∠,则有:122y x R y x EPM =+∠⎧⎨=+∠⎩, 可得12EPM R ∠=∠,112EPM FQM ∴∠=∠,∴112EPM FQM ∠=∠. 【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键.23.(1)3a =,1b =;(2)30°;(3)15秒或82.5秒【分析】(1)解出式子()2340a b a b -++-=即可;(2)根据//PQ MN ,用含t 的式子表示出BCA ∠,根据(2)中给出的条件得出方程式 ()()9090180229020⎡⎤∠=︒-∠=︒-︒-︒=︒-︒=︒⎣⎦BCD BCA t t ,求出 t 的值,进而求出BAC ∠的度数;(3)根据灯B 的要求,t <150,在这个时间段内A 可以转3次,分情况讨论.【详解】解:(1)2|3|(4)0a b a b -++-=.又|3|0a b -≥,2(4)0a b +-≥.3a ∴=,1b =;(2)设A 灯转动时间为t 秒,如图,作//CE PQ ,而//,PQ MN////,PQ CE MN ∴1803ACE CAN t ∴∠=∠=︒-︒,BCE CBD t ∠=∠=︒,()()18031802∴∠=∠+∠=︒+︒-︒=︒-︒BCA CBD CAN t t t ,90ACD ∠=︒,[]9090180(2)(2)9020∴∠=︒-∠=︒-︒-︒=︒-︒=︒BCD BCA t t ,55∴=t()1803∠=︒-︒CAN t ,()()451803313516513530∴∠=︒-︒-︒=︒-︒=︒-︒=︒⎡⎤⎣⎦BAC t t(3)设A 灯转动t 秒,两灯的光束互相平行.依题意得0150t <<①当060t <<时,两河岸平行,所以()233t ∠=∠=︒ 两光线平行,所以2130t ∠=∠=+︒所以,13∠=∠即:330=+t t ,解得15t =;②当60120t <<时,两光束平行,所以()2330t ∠=∠=+︒两河岸平行,所以12180∠+∠=︒13180t ∠=-︒所以,318030180-++=t t ,解得82.5t =;③当120150t <<时,图大概如①所示336030t t -=+,解得195150t =>(不合题意)综上所述,当15t =秒或82.5秒时,两灯的光束互相平行.【点睛】这道题考察的是平行线的性质和一元一次方程的应用.根据平行线的性质找到对应角列出方程是解题的关键.24.(1)说明过程请看解答;(2)说明过程请看解答;(3)∠BED =360°-2∠BFD .【分析】(1)图1中,过点E 作EG ∥AB ,则∠BEG =∠ABE ,根据AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG =∠CDE ,进而可得∠BED =∠ABE +∠CDE ;(2)图2中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,结合(1)的结论即可说明:∠BED =2∠BFD ;(3)图3中,根据∠ABE 的平分线与∠CDE 的平分线相交于点F ,过点E 作EG ∥AB ,则∠BEG +∠ABE =180°,因为AB ∥CD ,EG ∥AB ,所以CD ∥EG ,所以∠DEG +∠CDE =180°,再结合(1)的结论即可说明∠BED 与∠BFD 之间的数量关系.【详解】解:(1)如图1中,过点E作EG∥AB,则∠BEG=∠ABE,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG=∠CDE,所以∠BEG+∠DEG=∠ABE+∠CDE,即∠BED=∠ABE+∠CDE;(2)图2中,因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,所以∠ABE+∠CDE=2∠ABF+2∠CDF=2(∠ABF+∠CDF),由(1)得:因为AB∥CD,所以∠BED=∠ABE+∠CDE,∠BFD=∠ABF+∠CDF,所以∠BED=2∠BFD.(3)∠BED=360°-2∠BFD.图3中,过点E作EG∥AB,则∠BEG+∠ABE=180°,因为AB∥CD,EG∥AB,所以CD∥EG,所以∠DEG+∠CDE=180°,所以∠BEG+∠DEG=360°-(∠ABE+∠CDE),即∠BED=360°-(∠ABE+∠CDE),因为BF平分∠ABE,所以∠ABE=2∠ABF,因为DF平分∠CDE,所以∠CDE=2∠CDF,∠BED=360°-2(∠ABF+∠CDF),由(1)得:因为AB ∥CD ,所以∠BFD =∠ABF +∠CDF ,所以∠BED =360°-2∠BFD .【点睛】本题考查了平行线的性质,解决本题的关键是掌握平行线的性质.25.(1)∠AEP +∠PFC =∠EPF ;(2)∠AEP +∠EPF +∠PFC =360°;(3)①150°或30;②∠EPF +2∠EQF =360°或∠EPF =2∠EQF【分析】(1)由于点P 是平行线AB ,CD 之间有一动点,因此需要对点P 的位置进行分类讨论:如图1,当P 点在EF 的左侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:EPF AEP PFC ∠=∠+∠;(2)当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;(3)①若当P 点在EF 的左侧时,150EQF BEQ QFD ∠=∠+∠=︒;当P 点在EF 的右侧时,可求得30BEQ QFD ∠+∠=︒;②结合①可得180218023602()EPF BEQ DFQ BEQ PFD ∠=︒-∠+︒-∠=︒-∠+∠,由EQF BEQ DFQ ∠=∠+∠,得出2360EPF EQF ∠+∠=︒;可得EPF BEP PFD =∠+∠,由BEQ DFQ EQF ∠+∠=∠,得出2EPF EQF ∠=∠.【详解】解:(1)如图1,过点P 作//PG AB ,//PG AB ,EPG AEP ∴∠=∠,//AB CD ,//PG CD ∴,FPG PFC ∴∠=∠,AEP PFC EPF ∴∠+∠=∠;(2)如图2,当P 点在EF 的右侧时,AEP ∠,EPF ∠,PFC ∠满足数量关系为:360AEP EPF PFC ∠+∠+∠=︒;过点P 作//PG AB ,//PG AB ,180EPG AEP ∴∠+∠=︒,//AB CD ,//PG CD ∴,180FPG PFC ∴∠+∠=︒,360AEP EPF PFC ∴∠+∠+∠=︒;(3)①如图3,若当P 点在EF 的左侧时,60EPF ∠=︒,36060300PEB PFD ∴∠+∠=︒-︒=︒, EQ ,FQ 分别平分PEB ∠和PFD ∠, 12BEQ PEB ∴∠=∠,12QFD PFD ∠=∠, 11()30015022EQF BEQ QFD PEB PFD ∴∠=∠+∠=∠+∠=⨯︒=︒; 如图4,当P 点在EF 的右侧时,60EPF ∠=︒,60PEB PFD ∴∠+∠=︒,11()603022BEQ QFD PEB PFD ∴∠+∠=∠+∠=⨯︒=︒; 故答案为:150︒或30;②由①可知:11()(360)22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=︒-∠,2360EPF EQF ∴∠+∠=︒; 11()22EQF BEQ QFD PEB PFD EPF ∠=∠+∠=∠+∠=∠, 2EPF EQF ∴∠=∠.综合以上可得EPF ∠与EQF ∠的数量关系为:2360EPF EQF ∠+∠=︒或2EPF EQF ∠=∠.【点睛】本题主要考查了平行线的性质,平行公理和及推论等知识点,作辅助线后能求出各个角的度数,是解此题的关键.。
新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试卷(包含答案解析)(2)
一、选择题1.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对 2.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =- B .2a =,1b = C .2a =-,1b =- D .0a =,2b =3.下列命题中是真命题的是( ) A .如果0a b +<那么0ab < B .内错角相等C .三角形的内角和等于180︒D .相等的角是对顶角 4.如图,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF ,则四边形ABFD 的周长为( )A .8B .9C .10D .11 5.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm6.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角7.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个8.如图,△ABC经平移得到△EFB,则下列说法正确的有()①线段AC的对应线段是线段EB;②点C的对应点是点B;③AC∥EB;④平移的距离等于线段BF的长度.A.1 B.2 C.3 D.49.如图,下列条件:①,②,③,④,⑤中能判断∠=∠∠+∠=∠=∠∠=∠∠=∠+∠13241804523623l l的有( )直线12A.5个B.4个C.3个D.2个10.如图,下列说法错误的是( )A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c C.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c11.在如图所示的四个汽车标识图案中,能用平移变换来分析其形成过程的是()A .B .C .D . 12.下列各命题中,原命题成立,而它逆命题不成立的是( )A .平行四边形的两组对边分别平行B .矩形的对角线相等C .四边相等的四边形是菱形D .直角三角形中,斜边的平方等于两直角边的平方和二、填空题13.如图,AB ,CD 相交于点E ,ACE AEC ∠=∠,BDE BED ∠=∠,过A 作AF BD ⊥,垂足为F .求证:AC AF ⊥.证明:∵ACE AEC ∠=∠,BDE BED ∠=∠又AEC BED ∠=∠(________________)∴ACE BDE ∠=∠∴//AC DB (________________________)∴CAF AFD ∠=∠(________________________)∵AF DB ⊥∴90AFD ∠=︒(________________________)∴90CAF =︒∠∴AC AF ⊥14.如图,AB ∥CD ,AB ⊥AE ,∠CAE =42°,则∠ACD 的度数为__.15.若∠A 与∠B 的两边分别平行,且∠A 比∠B 的3倍少40°,则∠B =_____度. 16.一副直角三角板叠放如图①所示,现将含30角的三角板固定不动,把含45角的三角板CDE 由图①所示位置开始绕点C 逆时针旋转(a DCF α=∠且018)0a <<,使两块三角板至少有一组边平行.如图,30a =︒②时,//AB CD .请你在图③、图④、图⑤内,各画一种符合要求的图形,标出a ,并完成各项填空: 图③中α=_______________时,___________//___________﹔图④中α=_____________时,___________//___________﹔图⑤中α=_______________时,___________//___________﹔17.一把标有0至10的直尺,如图所示放在数轴上,且直尺上的刻度0、1、2、3、4和数轴上的﹣1、﹣2、﹣3、﹣4、﹣5分别对应.现把直尺向右平移5个单位长度,平移后数轴上的数与刻度尺上的读数相同,则这个数是______.18.运动会上裁判员测量跳远成绩时,先在距离踏板最近的跳远落地点上插上作为标记的小旗,再以小旗的位置为赤字的零点,将尺子拉直,并与踏板边缘所在直线垂直,把尺子上垂足点表示的数作为跳远成绩.这实质上是数学知识____________在生活中的应用. 19.如果一张长方形的纸条,如图所示折叠,那么∠α等于____.20.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;三、解答题21.如图,已知:AD BC ⊥于D,EG BC ⊥于G,AD 平分BAC ∠.求证:1E ∠∠=.下面是部分推理过程,请你填空或填写理由.证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG ( ) ∴21∠=∠( ),3∠= ( ).又∵AD 平分BAC ∠(已知),∴23∠∠=( ),∴1E ∠∠=( )22.如图,//,//DE BC EF AB ,图中与∠BFE 互补的角有几个,请分别写出来.23.如图所示,已知∠1=115°,∠2=65°,∠3=100°.(1)图中所有角中(包含没有标数字的角),共有几对内错角?(2)求∠4的大小.24.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.25.如图所示,在平面直角坐标系中,已知A (0,1)、B (2,0)、C (4,3).(1)在平面直角坐标系中画出△ABC ,作出△ABC 向下平移3格后的△A 1B 1C 1; (2)求△ABC 的面积;(3)已知点Q 为y 轴上一点,若△ACQ 的面积为8,求点Q 的坐标.26.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题; ④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,正确,为真命题,故选:B .【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.2.A解析:A【分析】选取的a 的值满足a b >,但不满足22a b >即可.【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意;当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意;当a =0,b =2时,不满足a >b ,故D 选项不符合题意;故选:A .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.C解析:C【分析】利用反例对A 进行判断;根据平行线的性质对B 进行判断;根据三角形内角和定理对C 进行判断;根据对顶角定义对D 进行判断.【详解】解:A 、当a=-2,b=-1时,则a+b<0,ab>0,所以A 选项错误;B 、两直线平行,内错角相等,所以B 选项错误,是假命题;C 、三角形的内角和等于180°,所以C 选项为真命题;D 、对顶角既有大小关系,又有位置关系,相等的角是对顶角的说法错误,所以D 选项错误,是假命题;【点睛】本题考查命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.4.D解析:D根据平移的基本性质,得出四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC 即可得出答案.【详解】解:根据题意,将周长为7的△ABC 沿BC 方向向右平移2个单位得到△DEF , ∴AD=2,BF=BC+CF=BC+2,DF=AC ;又∵AB+BC+AC=7,∴四边形ABFD 的周长=AD+AB+BF+DF=2+AB+BC+2+AC=11.故选:D .【点睛】本题考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.得到CF=AD ,DF=AC 是解题的关键.5.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm ,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.6.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a ,b 被直线c 所截,∠1与∠2是同位角.故选:A .【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.7.C解析:C利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.8.D解析:D【分析】根据平移的特点分别判断各选项即可.【详解】∵△ABC经平移得到△EFB∴点A、B、C的对应点分别为E、F、B,②正确∴BE是AC的对应线段,①正确∴AC∥EB,③正确平移距离为对应点连线的长度,即BF的长度,④正确故选:D【点睛】本题考查平移的特点,注意,在平移过程中,一定要把握住对应点,仅对应点的连线之间才有平行、相等的一些关系.9.B解析:B【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】解:①∵∠1=∠3,∴l1∥l2,故本小题正确;②∵∠2+∠4=180°,∴l1∥l2,故本小题正确;③∵∠4=∠5,∴l1∥l2,故本小题正确;④∠2=∠3不能判定l1∥l2,故本小题错误;⑤∵∠6=∠2+∠3,∴l1∥l2,故本小题正确.故选B.【点睛】本题考查的是平行线的判定,熟记平行线的判定定理是解答此题的关键.10.C解析:C【解析】试题分析:根据平行线的判定进行判断即可.解:A、若a∥b,b∥c,则a∥c,利用了平行公理,正确;B、若∠1=∠2,则a∥c,利用了内错角相等,两直线平行,正确;C、∠3=∠2,不能判断b∥c,错误;D、若∠3+∠5=180°,则a∥c,利用同旁内角互补,两直线平行,正确;故选C.考点:平行线的判定.11.D解析:D【分析】根据平移作图是一个基本图案按照一定的方向平移一定的距离,连续作图设计出的图案进行分析即可.【详解】解:A、不能用平移变换来分析其形成过程,故此选项错误;B、不能用平移变换来分析其形成过程,故此选项错误;C、不能用平移变换来分析其形成过程,故此选项正确;D、能用平移变换来分析其形成过程,故此选项错误;故选:D.【点睛】本题考查利用平移设计图案,解题关键是掌握图形的平移只改变图形的位置,而不改变图形的形状、大小和方向.12.B解析:B【分析】分别判断该命题的原命题和逆命题后即可确定正确的选项.【详解】解:A、平行四边形的两组对边分别平行,成立,逆命题为两组对边分别平行的四边形是平行四边形,正确,不符合题意;B、矩形的对角线相等,成立,逆命题为对角线相等的四边形是矩形,不成立,符合题意;C、四边相等的四边形是菱形,成立,逆命题为菱形的四条边相等,成立,不符合题意;D、直角三角形中,斜边的平方等于两直角边的平方和,成立,逆命题为两边的平方和等于第三边的平方的三角形为直角三角形,成立,不符合题意;故选:B.【点睛】本题主要考查的是命题和定理的知识,正确的写出它的逆命题是解题的关键.二、填空题13.对顶角相等;内错角相等两直线平行;两直线平行内错角相等;垂直定义【分析】依据对顶角相等推出利用平行线的判定定理内错角相等两直线平行利用平行线的性质得由垂直再根据同旁内角互补即可【详解】证明:∵又(对 解析:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义【分析】依据对顶角相等推出ACE BDE ∠=∠,利用平行线的判定定理内错角相等两直线平行//AC DB ,利用平行线的性质得CAF AFD ∠=∠,由垂直90AFD ∠=︒,再根据同旁内角互补90CAF =︒∠即可.【详解】证明:∵ACE AEC ∠=∠,BDE BED ∠=∠,又AEC BED ∠=∠(对顶角相等),∴ACE BDE ∠=∠,∴//AC DB (内错角相等,两直线平行),∴CAF AFD ∠=∠(两直线平行,内错角相等),∵AF DB ⊥,∴90AFD ∠=︒(垂直定义),∴90CAF =︒∠,∴AC AF ⊥.故答案为:对顶角相等;内错角相等,两直线平行;两直线平行,内错角相等;垂直定义.【点睛】本题主要考查了平行线的判定和性质,对顶角性质,等式的性质,垂直定义,掌握平行线的判定和性质,对顶角性质,等式的性质,垂直定义,解题时注意:两直线平行,同旁内角互补是解题关键.14.132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数【详解】解:∵AB ⊥AE ∠CAE =42°∴∠BAC =90°﹣42°=48°∵AB ∥CD ∴∠BAC +∠ACD =180°解析:132°【分析】直接利用平行线的性质结合垂直定义得出∠BAC 度数以及∠ACD 的度数.【详解】解:∵AB ⊥AE ,∠CAE =42°,∴∠BAC =90°﹣42°=48°,∵AB ∥CD ,∴∠BAC +∠ACD =180°,∴∠ACD =132°.故答案为:132°.【点睛】此题主要考查了平行线的性质,正确得出∠BAC 度数是解题关键.15.55或20【分析】根据平行线性质得出∠A+∠B =180°①∠A =∠B②求出∠A =3∠B ﹣40°③把③分别代入①②求出即可【详解】解:∵∠A 与∠B 的两边分别平行∴∠A+∠B =180°①∠A =∠B②∵∠解析:55或20【分析】根据平行线性质得出∠A+∠B =180°①,∠A =∠B②,求出∠A =3∠B ﹣40°③,把③分别代入①②求出即可.【详解】解:∵∠A 与∠B 的两边分别平行,∴∠A+∠B =180°①,∠A =∠B②,∵∠A 比∠B 的3倍少40°,∴∠A =3∠B ﹣40°③,把③代入①得:3∠B ﹣40°+∠B =180°,∠B =55°,把③代入②得:3∠B ﹣40°=∠B ,∠B =20°,故答案为:55或20.【点睛】本题考查平行线的性质,解题的关键是掌握由∠A 和∠B 的两边分别平行,即可得∠A =∠B 或∠A +∠B =180° ,注意分类讨论思想的应用.16.;(答案不唯一)【分析】画出图形再由平行线的判定与性质求出旋转角度【详解】图中当时DE//AC ;图中当时CE//AB 图中当时DE//BC 故答案为:;(答案不唯一)【点睛】考查了平行线的判定和性质解题解析:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一)【分析】画出图形,再由平行线的判定与性质求出旋转角度.【详解】图③中,当45DCF D α=∠=∠=时,DE//AC ;图④中,当9090120DCF DCB BCF B α=∠=∠+∠=︒-∠+︒=︒ 时,CE//AB ,图⑤中,当90135a DCF DCB BCF D =∠=∠+∠=∠+=︒ 时,DE//BC .故答案为:45,//DE AC ︒;120,//;135,//CE AB DE BC ︒︒(答案不唯一).【点睛】考查了平行线的判定和性质,解题关键是理解平行线的判定与性质,并且利用了数形结合.17.2【分析】画出示意图找出平移后数轴上的数与刻度尺上的读数相同的数字即可【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2故答案为:2【点睛】本题主要考查平移的概念以及数轴根据题意画出示意图 解析:2【分析】画出示意图,找出平移后数轴上的数与刻度尺上的读数相同的数字即可.【详解】如图:平移后数轴上的数与刻度尺上的读数相同的数字是2.故答案为:2.【点睛】本题主要考查平移的概念以及数轴,根据题意画出示意图是解题关键.18.垂线段最短【分析】根据题干跳远落点视为一个点直尺垂直踏板边缘可理解为作垂线然后用数学语言描述出来即可【详解】根据题意可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用注意在书写答案 解析:垂线段最短【分析】根据题干,跳远落点视为一个点,直尺垂直踏板边缘可理解为作垂线,然后用数学语言描述出来即可.【详解】根据题意,可知答案为:垂线段最短【点睛】本题考查点到直线距离在生活中的实际应用,注意在书写答案时,尽量用“数学化”的语言来描述.19.70°【分析】依据平行线的性质可得∠BAE=∠DCE=140°依据折叠即可得到∠α=70°【详解】解:如图∵AB ∥CD ∴∠BAE=∠DCE=140°由折叠可得:∴∠α=70°故答案为:70°【点睛】解析:70°.【分析】依据平行线的性质,可得∠BAE=∠DCE=140°,依据折叠即可得到∠α=70°.【详解】解:如图,∵AB ∥CD ,∴∠BAE =∠DCE =140°, 由折叠可得:12DCF DCE ∠=∠, ∴∠α=70°.故答案为:70°.【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等. 20.62【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD ∴∠AOD=62°解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.三、解答题21.同位角相等,两直线平行;两直线平行,内错角相等;∠E ;两直线平行,同位角相等;角平分线的定义;等量代换.【分析】根据垂直的定义、平行线的判定与性质、角平分线的定义以及等量代换进行解答即可.【详解】证明:∵AD BC EG BC ⊥⊥,(已知),∴ADC EGC 90∠∠==︒(垂直的定义),∴AD //EG (同位角相等,两直线平行)∴21∠=∠(两直线平行,内错角相等),3∠=∠E (两直线平行,同位角相等).又∵AD 平分BAC ∠(已知),∴23∠∠=(角平分线的定义),∴1E ∠∠=(等量代换).【点睛】本题主要考查了垂直的定义、平行线的判定与性质和角平分线的定义等知识点,灵活应用平行线的判定与性质成为解答本题的关键.22.∠EFC 、∠DEF 、∠ADE 、∠B .【分析】根据平行的性质得EFC DEF ADE B ∠=∠=∠=∠,由180BFE EFC ∠+∠=︒,可知这些角与BFE ∠都互补.【详解】解:180BFE EFC ∠+∠=︒,∵//DE BC ,∴DEF EFC ∠=∠,∴180BFE DEF ∠+∠=︒,∵//EF AB ,∴DEF ADE ∠=∠,∴180BFE ADE ∠+∠=︒,∵//DE BC ,∴ADE B ∠=∠,∴180BFE B ∠+∠=︒,与∠BFE 互补的角有4个,分别为:∠EFC 、∠DEF 、∠ADE 、∠B .【点睛】本题考查平行线的性质,解题的关键利用平行线的性质找相等的角.23.(1)共有8对内错角;(2)100°【分析】(1)根据内错角的定义解答即可;(2)根据邻补角的定义先求出∠5的度数,由等量代换得∠5=∠1,根据同位角相等,两直线平行判定直线a ∥b ,由两直线平行,同位角相等求得∠6,最后根据对顶角相等求出∠4的度数为100°.【详解】解:如图所示:(1)直线c和d被直线b所截,有两对内错角,即∠2和∠6,∠5和∠7;直线c和d被直线a所截,有两对内错角,即∠3和∠16,∠1和∠11;直线a和b被直线d所截,有两对内错角,即∠6和∠9,∠8和∠11;直线a和b被直线c所截,有两对内错角,即∠5和∠14,∠13和∠16;共有8对内错角;(2)∵∠2+∠5=180°,∠2=65°,∴∠5=180°﹣65°=115°,∵∠1=115°,∴∠1=∠5,∴a∥b,∴∠3=∠6,又∵∠3=100°,∴∠6=100°,∴∠4=∠6=100°.【点睛】本题综合考查了平行线的判定与性质.解题的关键是掌握平行线的判定与性质,邻补角的定义,对顶角的性质,等量代换等相关知识,重点掌握平行线的判定与性质.24.证明见解析【分析】根据平行线的判定与性质即可得证.【详解】∠=∠,解:∵12BD CE,∴//∠=∠,∴C ABD∠=∠,∵C D∠=∠,∴D ABDAC DF,∴//∠=∠.∴A F【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键. 25.(1)见解析;(2)4;(3)(0,5)或(0,-3).【分析】(1)先在平面直角坐标系中描点,再连接,然后分别作出平移后的对应点,再顺次连接即可得;(2)利用割补法求解可得;(3)根据三角形面积公式求出AQ 的长,即可确定点Q 的坐标.【详解】解:(1)如图所示,(2)△ABC 的面积=111342421234222⨯-⨯⨯-⨯⨯-⨯⨯= (3)∵Q 为y 轴上一点,△ACQ 的面积为8, ∴1||482AQ ⨯⨯=, ∴AQ=4 ∴点Q 的纵坐标为:4+1=5或1-4=-3,故Q 点坐标为:(0,5)或(0,-3).【点睛】本题主要考查的是作图-平移变换、点的坐标与图形的性质,明确△ABC 的面积=四边形的面积-3个直角三角形的面积是解题的关键.26.(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC∥AD,∵AF∥DE,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF,∴BC∥AD.【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。
【3套打包】包头市人教版七年级下册第五章《相交线与平行线》单元综合练习卷(解析版)
人教版七年级数学下册第五章相交线与平行线压轴题专项练习人教版七下第五章相交线与平行线单元能力提升卷压轴题专项培优1.(1)如图1,a∥b,则∠1+∠2=(2)如图2,AB∥CD,则∠1+∠2+∠3= ,并说明理由;(3)如图3,a∥b,则∠1+∠2+∠3+∠4=(4)如图4,a∥b,根据以上结论,试探究∠1+∠2+∠3+∠4+…+∠n= (直接写出你的结论,无需说明理由)2.探究:如图,已知直线l∥l2,直线l3和直线l1、l2交于点C和点D,直线l3有一点P1(1)若点P在C、D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),试探索∠PAC,∠APB,∠PBD 之间的关系又是如何?并说明理由.3.(1)已知:如图1,直线AC∥BD,求证:∠APB=∠PAC+∠PBD;(2)如图2,如果点P在AC与BD之内,线段AB的左侧,其它条件不变,那么会有什么结果?并加以证明;(3)如图3,如果点P在AC与BD之外,其他条件不变,你发现的结果是_______(只写结果,不要证明).4.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E,∠ADC=70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED 的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.5.如图(1),E是直线AB,CD内部一点,AB//CD,连接EA,ED.(1)探究猜想:①若∠A=300, ∠D=400,则∠AED等于多少度?②若∠A=200,∠D=600,则∠AED等于多少度?③猜想图(1)中∠AED, ∠EAB, ∠EDC的关系,并证明你的结论.(2)拓展应用:如图(2),射线FE与长方形ABCD的边AB交于点E,与边CD交于点F,①②③④分别是被射线FE隔开的4个区域(不含边界,其中区域③④位于直线AB上方),P是位于以上四个区域中的点,猜想:∠PEB,∠PFC,∠EPF的关系(不要求证明).6.如图,已知AB∥CD,C在D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在直线交于点E.∠ADC =70°.(1)求∠EDC的度数;(2)若∠ABC =n°,求∠BED的度数(用含n的代数式表示);(3)将线段BC沿DC方向平移,使得点B在点A的右侧,其他条件不变,画出图形并判断∠BED的度数是否改变,若改变,求出它的度数(用含n的式子表示),不改变,请说明理由.7.已知AB∥CD.如图1,你能得出∠A+∠E+∠C=360°吗?如图2,猜想出∠A、∠C、∠E的关系式并说明理由.如图3,∠A、∠C、∠E的关系式又是什么?8.如图,已知AM∥BN,∠A=60°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)求∠CBD的度数;(2)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由;若变化,请写出变化规律.(3)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是 .9.如图,已知两条射线OM∥CN,动线段AB的两个端点A、B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA 度数;若不存在,说明理由.10.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE 平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.11.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。
2020人教版七年级数学下册第5章相交线与平行线测试卷含解析
2020人教版七年级数学下册第5章相交线与平行线测试卷一.选择题(共10小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3 2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠43.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.48.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个二.填空题(共10小题)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是(填序号)12.已知直线a∥b,b∥c,则直线a、c的位置关系是.13.如图所示,请你填写一个适当的条件:,使AD∥BC.14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为.(任意添加一个符合题意的条件即可)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=度.17.如图,DF∥AC,若∠1=∠2,则DE与AH的位置关系是.18.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是.19.把命题“对顶角相等”改写成“如果…那么…”的形式:.20.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有.三.解答题(共7小题)21.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.22.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段的长表示点P到直线BO的距离;线段的长表示点M 到直线AO的距离;线段ON的长表示点O到直线的距离;点P到直线OA的距离为.23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.24.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.25.(1)如图,它的周长是cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.26.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.27.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.参考答案与试题解析一.选择题(共10小题)1.同一平面内,三条不同直线的交点个数可能是()个.A.1或3B.0、1或3C.0、1或2D.0、1、2或3【分析】根据两直线平行和相交的定义作出图形即可得解.【解答】解:如图,三条直线的交点个数可能是0或1或2或3.故选:D.2.如图,在所标识的角中,互为对顶角的两个角是()A.∠1和∠2B.∠1和∠4C.∠2和∠3D.∠3和∠4【分析】对顶角:有一个公共顶点,并且一个角的两边分别是另一个角的两边的反向延长线,具有这种位置关系的两个角,互为对顶角.依此即可求解.【解答】解:观察图形可知,互为对顶角的两个角是∠3和∠4.故选:D.3.已知,OA⊥OC,且∠AOB:∠AOC=2:3,则∠BOC的度数为()A.30°B.150°C.30°或150°D.90°【分析】根据垂直关系知∠AOC=90°,由∠AOB:∠AOC=2:3,可求∠AOB,根据∠AOB与∠AOC的位置关系,分类求解.【解答】解:∵OA⊥OC,∴∠AOC=90°,∵∠AOB:∠AOC=2:3,∴∠AOB=60°.因为∠AOB的位置有两种:一种是在∠AOC内,一种是在∠AOC外.①当在∠AOC内时,∠BOC=90°﹣60°=30°;②当在∠AOC外时,∠BOC=90°+60°=150°.故选:C.4.如图,要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是()A.两点之间线段最短B.点到直线的距离C.两点确定一条直线D.垂线段最短【分析】根据垂线段的性质:垂线段最短进行解答.【解答】解:要把河中的水引到水池A中,应在河岸B处(AB⊥CD)开始挖渠才能使水渠的长度最短,这样做依据的几何学原理是:垂线段最短,故选:D.5.下列图形中,线段AD的长表示点A到直线BC距离的是()A.B.C.D.【分析】根据点到直线的距离是指垂线段的长度,即可解答.【解答】解:线段AD的长表示点A到直线BC距离的是图D,故选:D.6.如图,直线l与∠BAC的两边分别相交于点D、E,则图中是同旁内角的有()A.2对B.3对C.4对D.5对【分析】根据第三条截线可能是直线AB、直线AC、直线l,结合同旁内角的定义,数出同旁内角即可.【解答】解:直线AC与直线AB被直线l所截形成的同旁内角有:∠ADE与∠AED、∠CDE与∠BED;直线AC与直线DE被直线AB所截形成的同旁内角有:∠DAE与∠DEA;直线AB与直线DE被直线AC所截形成的同旁内角有:∠EAD与∠EDA;故选:C.7.如图,直线DE截AB,AC,其中内错角有()对.A.1B.2C.3D.4【分析】如果两条直线被第三条直线所截,那么位于截线的两侧,在两条被截直线之间的两个角是内错角.两条直线被第三条直线所截,可形成两对内错角.【解答】解:直线DE截AB,AC,形成两对内错角;直线AB截AC,DE,形成一对内错角;直线AC截AB,DE,形成一对内错角.故共有4对内错角.故选:D.8.下列说法正确的是()A.不相交的两条线段是平行线B.不相交的两条直线是平行线C.不相交的两条射线是平行线D.在同一平面内,不相交的两条直线是平行线【分析】根据平行线的定义,即可解答.【解答】解:根据平行线的定义:在同一平面内,不相交的两条直线是平行线.A,B,C错误;D正确;故选:D.9.在同一平面内两条不重合的直线的位置关系是()A.相交或垂直B.平行或垂直C.相交或平行D.以上都不对【分析】根据在同一平面内两条不重合的直线的位置关系得出即可.【解答】解:在同一平面内两条不重合的直线的位置关系是平行和相交.故选:C.10.下列说法正确的有()①同位角相等;②若∠A+∠B+∠C=180°,则∠A、∠B、∠C互补;③同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交;④同一平面内两条直线的位置关系可能是平行或垂直;⑤有公共顶点并且相等的角是对顶角.A.1个B.2个C.3个D.4个【分析】平行线的性质即可判断①;根据补角的定义即可判断②,根据平行线的性质即可判断③,根据两直线的位置关系即可判断④;根据对顶角的定义即可判断⑤.【解答】解:∵同位角不一定相等,∴①错误;∵互补或互余是两个角之间的关系,∴说∠A+∠B+∠C=180°,则∠A、∠B、∠C互补错误,∴②错误;∵同一平面内的三条直线a、b、c,若a∥b,c与a相交,则c与b相交,∴③正确;∵同一平面内两条直线的位置关系可能是平行或相交,∴④错误;∵如图,∠ABC=∠ABD,∠ABC和∠ABD有公共顶点并且相等的角,但不是对顶角,∴⑤错误;即正确的个数是1个,故选:A.二.填空题(共10小题)11.下列说法中,①在同一平面内,不相交的两条线段叫做平行线;②过一点,有且只有一条直线平行于已知直线;③两条平行直线被第三条直线所截,同位角相等;④同旁内角相等,两直线平行.不正确的是①②④(填序号)【分析】分别根据平行线的判定以及平行线定义和平行公理分析得出即可.【解答】解:①在同一平面内,不相交的两条线段叫做平行线,正确;②过一点,有且只有一条直线平行于已知直线,正确;③两条平行直线被第三条直线所截,当两直线平行,同位角相等,故原命题错误;④同旁内角相等,两直线平行,正确.故答案为:①②④.12.已知直线a∥b,b∥c,则直线a、c的位置关系是平行.【分析】根据平行于同一条直线的两条直线互相平行,可得答案.【解答】解:若直线直线a∥b,b∥c,则直线a、c的位置关系是平行,故答案为:平行.13.如图所示,请你填写一个适当的条件:∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°,使AD∥BC.【分析】欲证AD∥BC,结合图形,故可按同位角相等、内错角相等和同旁内角互补两直线平行来补充条件.【解答】解:添加∠F AD=∠FBC,或∠ADB=∠DBC,或∠DAB+∠ABC=180°.∵∠F AD=∠FBC∴AD∥BC(同位角相等两直线平行);∵∠ADB=∠DBC∴AD∥BC(内错角相等两直线平行);∵∠DAB+∠ABC=180°∴AD∥BC(同旁内角互补两直线平行).14.如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(任意添加一个符合题意的条件即可)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断.【解答】解:若∠A+∠ABC=180°,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为:∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)15.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行.【分析】根据同位角相等,两直线平行解答即可.【解答】解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.16.如图,AB∥CD,点P为CD上一点,∠EBA、∠EPC的角平分线于点F,已知∠F=40°,则∠E=80度.【分析】设∠EPC=2x,∠EBA=2y,根据角平分线的性质得到∠CPF=∠EPF=x,∠EBF=∠FBA=y,根据外角的性质得到∠1=∠F+∠ABF=42°+y,∠2=∠EBA+∠E=2y+∠E,由平行线的性质得到∠1=∠CPF=x,∠2=∠EPC=2x,于是得到方程2y+∠E =2(42°+y),即可得到结论.【解答】解:设∠EPC=2x,∠EBA=2y,∵∠EBA、∠EPC的角平分线交于点F∴∠CPF=∠EPF=x,∠EBF=∠FBA=y,∵∠1=∠F+∠ABF=40°+y,∠2=∠EBA+∠E=2y+∠E,∵AB∥CD,∴∠1=∠CPF=x,∠2=∠EPC=2x,∴∠2=2∠1,∴2y+∠E=2(40°+y),∴∠E=80°.故答案为:80.17.如图,DF∥AC,若∠1=∠2,则DE与AH的位置关系是平行.【分析】先由DF∥AC知∠2=∠G,结合∠1=∠2得∠1=∠2,据此知DE∥AH.【解答】解:∵DF∥AC,∴∠2=∠G,又∵∠1=∠2,∴∠1=∠2,∴DE∥AH,故答案为:平行.18.已知直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,则点P到b的距离是3.【分析】根据直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,即可得出点P到b的距离.【解答】解:∵直线a∥b,a与b之间的距离为5,a与b之间有一点P,点P到a的距离是2,∴点P到b的距离是5﹣2=3,故答案为:3.19.把命题“对顶角相等”改写成“如果…那么…”的形式:如果两个角是对顶角,那么它们相等.【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解答】解:题设为:对顶角,结论为:相等,故写成“如果…那么…”的形式是:如果两个角是对顶角,那么它们相等,故答案为:如果两个角是对顶角,那么它们相等.20.一个七边形棋盘如图所示,7个顶点顺序从0到6编号,称为七个格子.一枚棋子放在0格,现在依逆时针移动这枚棋子,第一次移动1格,第二次移动2格,…,第n次移动n格.则不停留棋子的格子的编号有2,4,5.【分析】棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),然后根据题目中所给的第k次依次移动k个顶点的规则,可得到不等式最后求得解.【解答】解:因棋子移动了n次后走过的总格数是1+2+3+…+n=n(n+1),应停在第=n(n+1)﹣7p格,这时p是整数,且使0≤n(n+1)﹣7p≤6,分别取n=1,2,3,4,5,6,7时,n(n+1)﹣7p=1,3,6,3,1,0,0,发现第2,4,5格没有停留棋子,若7<n≤10,设n=7+t(t=1,2,3)代入可得,=n(n+1)﹣7p=7m+12t(t+1),由此可知,停棋的情形与n=t时相同,故第2,4,5格没有停留棋子.故答案为:2,4,5.三.解答题(共7小题)21.如图,平原上有A,B,C,D四个村庄,为解决当地缺水问题,政府准备投资修建一个蓄水池.(1)不考虑其他因素,请你画图确定蓄水池H点的位置,使它到四个村庄距离之和最小;(2)计划把河水引入蓄水池H中,怎样开渠最短并说明根据.【分析】(1)由两点之间线段最短可知,连接AD、BC交于H,则H为蓄水池位置;(2)根据垂线段最短可知,要做一个垂直EF的线段.【解答】解:(1)∵两点之间线段最短,∴连接AD,BC交于H,则H为蓄水池位置,它到四个村庄距离之和最小.(2)过H作HG⊥EF,垂足为G.“过直线外一点与直线上各点的连线中,垂线段最短”是把河水引入蓄水池H中开渠最短的根据.22.作图并写出结论:如图,点P是∠AOB的边OA上一点,请过点P画出OA,OB的垂线,分别交BO的延长线于M、N,线段PN的长表示点P到直线BO的距离;线段PM的长表示点M 到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0.【分析】先根据题意画出图形,再根据点到直线的距离的定义得出即可.【解答】解:如图所示:线段PN的长表示点P到直线BO的距离;线段PM的长表示点M到直线AO的距离;线段ON的长表示点O到直线PN的距离;点P到直线OA的距离为0,故答案为:PN,PM,PN,0.23.如图,∠ACD=2∠B,CE平分∠ACD,求证:CE∥AB.【分析】由CE为角平分线,利用角平分线的定义得到一对角相等,再由已知一对角相等,利用等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∵CE平分∠ACD,∴∠ACD=2∠DCE,∵∠ACD=2∠B,∴∠DCE=∠B,∴AB∥CE.24.(1)如图1,已知AB∥CD,那么图1中∠P AB、∠APC、∠PCD之间有什么数量关系?并说明理由.(2)如图2,已知∠BAC=80°,点D是线段AC上一点,CE∥BD,∠ABD和∠ACE 的平分线交于点F,请利用(1)的结论求图2中∠F的度数.【分析】(1)结论:∠P=∠PCD﹣∠P AB.根据平行线的性质以及三角形的外角的性质即可解决问题;(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,想办法求出x﹣y即可解决问题;【解答】解:(1)结论:∠P=∠PCD﹣∠P AB.理由:如图1中,设AB交PC于H.∵AB∥CD,∴∠PCD=∠AHC,∵∠AHC=∠P AB+∠P,∴∠P=∠AHC﹣∠P AB,∴∠P=∠PCD﹣∠P AB.(2)如图2中,设∠ABF=∠FBD=y,∠ACF=∠FCE=x,由(1)可知:∠F=x﹣y,∵BD∥CE,∴∠BDC=∠DCE=2x,∵∠BDC=∠ABD+∠A,∴2x=2y+80°,∴x﹣y=40°,∴∠F=40°.25.(1)如图,它的周长是20cm.(2)已知:|a|=2,|b|=5,且a>b,求a+b的值.【分析】(1)将图形的右上角分别平移,根据长方形的周长公式计算即可求解;(2)由a>b,利用绝对值的代数意义化简,计算即可确定出a+b的值.【解答】解:(1)(6+4)×2=10×2=20(cm).答:它的周长是20cm.(2)∵|a|=2,|b|=5,且a>b,∴a=2,b=﹣5;a=﹣2,b=﹣5,则a+b=﹣3或﹣7.故答案为:20.26.如图,在直角三角形ABC中,∠ACB=90°,∠A=33°,将三角形ABC沿AB方向向右平移得到三角形DEF.(1)试求出∠E的度数;(2)若AE=9cm,DB=2cm,求出BE的长度.【分析】(1)先利用三角形内角和计算出∠ABC=57°,然后根据平移的性质确定∠E 的值;(2)根据平移的性质得到AB=DE,则AD=BE,然后利用AD+BD+BE=AE得到BE+2+BE =9,再解关于BE的方程即可.【解答】解:(1)∵∠ACB=90°,∠A=33°∴∠ABC=90°﹣33°=57°,∵三角形ABC沿AB方向向右平移得到三角形DEF,∴∠E=∠ABC=57°;(2)∵三角形ABC沿AB方向向右平移得到三角形DEF,∴AB=DE,∴AD=BE,∴AD+BD+BE=AE,即BE+2+BE=9,∴BE=3.5(cm).27.已知,在平面直角坐标系中,三角形ABC三个顶点的坐标分别为A(﹣1,7),B(﹣5,1),C(1,3),请在所给的平面直角坐标系中按要求完成以下问题:(1)画出三角形ABC;(2)将三角形ABC先向下平移7个单位长度,再向右平移2个单位长度后得到的三角形A1B1C1(点A1,B1,C1分别是点A,B,C移动后的对应点),请画出三角形A1B1C1;并判断线段AC与A1C1的关系.【分析】(1)根据点A、B、C三点的坐标在坐标系中描出各点,再顺次连接即可得;(2)将三顶点分别向下平移7个单位长度,再向右平移2个单位长度后得到对应点,顺次连接可得,继而根据平移的性质解答可得.【解答】解:(1)如图所示,△ABC即为所求;(2)如图所示,A1B1C1即为所求,AC与A1C1平行且相等.。
最新人教版七年级数学下册第五章相交线与平行线专项测试试卷(含答案详细解析)
七年级数学下册第五章相交线与平行线专项测试(2021-2022学年考试时间:90分钟,总分100分)班级:__________ 姓名:__________ 总分:__________一、单选题(10小题,每小题3分,共计30分)1、下列命题:①平面内,垂直于同一条直线的两直线平行;②经过直线外一点,有且只有一条直线与这条直线平行;③垂线段最短;④同旁内角互补.其中,正确命题的个数有()A.1个B.2个C.3个D.4个2、如图,O为直线AB上一点,∠COB=36°12',则∠AOC的度数为()A.164°12'B.136°12'C.143°88'D.143°48'3、下列各组图形中,能够通过平移得到的一组是()A. B. C. D.4、如图,直线AB∥CD,直线AB、CD被直线EF所截,交点分别为点M、点N,若∠AME=130°,则∠DNM的度数为()A.30°B.40°C.50°D.60°5、“小小竹排江中游,巍巍青山两岸走”,所描绘的图形变换主要是()A.平移变换B.翻折变换C.旋转变换D.以上都不对6、如图,下列条件中,不能判断1l∥2l的是()A.∠1=∠3B.∠2=∠4C.∠4+∠5=180°D.∠3=∠47、下列各图中,∠1与∠2是对顶角的是()A.B.C.D.8、如所示各图中,∠1与∠2是对顶角的是( )A .B .C .D .9、下列命题中,真命题是( )A .两条直线被第三条直线所截,内错角相等B .相等的角是对顶角C .在同一平面内,垂直于同一条直线的两条直线平行D .同旁内角互补10、在证明命题“若21a >,则1a >”是假命题时,下列选项中所举反例不正确的是( )A .2a =B .2a =-C .3a =-D .4a =-二、填空题(5小题,每小题4分,共计20分)1、如图,过直线AB 上一点O 作射线OC ,∠BOC =29°38′,OD 平分∠AOC ,则∠DOC 的度数为 _____.2、如图,(1)∠1和∠ABC是直线AB、CE被直线________所截得的________角;(2)∠2和∠BAC是直线CE、AB被直线________所截得的________角;(3)∠3和∠ABC是直线________、________被直线________所截得的________角;(4)∠ABC和∠ACD是直线________、________被直线_________所截得的________角;(5)∠ABC和∠BCE是直线________、________被直线________所截得的________角.3、如图,已知1234l l l l,且∠1=48°,则∠2=_____,∠3=_____,∠4=_____.//,//4、如图,线段AB按一定的方向平移到线段CD,点A平移到点C,若AB=6cm,四边形ABDC的周长为28cm,则BD=_____cm.5、如图,A、B、C为直线l上的点,D为直线l外一点,若2∠的度数为=,则CBD∠∠ABD CBD______.三、解答题(5小题,每小题10分,共计50分)1、在如图所示的方格纸中,每个小正方形的顶点称为格点,每个小正方形的边长为1,已知四边形ABCD的四个顶点在格点上,利用格点和直尺按下列要求画图:(1)过点C画AD的平行线CE;(2)过点B 画CD 的垂线,垂足为F .2、如图所示,已知∠AOD =∠BOC ,请在图中找出∠BOC 的补角,邻补角及对顶角.3、如图,直线,AB CD 交于点O ,OE CD ⊥于点O ,且BOD ∠的度数是AOD ∠的4倍.(1)求AOD BOD ∠∠,的度数;(2)求∠BOE 的度数.4、完成下列证明:已知CD AB ⊥,FG AB ⊥,垂足分别为D 、F ,且12∠=∠,求证∥DE BC . 证明:AB CD ⊥,FG AB ⊥(已知),90BDC BFG ∴∠=∠=︒( )CD GF ∴∥( )23∴∠=∠( )又12∠=∠(已知)13∠∠∴=( )DE BC ∴∥( )5、按下面的要求画图,并回答问题:(1)如图①,点M 从点O 出发向正东方向移动4个格,再向正北方向移动3个格.画出线段OM ,此时M 点在点O 的北偏东 °方向上(精确到1°),O 、M 两点的距离是 cm .(2)根据以下语句,在“图②”上边的空白处画出图形.画4cm 长的线段AB ,点P 是直纸AB 外一点,过点P 画直线AB 的垂线PD ,垂足为点D .你测得点P 到AB 的距离是 cm .---------参考答案-----------一、单选题【分析】根据平行线的性质与判定可以判断①②④,根据垂线段最短可以判断③.【详解】解:①平面内,垂直于同一条直线的两直线平行,是真命题;②经过直线外一点,有且只有一条直线与这条直线平行,是真命题;③垂线段最短,是真命题;④两直线平行,同旁内角互补,是假命题,∴真命题有3个,故选C.【点睛】本题主要考查了判断命题真假,熟知相关知识是解题的关键.2、D【分析】根据邻补角及角度的运算可直接进行求解.【详解】解:由图可知:∠AOC+∠BOC=180°,∵∠COB=36°12',∴∠AOC=180°-∠BOC=143°48',故选D.【点睛】本题主要考查邻补角及角度的运算,熟练掌握邻补角及角度的运算是解题的关键.【分析】根据平移的性质对各选项进行判断.【详解】A、左图是通过翻折得到右图,不是平移,故不符合题意;B、上图可通过平移得到下图,故符合题意;C、不能通过平移得到,故不符合题意;D、不能通过平移得到,故不符合题意;故选B.【点睛】本题主要考查平移的性质,熟练掌握平移的性质是解题的关键.4、C【分析】由对顶角得到∠BMN=130°,然后利用平行线的性质,即可得到答案.【详解】解:由题意,∵∠BMN与∠AME是对顶角,∴∠BMN=∠AME=130°,∵AB∥CD,∴∠BMN+∠DNM=180°,∴∠DNM=50°;故选:C.【点睛】本题考查了平行线的性质,对顶角相等,解题的关键是掌握所学的知识,正确得到∠BMN =130°.5、A【分析】根据平移是图形沿某一直线方向移动一定的距离,可得答案.【详解】解:“小小竹排水中游,巍巍青山两岸走”所描绘的图形变换主要是平移变换,故选:A .【点睛】本题考查了平移变换,利用了平移的定义.6、D【分析】根据平行线的判定定理对各选项进行逐一判断即可.【详解】解:A 、13∠=∠,内错角相等,12//l l ∴,故本选项错误,不符合题意;B 、24∠∠=,同位角相等,12//l l ∴,故本选项错误,不符合题意;C 、45180∠+∠=︒,同旁内角互补,12//l l ∴,故本选项错误,不符合题意;D 、34∠∠=,它们不是内错角或同位角,1l 与2l 的关系无法判定,故本选项正确,符合题意.故选:D .【点睛】本题考查的是平行线的判定,解题的关键是熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行的知识.7、B【分析】根据对顶角的定义作出判断即可.【详解】解:根据对顶角的定义可知:只有B 选项的是对顶角,其它都不是.故选:B .【点睛】本题考查对顶角的定义,解题关键是明确两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角.8、B【分析】根据对顶角的定义进行判断:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.【详解】解:A .∠1与∠2没有公共顶点,不是对顶角;B .∠1与∠2有公共顶点,并且两边互为反向延长线,是对顶角;C .∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角;D .∠1与∠2虽然有公共顶点,但两个角的两边不互为反向延长线,不是对顶角.故选:B.【点睛】本题主要考查了对顶角的定义,熟记对顶角的定义是解题的关键.9、C【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.【详解】解:A、错误,当被截的直线平行时形成的同位角才相等;B、错误,对顶角相等但相等的角不一定是对顶角;C、正确,必须强调在同一平面内;D、错误,两直线平行同旁内角才互补.故选:C.【点睛】主要考查命题的真假判断与平行线的性质、对顶角的特点,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10、A【分析】所谓举反例是指满足命题的条件但不满足命题的结论,由此可判断.【详解】显然A选项既满足命题的条件也满足命题的结论,故不是举反例,其它三个选项满足命题的条件,但不满足命题的结论,所以都是举反例;故选:A【点睛】本题考查了命题的真假,说明一个命题是假命题要举反例.掌握举反例的含义是关键.二、填空题1、7511'︒【解析】【分析】先根据邻补角互补求出∠AOC=150°22′,再由角平分线的定义求解即可.【详解】解:∵∠BOC=29°38′,∠AOC+∠BOC=180°,∴∠AOC=150°22′,∵OD平分∠AOC,∴1=75112DOC AOC'=︒∠∠,故答案为:7511'︒.【点睛】本题主要考查了邻补角互补,角度制的计算,角平分线的定义,熟知相关知识是解题的关键.2、BD(BC)同位AC内错AB AC BC同旁内AB AC BC同位AB CE BC同旁内【解析】【分析】根据同位角、内错角、同旁内角的性质判断即可;【详解】(1)∠1和∠ABC是直线AB、CE被直线BD(BC)所截得的同位角;(2)∠2和∠BAC是直线CE、AB被直线AC所截得的内错角;(3)∠3和∠ABC是直线AB、AC被直线BC所截得的同旁内角;(4)∠ABC和∠ACD是直线AB、AC被直线BC所截得的同位角;(5)∠ABC和∠BCE是直线AB、CE被直线BC所截得的同旁内角.故答案是:BD(BC);同位;AC;内错;AB;AC;BC;同旁内;AB;AC;BC;同位;AB;CE;BC;同旁内.【点睛】本题主要考查了同位角、内错角、同旁内角的判断,准确分析判断是解题的关键.3、48° 132° 48°【解析】【分析】根据两直线平行内错角相等可求出∠2,根据两直线平行,同位角相等可求出∠4,同旁内角互补可求出∠3.【详解】解:∵1l //2l,∠1=48°,∴∠2=∠1=48°,∵3l //4l,∠1=48°,∴∠4=∠1=48°,∵1l //2l,∴∠3+∠4=180°∴∠3=180°-∠4=180°-48°=132°故答案为:48°;132°;48°【点睛】此题考查了平行线的性质,熟练掌握平行线的性质是解本题的关键.4、8【解析】【分析】图形平移后,AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,可得AB+BD=14,最后得出结果.【详解】解:∵图形平移后,对应点连成的线段平行且相等,∴AB平移到线段CD,点A平移到点C,则A和C是对应点,B和D是对应点,∴AC=BD,AB=CD∵AC+BD+AB+CD=2AB+2BD=28,∴AB+BD=14,∵AB=6cm,∴BD=14-6=8cm,故答案为:8.【点睛】根据平移的性质,图形平移后,对应点连成的线段平行且相等,求出结果.5、60°或60度【解析】【分析】由邻补角的定义,结合2ABD CBD ∠∠=,可得答案.【详解】解:2,180,ABD CBD ABD CBD ∠∠∠+∠=︒=118060.3CBD ∴∠=⨯︒=︒ 故答案为:60︒【点睛】本题考查的是邻补角的定义,掌握“互为邻补角的两个角的和为180︒”是解本题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据要求作出图形即可.(2)根据要求作出图形即可.【详解】解:(1)根据题意得:AD 是长为4,宽为3的长方形的对角线,所以在点C 右上方长为4,宽为3的长方形的对角线所在的直线与AD 平行,如图,直线CE 即为所求作.(2)根据题意得:CD 是长为6,宽为3的长方形的对角线,所以在点B 右下方长为6,宽为3的长方形的对角线所在的直线与CD 垂直,如图,直线BF 即为所求作.【点睛】本题主要考查了画平行线和垂线,熟练掌握平行线和垂线的画法是解题的关键.2、∠BOC的补角有两个∠BOD和∠AOC;∠BOC的邻补角为∠AOC;∠BOC没有对顶角.【分析】由题意直接根据补角,邻补角及对顶角的定义进行分析即可找出.【详解】解:因为∠BOC+∠AOC=180º(平角定义),所以∠AOC是∠BOC的补角,∠AOD=∠BOC(已知),所以∠BOC+∠BOD=180º.所以∠BOD是∠BOC的补角.所以∠BOC的补角有两个:∠BOD和∠AOC.因为∠AOC和∠BOC相邻,所以∠BOC的邻补角为:∠AOC.∠BOC没有对顶角.【点睛】本题考查补角,邻补角及对顶角的定义,熟练掌握补角,邻补角及对顶角的定义是解题的关键.3、(1)∠AOD=36°,∠BOD=144°;(2)∠BOE=54°【分析】(1)先由BOD∠的度数是AOD∠的4倍,得到∠BOD=4∠AOD,再由邻补角互补得到∠AOD+∠BOD=180°,由此求解即可;(2)根据垂线的定义可得∠DOE=90°,则∠BOE=∠BOD-∠DOE=54°.【详解】解:(1)∵BOD∠的度数是AOD∠的4倍,∴∠BOD=4∠AOD,又∵∠AOD+∠BOD=180°,∴5∠AOD=180°,∴∠AOD=36°,∴∠BOD=144°;(2)∵OE⊥CD,∴∠DOE=90°,∴∠BOE=∠BOD-∠DOE=54°.【点睛】本题主要考查了垂线的定义,邻补角互补,熟练掌握邻补角互补是解题的关键.4、见详解【分析】根据垂直的定义及平行线的性质与判定可直接进行求解.【详解】证明:AB CD⊥(已知),⊥,FG AB∴∠=∠=︒(垂直的定义)90BDC BFGCD GF ∴∥(同位角相等,两直线平行)23∴∠=∠(两直线平行,同位角相等)又12∠=∠(已知)13∠∠∴=(等量代换)DE BC ∴∥(内错角相等,两直线平行).【点睛】本题主要考查垂直的定义及平行线的性质与判定,熟练掌握垂直的定义及平行线的性质与判定是解题的关键.5、(1)图见解析,53,5;(2)图见解析,3.【分析】(1)先根据点的移动得到点M ,再连接点,O M 可得线段OM ,然后测量角的度数和线段OM 的长度即可得;(2)先画出线段AB ,再根据垂线的尺规作图画出垂线PD ,然后测量PD 的长即可得.【详解】解:(1)如图,线段OM 即为所求.此时M 点在点O 的北偏东53︒方向上,O 、M 两点的距离是5cm ,故答案为:53,5;(2)如图,线段AB和垂线PD即为所求.测得点P到AB的距离是3cm,故答案为:3.【点睛】本题考查了测量角的大小、线段的长度、作线段和垂线,熟练掌握尺规作图的方法是解题关键.。
人教版初中数学七年级数学下册第一单元《相交线与平行线》测试题(有答案解析)(2)
一、选择题1.下列语句不是命题的是( ).A .两直线平行,同位角相等B .作直线AB 垂直于直线CDC .若a b =,则22a b =D .等角的补角相等2.下列命题中是真命题的有( )①两个角的和等于平角时,这两个角互为邻补角;②过一点有且只有一条直线与已知直线平行;③两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行;④图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等;A .1个B .2个C .3个D .4个3.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个4.如图,若180A ABC ∠+∠=︒,则下列结论正确的是( )A .12∠=∠B .24∠∠=C .13∠=∠D .23∠∠= 5.下列语句是命题的是 ( )(1)两点之间,线段最短;(2)如果两个角的和是180度,那么这两个角互补;(3)请画出两条互相平行的直线;(4)一个锐角与一个钝角互补吗?A .(1)(2)B .(3)(4)C .(2)(3)D .(1)(4) 6.如图,将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF 若5BC cm =,则EC 的长为( )A .2cmB .4cmC .6cmD .8cm7.下列所示的四个图形中,∠1和∠2是同位角的是( )A .②③B .①②③C .①②④D .①④ 8.命题“垂直于同一条直线的两条直线互相平行”的条件是( ) A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线9.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 10.如图,直线l 与直线AB 、CD 分别相交于点E 、点F ,EG 平分BEF ∠交直线CD 与点G ,若168BEF ∠=∠=︒,则EGF ∠的度数为( ).A .34°B .36°C .38°D .68°11.下列说法中不正确的个数为( ).①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A .2个B .3个C .4个D .5个 12.下列说法中,正确的是 A .相等的角是对顶角 B .有公共点并且相等的角是对顶角 C .如果1∠和2∠是对顶角,那么12∠=∠ D .两条直线相交所成的角是对顶角二、填空题13.如图,两直线交于点O ,134∠=︒,则2∠的度数为_____________;3∠的度数为_________.14.已知A ∠与B (A ∠,B 都是大于0°且小于180°的角)的两边一边平行,另一边垂直,且227A B ∠-∠=︒,则A ∠的度数为_________.15.把命题“两直线平行,同位角相等”改写成“若…,则…”__.16.如图,已知12∠=∠,求证:A BCH ∠=∠.证明:∵12∠=∠(已知)23∠∠=(______)∴13∠=∠(等量代换)∴//CH (______)(同位角相等,两直线平行)∴A BCH ∠=∠(______)17.如图,将直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,DE 交BC 于点G ,BG =4,EF =12,△BEG 的面积为4,下列结论:①DE ⊥BC ;②△ABC 平移的距离是4;③AD =CF ;④四边形GCFE 的面积为20,其中正确的结论有________(只填写序号).18.如图,不添加辅助线,请写出一个能判定DE ∥BC 的条件___________.19.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;20.假设一家旅馆一共有30个房间,分别编以1~30三十个号码,现在要在每个房间的钥匙上刻上数字,要求所刻的数字必须使服务员很容易辨认是哪一个房间的钥匙,而使局外人不容易猜到.现在有一种编码的方法是:在每把钥匙上刻上两个数字,左边的一个数字是这把钥匙原来的房间号码除以5所得的余数,而右边的一个数字是这把钥匙原来的房间号码除以7所得的余数.那么刻的数是25的钥匙所对应的原来房间应该是__________号.三、解答题21.如图,直线AB 、CD 相交于点O ,OE 平分∠BOD ,OF ⊥CD ,垂足为O ,若∠BOF=38°.(1)求∠AOC 的度数;(2)过点O 作射线OG ,使∠GOE=∠BOF ,求∠FOG 的度数.22.已知:直线GH 分别与直线AB ,CD 交于点E ,F .EM 平分BEF ∠,FN 平分CFE ∠,并且//EM FN .(1)如图1,求证://AB CD ;(2)如图2,2AEF CFN ∠=∠,在不添加任何辅助线的情况下,请直接写出图2中四个角,使写出的每个角的度数都为135︒.23.仿照课本中“2是无理数”324.如图,AB 与CD 相交于O ,OE 平分AOC ∠,OF AB ⊥于O ,OG OE ⊥于O ,若BOD ∠=40,求AOE ∠和FOG ∠的度数.25.已知,//BC OA ,108B A ∠=∠=°,试解答下列问题:(1)如图①,则O ∠=__________,则OB 与AC 的位置关系为__________ (2)如图②,若点E 、F 在线段BC 上,且始终保持FOC AOC ∠=∠,BOE FOE ∠=∠.则EOC ∠的度数等于__________;(3)在第(2)题的条件下,若平行移动AC 到图③所示①在AC 移动的过程中,OCB ∠与OFB ∠的数量关系是否发生改变,若不改变,求出它们之间的数量关系;若改变,请说明理由.②当OCA OEB ∠=∠时,求OCA ∠的度数.26.如图:AD 是BAC ∠的角平分线,点E 是射线AC 上一点,延长ED 至点F ,180CAD ADF ︒∠+∠=.求证:(1)//AB EF ;(2)2ADE CEF ∠=∠【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据“判断一件事情的语句叫做命题”进行判断即可得到答案.【详解】解:A 、两直线平行,同位角相等,是命题,不符合题意;B 、作直线AB 垂直于直线CD 是描述了一种作图的过程,故不是命题,符合题意;C 、正确,是判断语句,不符合题意;D 、正确,是判断语句,不符合题意.故选:B .【点睛】主要考查了命题的概念.判断一件事情的语句叫做命题.2.B解析:B【分析】根据补角和邻补角的定义可判断①,根据平行公理可判断②,根据平行线的性质和判定可判断③,根据平移的性质可判断④,进而可得答案.【详解】解:两个角的和等于平角时,这两个角互为补角,故命题①是假命题;过直线外一点有且只有一条直线与已知直线平行,故命题②是假命题;两条平行线被第三条直线所截,所得的一对内错角的角平分线互相平行,故命题③是真命题;图形B 由图形A 平移得到,则图形B 与图形A 中的对应点所连线段平行(或在同一条直线上)且相等,故命题④是真命题.综上,真命题有2个.故选:B .【点睛】本题考查了真假命题、平行线的判定和性质以及平移的性质等知识,属于基础题型,熟练掌握上述知识是解题的关键.3.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.4.C解析:C由∠A+∠ABC=180°可得到AD ∥BC ,再根据平行线的性质判断即可得答案.【详解】∵180A ABC ∠+∠=︒,∴//AD BC (同旁内角互补,两直线平行),∴13∠=∠(两直线平行,内错角相等).故选:C .【点睛】本题考查的是平行线的判定与性质,同旁内角互补,两直线平行;两直线平行内错角相等;熟知平行线的判定定理是解答此题的关键.5.A解析:A【分析】根据命题的定义对四句话进行判断.【详解】解:(1)两点之间,线段最短,它是命题;(2)如果两个角的和是90度,那么这两个角互余,它是命题;(3)请画出两条互相平行的直线,它不是命题;(4)一个锐角与一个钝角互补吗?,它不是命题.所以,是命题的为(1)(2),故选:A .【点睛】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成如果…那么…形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.A解析:A【分析】由平移性质可得:BC=EF ,CF=3,cm 可得EC=EF-CF .【详解】因为将三角形ABC 沿BC 方向平移3,cm 得到三角形,DEF所以EF=5BC cm =,CF=3,cm所以EC=5-3=2(cm)故选:A【点睛】考核知识点:平移性质.抓住平移性质:对应边相等,是解题关键.7.C解析:C根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.8.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.9.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB∥CD,不符合题意;②∵∠3=∠4,∴BC∥AD,符合题意;③∵AB∥CD,∴∠B+∠BCD=180°,∵∠ADC=∠B,∴∠ADC+∠BCD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;④∵AB∥CE,∴∠B+∠BCD=180°,∵∠BCD=∠BAD,∴∠B+∠BAD=180°,由同旁内角互补,两直线平行可得BC∥AD,故符合题意;故能推出BC∥AD的条件为②③④.【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.10.A解析:A【分析】由角平分线的性质可得∠GEB=12∠BEF=34°,由同位角相等,两直线平行可得CD∥AB,即可求解.【详解】∵EG平分∠BEF,∴∠GEB=12∠BEF=34°,∵∠1=∠BEF=68°,∴CD∥AB,∴∠EGF=∠GEB=34°,故选:A.【点睛】本题考查了平行线的判定和性质,角平分线的定义,灵活运用这些性质进行推理是本题的关键.11.C解析:C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.12.C解析:C本题考查对顶角的定义,两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做对顶角.由此逐一判断.【详解】A 、对顶角是有公共顶点,且两边互为反向延长线,相等只是其性质,错误;B 、对顶角应该是有公共顶点,且两边互为反向延长线,错误;C 、角的两边互为反向延长线的两个角是对顶角,符合对顶角的定义,正确.D 、两条直线相交所成的角有对顶角、邻补角,错误;故选C .【点睛】要根据对顶角的定义来判断,这是需要熟记的内容.二、填空题13.【分析】根据平角的性质及对顶角的性质求解即可【详解】解:∵∴=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=故答案为:146°;【点睛】本题主要考查了角的运算解题的解析:146︒ 34︒【分析】根据平角的性质及对顶角的性质求解即可.【详解】解:∵134∠=︒∴2∠=180°-∠1=180°-34°=146°;∵∠1与∠3互为对顶角∴∠3=∠1=34︒故答案为:146°;34︒.【点睛】本题主要考查了角的运算,解题的关键是熟练运用平角的性质及对顶角的性质. 14.或【分析】分两种情况:①如图1作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B=∠BEF ∠A=∠AEF 根据∠A+∠B=求出∠A=;②如图2作EF ∥BD 由BD ∥AC 推出EF ∥AC 得到∠B+∠BEF=∠A解析:39︒或99︒.【分析】分两种情况:①如图1,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B=∠BEF ,∠A=∠AEF ,根据∠A+∠B=90︒,227A B ∠-∠=︒,求出∠A=39︒;②如图2,作EF ∥BD ,由BD ∥AC 推出EF ∥AC ,得到∠B+∠BEF=180︒,∠A+∠AEF=180︒,根据∵∠AEB=∠AEF+∠BEF=90︒,227A B ∠-∠=︒,计算得出答案.【详解】分两种情况:①如图1,作EF ∥BD ,∴∠B=∠BEF ,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A=∠AEF ,∴∠A+∠B=∠AEF+∠BEF=90︒,∵227A B ∠-∠=︒,∴∠A=39︒;②如图2,作EF ∥BD ,∴∠B+∠BEF=180︒,∵EF ∥BD ,BD ∥AC ,∴EF ∥AC ,∴∠A+∠AEF=180︒,∴∠A+∠AEB+∠B=360︒,∵∠AEB=∠AEF+∠BEF=90︒,∴∠A+∠B=270︒,∵227A B ∠-∠=︒,∴∠A=99︒;故答案为:39︒或99︒..【点睛】此题考查平行线的性质,平行公理的推论,根据题意作出图形,引出恰当的辅助线解决问题是解题的关键.15.若两直线平行则同位角相等【分析】命题写成如果…那么…的形式如果后面接的部分是题设那么后面解的部分是结论【详解】解:命题两直线平行同位角相等可以改写成若两直线平行则同位角相等故答案为:若两直线平行则同 解析:若两直线平行,则同位角相等【分析】命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论.【详解】解:命题“两直线平行,同位角相等”可以改写成“若两直线平行,则同位角相等”,故答案为:“若两直线平行,则同位角相等”.【点睛】本题考查了命题的概念,掌握 命题写成“如果…,那么…”的形式,“如果”后面接的部分是题设,“那么”后面解的部分是结论是解题的关键.16.对顶角相等AG 两直线平行同位角相等【分析】根据对顶角的定义可得再根据平行线的判定可得CH//AG 最后由两直线平行同位角相等即可证明【详解】解:证明:∵(已知)(对顶角相等)∴(等量代换)∴(AG )(解析:对顶角相等,AG ,两直线平行,同位角相等.【分析】根据对顶角的定义可得23∠∠=,再根据平行线的判定可得CH//AG,最后由两直线平行、同位角相等即可证明.【详解】解:证明:∵12∠=∠(已知)23∠∠=(对顶角相等)∴13∠=∠(等量代换)∴//CH (AG )(同位角相等,两直线平行)∴A BCH ∠=∠(两直线平行,同位角相等).故答案为:对顶角相等,AG ,两直线平行,同位角相等.【点睛】本题考查了对顶角的定义、平行线的性质和判定定理等知识,灵活应用平行线的性质和判定定理是解答本题的关键.17.①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即解析:①③④【分析】根据平移的性质分别对各个小题进行判断:①利用平移前后对应线段是平行的即可得出结果;②平移距离指的是对应点之间的线段的长度;③根据平移前后对应线段相等即可得出结果;④利用梯形的面积公式即可得出结果.【详解】解:∵直角三角形ABC 沿斜边AC 的方向平移到三角形DEF 的位置,∴AB ∥DE ,∴∠ABC=∠DGC=90°,∴DE ⊥BC ,故①正确;△ABC 平移距离应该是BE 的长度,BE>4,故②错误;由平移前后的图形是全等可知:AC=DF,∴AC-DC=DF-DC,∴AD=CF,故③正确;∵△BEG 的面积是4,BG=4,∴EG=4×2÷4=2,∵由平移知:BC=EF=12,∴CG=12-4=8,四边形GCFE 的面积:(12+8)×2÷2=20,故④正确;故答案为:①③④【点睛】本题主要考查的是平移的性质,正确的掌握平移的性质是解题的关键.18.【分析】根据平行线的判定进行分析可以从同位角相等或同旁内角互补的方面写出结论【详解】∵DE 和BC 被AB 所截∴当时AD ∥BC (内错角相等两直线平行)故答案为【点睛】此题考查平行线的性质难度不大解析:DAB B ∠=∠【分析】根据平行线的判定进行分析,可以从同位角相等或同旁内角互补的方面写出结论.【详解】∵DE 和BC 被AB 所截,∴当DAB B ∠=∠时,AD ∥BC (内错角相等,两直线平行).故答案为DAB B ∠=∠【点睛】此题考查平行线的性质,难度不大19.62【详解】∵∴∠BOC=90°-28°=62°∵∠BOC=∠AOD ∴∠AOD=62°解析:62【详解】∵OE AB ⊥,28EOC ∠=,∴∠BOC=90°-28°=62°∵∠BOC=∠AOD∴∠AOD=62°.20.12【分析】根据编码的方法分析在1~30中除以5余2的数有712172227而其中除以7余5的数只有12故可求得答案【详解】解:∵1~30中除以5余2的数有712172227而其中除以7余5的数只有解析:12【分析】根据编码的方法分析,在1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,故可求得答案.【详解】解:∵1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12,∴刻的数是25的钥匙所对应的原来房间应该是12,故答案为:12.【点睛】此题考查了带余数除法的知识.此题难度适中,解题的关键是理解题意,抓住1~30中,除以5余2的数有7,12,17,22,27,而其中除以7余5的数只有12.三、解答题21.(1)52°;(2)图见解析,26°或102°【分析】(1)依据OF⊥CD,∠BOF=38°,可得∠BOD=90°−38°=52°,依据对顶角相等得到∠AOC =52°;(2)分两种情况求解即可.【详解】(1)∵OF⊥CD,∠BOF=38°,∴∠BOD=90°−38°=52°,∴∠AOC=52°;(2)由(1)知:∠BOD=52°,∵OE平分∠BOD,∴∠BOE=26°,此时∠GOE=∠BOF=38°,分两种情况:如图:此时∠FOG=∠BOF+∠BOE-∠GOE=38°+26°-38°=26°;如图:此时∠FOG=∠BOF+∠BOE+∠GOE=38°+26°+38°=102°;综上:∠FOG 的度数为26°或102°.【点睛】本题考查了对顶角,角平分线定义,角的有关定义的应用,主要考查学生的计算能力,并注意数形结合.22.(1)见解析;(2)AEM ∠,GEM ∠,DFN ∠,HFN ∠【分析】(1)根据平行线的性质和判定可以解答;(2)由已知及(1)的结论可知∠CFN=45°,然后结合图形根据角度的加减运算可以得到解答.【详解】(1)证明:∵//EM FN ,∴EFN FEM ∠=∠.∵EM 平分BEF ∠,FN 平分CFE ∠,∴2CFE EFN ∠=∠,2BEF FEM ∠=∠. ∴CFE BEF ∠=∠.∴//AB CD .(2)由(1)知AB //CD ,∴∠AEF+∠CFE=180°,∵∠AEF=2∠CFN=∠CFE ,∴∠AEF=∠CFE=90°,∴∠CFN=∠EFN=∠FEM=∠BEM=45°,∠BEG=∠CFH=∠DFE=90°,∴∠AEM=∠GEM=∠HFN=∠DFN=90°+45°=135°,∴度数为135°的角有:AEM ∠、 GEM ∠、 DFN ∠、 HFN ∠.【点睛】本题考查平行线的判定和性质及角平分线的综合运用,熟练掌握平行线的判定和性质定理及角平分线的意义是解题关键.23.见解析.【分析】利用反证法的一般步骤是:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾判定假设不正确,从而肯定原命题的结论正确,进而判断即可.【详解】 3q p(p 与q 是互质的两个正整数).于是(q p)2)2=3, 所以,q 2=3p 2.于是q 2是3的倍数,所以q 也是3的倍数,从而可设q =3m ,所以(3m )2=3p 2,p 2=3m 2,于是可得p 也是3的倍数.这与“p 与q 是互质的两个正整数”矛盾.从而可知”的假设不成立,【点睛】此题主要考查了反证法,正确把握反证法的一般步骤是解题关键.24.∠AOE=20º,∠FOG=20º【分析】根据垂直的定义以及对顶角定义直接得出FOG ∠和AOE ∠的度数即可.【详解】如图:∵BOD ∠=40,∴AOC ∠=BOD ∠=40,又OE 平分AOC ∠, ∴12AOE AOC ∠=∠=20,即AOE ∠=20, ∵OF AB ⊥于O ,OG OE ⊥, ∴AOF ∠=EOG ∠=90,∴FOG ∠=AOE ∠=20(等角的余角相等).【点评】此题主要考查了垂线的定义以及角平分线的定义、对顶角等知识,得出∠AOE 的度数是解题关键.25.(1)72°,平行;(2)36°;(3)①∠OCB=12∠OFB ;②∠OCA=54°. 【分析】(1)根据平行线的性质得出∠B+∠O=180°,求出∠O=72°,求出∠O+∠A=180°,根据平行线的判定得出即可; (2)根据角平分线定义求出1362EOC BOA ︒∠=∠=,即可得出答案; (3)①不变,求出∠OFB=2∠OCB ,即可得出答案; ②设∠BOE=∠EOF=α,∠FOC=∠COA=β,求出∠OCA=∠BOC=2α+β,α=β=18°,即可得出答案.【详解】解:(1)∵BC ∥OA ,∴∠B+∠O=180°,∵∠B=108°,∴∠O=72°,∵∠A=108°,∴∠O+∠A=180°,∴OB ∥AC ,故答案为:72°,平行;(2)∵∠FOC=∠AOC , BOE FOE ∠=∠,∠BOA=72°, ∴11136222EOC EOF FOC BOF FOA BOA ︒∠=∠+∠=∠+∠=∠=, 故答案为:36°;(3)①不变,∵BC ∥OA ,∴∠OCB=∠AOC ,又∵∠FOC=∠AOC ,∴∠FOC=∠OCB ,又∵BC ∥OA ,∴∠OFB=∠FOA=2∠FOC ,∴∠OFB=2∠OCB ,即∠OCB :∠OFB=1:2.即∠OCB=12∠OFB ; ②由(1)知:OB ∥AC ,∴∠OCA=∠BOC ,由(2)可以设:∠BOE=∠EOF=α,∠FOC=∠COA=β,∴∠OCA=∠BOC=2α+β由(1)知:BC ∥OA ,∴∠OEB=∠EOA=α+β+β=α+2β∵∠OEB=∠OCA∴2α+β=α+2β∴α=β∵∠AOB=72°,∴α=β=18°∴∠OCA=2α+β=36°+18°=54°.【点睛】本题考查了平行线的性质,与角平分线有关的证明.能灵活运用平行线的性质和判定进行推理是解此题的关键.26.(1)证明见解析;(2)证明见解析.【分析】(1)根据角平分线和同旁内角互补两直线平行即可证得;(2)由(1)得2CEF EAB DAB ∠=∠=∠,又因为DAB ADE ∠=∠,即可证得.【详解】(1)AD 是BAC ∠的角平分线. CAD DAB ∴∠=∠ 又180CAD ADF ︒∠+∠= 180DAB ADF ︒∠+∠= //AB EF ∴(2)//AB EF2CEF EAB DAB ∴∠=∠=∠ 又DAB ADE ∠=∠ 2ADE CEF ∴∠=∠【点睛】本题考查角平分线和平行线的证明与性质,掌握平行线证明方法是解题的关键.。
人教版七年级数学下册第五章相交线与平行线尖子生培优测试试卷
人教版七年级数学下册第五章相交线与平行线尖子生培优测试试卷一、单选题(共10题;共30分)1.下列句子中,不属于命题的是( )A. 正数大于一切负数吗?B. 两点之间线段最短C. 两点确定一条直线D. 会飞的动物只有鸟2.如图:已知∠1=40°,要使直线a∥b,则∠2=()A. 50°B. 40°C. 140°D. 150°3.如图,若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 90°4.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A. 30°B. 60°C. 80°D. 120°5.如图,直线l1∥l2,AB与直线l1垂直,垂足为点B,若∠ABC=37°,则∠EFC的度数为()A. 127°B. 133°C. 137°D. 143°6.如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A. 35°B. 30°C. 25°D. 20°7.如图,∥,直线分别交、于点,,平分,已知,则=()A. B. C. D.8.下列图形可以由一个图形经过平移变换得到的是()A. B. C. D.9.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( ).A. △ABC与△DEF能够重合B. ∠DEF=90°C. AC=DFD. EC=CF10.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A. 16°B. 33°C. 49°D. 66°二、填空题(共6题;共24分)11.如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有________对;若∠BAC=50°,则∠EDF=________12.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.13.如图交AB于点于点A,若,则________度14.如图,立方体棱长为2cm,将线段AC平移到A1C1的位置上,平移的距离是________cm.15.如图,直线a与直线b、c分别相交于点A、B,将直线b绕点A转动,当∠1=∠________时,c∥b16.如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.三、解答题(共7题;共46分)17.如图所示,点E在直线DF上,点B在直线AC上,直线AF分别交BD,CE于点G,H.若∠AGB=∠EHF,∠C=∠D,请到断∠A与∠F的数量关系,并说明理由.18.如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?19.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD 的位置关系,并说明理由.20.已知:如图,BE//CD,∠A=∠1. 求证:∠C=∠E .21.如图,已知AB∥CD,BC∥ED,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.22.如图,EF∥CD,∠1=∠2,∠ACB=45°,求∠DGC的度数.23.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D 在GH上,求∠BDC的度数.答案一、单选题1. A2.B3.B4. A5. A6. B7. C8.B9.D 10.D二、填空题11.6;50°12.46 13.42 14.2;15.3 16.64°三、解答题17.解:∠A=∠F理由;∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF∴∠DGF=∠DGF,∴BD∥CE,∠C=∠ABD,∵∠D=∠C∴∠ABD=∠D∴AC∥DF,∴∠A=∠F18.解:CE∥DF,理由如下:∵AE⊥AD,BF⊥AD,∴∠A=∠FBD,∴AE∥BF,∴∠E=∠EGF,又∵∠E=∠F,∴∠EGF=∠F,∴CE∥DF19.解:延长MF交CD于点H∠1=90∠FH,2140∴∠CHF=1405-902=50°,∠CHF=∠2,AB∥CD20.证明:∵∠A=∠1,∴DE//AC .∴∠E=∠EBA .∵BE//CD ,∴∠EBA=∠C .∴∠C=∠E .21.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C,∵BC∥ED,∴∠C+∠D=180°,∴∠B+∠D=180°.22.解:∵EF∥CD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥BC,∴∠DGC=180°﹣∠ACB=135°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.人教版版七年级下册第五章《相交线与平行线》单元提优测试卷一、单选题1. 如图,直线AB,CD相交于点O,下列描述:①∠1和∠2互为对顶角②∠1和∠3互为对顶角③∠1=∠2④∠1=∠3其中,正确的是()A.①③B.①④C.②③D.②④2. 如图,直线AB,CD相交于点O,∠EOD=90°,若∠AOE=2∠AOC,则∠DOB的度数为()A.25°B.30°C.45°D.60°3. 如图,直线AD,BE被直线BF和AC所截,则∠1的同位角和∠5的内错角分别是()A.∠4,∠2B.∠2,∠6C.∠5,∠4D.∠2,∠44. 如图,下列推理中正确的是()A.若∠1=∠2,则AD∥BCB.若∠1=∠2,则AB∥DCC.若∠A=∠3,则AD∥BCD.若∠3=∠4,则AB∥DC5. 如图,已知 = ,那么()A.AB//CD,理由是内错角相等,两直线平行.B.AD//BC,理由是内错角相等,两直线平行.C.AB//CD,理由是两直线平行,内错角相等.D.AD//BC,理由是两直线平行,内错角相等.6. 如图,直线a//b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50° C .60° D.70°7. 已知a∥b,某学生将一直角三角板放置如图所示,如果∠1=35°,那么∠2的度数为()A.35°B.55°C.56°D.65°8. 在如图的图案中可以看出由图案自身的部分经过平移而得到的()A. B. C. D.9. 下列命题中,属于真命题的是()A.互补的角是邻补角B.在同一平面内,如果a⊥b,b⊥c,则a⊥c。
最新人教版初中数学七年级数学下册第一单元《相交线与平行线》测试(有答案解析)
一、选择题1.在下列命题中,为真命题的是( )A .相等的角是对顶角B .平行于同一条直线的两条直线互相平行C .同旁内角互补D .垂直于同一条直线的两条直线互相平行 2.用反证法证明“若⊙O 的半径为r ,点P 到圆心O 的距离d<r ,则点P 在⊙O 的内部”,第一步应假设( )A .d r ≥B .点P 在⊙O 的内部C .点P 在⊙O 上D .点P 在⊙O 上或⊙O 外部 3.下列命题:①相等的角是对顶角;②同角的余角相等;③垂直于同一条直线的两直线互相平行;④在同一平面内,如果两条直线不平行,它们一定相交;⑤同位角相等;⑥如果直线a ∥b ,b ⊥c ,那么a ⊥c ,其中真命题的个数是( )A .4个B .3个C .2个D .以上都不对 4.如图,两个直角三角形重叠在一起,将ABC 沿AB 方向平移2cm 得到DEF ,2cm CH =,4cm EF =,下列结论:①//BH EF ;②AD BE =;③BD CH =:④C BHD ∠=∠;⑤阴影部分的面积为26cm .其中正确的是( )A .①②③④B .②③④⑤C .①②③⑤D .①②④⑤ 5.能说明命题“若a b >,则22a b >”是假命题的一个反例..可以是( ) A .0a =,1b =- B .2a =,1b = C .2a =-,1b =- D .0a =,2b = 6.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个7.如图,将ABC 沿BC 的方向平移1cm 得到DEF ,若ABC 的周长为6cm ,则四边形ABFD 的周长为( )A .6cmB .8cmC .10cmD .12cm8.下列各命题中,属于假命题的是( )A .若0a b ->,则a b >B .若0a b -=,则0ab ≥C .若0a b -<,则a b <D .若0a b -≠,则0ab ≠ 9.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C .同一条直线D .两条直线垂直于同一条直线 10.如图,给出下列条件:①∠1=∠2:②∠3=∠4:③AB ∥CE ,且∠ADC =∠B :④AB ∥CE ,且∠BCD =∠BAD .其中能推出BC ∥AD 的条件为( )A .①②B .②④C .②③D .②③④ 11.已知//AB CD ,∠EAF=13∠EAB ,∠ECF=13∠ECD ,若∠E=66°,则∠F 为( )A .23°B .33°C .44°D .46° 12.下列命题中,属于假命题的是( )A .如果三角形三个内角的度数比是1:2:3,那么这个三角形是直角三角形B .内错角不一定相等C .平行于同一直线的两条直线平行D .若数a 使得a a >-,则a 一定小于0二、填空题13.如图,直线AB ,CD 相交于点O ,AO 平分COE ∠,且50EOD ∠=︒,则DOB ∠的度数是________.14.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a //b ,若1∠=α,则2∠的度数=______度.(用含有α代数式表示)15.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.16.在同一平面内,直线AB 与直线CD 相交于点O ,40AOC ∠=︒,射线OE CD ⊥,则∠BOE 的度数为________︒.17.如图,//AB CD ,点M 为CD 上一点,MF 平分∠CME .若∠1=57°,则∠EMD 的大小为_____度.18.把命题“等角的余角相等”改写成“如果…,那么…”的形式为______.19.如图,ABC ∆沿着由点B 到点E 的方向,平移到DEF ∆.若10BC =,6EC =,则平移的距离为__________.20.如图,已知AB ∥DE ,∠ABC =76°,∠CDE =150°,则∠BCD 的度数为__°.三、解答题21.己知:线段a 如图所示.求作:正方形ABCD ,使得AB a .22.如图//AB CD ,62B ∠=︒,EG 平分BED ∠,EG EF ⊥,求CEF ∠的度数.23.如图,DE 平分∠ADF ,DF ∥BC ,点E ,F 在线段AC 上,点A ,D ,B 在一直线上,连接BF .(1)若∠ADF =70°,∠ABF =25°,求∠CBF 的度数;(2)若BF 平分∠ABC 时,求证:BF ∥DE .24.求证:顶角是锐角的等腰三角形腰上的高与底边夹角等于其顶角的一半(1)在图中按照下面“已知”的要求,画出符合题意的图形,并根据题设和结论,结合图形,用符号语言补充写出“己知”和“求证”.已知:在锐角ABC 中,AB AC =,______求证:______(2)证明上述命题25.如图,在所给网格图(每个小格均为边长是1的正方形)中完成下列各题: (1)△ABC 经过平移后得到△A 1B 1C 1,请描述这个平移过程;(2)过点C 画AB 的平行线CD ;(3)求出△ABC 的面积.26.如图1所示的是北斗七星的位置图,图2将北斗七星分别标为A ,B ,C ,D ,E ,F ,G ,并顺次首尾连接,若AF 恰好经过点G ,且//AF DE ,105D E ∠=∠=︒.(1)求F ∠的度数.(2)连接AD ,当ADE ∠与CGF ∠满足怎样的数量关系时,//BC AD ,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据对顶角、平行公理的推论、平行线的判定、同旁内角逐项判断即可得.【详解】A 、相等的角不一定是对顶角,此项是假命题;B 、平行于同一条直线的两条直线互相平行,此项是真命题;C、两直线平行,同旁内角互补,此项是假命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,此项是假命题;故选:B.【点睛】本题考查了命题与定理、平行线的判定与性质等知识点,熟练掌握平行线的判定与性质是解题关键.2.D解析:D【分析】用反证法证明,即是假设命题的结论不成立,以命题的否定方面作为条件进行推理,得出和已知条件、公理、定义和定理等相矛盾或自相矛盾的结论,从而肯定命题的结论成立.【详解】解:命题“若⊙O的半径为r,点P到圆心的距离d大于r则点P在⊙O的外部”的结论为:点P在⊙O的外部.若用反证法证明该命题,则首先应假设命题的结论不成立,即点P在⊙O上或点P在⊙O 内.故选:D.【点睛】本题考查了反证法,否定命题判断的相反判断,从而肯定原来判断的正确性,这种证明法称为反证法.3.B解析:B【分析】利用对顶角的定义、余角的定义、两直线的位置关系等知识分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故错误,是假命题;②同角的余角相等,正确,为真命题;③在同一平面内,垂直于同一条直线的两直线互相平行,故错误,是假命题;④在同一平面内,如果两条直线不平行,它们一定相交,正确,为真命题;⑤两直线平行,同位角相等,故错误,是假命题;⑥如果直线a∥b,b⊥c,那么a⊥c,正确,为真命题,故选:B.【点睛】本题考查了命题与定理的知识,解题的关键是了解对顶角的定义、余角的定义、两直线的位置关系等知识,属于基础题,难度不大.4.D解析:D【分析】根据平移的性质可直接判断①②③,根据平行线的性质可判断④,阴影部分的面积=S 梯形BEFH ,于是可判断⑤,进而可得答案.【详解】解:因为将ABC 沿AB 方向平移2cm 得到DEF ,所以//BH EF ,AD BE =,DF ∥AC ,故①②正确;所以C BHD ∠=∠,故④正确;而BD 与CH 不一定相等,故③不正确;因为2cm CH =,4cm EF BC ==,所以BH=2cm ,又因为BE=2cm ,所以阴影部分的面积=S △ABC -S △DBH = S △DEF -S △DBH =S 梯形BEFH =()12422⨯+⨯=26cm ,故⑤正确;综上,正确的结论是①②④⑤.故选:D .【点睛】本题考查了平移的性质,属于基础题目,正确理解题意、熟练掌握平移的性质是解题的关键. 5.A解析:A【分析】选取的a 的值满足a b >,但不满足22a b >即可.【详解】解:当a =0,b =﹣1时,满足a >b ,但不满足22a b >,故A 选项符合题意; 当a =2,b =1时,满足a >b ,也满足22a b >,故B 选项不符合题意;当a =﹣2,b =﹣1时,不满足a >b ,故C 选项不符合题意;当a =0,b =2时,不满足a >b ,故D 选项不符合题意;故选:A .【点睛】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.7.B解析:B【分析】先根据平移的性质得出AD=1,BF=BC+CF=BC+1,DF=AC ,再根据四边形ABFD 的周长=AD+AB+BF+DF 即可得出结论.【详解】∵将周长为6的△ABC 沿边BC 向右平移1个单位得到△DEF ,∴AD=1,BF=BC+CF=BC+1,DF=AC ,又∵AB+BC+AC=6,∴四边形ABFD 的周长=AD+AB+BF+DF=1+AB+BC+1+AC=8.故选:B .【点睛】本题考查了平移的性质,熟知把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同是解答此题的关键.8.D解析:D【分析】根据不等式的性质对各选项进行逐一判断即可.【详解】A 、正确,符合不等式的性质;B 、正确,符合不等式的性质.C 、正确,符合不等式的性质;D 、错误,例如a=2,b=0;故选D .【点睛】考查了命题与定理的知识,解题的关键是了解不等式的性质,难度不大.9.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D .【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断. 10.D解析:D【分析】根据平行线的判定条件,逐一判断,排除错误答案.【详解】解:①∵∠1=∠2,∴AB ∥CD ,不符合题意;②∵∠3=∠4,∴BC ∥AD ,符合题意;③∵AB ∥CD ,∴∠B+∠BCD =180°,∵∠ADC =∠B ,∴∠ADC+∠BCD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; ④∵AB ∥CE ,∴∠B+∠BCD =180°,∵∠BCD =∠BAD ,∴∠B+∠BAD =180°,由同旁内角互补,两直线平行可得BC ∥AD ,故符合题意; 故能推出BC ∥AD 的条件为②③④.故选:D .【点睛】本题考查了平行线的判定,关键是掌握判定定理:同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.11.C解析:C【分析】如图(见解析),先根据平行线的性质、角的和差可得66EAB EC C D AE ∠+∠=∠=︒,同样的方法可得F FAB FCD ∠=∠+∠,再根据角的倍分可得,2323FAB EAB FCD ECD ∠=∠∠=∠,由此即可得出答案. 【详解】如图,过点E 作//EG AB ,则////EG AB CD ,,EAB CE C A D G G E E ∴∠=∠∠∠=,66AEG EAB ECD CE A C G E ∴∠+=∠+=∠=∠∠︒,同理可得:F FAB FCD ∠=∠+∠, 11,33EAF EAB ECF ECD ∠=∠∠=∠, ,2323FAB EAB FCD ECD ∴∠=∠∠=∠, ()266443333222F FAB FCD EAB ECD EAB ECD ∴∠=∠+∠=∠+∠=∠+∠=⨯︒=︒,故选:C .【点睛】本题考查了平行线的性质、角的和差倍分,熟练掌握平行线的性质是解题关键. 12.D解析:D【分析】利用三角形内角和对A 进行判断;根据内错角的定义对B 进行判断;根据平行线的判定方法对C 进行判断;根据绝对值的意义对D 进行判断.【详解】解:A 、如果三角形三个内角的度数比是1:2:3,则三个角的度数分别为30°,60°,90°,所以这个三角形是直角三角形,所以A 选项为真命题;B 、内错角不一定相等,所以B 选项为真命题;C 、平行于同一直线的两条直线平行,所以C 选项为真命题;D 、若数a 使得|a|>-a ,则a 为不等于0的实数,所以D 选项为假命题.故选:D .【点睛】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.二、填空题13.【分析】根据求出利用AO 平分求得即可得到∠DOB=【详解】∵∴∵AO 平分∴∴∠DOB=故答案为:【点睛】此题考查求一个角的补角角平分线的性质对顶角相等正确理解补角定义求出是解题的关键解析:65︒【分析】根据180COE EOD ∠+∠=︒,50EOD ∠=︒,求出130COE ∠=︒,利用AO 平分COE ∠,求得65AOC ∠=︒,即可得到∠DOB=65AOC ∠=︒.【详解】∵180COE EOD ∠+∠=︒,50EOD ∠=︒,∴130COE ∠=︒,∵AO 平分COE ∠,∴65AOC ∠=︒,∴∠DOB=65AOC ∠=︒,故答案为:65︒.【点睛】此题考查求一个角的补角,角平分线的性质,对顶角相等,正确理解补角定义求出130COE ∠=︒是解题的关键.14.【分析】根据对顶角性质得;根据平行线性质得结合推导得即可得到答案【详解】如图∵//∴∴∴∵∴即的度数=度故答案为:【点睛】本题考查了平行线的知识;解题的关键是熟练掌握对顶角相等平行线的性质从而完成求解 解析:180α-【分析】根据对顶角性质,得13∠=∠;根据平行线性质,得23180∠+∠=,结合1∠=α,推导得2180α∠=-,即可得到答案.【详解】如图13∠=∠∵a //b∴23180∠+∠=∴21180∠+∠=∴21801∠=-∠∵1∠=α∴2180α∠=-,即2∠的度数=180α-度故答案为:180α-.【点睛】本题考查了平行线的知识;解题的关键是熟练掌握对顶角相等、平行线的性质,从而完成求解.15.72【分析】如果两个角的两边互相平行则这两个角相等或互补根据题意这两个角只能互补然后列方程求解即可【详解】解:设其中一个角是x°则另一个角是(180-x)°根据题意得解得x=72∴180-x=108解析:72【分析】如果两个角的两边互相平行,则这两个角相等或互补.根据题意,这两个角只能互补,然后列方程求解即可.【详解】解:设其中一个角是x°,则另一个角是(180-x)°,根据题意,得 11(180)23x x =-, 解得x=72,∴180-x=108°;∴较小角的度数为72°.故答案为:72.【点睛】本题考查了平行线的性质,一元一次方程的应用,运用“若两个角的两边互相平行,则两个角相等或互补”,而此题中显然没有两个角相等这一情况是解决此题的突破点. 16.50°或130°【分析】先根据垂直的定义求出∠DOE=90°然后根据对顶角相等求出∠DOB 的度数再根据角的和差求出∠BOE 的度数【详解】解:如图1:∵OE ⊥CD ∴∠DOE=90°∵∴∠DOB=°∴∠解析:50°或130°【分析】先根据垂直的定义求出∠DOE=90°,然后根据对顶角相等求出∠DOB 的度数,再根据角的和差求出∠BOE 的度数.【详解】解:如图1:∵OE ⊥CD ,∴∠DOE=90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°-40°=50°,如图2:∵OE ⊥CD ,∴∠DOE =90°,∵40AOC ∠=︒,∴∠DOB=40AOC ∠=︒°,∴∠BOE=90°+40°=130°,故答案为:50°或130°.【点睛】本题考查了垂线的定义,对顶角相等,要注意领会由垂直得直角这一要点.17.【分析】根据AB ∥CD 求得∠CMF=∠1=57°利用MF 平分∠CME 求得∠CME=2∠CMF =114°根据∠EMD=180°-∠CME 求出结果【详解】∵AB ∥CD ∴∠CMF=∠1=57°∵MF 平分∠解析:66【分析】根据AB ∥CD ,求得∠CMF=∠1=57°,利用MF 平分∠CME ,求得∠CME=2∠CMF =114°,根据∠EMD=180°-∠CME 求出结果.【详解】∵AB ∥CD ,∴∠CMF=∠1=57°,∵MF 平分∠CME ,∴∠CME=2∠CMF =114°,∴∠EMD=180°-∠CME =66°,故答案为:66.【点睛】此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.18.如果两个角相等那么这两个角的余角相等【分析】把命题的题设写在如果的后面把命题的结论部分写在那么的后面即可【详解】解:命题等角的余角相等写成如果…那么…的形式为:如果两个角是相等角的余角那么这两个角相 解析:如果两个角相等,那么这两个角的余角相等【分析】把命题的题设写在如果的后面,把命题的结论部分写在那么的后面即可.【详解】解:命题“等角的余角相等”写成“如果…,那么….”的形式为:如果两个角是相等角的余角,那么这两个角相等.故答案为:如果两个角是相等角的余角,那么这两个角相等.【点睛】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.19.4【分析】观察图象发现平移前后BE对应CF对应根据平移的性质易得平移的距离为BE=BC-EC=4进而可得答案【详解】由题意平移的距离为BE=BC-EC=10-6=4故答案为:4【点睛】本题考查了平移解析:4【分析】观察图象,发现平移前后,B、E对应,C、F对应,根据平移的性质,易得平移的距离为BE=BC-EC=4,进而可得答案.【详解】由题意平移的距离为BE=BC-EC=10-6=4,故答案为:4.【点睛】本题考查了平移的性质,经过平移,对应点所连的线段平行(或在同一直线上)且相等,对应线段平行(或在同一直线上)且相等,对应角相等.本题关键要找到平移的对应点.任何一对对应点所连线段的长度都等于平移的距离.20.46【分析】过点C作CF∥AB根据平行线的传递性得到CF∥DE根据平行线的性质得到∠ABC=∠BCF∠CDE+∠DCF=180°根据已知条件等量代换得到∠BCF =76°由等式性质得到∠DCF=30°解析:46【分析】过点C作CF∥AB,根据平行线的传递性得到CF∥DE,根据平行线的性质得到∠ABC=∠BCF,∠CDE+∠DCF=180°,根据已知条件等量代换得到∠BCF=76°,由等式性质得到∠DCF=30°,于是得到结论.【详解】解:过点C作CF∥AB,∵AB∥DE,∴AB∥DE∥CF,∴∠ABC=∠BCF,∠CDE+∠DCF=180°,∵∠ABC=76°,∠CDE=150°,∴∠BCF=76°,∠DCF=30°,∴∠BCD=46°,故答案为:46.【点睛】本题主要考查平行线的性质,关键是根据平行线的性质得到角之间的等量关系.三、解答题21.见解析【分析】先画线段AB=a ,再以AB 为边画正方形即可.【详解】解:作法如图所示,【点睛】本题考查了正方形的画法,根据正方形的判定,画一个垂直,再画四边相等即可,注意:画法不唯一.22.59°【分析】由题意,先求出BED ∠,由角平分线定义得到GED ∠,再结合垂直和平角的定义,即可求出答案.【详解】解:根据题意,∵//AB CD ,∴62BED B ∠=∠=︒,∵EG 平分BED ∠, ∴11623122GED BED ∠=∠=⨯︒=︒, ∵EG EF ⊥,∴90FEG ∠=︒,∴180319059CEF ∠=︒-︒-︒=︒;【点睛】本题考查了角平分线的定义,平行线的性质,以及余角、补角的定义,解题的关键是熟练掌握所学的知识,正确求出角的度数.23.(1)∠CBF =45°;(2)见解析.【分析】(1)根据平行线的性质和已知条件即可求出∠CBF 的度数;(2)根据平行线的性质可得∠ABC =∠ADF ,再根据BF 平分∠ABC ,DE 平分∠ADF ,可得∠ADE =∠ABF ,再根据同位角相等,两直线平行即可证明BF ∥DE .【详解】解:(1)∵DF ∥BC ,∴∠ABC =∠ADF =70°,∵∠ABF =25°,∴∠CBF =70°﹣25°=45°;(2)证明:∵DF ∥BC ,∴∠ABC =∠ADF ,∵BF 平分∠ABC ,DE 平分∠ADF ,∴∠ADE 12=∠ADF ,∠ABF 12=∠ABC , ∴∠ADE =∠ABF ,∴BF ∥DE .【点睛】 本题考查了平行线的判定与性质,解决本题的关键是掌握平行线的判定与性质. 24.(1 )BD ⊥AC 于点D ,∠DBC =12∠A ;(2)见解析 【分析】(1)先根据命题内容确定命题的题设和结论,画出符合条件的图形,并写出已知,根据结论写出求证内容;(2)根据等腰三角形的性质,可得出底角与顶角的数量关系,再由内角和定理证明出结论.【详解】(1)解:已知:如图,在锐角△ABC 中,AB =AC ,BD ⊥AC 于点D .求证:∠DBC =12∠A .故答案为:BD⊥AC于点D,∠DBC=12∠A.(2)证明:∵AB=AC,∴∠ABC=∠C.∵∠A+∠ABC+∠C=180°,∴2∠C=180°-∠A.即∠C=12(180°-∠A).∵BD⊥AC,∴∠DBC+∠C=90°.∴∠DBC=90°-∠C=90°-12(180°-∠A)=12∠A.即等腰三角形腰上的高与底边的夹角等于顶角的一半.【点睛】本题考查了命题与证明,掌握命题的证明方法和基本步骤,并结合题设和结论画出符合条件的图形是解题的关键.25.(1)△ABC向下平移4个单位,向左平移5个单位得到△A1B1C1;(2)见解析;(3)5.【分析】(1)根据平移变换的性质解决问题即可;(2)利用数形结合的思想解决问题即可;(3)利用分割法求解即可.【详解】解:(1)△ABC向下平移4个单位,向左平移5个单位得到△A1B1C1;(2)如图,直线CD即为所求;(3)S △ABC =4×4﹣12×3×4﹣12×1×2﹣12×2×4=16﹣6﹣1﹣4=5. 【点睛】 本题考查作图−应用与设计,平行线的判定和性质,三角形的面积,坐标与图形的平移等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)75°;(2)当∠ADE+∠CGF=180°时,BC ∥AD .【分析】(1)根据平行线的性质解答即可;(2)根据平行线的判定和性质解答即可.【详解】解:(1)∵AF ∥DE ,∴∠F+∠E=180°,∵105E ∠=︒∴∠F=180°-105°=75°;(2)如图,当∠ADE+∠CGF=180°时,BC ∥AD ,∵AF ∥DE ,∴∠GAD+∠ADE=180°,∠ADE+∠CGF=180°,∴∠GAD=∠CGF ,∴BC ∥AD .【点睛】此题考查平行线的判定和性质,关键是根据平行线的判定和性质解答.。
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题1(含答案)
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题11.如图,已知AM∥BN,∠A=64°.点P是射线AM上一动点(与点A不重合),BC、BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)①∠ABN的度数是;②∵AM∥BN,∴∠ACB=∠;(2)求∠CBD的度数;(3)当点P运动时,∠APB与∠ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变化规律;(4)当点P运动到使∠ACB=∠ABD时,∠ABC的度数是.2.如图,直线AB和CD相交于点O,OE把∠AOC分成两部分,且∠AOE:∠EOC=2:3,(1)如图1,若∠BOD=75°,求∠BOE;(2)如图2,若OF平分∠BOE,∠BOF=∠AOC+12°,求∠EOF.3.探究问题:已知∠ABC,画一个角∠DEF,使DE∥AB,EF∥BC,且DE交BC于点P.∠ABC与∠DEF有怎样的数量关系?(1)我们发现∠ABC与∠DEF有两种位置关系:如图1与图2所示.①图1中∠ABC与∠DEF数量关系为;图2中∠ABC与∠DEF数量关系为;请选择其中一种情况说明理由.②由①得出一个真命题(用文字叙述):.(2)应用②中的真命题,解决以下问题:若两个角的两边互相平行,且一个角比另一个角的2倍少30°,请直接写出这两个角的度数.4.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ 平分∠EPK,求∠HPQ的度数.5.如图,在△ABC中,点D,E,F分别在AB,BC,CA上,DE交BF于点G,∠1与∠2互补.(1)试判断AC,DE的位置关系,并说明理由;(2)如图,EF⊥BC,垂足为点E,过点G作GH⊥EF,垂足为点H,点N是线段BE 上一点,∠NBH=∠NHB,HM平分∠NHF.①求证:HB平分∠GHN;②问∠BHM的大小是否改变?若不变,请求出∠BHM的度数;若改变,请求出∠BHM的度数的取值范围.6.(1)【感知】如图①,AB∥CD,点E在直线AB与CD之间,连接AE、CE,试说明∠AEC=∠A+∠DCE.下面给出了这道题的解题过程,请完成下面的解题过程(填恰当的理由).证明:如图①过点E作EF∥AB.∴∠A=∠1 ()∵AB∥CD(已知)EF∥AB(辅助线作法)∴CD∥EF()∴∠2=∠DCE()∵∠AEC=∠1+∠2∴∠AEC=∠A+∠DCE()(2)【探究】当点E在如图②的位置时,其他条件不变,试说明∠A+∠AEC+∠C=360°(3)【应用】如图③,延长线段AE交直线CD于点M,已知∠A=130°,∠DCE=120°,则∠MEC的度数为.(请直接写出答案)7.平面内有任意一点P和∠1,按要求解答下列问题:(1)当点P在∠1外部时,如图①,过点P作PA⊥OM,PB⊥ON,垂足分别为A、B,量一量∠APB和∠1的度数,用数学式子表达它们之间的数量关系;(2)当点P在∠1内部时,如图②,以点P为顶点作∠APB,使∠APB的两边分别和∠1的两边垂直,垂足分别为A、B,用数学式子写出∠APB和∠1的数量关系;(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角.(4)在图②中,若∠1=50°17',求∠APB的度数.8.探究:如图①,AB∥CD∥EF,试说明∠BCF=∠B+∠F.下面给出了这道题的解题过程,请在下列解答中,填上适当的理由.解:∵AB∥CD,(已知)∴∠B=∠1.()同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.()应用:如图②,AB∥CD,点F在AB、CD之间,FE与AB交于点M,FG与CD交于点N.若∠EFG=115°,∠EMB=55°,则∠DNG的大小为度.拓展:如图③,直线CD在直线AB、EF之间,且AB∥CD∥EF,点G、H分别在直线AB、EF上,点Q是直线CD上的一个动点,且不在直线GH上,连结QG、QH.若∠GQH=70°,则∠AGQ+∠EHQ=度.9.如图,直线AB与CD相交于点E,射线EG在∠AEC内(如图1).(1)若∠BEC的补角是它的余角的3倍,则∠BEC=度;(2)在(1)的条件下,若∠CEG比∠AEG小25度,求∠AEG的大小;(3)若射线EF平分∠AED,∠FEG=100°(如图2),则∠AEG﹣∠CEG=度.10.如图1,AB∥CD,点E,F分别在直线CD,AB上,∠BEC=2∠BEF,过点A作AG⊥BE的延长线交于点G,交CD于点N,AK平分∠BAG,交EF于点H,交BE 于点M.(1)直接写出∠AHE,∠FAH,∠KEH之间的关系:=+ ;(2)若∠BEF=∠BAK,求∠AHE;(3)如图2,在(2)的条件下,将△KHE绕着点E以每秒5°的速度逆时针旋转,旋转时间为t,当KE边与射线ED重合时停止,则在旋转过程中,当△KHE的其中一边与△ENG的某一边平行时,直接写出此时t的值.参考答案1.解:(1)①∵AM∥BN,∠A=64°,∴∠ABN=180°﹣∠A=116°,故答案为:116°;②∵AM∥BN,∴∠ACB=∠CBN,故答案为:CBN;(2)∵AM∥BN,∴∠ABN+∠A=180°,∴∠ABN=180°﹣64°=116°,∴∠ABP+∠PBN=116°,∵BC平分∠ABP,BD平分∠PBN,∴∠ABP=2∠CBP,∠PBN=2∠DBP,∴2∠CBP+2∠DBP=116°,∴∠CBD=∠CBP+∠DBP=58°;(3)不变,∠APB:∠ADB=2:1,∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB:∠ADB=2:1;(4)∵AM∥BN,∴∠ACB=∠CBN,当∠ACB=∠ABD时,则有∠CBN=∠ABD,∴∠ABC+∠CBD=∠CBD+∠DBN∴∠ABC=∠DBN,由(1)∠ABN=116°,∴∠CBD=58°,∴∠ABC+∠DBN=58°,∴∠ABC=29°,故答案为:29°.2.解:(1)∵∠AOC=∠BOD=75°,∠AOE:∠EOC=2:3,∴∠BOC=180°﹣∠BOD=180°﹣75°=105°,∠COE=∠AOC=×75°=45°,∴∠BOE=∠BOC+∠COE=105°+45°=150°;(2)∵OF平分∠BOE,∴∠EOF=∠BOF,∵∠BOF=∠AOC+12°=∠EOF,∴∠FOC+∠COE=∠AOE+∠COE+12°,即:∴∠FOC=∠AOE+12°,设∠AOE=x°,则∠FOC=(x+12)°,∠COE=x°,∵∠AOE+∠EOF+∠BOF=180°∴x+(x+12+x)×2=180,解得,x=26,∴∠EOF=∠COE+∠COF=x°+x°+12°=77°3.解:(1)①如图1中,∠ABC+∠DEF=180°.如图2中,∠ABC=∠DEF,故答案为:∠ABC+∠DEF=180°,∠ABC=∠DEF.理由:如图1中,∵BC∥EF,∴∠DPB=∠DEF,∵AB∥DE,∴∠ABC+∠DPB=180°,∴∠ABC+∠DEF=180°.如图2中,∵BC∥EF,∴∠DPC=∠DEF,∵AB∥DE,∴∠ABC=∠DPC,∴∠ABC=∠DEF.②结论:如果两个角的两边互相平行,那么这两个角相等或互补.故答案为:如果两个角的两边互相平行,那么这两个角相等或互补.(2)设两个角分别为x和2x﹣30°,由题意x=2x﹣30°或x+2x﹣30°=180°,解得x=30°或x=70°,∴这两个角的度数为30°,30°或70°和110°.4.解:(1)AB∥CD,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∵∠PHK=∠HPK,∴∠PKG=2∠HPK.又∵GH⊥EG,∴∠KPG=90°﹣∠PKG=90°﹣2∠HPK.∴∠EPK=180°﹣∠KPG=90°+2∠HPK.∵PQ平分∠EPK,∴.∴∠HPQ=∠QPK﹣∠HPK=45°.答:∠HPQ的度数为45°.5.解:(1)AC∥DE,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,∵∠2=∠DGF,∴∠1+∠DGF=180°,∴AC∥DE;(2)①∵EF⊥BC,GH⊥EF,∴∠BEF=∠GHF=90°,∴BE∥GH,∴∠NBH=∠BHG,∵∠NBH=∠NHB,∴∠BHG=∠NHB,∴HB平分∠GHN;②∠BHM的大小不发生改变,∠BHM=45°.理由如下:∵HM平分∠NHF.∴∠FHM=∠NHM,即∠FHM=∠GHM+∠BHG+∠NHB,∵∠FHM+∠GHM=90°,∴∠GHM+∠BHG+∠NHB+∠GHM=90°,∵∠BHG=∠NHB,∴2∠GHM+2∠BHG=90°,∴∠GHM+∠BHG=45°.即∠BHM=45°.答:∠BHM的大小不发生改变,∠BHM=45°.6.(1)证明:如图①,过点E作EF∥AB,∴∠A=∠1(两直线平行,内错角相等),∵AB∥CD(已知),∵EF∥AB(辅助线作法),∴CD∥EF(平行于同一直线的两条直线平行),∴∠2=∠DCE(两直线平行,内错角相等),∵∠AEC=∠1+∠2,∴∠AEC=∠A+∠DCE(等量代换),故答案为:两直线平行,内错角相等;平行于同一直线的两条直线平行;两直线平行,内错角相等;等量代换;(2)证明:过点E作EF∥AB,如图②所示:∵AB∥CD,∴EF∥CD,∴∠A+∠AEF=180°,∠C+∠CEF=180°,∴∠A+∠AEC+∠C=∠A+∠AEF+∠C+∠CEF=180°+180°=360°;(3)解:同(2)得:∠A+∠AEC+∠DCE=360°,∴∠AEC=360°﹣∠A﹣∠DCE=360°﹣130°﹣120°=110°,∴∠MEC=180°﹣∠AEC=180°﹣110°=70°,故答案为:70°.7.解:(1)如图1中,设PA交ON于F.∵PA⊥OM,PB⊥ON,∴∠PBF=∠OAF=90°,∵∠PFB=∠OFA,∴∠APB=∠1.故答案为∠APB=∠1.(2)如图2中,∵∠PAO=∠PBO=90°,∴∠APB+∠1=180°.故答案为∠APB+∠1=180°.(3)由上述情形,用文字语言叙述结论:如果一个角的两边分别和另一个角的两边垂直,那么这两个角相等或互补.(4)∵∠APB+∠1=180°,∴∠APB=180°﹣50°17′=129°43′.8.解:探究:∵AB∥CD,∴∠B=∠1.(两直线平行内错角相等)同理可证,∠F=∠2.∵∠BCF=∠1+∠2,∴∠BCF=∠B+∠F.(等量代换)故答案为:两直线平行,内错角相等,等量代换.应用:由探究可知:∠MFN=∠AMF+∠CNF,∴∠CNF=∠DNG=115°﹣55°=60°.故答案为60.拓展:如图③中,当的Q在直线GH的右侧时,∠AGQ+∠EHQ=360°﹣70°=290°,当点Q′在直线GH的左侧时,∠AGQ′+∠EHQ′=∠GQ′H=70°.故答案为70或290.9.解:(1)设∠BEC的度数为x,则180﹣x=3(90﹣x),x=45°,∴∠BEC=45°,故答案为:45;(2)∵∠BEC=45°,∴∠AEC=135°,设∠AEG=x°,则∠CEG=x﹣25,由∠AEC=135°,得x+(x﹣25)=135,解得x=80°,∴∠AEG=80°;(3)∵射线EF平分∠AED,∴∠AEF=∠DEF,∵∠FEG=100°,∴∠AEG+∠AEF=100°,∵∠CEG=180°﹣100°﹣∠DEF=80°﹣∠DEF,∴∠AEG﹣∠CEG=100°﹣∠AEF﹣(80°﹣∠DEF)=20°,故答案为:20.10.解:(1)∵AB∥CD∴∠KEH=∠AFH∵∠AHE=∠AFH+∠FAH∴∠AHE=∠KEH+∠FAH故答案为:∠AHE;∠KEH;∠FAH;(2)设∠BEF=x∵∠BEF=∠BAK,∠BEC=2∠BEF∴∠BAK=∠BEC=2x∵AK平分∠BAG∴∠BAK=∠KAG=2x由(1)的结论可得:∠AME=2x+2x=4x,∠AHE=2x+3x=5x ∵AG⊥BE∴∠G=90°∴∠AME+∠KAG=2x+4x=90°∴x=15°∴∠AHE=5x=75°;(3)由(2)可得,∠KHE=105°,∠BEF=15°,∠HEK=45°,∠NEG=30°,∠ENG=60°①当KH∥NG时5°×t=60°﹣30°=30°∴t=6②当KE∥GN时5°×t=60°∴t=12③当HE∥GN时5°×t=45°+60°=105°∴t=21④当HK∥EG时,5°×t=180°﹣30°﹣30°=120°∴t=24⑤当HK∥EN时,5t=150°∴t=30综上所述,t的值为:6或12或21或24或30.。
【3套试卷】人教版七年级数学下册第五章相交线与平行线尖子生培优测试试卷
人教版七年级数学下册第五章相交线与平行线尖子生培优测试试卷一、单选题(共10题;共30分)1.下列句子中,不属于命题的是( )A. 正数大于一切负数吗?B. 两点之间线段最短C. 两点确定一条直线D. 会飞的动物只有鸟2.如图:已知∠1=40°,要使直线a∥b,则∠2=()A. 50°B. 40°C. 140°D. 150°3.如图,若∠1=50°,则∠2的度数为()A. 30°B. 40°C. 50°D. 90°4.如图,AD是∠EAC的平分线,AD∥BC,∠B=30°,则∠C为()A. 30°B. 60°C. 80°D. 120°5.如图,直线l1∥l2,AB与直线l1垂直,垂足为点B,若∠ABC=37°,则∠EFC的度数为()A. 127°B. 133°C. 137°D. 143°6.如图,AB∥CD,EF⊥AB于E,若∠1=60°,则∠2的度数是()A. 35°B. 30°C. 25°D. 20°7.如图,∥,直线分别交、于点,,平分,已知,则=()A. B. C. D.8.下列图形可以由一个图形经过平移变换得到的是()A. B. C. D.9.如图,Rt△ABC沿直角边BC所在的直线向右平移得到△DEF,下列结论中错误的是( ).A. △ABC与△DEF能够重合B. ∠DEF=90°C. AC=DFD. EC=CF10.如图,已知AB∥CD,BC平分∠ABE,∠C=33°,则∠CEF的度数是()A. 16°B. 33°C. 49°D. 66°二、填空题(共6题;共24分)11.如图,三角形ABC经过平移得到三角形DEF,那么图中平行且相等的线段有________对;若∠BAC=50°,则∠EDF=________12.如图,直线a∥b,∠BAC的顶点A在直线a上,且∠BAC=100°.若∠1=34°,则∠2=________°.13.如图交AB于点于点A,若,则________度14.如图,立方体棱长为2cm,将线段AC平移到A1C1的位置上,平移的距离是________cm.15.如图,直线a与直线b、c分别相交于点A、B,将直线b绕点A转动,当∠1=∠________时,c∥b16.如图,AB∥CD,∠1=64°,FG平分∠EFC,则∠EGF=________.三、解答题(共7题;共46分)17.如图所示,点E在直线DF上,点B在直线AC上,直线AF分别交BD,CE于点G,H.若∠AGB=∠EHF,∠C=∠D,请到断∠A与∠F的数量关系,并说明理由.18.如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?19.MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD 的位置关系,并说明理由.20.已知:如图,BE//CD,∠A=∠1. 求证:∠C=∠E .21.如图,已知AB∥CD,BC∥ED,请你猜想∠B与∠D之间具有什么数量关系,并说明理由.22.如图,EF∥CD,∠1=∠2,∠ACB=45°,求∠DGC的度数.23.如图,直线EF∥GH,点A在EF上,AC交GH于点B,若∠FAC=72°,∠ACD=58°,点D 在GH上,求∠BDC的度数.答案一、单选题1. A2.B3.B4. A5. A6. B7. C8.B9.D 10.D二、填空题11.6;50°12.46 13.42 14.2;15.3 16.64°三、解答题17.解:∠A=∠F理由;∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF∴∠DGF=∠DGF,∴BD∥CE,∠C=∠ABD,∵∠D=∠C∴∠ABD=∠D∴AC∥DF,∴∠A=∠F18.解:CE∥DF,理由如下:∵AE⊥AD,BF⊥AD,∴∠A=∠FBD,∴AE∥BF,∴∠E=∠EGF,又∵∠E=∠F,∴∠EGF=∠F,∴CE∥DF19.解:延长MF交CD于点H∠1=90∠FH,2140∴∠CHF=1405-902=50°,∠CHF=∠2,AB∥CD20.证明:∵∠A=∠1,∴DE//AC .∴∠E=∠EBA .∵BE//CD ,∴∠EBA=∠C .∴∠C=∠E .21.解:猜想:∠B+∠D=180°.理由如下:∵AB∥CD,∴∠B=∠C,∵BC∥ED,∴∠C+∠D=180°,∴∠B+∠D=180°.22.解:∵EF∥CD,∴∠2=∠3,∵∠1=∠2,∴∠1=∠3,∴DG∥BC,∴∠DGC=180°﹣∠ACB=135°.23.解:∵EF∥GH,∴∠ABD+∠FAC=180°,∴∠ABD=180°﹣72°=108°,∵∠ABD=∠ACD+∠BDC,∴∠BDC=∠ABD﹣∠ACD=108°﹣58°=50°.人教版七年级下册第五章相交线与平行线综合能力检测卷一、选择题(每题3分,共30分)1.下列图形中,不能通过其中一个四边形平移得到的是( )2.如图,在铁路旁有一李庄,现要建一火车站,为了使李庄人乘车最方便,请你在铁路线上选一点来建火车站,则应选( )A.A点B.B点C.C点D.D点3.“如果∠A和∠B的两边分别平行,那么∠A和∠B相等”是( )A.真命题B.假命题C.定义D.以上都不对4.如图,按各组角的位置判断错误的是( )A.∠1和∠A是同旁内角B.∠3和∠4是内错角C.∠5和∠6是同旁内角D.∠2和∠5是同位角5.如图,将一个含有30°角的直角三角尺的两个顶点放在直尺的对边上.如果∠2 =44°,那么∠1的度数是( )A.14°B.15°C.16°D.17°6.如图,下列条件不能判断直线l1∥l2的是( )A.∠1=∠3B.∠1=∠4C.∠2+∠3=180°D.∠3=∠57.如图,若∠1与∠2互为补角,∠2与∠3互为补角,则一定有( )A.a∥bB.c∥dC.a∥cD.b∥d8.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,则这两次拐弯的角度可能是( )A.第一次向左拐30°,第二次向右拐30°B.第一次向右拐50°,第二次向左拐130°C.第一次向右拐50°,第二次向右拐130°D.第一次向左拐50°,第二次向左拐130°9.探照灯、汽车灯等很多灯具发出的光线都与平行线有关,如图是一个探照灯灯碗的剖面,从位于点O的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=α,∠BOC=β,则∠DCO的度数是( )A .180αβ︒-- ()1B .2αβ+C .αβ+D .βα- 10.如图,AB∥CD,OE 平分∠BOC,OF⊥OE,OP ⊥CD,∠ABO=40°,给出下列结论: ①∠BOE=70°;②OF 平分∠BOD;③∠POE=∠BOF④∠POB=2∠DOF.其中正确的个数为( )A.4B.3C.2D.1二、填空题(每题3分,共18分)11.将命题“同角的补角相等”改写为“如果……那么……”的形式: .12.夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形 荷塘上架设小桥.若荷塘的周长为280 m ,且桥宽忽略不计,则小桥的总长为 m.13.如图,A B∥CD,∠CDE= 140°,则∠4的度数为 .14.如图,AB ∥CD∥MP,MN 平分∠AMD,∠A=40°,∠D=60°,那么∠NMP 的度数是 .15.如图,已知∠1=70°,∠2=50°,∠D=70o ,AE∥BC,∠C 的度数为 .16.如图,AB∥CD,∠CDE=119°,GF 交∠DEB 的平分线EF 于点F ,∠AGF=130°, 则∠F= .三、解答题(共52分)17.(6分)如图,已知三角形的三个顶点在边长为1个单位长度的正方形网格的格点上,现要求将三角形ABC 先向右平移12个单位长度得到三角形A B C ''',再将三角形A BC '''向下平移5个单位长度得到三角形ABC ''''''. (1)请你在网格中画出三角形A BC '''和三角形ABC ''''''; (2)求由三角形ABC 得到三角形ABC ''''''的整个过程中边AC 所扫过的面积.18.(8分)如图,已知∠1+∠2=180°,∠3=100°,OK 平分∠DOH,求 ∠KOH 的度数.19.(8分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°.求∠AGD的度数.20.(8分)如图,A是射线CF上一点,∠BAF =46°,∠ACE=136°,CE⊥CD.问CD∥AB吗?为什么?21.(10分)如图,已知 CD∥EF,CH∥AB,∠EFG+∠BCD=∠ABC.求证:AB∥GF22. (12分)问题情景如图 1,AB∥CD,∠A=130°,∠C=120°,求∠APC的度数.(1)天天同学看过图形后得出答案:∠APC=110°,请你补全他的推理依据.如图2,过点P作PE∥AB.因为AB∥C D,所以 PE∥AB∥CD.( )所以∠A+∠APE=180°,∠C+∠CPE=180°.()因为∠A=130°,∠C=120°,所以∠APE=50°, ∠CPE=60°,所以∠APC=∠APE+∠CPE=110°.()问题迁移(2)如图3,AD∥BC,当点P在线段AB上运动时,∠ADP=∠α,∠BCP=∠β,求∠CPD与∠α,∠β之间的数量关系,并说明理由.(3)在(2)的条件下,如果点P在射线AM或线段BO上运动,请你求出∠CPD与∠α,∠β之间的数量关系.参考答案1.D2.A3.B解析:若∠A和∠B的两边分别平行,则∠A和∠B相等或互补.故选B.4.C解析:∠1和∠A是直线AC,DF被直线AB所截而成的同旁内角,故A正确;∠3和∠4是直线A,AC被直线DF所截而成的内错角,故B正确;∠2和∠5是直线AB,AC被直线DF所截而成的同位角,故D正确.故选C.5. C解析:如图,由题意,知∠ABC=60°,BE∥CD,∴∠1 = ∠CBE.∵∠2=44°,∴∠CBE=∠ABC-∠2=60°-44°=16°, ∴∠1=∠CBE=16°.故选 C.6. A解析:B项,根据内错角相等,两直线平行,可判定l1∥l2; C项,根据同旁内角互补,两直线平行,可判定l1∥l2;D项,根据同位角相等,两直线平行,可判定l1∥l2.故选A.7.B解析:∵∠1与∠2互为补角,∠2与∠3互为补角,∴∠1=∠3∴d∥c.故选 B.8. A解析:因为两次拐弯后,行驶的方向与原来的方向相同,所以右拐的角度与左拐的角度相等.结合选项,知选A.9.D解析:如图,过点O 作直线EF∥AB,由题意,知AB∥CD, 所以 AB∥EF∥CD,∴ ∠1=∠ABO, ∠2= ∠DCO.∵∠1+∠2=∠BOC=β,∠ABO=α,∴∠DCO=∠2=β-∠1=β-a.故选 D.10.B解析:∵AB∥CD,∴∠BOD=∠ABO=40° ,∴∠BOC=180°-40°= 140°.∴OE 平分∠BOC,11B O E =B O C =140=7022∠∠⨯︒︒∴,故①正确.OF OE EOF=90BOF=9070=201BOF=BOD OF BOD .2OP CD COP=90POE=COP EOC =9070=20POE=BOF .POB=BOE POE=7020=50DOF=20.B ⊥∠︒∴∠︒-︒︒∠∠∠⊥∠︒∠∠-∠︒-︒︒∠∠∠∠∠︒-︒︒∠︒∵,∴,∴,即平分,故②正确∵,∴,∴,∴,故③正确易知-,而,故④错误因此,正确的结论是①②③.故选.11.如果两个角是同一个角的补角,那么这两个角相等12. 140解析:将水平方向的小桥向上(或向下)平移,竖直方向的小桥向左(或向右)平移,得小桥的总长为1280=140(m )2⨯13.40°解析:由题图,得∠CDA=180°-∠CDE=180°-140°=40°.∵AB∥CD,∴∠A=∠CDA=40°.14.10°解析:∵AB∥CD∥MP,∴∠AMP=∠A =40°,∠PMD=∠D =60°,∴∠AMD=∠AMP +∠PMD=100°,∵ MN 平分∠AMD,∴ ∠AMN = 50°,∴∠NMP= ∠AMN -∠AMP=10°.15. 50°解析:因为∠1 =70°,∠D=70°,所以∠1 =∠D,所以AB∥CD,所以∠2 + ∠AEC=180°.又 AE∥BC,所以∠C +∠AEC=180°,所以∠C=∠2=50°. 16.9.5°解析:如图,过点F 作MN∥AB.因为AB∥CD,所以 AB∥CD∥MN,所以 ∠BED=∠CDE =119°,∠GFN=∠AGF =130°.因为 EF 平分 ∠BED,所以 ∠BEF =12∠BED=59.5°.因为AB∥MN,所以∠EFN +∠BEF=180°,所以∠EFN =180°-∠BEF = 120.5°.因为∠GFN=130°,所以∠GFE=∠GFN -∠EFN = 9.5°.17.解析:⑴三角形A B C A B C'''''''''和三角形如图所示.⨯+⨯(2)边AC所扫过的面积为12251=2918.解析:∵∠1+∠2=180°,∴AB∥CD,∴∠GOD=∠3=100°.∴∠DOH=180°-∠GOD=180°-100°=80°.1∵O K 平分∠DOH,∵∠KOH=∠DOH=40°.219.解析:∵EF∥AD,∴∠2=∠3.∵∠1=∠2,∴∠1=∠3, ∴AB∥DG.∴∠BAC+∠AGD=180°.∵∠BAC=70°,∠AGD=180°-∠BAC=110°.20.解析:CD∥AB.理由如下:∵CE⊥CD,∴∠DCE=90°.又∠ACE=136°,∴∠ACD=360°-∠ACE-∠DCE=360°-136°-90°=134°.∵∠BAF=46°,∴∠BAC=180°-∠BAF=180°-46°= 134°.∴∠ACD=∠BAC,∴CD∥AB.21.解析:如图,延长CD交直线GF于点M.因为CD∥EF,所以∠M=∠EFG.因为CH∥AB,所以∠HCB+∠ABC=180°.因为∠EFG+∠BCD=∠ABC,所以∠EFG+∠BCD+∠HCB=180°,所以∠M+∠BCD+∠HCB=180°,即∠M+∠HCD=180°,所以CH∥GF,所以AB∥GF.22.解析:(1)平行于同一条直线的两条直线平行两直线平行,同旁内角互补等量代换(2)∠CPD=∠α+∠β.理由如下:过点P作PF∥AD,交CD于点F.因为AD∥BC,所以AD∥PF∥BC.所以∠DPF=∠α,∠CPF=∠β,所以∠CPD=∠DPF+∠CPF=∠a+∠β.(3)当点P在射线AM上运动时,过点P作PQ∥AD,交CD于点Q,因为AD∥BC,所以AD∥PQ∥BC,所以∠DPQ=∠ADP=∠α,∠CPQ=∠BCP=∠β,所以∠CPD=∠CPQ-∠DPQ=∠β-∠α;当点P在线段BO上运动时,过点P作PT∥AD,交CD于点T,同理可得∠CPD=∠α-∠β.人教版七年级数学下册单元测试卷第五章相交线与平行线综合能力提升测试卷一、选择题(每小题4分,共24分)1.如图,已知OA⊥OB,OC⊥OD,∠AOC=27°,则∠BOD的度数是 153°.2.“直角都相等”的题设是两个角是直角,结论是这两个角相等.3.如图,点A在直线DE上,当∠BAC=___57_____°时,DE∥BC.4. 如图,两只手的食指和大拇指在同一个平面内,它们构成的一对角可看成是内错角 .5.互为邻补角的两个角相加等于180°.6.如图,AB∥CD,则∠1+∠3—∠2的度数等于 ___180° _____.二、选择题(每小题4分,共40分)7.如图,已知∠1=120°,则∠2的度数是( A )A.120°B.90°C.60°D.30°8.下列命题是真命题的是( C )A.过直线外一点可以画无数条直线与已知直线平行B.如果甲看乙的方向是北偏东60°,那么乙看甲的方向是南偏西30°C.3条直线交于一点,对顶角最多有6对D.与同一条直线相交的两条直线相交9.如图,给出下列条件:①∠3=∠4;②∠1=∠2;③EF∥CD,且∠D=∠4;④∠3+∠5=180°.其中,能推出AD∥BC的条件为( C )A. ①②③B. ①②④C.①③④ D. ②③④10.如图,OA⊥OB,若∠1=55°,则∠2=( A )A.35°B.40°C.45°D.60°11 .经过直线外一点画直线,下列说法错误的是( B )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直12.下列叙述中,正确的是( C )A. 在同一平面内,两条直线的位置关系有三种,分别是相交、平行、垂直B. 不相交的两条直线叫平行线C. 两条直线的铁轨是平行的D. 我们知道,对顶角是相等的,那么反过来,相等的角就是对顶角13. 如图,点O为直线AB上一点,CO⊥AB于点O, OD在∠COB内,若∠COD=50°,则∠AOD的度数是( D )A.100°B.110°C.120°D.140°14. 下列图形中,周长最长的是( C )15. 如图,已知OA⊥OC,OB⊥OD, ∠BOC=50°,则∠AOD的度数为( C )A.100°B.120°C.130°D.140°16 .a、b、c是平面上的任意三条直线,它们的交点可以有( B )A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不正确三、解答题(共36分)17.(共7分)根据图形填空:(1)若直线ED,BC被直线AB所截,则∠1和____是同位角;(2)若直线ED,BC被直线AF所截,则∠3和_____是内错角;(3)∠1和∠3是直线AB,AF被直线_____所截构成的_____角;(4)∠2和∠4是直线____,______被直线BC所截构成的_____角.17.(1) ∠2(2) ∠4(3) ED内错(4) AB, AF同位18. (共4分)如图,直线AB、CD是一条河的两岸,并且AB∥CD,E为直线AB、CD 外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.图略理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.19. (共4分)如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).20. (共6分)根据下列要求画图.(1)如图1,过点P画AB的垂线;(2)如图2,过点P画OA,OB的垂线;(3)如图3,过点A画BC的垂线.答案:(1)如图1所示.(2)如图2所示.(3)如图3所示.21. (共7分)如图所示,∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,问CE 与DF的位置关系?试说明理由。
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题2(含答案)
人教版七年级下册数学第五章《相交线与平行线》尖子生练习题21.已知直线BC∥ED.(1)如图1,若点A在直线DE上,且∠B=44°,∠EAC=57°,求∠BAC的度数;(2)如图2,若点A是直线DE的上方一点,点G在BC的延长线上,求证:∠ACG =∠BAC+∠ABC;(3)如图3,FH平分∠AFE,CH平分∠ACG,且∠FHC比∠A的2倍少60°,直接写出∠A的度数.2.如图,已知AM∥BN,∠A=80°,点P是射线AM上一动点(与点A不重合),BC,BD分别平分∠ABP和∠PBN,分别交射线AM于点C,D.(1)∠ABN=;∠CBD=;(2)当点P运动到某处时,∠ACB=∠ABD,求此时∠ABC的度数.(3)当点P运动时,∠APB:∠ADB的比值是否随之变化?若不变,请求出这个比值;若变化,请找出变化规律.3.如图,已知AB∥CD,现将一直角三角形PMN放入图中,其中∠P=90°,PM交AB于点E,PN交CD于点F.(1)当△PMN所放位置如图①所示时,则∠PFD与∠AEM的数量关系为.请说明理由.(2)当△PMN所放位置如图②所示时,∠PFD与∠AEM的数量关系为.(3)在(2)的条件下,若MN与CD交于点O,且∠DON=30°,∠PEB=15°,求∠N的度数.4.直线AB、CD相交于点O,∠EOF在∠AOD的内部.(1)如图①,当∠AOD=150°,∠EOF=30°时,求∠AOF与∠EOD的度数和;(2)在(1)的条件下,请直接写出图中与∠BOC互补的角;(3)如图②,若射线OM平分∠AOD(OM在∠EOD内部),且满足∠EOD=2∠FOM,请判断∠AOF与∠EOF的大小关系并说明理由.5.如图1,在△ABC的AB边的异侧作△ABD,并使∠C=∠D,点E在射线CA上.(1)如图,若AC∥BD,求证:AD∥BC;(2)若BD⊥BC,试解决下面两个问题:①如图2,∠DAE=20°,求∠C的度数;②如图3,若∠BAC=∠BAD,过点B作BF∥AD交射线CA于点F,当∠EFB=7∠DBF时,求∠BAD的度数.6.如图,EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD的大小.解:∵EF∥AD,∴∠2=(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°,∴∠AGD=110°.7.在解答一道课本习题时,两位同学呈现了不同的做法.题目:如图,AB∥CD,要使∠ABE=∠DCF,还需要添加什么条件?证明你的结论.(1)小明添加的条件是“CF∥BE”.根据这一条件完成以下分析过程.(2)小刚添加的条件是“CF平分∠DCB,BE平分∠ABC”,根据这一条件请你完成证明过程.8.把下面的说理过程补充完整.已知:如图,∠1+∠2=180°,∠3=∠B.试判断∠AED与∠4的关系,并说明理由.结论:∠AED=∠4.理由:∵∠1+∠BDF=180°(),∠1+∠2=180°(已知)∴∠2=∠BDF.()∴EF∥AB.()∴∠3=∠ADE.()∵∠3=∠B,(已知)∴∠B=.∴DE∥BC.()∴∠AED=∠ACB.()又∵∠ACB=∠4,()∴∠AED=∠4.9.如图,AB∥CD,点E、F分别在直线AB、CD上,点O在直线AB、CD之间,∠EOF =100°.(1)求∠BEO+∠DFO的值;(2)如图2,直线MN交∠BEO、∠CFO的角平分线分别于点M、N,求∠EMN﹣∠FNM的值;(3)如图3,EG在∠AEO内,∠AEG=n∠OEG,FK在∠DFO内,∠DFK=n∠OFK.直线MN交FK、EG分别于点M、N,若∠FMN﹣∠ENM=50°,则n的值是.10.如图,已知AF分别与BD、CE交于点G、H,∠1=55°,∠2=125°.若∠A=∠F,求证:∠C=∠D.下面是某同学根据已知条件推断∠C=∠D的过程,请在括号中补充理由.证明:因为∠2+∠AHC=180°(互为邻补角),所以∠AHC=180°﹣∠2=180°﹣125°=55°.所以∠AHC=∠1=55°.所以BD∥CE().所以∠ABD=∠C().因为∠A=∠F(已知),所以AC∥DF().所以().所以∠C=∠D(等量代换).参考答案1.解:(1)∵BC∥ED,∠B=44°,∴∠DAB=∠B=44°,∵∠BAC=180°﹣∠DAB﹣∠EAC∴∠BAC=180°﹣44°﹣57°=79°.(2)过点A作MN∥BG,∴∠ACG=∠MAC,∠ABC=∠MAB而∠MAC=∠MAB+∠BAC∴∠ACG=∠MAB+∠BAC=∠ABC+∠BAC.(3)如图,设AC与FH交于点P∵FH平分∠AFE,CH平分∠ACG∴∠AFH=∠EFH=∠AFE,∠ACH=∠HCG=∠ACG ∵BC∥ED∴∠AFE=∠B∴∠AFH=∠B∵∠A+∠B=∠ACG∴∠ACH=∠ACG=∠A+∠B在△APF和△CPH中∵∠APF=∠CPH∴∠A+∠B=∠A+∠B+∠FHC∴∠FHC=∠A∵∠FCH=2∠A﹣60°∴∠A=2∠A﹣60°∴∠A=40°.2.解:(1)∵AM∥BN,∠A=80°,∴∠ABN=100°,∵BC,BD分别平分∠ABP和∠PBN,∴∠CBD=∠CBP+∠DBP=∠ABP+∠NBP=∠ABN=50°.故答案为:100°,50°;(2)∵AD∥BN,∴∠ACB=∠CBN,又∵∠ACB=∠ABD,∴∠CBN=∠ABD,∴∠ABC=∠DBN,由(1)可得,∠CBD=50°,∠ABN=100°,∴∠ABC=×(100°﹣50°)=25°;(3)不变化,∠APB=2∠ADB,证明:∵AM∥BN,∴∠APB=∠PBN,∠ADB=∠DBN,又∵BD平分∠PBN,∴∠PBN=2∠DBN,∴∠APB=2∠ADB.3.解:(1)作PG∥AB,如图①所示:则PG∥CD,∴∠PFD=∠1,∠2=∠AEM,∵∠1+∠2=∠P=90°,∴∠PFD+∠AEM=∠1+∠2=90°,故答案为:∠PFD+∠AEM=90°;(2)证明:如图②所示:∵AB∥CD,∴∠PFD+∠BHF=180°,∵∠P=90°,∴∠BHF+∠2=90°,∵∠2=∠AEM,∴∠BHF=∠PHE=90°﹣∠AEM,∴∠PFD+90°﹣∠AEM=180°,∴∠PFD﹣∠AEM=90°,故答案为∠PFD﹣∠AEM=90°;(3)如图③所示:∵∠P=90°,∴∠PHE=90°﹣∠FEB=90°﹣15°=75°,∵AB∥CD,∴∠PFC=∠PHE=75°,∵∠PFC=∠N+∠DON,∴∠N=75°﹣30°=45°.4.解:(1)∵∠DOE+∠EOF+∠AOF=∠AOD=150°且∠EOF=30°,∴∠DOE+∠AOF=∠150°﹣30°=120°;(2)根据补角的定义可知图中与∠BOC互补的角有∠BOD、∠AOC、∠EOF;(3)∠AOF=∠EOF,理由如下:∵OM平分∠AOD,∴∠DOM=∠AOM,∴∠AOF=∠AOM﹣∠FOM=∠DOM﹣∠FOM=∠EOD﹣∠MOE﹣∠FOM=2∠FOM﹣∠MOE﹣∠FOM=∠FOM﹣∠MOE=∠EOF,∴∠AOF=∠EOF.5.解:(1)如图1所示:∵AC∥BD,∴∠D=∠DAE,又∵∠C=∠D,∴∠DAE=∠C,∴AD∥BC;(2)①如图2所示:∵BD⊥BC,∴∠HBC=90°,∴∠C+∠BHC=90°,又∵∠BHC=∠DAE+∠D,∠C=∠D,∠DAE=20°,∴20°+2∠C=90°,∴∠C=35°;②如图3所示:∵BF∥AD,∴∠D=∠DBF,又∵∠C=∠D,∴∠C=∠D=∠DBF,又∵BD⊥BC,∴∠DBC=90°,又∵∠D+∠DBA+∠BAD=180°,∠C+∠CBA+∠BAC=180°.∠BAC=∠BAD,∴∠DBA=∠CBA=45°,又∵∠EFB=7∠DBF,∠EFB=∠FBC+∠C,∴7∠DBF=2∠DBF+∠DBC,解得:∠DBF=18°,∴∠BAD=180°﹣45°﹣18°=117°.6.解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),又∵∠1=∠2(已知),∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行)∴∠BAC+∠AGD=180°(两直线平行,同旁内角互补)∵∠BAC=70°,∴∠AGD=110°.故答案为:∠3;DG;内错角相等,两直线平行;∠AGD;两直线平行,同旁内角互补.7.解:(1)由CF∥BE,得到∠FCB=∠EBC,依据的是平行线的性质:两直线平行,内错角相等.故答案为:两直线平行,内错角相等;∠FCB=∠EBC,(2)∵AB∥CD,∴∠DCB=∠ABC.∵CF平分∠DCB,BE平分∠ABC,∴∠DCB=2∠DCF,∠ABC=2∠ABE.∴∠ABE=∠DCF.8.解:∵∠1+∠BDF=180°(邻补角的定义),∠1+∠2=180°(已知)∴∠2=∠BDF.(同角的补角相等)∴EF∥AB.(内错角相等,两直线平行)∴∠3=∠ADE.(两直线平行,内错角相等)∵∠3=∠B,(已知)∴∠B=∠ADE.∴DE∥BC.(同位角相等,两直线平行)∴∠AED=∠ACB.(两直线平行,同位角相等)又∵∠ACB=∠4,(对顶角相等)∴∠AED=∠4.故答案为:邻补角的定义;同角的补角相等;内错角相等,两直线平行;两直线平行,内错角相等;∠ADE;同位角相等,两直线平行;两直线平行,同位角相等;对顶角相等.9.(1)证明:过点O作OG∥AB,∵AB∥CD,∴AB∥OG∥CD,∴∠BEO+∠EOG=180°,∠DFO+∠FOG=180°,∴∠BEO+∠EOG+∠DFO+∠FOG=360°,即∠BEO+∠EOF+∠DFO=360°,∵∠EOF=100°,∴∠BEO+∠DFO=260°;(2)解:过点M作MK∥AB,过点N作NH∥CD,∵EM平分∠BEO,FN平分∠CFO,设∠BEM=∠OEM=x,∠CFN=∠OFN=y,∵∠BEO+∠DFO=260°∴∠BEO+∠DFO=2x+180°﹣2y=260°,∴x﹣y=40°,∵MK∥AB,NH∥CD,AB∥CD,∴AB∥MK∥NH∥CD,∴∠EMK=∠BEM=x,∠HNF=∠CFN=y,∠KMN=∠HNM,∴∠EMN+∠FNM=∠EMK+∠KMN﹣(∠HNM+∠HNF)=x+∠KMN﹣∠HNM﹣y=x﹣y=40°,故∠EMN﹣∠FNM的值为40°;(3)如图,设直线FK与EG交于点H,FK与AB交于点K,∵AB∥CD,∴∠AKF=∠KFD,∵∠AKF=∠∠EHK+∠HEK=∠EHK+∠AEG,∴∠KFD=∠EHK+∠AEG,∵∠EHK=∠NMF﹣∠ENM=50°,∴∠KFD=50°+∠AEG,即∠KFD﹣∠AEG=50°,∵∠AEG=n∠OEG,FK在∠DFO内,∠DFK=n∠OFK.∴∠CFO=180°﹣∠DFK﹣∠OFK=180°﹣∠KFD﹣∠KFD,∠AEO=∠AEG+∠OEG=∠AEG+∠AEG,∵∠BEO+∠DFO=260°,∴∠AEO+∠CFO=100°,∴∠AEG+∠AEG+180°﹣∠KFD﹣∠KFD=100°,即,∴,解得n=.故答案为.10.解:因为∠2+∠AHC=180°,所以∠AHC=180°﹣∠2=180°﹣125°=55°,所以∠AHC=∠1=55°,所以BD∥CE(同位角相等,两直线平行),所以∠ABD=∠C(两直线平行,同位角相等),因为∠A=∠F(已知),所以AC∥DF(内错角相等,两直线平行),所以∠ABD=∠D(两直线平行,内错角相等),所以∠C=∠D(等量代换);故答案为:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行;∠ABD=∠D;两直线平行,内错角相等.。
相交线与平行线单元测试-2020-2021学年七年级数学下册尖子生同步培优题典(解析版)【人教版】
2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题5.11第5章相交线与平行线单元测试(培优卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020春•荔湾区校级月考)下列图形中,∠1和∠2不是同位角的是()A.B.C.D.【分析】利用同位角定义进行解答即可.【解析】A、∠1和∠2是同位角,故此选项不合题意;B、∠1和∠2是同位角,故此选项不合题意;C、∠1和∠2不是同位角,故此选项符合题意;D、∠1和∠2是同位角,故此选项不合题意;故选:C.2.(2020秋•肇源县期末)如图,点P是直线a外一点,A,B,C,D都在直线上,PB⊥α于B,下列线段最短的是()A.P A B.PC C.PB D.PD【分析】根据垂线段的性质,可得答案.【解析】由题意,得点P是直线a外一点,A,B,C,D都在直线上,PB⊥α于B,下列线段最短的是PB,故选:C.3.(2020秋•长春期末)如图,直线AB、CD相交于点O,OE平分∠BOC.若∠BOD:∠BOE=1:2,则∠AOE的大小为()A.72°B.98°C.100°D.108°【分析】根据角平分线的定义得到∠COE=∠BOE,根据邻补角的定义列出方程,解方程求出∠BOD,根据对顶角相等求出∠OAC,结合图形计算,得到答案.【解析】设∠BOD=x,∵∠BOD:∠BOE=1:2,∴∠BOE=2x,∵OE平分∠BOC,∴∠COE=∠BOE=2x,∴x+2x+2x=180°,解得,x=36°,即∠BOD=36°,∠COE=72°,∴∠OAC=∠BOD=36°,∴∠AOE=∠COE+∠AOC=108°,故选:D.4.(2020秋•宽城区期末)如图,AB和CD相交于点O,则下列结论正确的是()A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5【分析】根据对顶角、平行线的性质判断即可.【解析】A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.5.(2020春•瀍河区校级期中)如图,将三角形ABE向右平移1cm得到三角形DCF,如果三角形ABE的周长是10cm,那么四边形ABFD的周长是()A.12cm B.16cm C.18cm D.20cm【分析】利用平移变换的性质解决问题即可.【解析】∵△ABE的周长=AB+BE+AE=10(cm),由平移的性质可知,BC=AD=EF=1(cm),AE=DF,∴四边形ABFD的周长=AB+BE+EF+DF+AD=10+1+1=12(cm).故选:A.6.(2020秋•香坊区期末)下列命题为假命题的是()A.对顶角相等B.如果AB⊥CD,垂足为O,那么∠AOC=90°C.经过一点,有且只有一条直线与这条直线平行D.两直线平行,同位角相等【分析】根据对顶角、垂直的定义、平行公理、平行线的性质判断即可.【解析】A、对顶角相等,是真命题;B、如果AB⊥CD,垂足为O,那么∠AOC=90°,是真命题;C、∵经过直线外一点,有且只有一条直线与这条直线平行,∴本选项说法是假命题;D、两直线平行,同位角相等,是真命题;故选:C.7.(2019秋•南海区期末)下列命题为真命题的是()A.两个锐角之和一定是钝角B.两直线平行,同旁内角相等C.如果x2>0,那么x>0D.平行于同一条直线的两条直线平行【分析】根据锐角的定义、平行线的性质、有理数的乘方法则、平行公理判断.【解析】A、20°和30°都是锐角,20°+30°=50°,50°是锐角,∴两个锐角之和一定是钝角,是假命题;B、两直线平行,同旁内角互补,不一定相等,∴两直线平行,同旁内角相等,是假命题;C、(﹣1)2>0,﹣1<0,∴如果x2>0,那么x>0,是假命题;D、平行于同一条直线的两条直线平行,是真命题;故选:D.8.(2020秋•南关区期末)如图,直线AB∥CD∥EF,点O在直线EF上,下列结论正确的是()A.∠α+∠β﹣∠γ=90°B.∠α+∠γ﹣∠β=180°C.∠γ+∠β﹣∠α=180°D.∠α+∠β+∠γ=180°【分析】根据平行线的性质得出∠α=∠BOF,∠γ+∠COF=180°,进而利用角的关系解答即可.【解析】∵AB∥EF,∴∠α=∠BOF,∵CD∥EF,∴∠γ+∠COF=180°,∵∠BOF=∠COF+∠β,∴∠γ+∠α﹣∠β=180°,故选:B.9.(2020春•老城区校级月考)如图,点E在AC的延长线上,对于给出的四个条件:(1)∠3=∠4;(2)∠1=∠2;(3)∠A=∠DCE;(4)∠D+∠ABD=180°.能判断AB∥CD的有()个.A.1个B.2个C.3个D.4个【分析】根据平行线的判定判断即可.【解析】(1)∵∠3=∠4,∴BD∥AC;(2)∵∠1=∠2,∴AB∥CD;(3)∵∠A=∠DCE,∴AB∥CD;(4)∵∠D+∠ABD=180°,∴AB∥CD,故选:C.10.(2019秋•昌平区校级期末)一副直角三角尺叠放如图1所示,现将45°的三角尺ADE固定不动,将含30°的三角尺ABC绕顶点A顺时针转动,使两块三角尺至少有一组边互相平行,如图2,当∠BAD=15°时,BC∥DE,则∠BAD(0°<∠BAD<180°)其它所有可能符合条件的度数为()A.60°和135°B.45°、60°、105°和135°C.30°和45°D.以上都有可能【分析】根据题意画出图形,再由平行线的判定定理即可得出结论.【解析】如图,当AC∥DE时,∠BAD=∠DAE=45°;当BC∥AD时,∠DAB=∠B=60°;当BC∥AE时,∵∠EAB=∠B=60°,∴∠BAD=∠DAE+∠EAB=45°+60°=105°;当AB∥DE时,∵∠E=∠EAB=90°,∴∠BAD=∠DAE+∠EAB=45°+90°=135°.故选:B.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020春•邳州市期中)如图,两块三角板形状、大小完全相同,边AB∥CD的依据是内错角相等两直线平行.【分析】利用平行线的判定方法即可解决问题.【解析】由题意:∵∠ABD=∠CDB,∴AB∥CD(内错角相等两直线平行)故答案为:内错角相等两直线平行.12.(2020春•莱州市期末)如图,点E是AD延长线上一点,∠B=30°,∠C=120°.如果添加一个条件,使BC∥AD,则可添加的条件为∠1=30°或∠2=120°.(只填一个即可)【分析】根据平行线的判定即可解决问题.【解析】可以添加:∠1=30°或∠C=120°即可.理由:∵∠1=30°,∠B=30°,∴∠B=∠1,∴BC∥AE.∵∠C=∠2=120°,∴BC∥AE.故答案为:∠1=30°或∠2=120°.13.(2020春•齐齐哈尔期末)如图,已知∠1=(3x+24)°,∠2=(5x+20)°,要使m∥n,那么∠1=75(度).【分析】直接利用邻补角的定义结合平行线的性质得出答案.【解析】如图所示:∠1+∠3=180°,∵m∥n,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180°,解得:x=17,则∠1=(3x+24)°=75°.故答案为:75.14.(2020春•夏邑县期末)将一块三角板ABC(∠BAC=90°,∠ABC=30°)按如图方式放置,使A,B 两点分别落在直线m,n上.对于给出的四个条件:①∠1=25.5°,∠2=55°30';②∠2=2∠1;③∠1+∠2=90°;④∠ACB=∠1+∠2;⑤∠ABC=∠2﹣∠1.能判断直线m∥n的有①⑤.(填序号)【分析】根据平行线的判定解答即可.【解析】①∵∠1=25.5°+∠ABC=55.5°=∠2=55°30',所以,m∥n;②没有指明∠1的度数,当∠1≠30°,∠2≠∠1+30°,不能判断直线m∥n,故∠2=2∠1,不能判断直线m∥n;③∠1+∠2=90°,不能判断直线m∥n;④∠ACB=∠1+∠2,不能判断直线m∥n;⑤∠ABC=∠2﹣∠1,判断直线m∥n;故答案为:①⑤15.(2020春•江都区期中)一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=30°或150°时,CD∥AB.【分析】分两种情况,根据CD∥AB,利用平行线的性质,即可得到∠BAD的度数.【解析】如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.16.(2020春•天宁区校级期中)如图,将长为5cm,宽为3cm的长方形ABCD先向右平移2cm,再向下平移1cm,得到长方形A'B'C'D',则阴影部分的面积为6cm2.【分析】利用平移的性质求出阴影部分矩形的长,宽即可解决问题.【解析】由题意,阴影部分是矩形,长为5﹣2=3(cm),宽为3﹣1=2(cm),∴阴影部分的面积=2×3=6(cm2),故答案为6.17.(2019秋•卫辉市期末)如图,∠AOC为平角,已知OE平分∠AOB,OF平分∠BOC,AC与DF相交于点O,∠AOD=25°,则∠BOE的度数为65°.【分析】根据角平分线的意义,平角的定义可求出∠EOB+∠BOF=90°,由对顶角相等,求出∠BOF=25°,进而求出答案.【解析】∵OE平分∠AOB,OF平分∠BOC,∴∠AOE=∠EOB=12∠AOB,∠COF=∠BOF=12∠BOC,∵∠AOC为平角,∴∠AOB+∠BOC=180°∴∠EOB+∠BOF=∠EOF=90°∵∠AOD=25°=∠COF,∴∠BOE=90°﹣25°=65°,故答案为:65°.18.(2018秋•二道区期末)直线AB与射线OC相交于点O,OC⊥OD于O,若∠AOC=60°,则∠BOD =30或150度.【分析】根据题意画出图形,由OC⊥OD,∠AOC=60°,利用垂直的定义易得∠AOD,再利用补角的定义可得结果.【解析】根据题意画图如下,情况一:如图1,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD﹣∠AOC=90﹣60°=30°,∴∠COD=180°﹣∠AOD=180°﹣30°=150°;情况二:如图2,∵OC⊥OD,∠AOC=60°,∴∠AOD=∠COD+∠AOC=90°+60°=150°,∴∠COD=180°﹣∠AOD=180°﹣150°=30°,故答案为:150或30.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•南岗区期中)如图,将△ABC,向右平移4个格子,再向下平移2个格子.(1)请你画出经过两次平移后的△DEF(A与D、B与E、C与F对应);(2)若每个小正方形的边长为1个单位长度,连接BE和CE,请你求出△BCE的面积.【分析】(1)如图,分别作出A,B,C的对应点D,E,F即可.(2)利用三角形的面积公式计算即可.【解析】(1)如图,△DEF即为所求.(2)S△BCE=12×2×2=2.20.(2020秋•法库县期末)如图,直线AB与CD相交于点O,∠AOM=90°.(1)如图1,若OC平分∠AOM,求∠AOD的度数;(2)如图2,若∠BOC=4∠NOB,且OM平分∠NOC,求∠MON的度数.【分析】(1)根据角平分线的定义求出∠AOC=45°,然后根据邻补角的定义求解即可;(2)设∠NOB=x°,∠BOC=4x°,根据角平分线的定义表示出∠COM=∠MON=12∠CON,再根据∠BOM列出方程求解x,然后求解即可.【解答】解(1)∵∠AOM=90°,OC平分∠AOM,∴∠AOC=12∠AOM=12×90°=45°,∵∠AOC+∠AOD=180°,∴∠AOD=180°﹣∠AOC=180°﹣45°=135°,即∠AOD的度数为135°;(2)∵∠BOC=4∠NOB∴设∠NOB=x°,∠BOC=4x°,∴∠CON=∠COB﹣∠BON=4x°﹣x°=3x°,∵OM平分∠CON,∴∠COM=∠MON=12∠CON=32x°,∵∠BOM=32x+x=90°,∴x=36°,∴∠MON=32x°=32×36°=54°,即∠MON的度数为54°.21.(2020春•赣州期中)MF⊥NF于F,MF交AB于点E,NF交CD于点G,∠1=140°,∠2=50°,试判断AB和CD的位置关系,并说明理由.【分析】延长MF交CD于点H,利用平行线的判定证明.【解析】延长MF交CD于点H,∵∠1=90°+∠CHF,∠1=140°,∠2=50°,∴∠CHF=140°﹣90°=50°,∴∠CHF=∠2,∴AB∥CD.22.(2020春•荔湾区校级月考)已知:如图,EF平分∠DEB,AC∥DE,CD∥EF,请证明:CD平分∠ACB.【分析】由AC∥DE知∠ACD=∠CDE,由CD∥EF知∠DCB=∠FEB,∠CDE=∠DEF,据此得∠ACD =∠DEF,再由EF平分∠DEB知∠DEF=∠FEB,从而得∠ACD=∠DCB,即可得证.【解析】∵AC∥DE,∴∠ACD=∠CDE,∵CD∥EF,∴∠DCB=∠FEB,∠CDE=∠DEF,∴∠ACD=∠DEF,又∵EF平分∠DEB,∴∠DEF=∠FEB,∴∠ACD=∠DCB,∴CD平分∠ACB.23.(2020春•天河区校级期中)如图,已知AD∥EF,∠2=50°.(1)求∠3的度数;(2)若∠1=∠2,问:DG∥BA吗?请说明理由;(3)若∠1=∠2,且∠DAG=20°,求∠AGD的度数.【分析】(1)根据AD∥EF,可得同位角相等即可得∠3的度数;(2)根据平行线的性质和∠1=∠2,即可证明DG∥BA;(3)根据平行线的性质和∠1=∠2,∠DAG=20°,即可求∠AGD的度数.【解析】(1)∵AD∥EF,∴∠3=∠2=50°;(2)DG∥BA,理由如下:∵∠1=∠2,∠3=∠2,∴∠3=∠1,∴DG∥BA;(3)∵∠1=∠2=50°,∠3=∠2,∴∠3=∠1=50°,∴DG∥BA,∴∠AGD=∠CAB,∵∠CAB=∠DAG+∠3=20°+50°=70°,∴∠AGD=∠CAB=70°.24.(2019秋•历城区期末)已知直线AB和CD交于O,∠AOC的度数为x,∠BOE=90°,OF平分∠AOD.(1)当x =20°时,则∠EOC = 70 度;∠FOD = 80 度.(2)当x =60°时,射线OE ′从OE 开始以10°/秒的速度绕点O 逆时针转动,同时射线OF ′从OF 开始以8°/秒的速度绕点O 顺时针转动,当射线OE ′转动一周时射线OF ′也停止转动,求至少经过多少秒射线OE ′与射线OF ′重合?(3)在(2)的条件下,射线OE ′在转动一周的过程中,当∠E ′OF ′=90°时,请直接写出射线OE ′转动的时间.【分析】(1)利用互余和互补的定义可得:∠EOC 与∠FOD 的度数.(2)先根据x =60°,求∠EOF =150°,则射线OE '、OF '第一次重合时,其OE '运动的度数+OF '运动的度数=150,列式解出即可;(3)分两种情况:在直线OE 的左边和右边,根据其夹角列4个方程可得时间. 【解析】(1)∵∠BOE =90°, ∴∠AOE =90°, ∵∠AOC =x =20°,∴∠EOC =90°﹣20°=70°, ∠AOD =180°﹣20°=160°, ∵OF 平分∠AOD , ∴∠FOD =12∠AOD =12×160°=80°; 故答案为:70,80;(2)当x =60°,∠EOF =90°+60°=150° 设当射线OE '与射线OF '重合时至少需要t 秒, 10t +8t =150, t =253,答:当射线OE '与射线OF '重合时至少需要253秒;(3)设射线OE'转动的时间为t秒,由题意得:10t+90+8t=150或10t+8t=150+90或360﹣10t=8t﹣150+90或360﹣10t+360﹣8t+90=360﹣150,t=103或403或703或1003.答:射线OE'转动的时间为103秒或403秒或703秒或1003秒.25.(2020秋•南岗区期中)如图,AE平分∠BAC,∠CAE=∠CEA.(1)如图1,求证:AB∥CD;(2)如图2,点F为线段AC上一点,连接EF,求证:∠BAF+∠AFE+∠DEF=360°;(3)如图3,在(2)的条件下,在射线AB上取点G,连接EG,使得∠GEF=∠C,当∠AEF=35°,∠GED=2∠GEF时,求∠C的度数.【分析】(1)根据角平分线的定义得出∠BAE=∠CAE,求出∠CEA=∠BAE,根据平行线的判定得出即可;(2)过F作FM∥AB,求出AB∥FM∥CD,根据平行线的性质得出∠BAF+∠AFE=180°,∠DEF+∠EFM=180°,即可求出答案;(3)设∠GEF=∠C=x°,求出∠GED=2x°,根据平行线的性质得出∠BAC=180°﹣x°,根据角平分线的定义得出∠BAE=12∠BAC=90°−12x°,根据平行线的性质得出∠BAE+∠AED=180°,得出方程90−12x+x﹣35+2x=180,求出x即可.【解答】(1)证明:∵AE平分∠BAC,∴∠BAE=∠CAE,∵∠CAE=∠CEA,∴∠CEA=∠BAE,∴AB∥CD;(2)证明:过F作FM∥AB,如图,∵AB∥CD,∴AB∥FM∥CD,∴∠BAF+∠AFE=180°,∠DEF+∠EFM=180°,∴∠BAF+∠AFM+∠DEF+∠EFM=360°,即∠BAF+∠AFE+∠DEF=360°;(3)解:设∠GEF=∠C=x°,∵∠GEF=∠C,∠GED=2∠GEF,∴∠GED=2x°,∵AB∥CD,∴∠C+∠BAC=180°,∴∠BAC=180°﹣x°,∵AE平分∠BAC,∴∠BAE=12∠BAC=12(180°﹣x°)=90°−12x°,由(1)知:AB∥CD,∴∠BAE+∠AED=180°,∵∠AEF=35°,∴90−12x+x﹣35+2x=180,解得:x=50,即∠C=50°.26.(2020春•武昌区期末)如图1,AB∥CD,点E在AB上,点H在CD上,点F在直线AB,CD之间,连接EF,FH,∠AEF+∠CHF=73∠EFH.(1)直接写出∠EFH的度数为108°;(2)如图2,HM平分∠CHF,交FE的延长线于点M,证明:∠FHD﹣2∠FMH=36°;(3)如图3,点P在FE的延长线上,点K在AB上,点N在∠PEB内,连NE,NK,NK∥FH,∠PEN =2∠NEB,则2∠FHD﹣3∠ENK的值为72°.【分析】(1)证明∠DHF=∠HFM,则∠AEF+∠CHF+∠EFH=360°,而∠AEF+∠CHF=73∠EFH,即可求解;(2)∠3=∠EFH﹣∠F′FH=108°﹣∠FHD,则∠M′MF=∠3=108°﹣∠FHD,而∠1=∠2,则∠1=180°−∠FHD2,进而求解;(3)证明∠1+∠2=252°,则3α﹣∠4=72°,即可求解.【解析】(1)过点F作MN∥AB,如图1所示:则∠BEF=∠EFM,∵AB∥CD,∴MN∥CD,∴∠DHF=∠HFM,∴∠AEF+∠CHF+∠EFH=360°,∵∠AEF+∠CHF=73∠EFH,故∠EFH=108°,故答案为108°;(2)过点F作FF′∥AB,过点M作MM′∥AB.∵AB∥CD,∴FF′∥MM′∥AB∥CD,∴∠F′FH=∠FHD,∴∠3=∠EFH﹣∠F′FH=108°﹣∠FHD,∴∠M′MF=∠3=108°﹣∠FHD,∵∠1=∠2,∴∠1=180°−∠FHD2,∵MM′∥CD,∴∠M′MH=∠1,∴∠FMH+108°﹣∠FHD=180°−∠FHD2,∴∠FHD﹣2∠FMH=36°;(3)延长NK交CD于点R,∵∠AEF+∠CHF=73∠EFH,即∠1+∠2=73∠3,而∠1+∠2+∠3=360°,故∠1+∠2=252°,设∠NEB=α,则∠PEN=2∠NEB=2α,则∠1=∠PEB=3α,而∠2=180°﹣∠4,故3α﹣∠4=72°,则2∠FHD﹣3∠ENK=2∠4﹣3(∠NKB﹣∠NEB)=2∠4﹣3(∠4﹣α)=3α﹣∠4=72°,故答案为72°.。
人教版初一数学7年级下册 第5章(相交线与平行线)尖子生培养测试卷(含解析)
七年级下册第5章《相交线与平行线》尖子生培养测试卷一.选择题1.如图,下列能判断AB∥CD的条件有( )①∠B+∠BCD=180°;②∠1=∠2;③∠3=∠4;④∠D=∠5.A.①②B.②③C.①③D.②④2.下列语句正确的是( )A.60°角的余角是120°B.平面内,过一点有且只有一条直线与已知直线垂直C.不相交的两条直线叫平行线D.同旁内角互补3.下列四个图形中,∠1=∠2一定成立的是( )A.B.C.D.4.如图,AB∥CD,∠A=30°,∠F=40°,则∠C=( )A.65°B.70°C.75°D.80°5.将一把直尺和一块含30°角的三角板ABC按如图所示的位置放置,如果∠CED=46°,那么∠BAF的度数为( )A.48°B.16°C.14°D.32°6.已知,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1+∠B=64°,则∠2的度数为( )A.20°B.26°C.30°D.35°7.如图,P是直线l外一点,从点P向直线l引PA,PB,PC,PD几条线段,其中只有PB 与l垂直,这几条线段中长度最短的是( )A.PA B.PB C.PC D.PD8.如图,要测量两堵围墙形成的∠AOB的度数,但人不能进入围墙,可先延长BO得到∠AOC,然后测量∠AOC的度数,再计算出∠AOB的度数,其中依据的原理是( )A.同角的补角相等B.同角的余角相等C.等角的余角相等D.两点之间线段最短9.如图,直线AB∥CD,AE⊥CE,∠1=125°,则∠C等于( )A.35°B.45°C.50°D.55°10.如图,直线AB,CD相交于点O,射线OM平分∠BOD,若∠BOD=42°,则∠AOM 等于( )A.138°B.148°C.159°D.169°11.如图,AB和CD相交于点O,则下列结论正确的是( )A.∠1=∠2B.∠2=∠3C.∠3=∠4D.∠1=∠5 12.如图,下列条件:①∠1=∠2,②∠3+∠4=180°,③∠5+∠6=180°,④∠2=∠3,⑤∠7=∠2+∠3,⑥∠7+∠4﹣∠1=180°中能判断直线a∥b的有( )A.3个B.4个C.5个D.6个二.填空题13.命题“到线段两个端点距离相等的点在这条线段的垂直平分线上”,它的逆命题是 .14.如图,直线AC和直线BD相交于点O,OE平分∠BOC,若∠1+∠2=80°,则∠3的度数为 °.15.如图,AB∥CD,∠A=25°,∠C=70°,则∠E= .16.如图:AB∥CD,AE⊥CE,∠EAF=∠EAB,∠ECF=∠ECD,则∠AFC = .三.解答题17.如图,已知∠1+∠2=180°,∠3=∠B.(1)试判断DE与BC的位置关系,并说明理由.(2)若DE平分∠ADC,∠2=3∠B,求∠1的度数.18.已知,点O在直线AB上,在直线AB外取一点C,画射线OC,OD平分∠BOC.射线OE在直线AB上方,且OE⊥OD于O.(1)如图1,如果点C在直线AB上方,且∠BOC=30°,①依题意补全图1;②求∠AOE的度数(0°<∠AOE<180°);(2)如果点C在直线AB外,且∠BOC=α,请直接写出∠AOE的度数.(用含α的代数式表示,且0°<∠AOE<180°)19.已知:直线AB与直线CD交于点O,过点O作OE⊥CD.(1)如图1,若∠AOE=2∠AOC,求∠BOE的度数;(2)如图2,过点O画直线FG满足射线OF在∠EOD内部,且使∠AOC=2∠EOF,在不添加任何辅助线的情况下,请直接写出与∠EOF互余的角.20.阅读下面材料:小亮同学遇到这样一个问题:已知:如图甲,AB∥CD,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D.(1)小亮写出了该问题的证明,请你帮他把证明过程补充完整.证明:过点E作EF∥AB,则有∠BEF= .∵AB∥CD,∴ ∥ ,∴∠FED= .∴∠BED=∠BEF+∠FED=∠B+∠D.(2)请你参考小亮思考问题的方法,解决问题:如图乙,已知:直线a∥b,点A,B在直线a上,点C,D在直线b上,连接AD,BC,BE平分∠ABC,DE平分∠ADC,且BE,DE所在的直线交于点E.①如图1,当点B在点A的左侧时,若∠ABC=60°,∠ADC=70°,求∠BED的度数;②如图2,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BED的度数(用含有α,β的式子表示).参考答案一.选择1.解:∵∠B+∠BCD=180°,∴AB∥CD,故①符合题意;∵∠1=∠2,∴AD∥BC,故②不符合题意;∵∠3=∠4,∴AB∥CD,故③符合题意;∵∠D=∠5,∴AD∥BC,故④不符合题意;故选:C.2.解:A、60°角的余角是30°,不合题意;B、平面内,过一点有且只有一条直线与已知直线垂直,符合题意;C、在同一平面内,不相交的两条直线叫平行线,不合题意;D、同旁内角不一定互补,不合题意.故选:B.3.解:A、∠1与∠2是邻补角,不一定相等,本选项不符合题意;B、∵∠2是三角形的一个外角,∴∠2>∠1,本选项不符合题意;C、∵∠1与∠2是对顶角,∴∠1=∠2,本选项符合题意;D、∠1与∠2不一定相等,本选项不符合题意;故选:C.4.解:∵∠A=30°,∠F=40°,∴∠FEB=∠A+∠F=30°+40°=70°,∵AB∥CD,∴∠C=∠FEB=70°,故选:B.5.解:∵DE∥AF,∴∠CED=∠EAF=46°,∵∠BAC=90°﹣30°=60°,∴∠BAF=∠BAC﹣∠EAF=60°﹣46°=14°,故选:C.6.解:∵∠1+∠B=64°,∴∠3=∠1+∠B=64°,∵a∥b,∴∠3+∠ACD+∠2=180°,∴∠2=180°﹣∠ACD﹣∠3=180°﹣90°﹣64°=26°,故选:B.7.解:直线外一点P与直线l上各点连接的所有线段中,最短的是PB,依据是垂线段最短,故选:B.8.解:如图,由题意得,∠AOC+∠AOB=180°,即∠AOC与∠AOB互补,因此量出∠AOC的度数,即可求出∠AOC的补角,根据同角的补角相等得出∠AOB的度数,故选:A.9.解:过点E作EF∥AB,则EF∥CD,如图所示.∵EF∥AB,∴∠BAE=∠AEF.∵EF∥CD,∴∠C=∠CEF.∵AE⊥CE,∴∠AEC=90°,即∠AEF+∠CEF=90°,∴∠BAE+∠C=90°.∵∠1=125°,∠1+∠BAE=180°,∴∠BAE=180°﹣125°=55°,∴∠C=90°﹣55°=35°.故选:A.10.解:∵OM平分∠BOD,∠BOD=42°,∴∠BOM=∠BOD=×42°=21°,∴∠AOM=180°﹣∠BOM=159°,故选:C.11.解:A、∵∠1与∠2是对顶角,∴∠1=∠2,本选项说法正确;B、∵AD与AB不平行,∴∠2≠∠3,本选项说法错误;C、∵AD与CB不平行,∴∠3≠∠4,本选项说法错误;D、∵CD与CB不平行,∴∠1≠∠5,本选项说法错误;故选:A.12.解:①由∠1=∠2,可得a∥b;②由∠3+∠4=180°,可得a∥b;③由∠5+∠6=180°,∠3+∠6=180°,可得∠5=∠3,即可得到a∥b;④由∠2=∠3,不能得到a∥b;⑤由∠7=∠2+∠3,∠7=∠1+∠3可得∠1=∠2,即可得到a∥b;⑥由∠7+∠4﹣∠1=180°,∠7﹣∠1=∠3,可得∠3+∠4=180°,即可得到a∥b;故选:C.二.填空题(共4小题)13.解:逆命题是:线段垂直平分线上的任意一点到这条线段两个端点的距离相等,故答案为线段垂直平分线上的任意一点到这条线段两个端点的距离相等.14.解:∵∠1=∠2,∠1+∠2=80°,∴∠1=∠2=40°,∴∠BOC=180°﹣∠1=140°,又∵OE平分∠BOC,∴∠3=×140°=70°.故答案为:70.15.解:∵AB∥CD,∴∠1=∠C=70°,∴∠E=∠1﹣∠A=70°﹣25°=45°,故答案为:45°.16.解:连接AC,设∠EAF=x,∠ECF=y,∠EAB=3x,∠ECD=3y,∵AB∥CD,∴∠BAC+∠ACD=180°,∴∠CAE+3x+∠ACE+3y=180°,∴∠CAE+∠ACE=180°﹣(3x+3y),∠FAC+∠FCA=180°﹣(2x+2y)∴∠AEC=180°﹣(∠CAE+∠ACE)=180°﹣[180°﹣(3x+3y)]=3x+3y=3(x+y),∠AFC=180°﹣(∠FAC+∠FCA)=180°﹣[180°﹣(2x+2y)]=2x+2y=2(x+y),∵AE⊥CE,∴∠AEC=90°,∴∠AFC=∠AEC=×90°=60°.故答案为:60°.三.解答题(共4小题)17.解:(1)DE∥BC,理由如下:∵∠1+∠4=180°,∠1+∠2=180°,∴∠2=∠4,∴AB∥EF,∴∠3=∠5,∵∠3=∠B,∴∠5=∠B,∴DE∥BC,(2)∵DE平分∠ADC,∴∠5=∠6,∵DE∥BC,∴∠5=∠B,∵∠2=3∠B,∴∠2+∠5+∠6=3∠B+∠B+∠B=180°,∴∠B=36°,∴∠2=108°,∵∠1+∠2=180°,∴∠1=72°.18.解:(1)①如图所示:②∵∠BOC=30°,OD平分∠BOC,∴∠BOD=∠BOC=15°,∵OD⊥OE,∴∠DOE=90°,又∵点O在直线AB上,∴∠AOE=180°﹣90°﹣15°=75°;(2)分两种情况:①当点C在直线AB上方时,如图1,同理可得,∠BOD=,∠DOE=90°,∴∠AOE=180°﹣90°﹣=90°﹣;②当点C在直线AB下方时,如图2,∵OD平分∠BOC,∴∠BOD=α,∵OD⊥OE,∴∠DOE=90°,∴∠BOE=90°﹣α,又∵点O在直线AB上,∴∠AOE=180°﹣(90°﹣α)=90°+α.综上所述,∠AOE的度数为90°﹣或90°+α.19.(1)解:∵OE⊥CD,∴∠COE=∠DOE=90°,∴∠AOC+∠AOE=90°,∵∠AOE=2∠AOC,∴∠AOC+2∠AOC=90°,解得:∠AOC=30°,∴∠AOE=∠COE﹣∠AOC=90°﹣30°=60°,∵∠AOE+∠BOE=180°;∴∠BOE=180°﹣∠AOE=180°﹣60°=120;(2)解:∵OE⊥CD,∴∠DOE=90°,∴∠DOF+∠EOF=90°,∵∠COG=∠DOF,∴∠COG+∠EOF=90°,∵∠AOE+∠AOC=90°,∠AOC=2∠EOF,∴∠AOE+∠2∠EOF=90°,∴∠AOF+∠EOF=90°,∵∠BOG=∠AOF,∴∠BOG+∠EOF=90°,∴与∠EOF互余的角有∠FOD,∠COG,∠BOG,∠AOF.20.解:(1)过点E作EF∥AB,则有∠BEF=∠B,∵AB∥CD,∴EF∥CD,∴∠FED=∠D,∴∠BED=∠BEF+∠FED=∠B+∠D;故答案为:∠B;EF;CD;∠D;(2)①如图1,过点E作EF∥AB,有∠BEF=∠EBA.∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=∠EBA+∠EDC.即∠BED=∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=30°,∠EDC=∠ADC=35°,∴∠BED=∠EBA+∠EDC=65°.答:∠BED的度数为65°;②如图2,过点E作EF∥AB,有∠BEF+∠EBA=180°.∴∠BEF=180°﹣∠EBA,∵AB∥CD,∴EF∥CD.∴∠FED=∠EDC.∴∠BEF+∠FED=180°﹣∠EBA+∠EDC.即∠BED=180°﹣∠EBA+∠EDC,∵BE平分∠ABC,DE平分∠ADC,∴∠EBA=∠ABC=,∠EDC=∠ADC=,∴∠BED=180°﹣∠EBA+∠EDC=180°﹣+.答:∠BED的度数为180°﹣.。
新人教版初中数学七年级数学下册第一单元《相交线与平行线》检测题(包含答案解析)(1)
一、选择题1.如图,用直尺和三角尺画图:已知点P 和直线a ,经过点P 作直线b ,使//b a ,其画法的依据是( )A .过直线外一点有且只有一条直线与已知直线平行B .两直线平行,同位角相等C .同位角相等,两直线平行D .内错角相等,两直线平行2.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个3.如图,直线,a b 被直线c 所截,下列条件中不能判定a//b 的是( )A .25∠=∠B .45∠=∠C .35180∠+∠=︒D .12180∠+∠=︒ 4.如图,如果AB ∥EF ,EF ∥CD ,下列各式正确的是( )A .∠1+∠2−∠3=90°B .∠1−∠2+∠3=90°C .∠1+∠2+∠3=90°D .∠2+∠3−∠1=180° 5.如图,直线a ,b 被直线c 所截,则1∠与2∠是( )A .同位角B .内错角C .同旁内角D .对顶角 6.命题“垂直于同一条直线的两条直线互相平行”的条件是( )A .垂直B .两条直线互相平行C.同一条直线D.两条直线垂直于同一条直线7.下面命题中是真命题的有()①相等的角是对顶角②直角三角形两锐角互余③三角形内角和等于180°④两直线平行内错角相等A.1个B.2个C.3个D.4个8.下列说法中不正确的个数为().①在同一平面内,两条直线的位置关系只有两种:相交和垂直.②有且只有一条直线垂直于已知直线.③如果两条直线都与第三条直线平行,那么这两条直线也互相平行.④从直线外一点到这条直线的垂线段,叫做这点到这条直线的距离.⑤过一点,有且只有一条直线与已知直线平行.A.2个B.3个C.4个D.5个9.下列命题是假命题的是()A.等腰三角形底边上的高是它的对称轴B.有两个角相等的三角形是等腰三角形C.等腰三角形底边上的中线平分顶角D.等边三角形的每一个内角都等于60°10.如图所示,已知 AB∥CD,下列结论正确的是()A.∠1=∠2 B.∠2=∠3 C.∠1=∠4 D.∠3=∠4 11.如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,∠=()∠=∠=︒,则CAF//AB CD,90ACB EDFA.10︒B.15︒C.20︒D.25︒12.已知:如图,直线a∥b,∠1=50°,∠2=∠3,则∠2的度数为()A .50°B .60°C .65°D .75°二、填空题13.如图,直线a ,b 被直线c 所截(即直线c 与直线a ,b 都相交),且a //b ,若1∠=α,则2∠的度数=______度.(用含有α代数式表示)14.两个角的两边两两互相平行,且一个角的12等于另一个角的13,则这两个角中较小角的度数为____︒.15.两条直线相交所构成的四个角,其中:①有三个角都相等;②有一对对顶角相等;③有一个角是直角;④有一对邻补角相等,能判定这两条直线垂直的有_______. 16.把命题“两直线平行,同位角相等”改写成“若…,则…”__.17.将一副三角板中的两块直角三角尺的直角顶点C 按如图方式叠放在一起(其中,60A ︒∠=,30D ︒∠=;45E B ︒∠=∠=),当90ACE ︒∠<且点E 在直线AC 的上方,使ACD △的一边与三角形ECB 的某一边平行时,写出ACE ∠的所有可能的值____.18.如图,AC ⊥AB ,AC ⊥CD ,垂足分别是点A 、C ,如果∠CDB=130°,那么直线AB 与BD 的夹角是________度.19.如图,已知AB 、CD 相交于点O,OE ⊥AB 于O ,∠EOC=28°,则∠AOD=_____度;AD BC.20.如图,添加一个你认为合适的条件______使//三、解答题21.如图,直线AB、CD相交于点O,OE平分∠BOD,OF⊥CD,垂足为O,若∠BOF=38°.(1)求∠AOC的度数;(2)过点O作射线OG,使∠GOE=∠BOF,求∠FOG的度数.22.如图是由相同边长的小正方形组成的网格图形,小正方形的边长为1个单位长度,每个小正方形的顶点都叫做格点,ABC的三个顶点都在格点上,利用网格画图.(注:所画格点、线条用黑色水笔描黑)(1)过点A画BC的垂线,并标出垂线所过格点P;(2)过点A画BC的平行线,并标出平行线所过格点Q;'''的位置;(3)画出ABC向右平移8个单位长度后A B C'''的面积为______.(4)A B C23.ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.(1)ABC 关于x 轴对称图形为111A B C △,画出111A B C △的图形;(2)将ABC 向右平移4个单位,再向下平移3个单位,得到图形为222A B C △,画出222A B C △的图形;(3)求ABC 的面积.24.三角形ABC 中,D 是AB 上一点,//DE BC 交AC 于点E ,点F 是线段DE 延长线上一点,连接FC ,180BCF ADE ∠+∠=︒.(1)如图1,求证://CF AB ;(2)如图2,连接BE ,若40ABE ∠=︒,60ACF ∠=︒,求BEC ∠的度数; (3)如图3,在(2)的条件下,点G 是线段FC 延长线上一点,若:7:13EBC ECB ∠∠=,BE 平分ABG ∠,求CBG ∠的度数.25.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,72AOC ∠=︒,OF CD ⊥.∠互余的角是______;(1)与BOF∠的度数.(2)求EOF26.如图,已知直线AB及直线AB外一点P,按下列要求完成画图和解答:(1)连接PA,PB,用量角器画出∠APB的平分线PC,交AB于点C;(2)过点P作PD⊥AB于点D;(3)用刻度尺取AB中点E,连接PE;(4)根据图形回答:点P到直线AB的距离是线段的长度.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定定理即可得出结论.【详解】解:由画法可知,其画法的依据是同位角相等,两直线平行.故选:C.【点睛】本题考查了作图-复杂作图,熟知平行线的判定定理是解答此题的关键.2.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,故选:B .【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.3.D解析:D【分析】根据平行线的判定定理逐项判断即可.【详解】解:A. 由2∠和5∠是同位角,则25∠=∠ ,可得a//b ,故该选项不符合题意;B. 由4∠和5∠是内错角,则45∠=∠,可得a//b ,故该选项不符合题意;C. 由∠3和∠1相等,35180∠+∠=︒,可得a//b ,故该选项不符合题意;D. 由∠1和∠2是邻补角,则12180∠+∠=︒不能判定a//b ,故该选项满足题意. 故答案为D .【点睛】本题主要考查了平行线的判定,掌握同位角相等,两直线平行;同旁内角互补,两直线平行是解答本题的关键.4.D解析:D【分析】根据平行线的性质,即可得到∠3=∠COE ,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.【详解】∵EF ∥CD∴∠3=∠COE∴∠3−∠1=∠COE−∠1=∠BOE∵AB ∥EF∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°故选:D .本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.5.A解析:A【分析】根据同位角的定义求解.【详解】解:直线a,b被直线c所截,∠1与∠2是同位角.故选:A.【点睛】本题考查了同位角、内错角、同位角:三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.6.D解析:D【分析】命题有条件和结论两部分组成,条件是已知的部分,结论是由条件得出的推论.【详解】“垂直于同一条直线的两条直线互相平行”的条件是“两条直线垂直于同一条直线”,结论是“两条直线互相平行”.故选:D.【点睛】本题考查了对命题的题设和结论的理解,解题的关键在于利用直线垂直的定义进行判断.7.C解析:C【分析】利用平行线的性质、三角形的内角和、直角三角形的性质、对顶角的性质分别判断后即可确定正确的选项.【详解】解:①相等的角不一定是对顶角,故不符合题意;②直角三角形两锐角互余,故符合题意;③三角形内角和等于180°,故符合题意;④两直线平行内错角相等,故符合题意;故选:C.【点睛】此题考查了命题与定理,解题的关键是了解平行线的性质、对顶角的定义、直角三角形的性质及三角形的内角和等知识,难度不大.8.C【分析】根据在同一平面内,根据两条直线的位置关系、垂直的性质、平行线平行公理及推论、点到直线的距离等逐一进行判断即可.【详解】∵在同一平面内,两条直线的位置关系只有两种:相交和平行,故①不正确;∵过直线外一点有且只有一条直线垂直于已知直线.故②不正确;如果两条直线都与第三条直线平行,那么这两条直线也互相平行.故③正确;从直线外一点到这条直线的垂线段的长度,叫做这点到这条直线的距离.故④不正确;过直线外一点,有且只有一条直线与已知直线平行.故⑤不正确;∴不正确的有①②④⑤四个.故选:C.【点睛】本题考查了直线的知识;解题的关键是熟练掌握直线相交、直线垂直、直线平行以及垂线的性质,从而完成求解.9.A解析:A【分析】分别分析各题设是否能推出结论,不能推出结论的既是假命题,从而得出答案.【详解】A.等腰三角形底边上的高所在的直线是它的对称轴,故该选项错误,是假命题,B.有两个角相等的三角形是等腰三角形,正确,是真命题,C.等腰三角形底边上的中线平分顶角,正确,是真命题,D.等边三角形的每一个内角都等于60°,正确,是真命题,故选:A.【点睛】本题考查了命题与定理,判断命题的真假,关键是分析各题设是否能推出结论.10.C解析:C【分析】根据平行线的性质即可得到结论.【详解】∵AB∥CD,∴∠1=∠4,故选 C.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.11.B解析:B根据平行线的性质可知,BAF=EFD=45∠∠ ,由BAC=30∠ 即可得出答案。
七年级数学下册《相交线与平行线》尖子生测试题(新人教版)
D C B AE DCB A b a 3图④212图⑤c b a 31E DC B A ①2121②12③12④七年级数学下册《相交线与平行线》测试题一、选择题:(每题2.5分,共35分)1.下列所示的四个图形中,1∠和2∠是同位角...的是( ) A. ②③ B. ①②③ C. ①②④ D. ①④2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( ) A. 43∠=∠ B. 21∠=∠ C. DCE D ∠=∠ D. 180=∠+∠ACD D3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐 30,第二次向右拐 30 B. 第一次向右拐 50,第二次向左拐 130C. 第一次向右拐 50,第二次向右拐 130D. 第一次向左拐 50,第二次向左拐 1304.两条平行直线被第三条直线所截,下列命题中正确..的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补5.下列说法中错误..的个数是( )(1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个B. 2个C. 3个D. 4个6.下列说法中,正确..的是( )A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小 都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如图,CD AB //,且 25=∠A , 45=∠C ,则E ∠度数是( ) A. 60 B. 70 C. 110 D. 808.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必定成立....的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD <9.在一个平面内,任意四条直线相交,交点的个数最多有( )A. 7个B. 6个 C. 5个 D. 4个10. 如右图所示,BE 平分ABC ∠,BC DE //,相等的角共有( )A. 3对 B. 4对 C. 5对 D. 6对11.如图,CD ⊥AB ,垂足为D ,AC ⊥BC ,垂足为C .图中线段的长能表示点到直线(或线段)距离的线段有( )(A )1条 (B )3条 (C )5条 (D )7条12.若AO ⊥BO ,∠AOC ︰∠AOB =2︰9,则∠BOC 的度数等于( )(A )20°(B )70°(C )110°(D )70°或110°13、如图,AD ∥EF ∥BC ,且EG ∥AC .与∠1相等的角(不包括∠1)个数是( )(A )2 (B )4 (C )5 (D )614.某人从A 点出发向北偏东60°方向速到B 点,再从B 点出发向南偏西15°方向速到C 点,则∠ABC 等于( )(A )75° (B )105° (C )45° (D )135°二、判断题(每题1分,共5分)1.过线段外一点画线段的中垂线。
相交线与平行线单元测试基础卷2020-2021年七年级数学下册尖子生同步培优题典(原卷)【人教版】
2020-2021学年七年级数学下册尖子生同步培优题典【人教版】专题5.10第5章相交线与平行线单元测试(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•长春期末)如图,∠B的内错角是()A.∠1B.∠2C.∠3D.∠42.(2020春•威县期末)如图,把河AB中的水引到C,拟修水渠中最短的是()A.CM B.CN C.CP D.CQ3.(2019春•金水区校级期中)如图,如果把△ABC的顶点A先向右平移2格,再向下平移6格到达D点,连接DB,那么线段DB与线段AC的关系是()A.互相垂直B.相等C.互相平分D.互相平分且垂直4.(2019秋•平江县期末)如图,直线AB、CD相交于点O,∠EOD=90°.下列说法不正确的是()A.∠AOD=∠BOC B.∠AOC=∠AOEC.∠AOE+∠BOD=90°D.∠AOD+∠BOD=180°5.(2020秋•铁西区期末)如图,直线AB,CD相交于点O,射线OM平分∠BOD,若∠BOD=42°,则∠AOM等于()A.138°B.148°C.159°D.169°6.(2020秋•锦州期末)下列命题为假命题的是()A.对顶角相等B.同位角相等C.互补的两个角不一定相等D.两点之间,线段最短7.(2019秋•诸城市期末)下列语句是命题的是()(1)两点之间,线段最短;(2)如果x2>0,那么x>0吗?(3)如果两个角的和是90度,那么这两个角互余.(4)过直线外一点作已知直线的垂线;A.(1)(2)B.(3)(4)C.(1)(3)D.(2)(4)8.(2020秋•道外区期末)如图,若直线l1∥l2,则下列各式成立的是()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D
C
B
A
E
D
C B
A
E
D
C
B
A
①
2121
②
12③
1
2
④
七年级数学下册《相交线与平行线》测试题
一、选择题:(每题3分,共42分)
1.下列所示的四个图形中,1∠和2∠是同位角...
的是( )
A. ②③
B. ①②③
C. ①②④
D. ①④
2.如右图所示,点E 在AC 的延长线上,下列条件中能判断...CD AB //( )
A. 43∠=∠
B. 21∠=∠
C. DCE D ∠=∠
D.
180=∠+∠ACD D
3.一学员练习驾驶汽车,两次拐弯后,行驶的方向与原来的方向相同,这两次拐弯的角度可能是( ) A. 第一次向左拐
30,第二次向右拐
30 B. 第一次向右拐
50,第二次向左拐
130 C. 第一次向右拐 50,第二次向右拐 130 D. 第一次向左拐 50,第二次向左拐
130 4.两条平行直线被第三条直线所截,下列命题中正确..
的是( ) A. 同位角相等,但内错角不相等 B. 同位角不相等,但同旁内角互补 C. 内错角相等,且同旁内角不互补 D. 同位角相等,且同旁内角互补 5.下列说法中错误..
的个数是( ) (1)过一点有且只有一条直线与已知直线平行。
(2)过一点有且只有一条直线与已知直线垂直。
(3)在同一平面内,两条直线的位置关系只有相交、平行两种。
(4)不相交的两条直线叫做平行线。
(5)有公共顶点且有一条公共边的两个角互为邻补角。
A. 1个
B. 2个
C. 3个
D. 4个 6.下列说法中,正确..
的是( ) A. 图形的平移是指把图形沿水平方向移动。
B. 平移前后图形的形状和大小都没有发生改变。
C. “相等的角是对顶角”是一个真命题。
D. “直角都相等”是一个假命题。
7.如右图,CD AB //,且
25=∠A ,
45=∠C ,则E ∠的度数是( )
A.
60 B. 70 C.
110 D.
80
8.如右图所示,已知BC AC ⊥ ,AB CD ⊥,垂足分别是C 、D ,那么以下线段大小的比较必.定成立...
的是( ) A. AD CD > B. BC AC < C. BD BC > D. BD CD < 9.在一个平面内,任意四条直线相交,交点的个数最多有( )
A. 7个
B. 6个
C. 5个
D. 4个
E
D
C B
A
432
1
b
a
3
图④
2
1
2
图⑤
c
b
a
3
1
图⑥
A’C ’
B ’
A
B
C
10. 如右图所示,BE 平分ABC ∠,BC DE //,图中相等的角共有( )
A. 3对
B. 4对
C. 5对
D. 6对
11.如图,CD ⊥AB ,垂足为D ,AC ⊥BC ,垂足为C .
图中线段的长能表示点到直线(或线段)距离的线段有( )
(A )1条 (B )3条 (C )5条 (D )7条
12.若AO ⊥BO ,垂足为O ,∠AOC ︰∠AOB =2︰9,则∠BOC 的度数等于……( )
(A )20° (B )70° (C )110° (D )70°或110°
13、如图,AD ∥EF ∥BC ,且EG ∥AC .那么图中与∠1相等的角(不包括∠1)的个数是( )
(A )2 (B )4 (C )5 (D )6
14.某人从A 点出发向北偏东60°方向速到B 点,再从B 点
出发向南偏西15°方向速到C 点,则∠ABC 等于( ) (A )75° (B )105° (C )45° (D )13 三、填空题:(每题3分,共48分)
1.把命题“等角的余角相等”写成“如果……,那么……”的形式
为 。
2.用吸管吸易拉罐内的饮料时,如图①,
1101
=∠,则=2∠ (拉罐的上下底面互相平行)
3.有一个与地面成30°角的斜坡,如图②,现要在斜坡上竖一电线杆,当电线杆与斜坡成的
=1∠ °时,电线杆与地面垂直。
4.如图③,按角的位置关系填空:A ∠与1∠是 ;A ∠与3∠是 ;
2∠与3∠是 。
5.如图④,若
22021=∠+∠ ,则=3∠ 。
6.如图⑤,已知b a //,若
501=∠,则=∠2 ; 若
1003=
∠,则=∠2 。
7.如图⑥为了把ABC ∆平移得到‘
’‘
C B A ∆,可以先将ABC ∆向右平移 格,再向上平移 格。
8、如图,AB ∥C
D ,AD ∥BC ,∠B =60°,∠EDA =50°.则∠CDF = . 9、如图,当∠1=∠ 时,AB ∥DC ;当∠D +∠ =180°时,AB ∥DC ;
当∠B =∠ 时,AB ∥CD .
2
1
图①
1
图②
30︒
图③
C
B
A
3
2
1
10、如图,O 是△ABC 内一点,OD ∥AB ,OE ∥BC ,OF ∥AC ,∠B =45°,∠C =75°, 则∠DOE = ,∠EOF = ,∠FOD = .
第8题 第9题 第10题
11、两个角的两边分别平行,其中一个角比另一个角的3倍少20°.则这两个角的度数分别是 .
13、如图,AB ∥EF ∥CD ,EG 平分∠BEF ,∠B +∠BED +∠D =192°,
∠B -∠D =24°,则∠GEF = .
14、如图,AD ∥BC ,点O 在AD 上,BO 、CO 分别平分∠ABC 、∠DCB ,若
∠A +∠D =m °.则∠BOC =______.
第13题 第14题 第15题
15、三条直线AB 、CD 、EF 相交于点O ,如图⑦所示,AOD ∠的对顶角是
FOB ∠的对顶角是 ,EOB ∠的邻补角是 。
16、有一条直的等宽纸带,按图(1)折叠时,纸带重叠部分中的∠a = 度.
三、解答题。
(每题4分,共40分)
1、如图,已知:21∠∠=,
50=D ∠,求B ∠的度数。
2、如图,CD AB //,AE 平分BAD ∠,CD 与AE 相交于
F ,E CFE ∠=∠。
求证:BC AD //。
3、如图,已知CD AB //,
40=∠B ,CN 是BCE ∠
H
G 2
1
F
E
D
C B
A
图⑦
O
F E
D
C
B
A
2
1
F
E
D
C
B
A
N
M
E
D
C
B
A
的平分线,CN CM ⊥,求BCM ∠的度数。
4、如图,AB ∥CD ∥PN ,∠ABC =50°,∠CPN =150° .求∠BCP 的度数.
5、如图,∠CAB =100°,∠ABF =110°,AC ∥PD ,BF ∥PE ,求∠DPE 的度数.
6、如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC .求∠P AG 的度数.
7、如图,AB ∥CD ,∠1=115°,∠2=140°,求∠3的度数.
8、已知:如图,AC ∥DE ,DC ∥EF ,CD 平分∠BCA .求证:EF 平分∠BED .
9、已知:如图,AB ∥CD ,∠1=∠B ,∠2=∠D .
求证:BE ⊥DE .
10、已知:如图,AB ∥CD ,请你观察∠E 、∠B 、∠D 之间有什么关系,并证明你所得的结论.。