5一次方程与方程组(A)
一次方程与方程组
![一次方程与方程组](https://img.taocdn.com/s3/m/d254337dde80d4d8d15a4f86.png)
一元一次一元二次方程及应用考点一 等式及方程的有关概念1.等式及其性质用等号“=”来表示相等关系的式子,叫做等式.等式的性质:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;等式两边都乘以(或除以)同一个数(除数不能为0),所得结果仍是等式.2.方程的有关概念(1)含有未知数的等式,叫做方程.(2)使方程左、右两边的值相等的未知数的值,叫做方程的解(只含有一个未知数的方程的解,也叫做根).(3)求方程解的过程,叫做解方程. 考点二 一元一次方程 1.一元一次方程在整式方程中,只含有一个未知数,并且未知数的次数是1,系数不等于0的方程,叫做一元一次方程.ax +b =0(a ≠0)是一元一次方程的标准形式.2.解一元一次方程的一般步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1. 考点三 二元一次方程组及解法1.二元一次方程组几个含有相同未知数的二元一次方程合在一起,叫做二元一次方程组; 2.解二元一次方程组的基本思路:消元3.二元一次方程组的解法:(1)代入消元法;(2)加减消元法; 考点四 列方程(组)解应用题1.列方程(组)解应用题的一般步骤:审、设、列、解、检验、答 2.列方程(组)解应用题的关键是:确定等量关系.一元二次方程及应用考点一 一元二次方程的定义在整式方程中,只含有一个未知数,并且含未知数项的最高次数是2,这样的整式方程叫一元二次方程,一元二次方程的标准形式是ax 2+bx +c =0(a ≠0).考点二 一元二次方程的常用解法1.直接开平方法:如果x 2=a(a ≥0),则x =±a ,则x 1=a ,x 2=- a. 2.配方法3.公式法:方程ax 2+bx +c =0且b 2-4ac ≥0,则x =-b±b 2-4ac 2a.4.因式分解法考点三 列一元二次方程解应用题列一元二次方程解应用题的步骤和列一元一次方程(组)解应用题步骤一样,即审、找、设、列、解、答六步.考点四 一元二次方程根的判别式关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根的判别式为b 2-4ac.1.b 2-4ac >0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个不相等的实数根,则x 1,2=-b±b 2-4ac2a;2.b 2-4ac =0⇔一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,即x 1=x 2=-b 2a ;3.b 2-4ac <0⇔一元二次方程ax 2+bx +c =0(a ≠0)没有实数根;考点五 一元二次方程根与系数之间的关系若关于x 的一元二次方程ax 2+bx +c =0(a ≠0)有两根分别为x 1、x 2,则x 1+x 2=-ba ,x 1·x 2=c a经典例题例一(1)已知⎩⎨⎧ x =2y =1是二元一次方程组⎩⎨⎧mx +ny =8nx -my =1的解,则2m -n 的算术平方根为( )A .4B .2 C.2 D .±2(2)已知方程x 2-5x +2=0的两个解分别为x 1、x 2,则x 1+x 2-x 1·x 2的值为( ) A .-7 B .-3 C .7 D .3例二(1)解方程:2x +13-10x +16=1. (2)解方程组:⎩⎨⎧3x +4y =19,x -y =4.(2)解方程(x -3)2+4x(x -3)=0.例三如图所示,某幼儿园有一道长为16米的墙,计划用32米长的围栏靠墙围成一个面积为120平方米的矩形草坪ABCD.求该矩形草坪BC 边的长.考点训练题 一、选择题1.方程组⎩⎨⎧x +y =12x -y =5的解是( )A.⎩⎨⎧ x =-1y =2B.⎩⎨⎧ x =-2y =3C.⎩⎨⎧ x =2y =1D.⎩⎨⎧x =2y =-12、方程(x -3)(x +1)=x -3的解是( ) A .x =0 B .x =3C .x =3或x =-1D .x =3或x =03.以方程组⎩⎨⎧y =-x +2y =x -1的解为坐标的点(x ,y)在平面直角坐标系中的位置是( )A .第一象限B .第二象限C .第三象限D .第四象限4.若|3a +b +5|+(2a -2b -2)2=0,则2a 2-3ab 的值为( ) A .4 B .2 C .-2 D .-45、.已知⎩⎨⎧ x =0y =-1和⎩⎨⎧x =1y =1是方程y =kx +b 的解,则k 、b 的值分别是( )A .k =-2,b =1B .k =2,b =3C .k =-2,b =-1D .k =2,b =-16.一元二次方程x 2-5x +6=0的两根分别是x 1、x 2,则x 1+x 2等于( ) A .5 B .6 C .-5 D .-67.上海世博会的某纪念品原价168元,连续两次降价a%后售价为128元,下列所列方程中正确的是( )A .168(1+a%)2=128B .168(1-a%)2=128C .168(1-2a%)=128D .168(1-a 2%)=1288.用配方法解一元二次方程x 2-4x =5的过程中,配方正确的是( ) A .(x +2)2=1 B .(x -2)2=1 C .(x +2)2=9 D .(x -2)2=99.如果方程ax 2+2x +1=0有两个不等的实根,则实数a 的取值范围是( ) A .a<1 B .a<1且a ≠0 C .a ≤1 D .a ≤1且a ≠010.在一幅长80 cm 、宽50 cm 的矩形风景画的四周镶一条金色纸要制成一幅矩形挂图如下图所示,如果要使整个挂图的面积是5 400 cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .x 2+130x -1 400=0B .x 2+65x -350=0C .x 2-130x -1 400=0D .x 2-65x -350=011.若方程组⎩⎨⎧ 2m -3n =133m +5n =30.9的解是⎩⎨⎧ m =8.3n =1.2,则方程组⎩⎨⎧2(x +2)-3(y -1)=133(x +2)+5(y -1)=30.9的解是( )A.⎩⎨⎧ x =8.3y =1.2B.⎩⎨⎧ x =10.3y =2.2C.⎩⎨⎧ x =6.3y =2.2D.⎩⎨⎧x =10.3y =0.212.若关于x 、y 的二元一次方程组⎩⎨⎧x +y =5k x -y =9k 的解也是二元一次方程2x +3y =6的解,则k 的值为( )A .-34 B.34 C.43 D .-43 二、填空题13.1.方程(x -1)2=4的解是__________14.方程x 2-3x +1=0的解是__________.15.阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1、x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=ca .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则x 2x 1+x 1x 2的值为________.16.已知关于x 的一元二次方程(m -1)x 2+x +1=0有实数根,则m 的取值范围是__________.17.设x 1、x 2是一元二次方程x 2-3x -2=0的两个实数根,则x 21+3x 1x 2+x 22的值为________18、已知x =-1是方程x 2+mx -5=0的一个根,则m =________,方程的另一根为________.20.如图,在宽为20 m 、长为32 m 的矩形地面上修筑同样宽的道路(图中阴影部分),余下部分作为草坪,要使草坪的面积为540 m 2,求道路的宽.21.解方程(组).(1)当m 取什么值时,代数式5m +14与5(m -14)的值互为相反数;(2)⎩⎪⎨⎪⎧x 3+1=y ,2(x +1)-y =6.(3) x 2-6x -6=0;(配方法)(4)解方程(x -3)2+4x(x -3)=0.(因式分解法)22、某商场销售一批衬衫,平均每天可出售30件,每件赚50元,为扩大销售,加盈利,尽量减少库存,商场决定降价,如果每件降1元,商场平均每天可多卖2件,若商场平均每天要赚2100元,问衬衫降价多少元23.为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1 228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台? (2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元,根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1 228台汽车用户共补贴了多少万元?答案1—5 DDADD 6-10ABDBB 11-12CB 13、【答案】120(1-x)2=10014、【答案】x 1=3+52,x 2=3-5215、【解析】∵x 1、x 2是x 2+6x +3=0的两实数根,∴x 1+x 2=-6,x 1x 2=3,∴x 2x 1+x 1x 2=(x 1+x 2)2-2x 1x 2x 1x 2=(-6)2-2×33=10.16、【解析】∵方程有实数根,∴b 2-4ac>0,∴12-4(m -1)≥0,4m ≤5,m ≤54.∵方程是关于x 的一元二次方程,∴m -1≠0,∴m ≠1,∴m ≤54且m ≠1.17、【解析】由题意得x 1+x 2=3,x 1x 2=-2,所以x 21+3x 1x 2+x 22=x 21+2x 1x 2+x 22+x 1x 2=(x 1+x 2)2+x 1x 2=33+(-2)=9-2=7. 18、【答案】-4 x =519、【答案】⎩⎪⎨⎪⎧x =-4y =-220、解:设道路的宽为x m ,根据题意,得(20-x)(32-x)=540,∴x 2-52x +100=0,∴x 1=2,x 2=50(不合题意,舍去)21、解:(1)由题意得5m +14+5(m -14)=0,5m +14+5m -54=0, ∴10m =1,m =110.(2)⎩⎪⎨⎪⎧x 3+1=y ①2(x +1)-y =6 ②原方程组可化为⎩⎪⎨⎪⎧x -3y =-3 ①2x -y =4 ②,①×2得2x -6y =-6 ③,②-③得5y =10,∴y =2,把y =2代入②,得x =3,∴原方程组的解是⎩⎪⎨⎪⎧x =3y =2. 3、【解答】(1)x 2-6x -6=0 移项,得x 2-6x =6,配方,得(x -3)2=15,∴x -3=±15. ∴x 1=3+15,x 2=3-15. 4、(x -3)2+4x(x -3)=0换公因式,得(x -3)(x -3+4x)=0,(x -3)(5x - 3)=0.∴x -3=0或5x -3=0.∴x 1=3,x 2=35.22、解:(1)设在政策出台前的一个月销售手动型和自动型汽车分别为x 台、y 台,根据题意,得⎩⎪⎨⎪⎧ x +y =960x (1+30%)+y (1+25%)=1 228,解得⎩⎪⎨⎪⎧x =560y =400.。
七年级数学 第3章 一次方程与方程组 3.1 一元一次方程及其解法(第1课时)
![七年级数学 第3章 一次方程与方程组 3.1 一元一次方程及其解法(第1课时)](https://img.taocdn.com/s3/m/9983dbe159eef8c75ebfb3db.png)
(1)-3x+7=1; (2)2-14x=3; 解:x=2; 解:x=-4;
(3)-2x-3=9; 解:1x2/=9/20-21 24;
(4)152x-13=14. 解:x=57.
第七页,共十六页。
7.下列各式中,属于一元一次方程的是( B )
A.x2-1=0
B.3x-1=2x
C.4y=5
D.x-y=3
;(4)(传递性)a=b,b=c,那么 a=
自我诊断 2.下列等式变形中,错误的是( B )
A.由 a=b,得 a+5=b+5
B.由 a=b,得-a3=3b
C.由 x+2=y+2,得 x=y
D.由-3x=-3y,得 x=y
12/9/2021
第三页,共十六页。
利用等式(děngshì)的性质解方程
自我诊断 3.方程 2x-1=3 的解是( D )
(4)两边同时乘以 3,得:5-x=3,两边同时减 5,得:-x=-2,两边同 时除以-1,得:x=2.
12/9/2021
第十二页,共十六页。
16.已知关于 x 的方程 ax+b=2017 的解是 x=1.求|a+b-1|的值.
解:因为 ax+b=2017 的解为 x=1,所以 a+b=2017,所以原式=|2017- 1|=2016. 17.小王在解方程 2a-2x=15(x 是未知数)时,误将-2x 看成+2x,得方程 的解为 x=3.求原方程的解. 解:把 x=3 代入 2a+2x=15 中,得:2a+6=15,a=92,把 a=92代入 2a -2x=15 中,得:9-2x=15,x=-3.
C.若 x-3=y-3,则 x-y=0
D.若 3x+4=2x,则 3x-2x=-4
10.下列方程中,解是 x=-1 的是( B )
方程与方程组
![方程与方程组](https://img.taocdn.com/s3/m/983c7d86524de518974b7d4f.png)
第二讲方程与方程组一、学习指引1.知识要点(1)一元一次方程(2)二元一次方程组(3)一元二次方程(4)分式方程(5)方程的整数根(6)方程应用问题2.方法指导(1)一元一次方程经变形总可以化成ax=b的形式,此时需注意对字母系数的讨论.(2)二元及多元(二元以上)一次方程组的求解,主要是通过同解变形进行消元,最终转化为一元一次方程来解决.所以,解方程组的基本思想是消元.(3)方程ax2+bx+c=0(a≠0)称为一元二次方程:①一元二次方程的基本解法有开平方法、配方法、公式法和因式分解法.②对于方程ax2+bx+c=0(a ≠0), b2-4ac称为该方程的根的判别式.(4)解分式方程的基本方法:①去分母;②求出整式方程未知数的值;③验根.(5)列方程(组)解应用题其具体步骤是:①审--理解题意,弄清问题中已知量是什么,未知量是什么,问题给出和涉及的相等关系是什么;②设--即找出题中和未知量,选择其中一个设为未知数;③列--找出题中和等量关系,列出方程;④解--解出所列的方程;⑤答--检验作答.其中列是关键,特别是找等量关系。
找等量关系的方法是—用两种方式表达同一个量! 二、典型例题例1.解关于x 的方程:(1)4x+b=ax-8; (2) 0232=+-x x ;(3) 6,234()5() 2.x y x yx y x y +-⎧+=⎪⎨⎪+--=⎩ (4)21124x x x -=--例2.若关于x ,y 的二元一次方程组⎩⎨⎧=-=+k y x ,k y x 95的解也是二元一次方程632=+y x 的解,求k 的值.例3.关于x 的方程0112)21(2=-+--x k x k 有两个不相等的实数根,求k 的取值范围.例4. 符号“a b c d”称为二阶行列式,规定它的运算法则为:a b ad bc c d=-,请你根据上述规定求出下列等式中x 的值:2111111xx =-- .例5.设a 是方程0120062=+-x x 的一个根,求代数式20061200722++-a a a 的值.例6.求出二元一次方程2x+3y=20的非负整数解.例7.小明计划将今年春节期间得到的压岁钱的一部分作为自己一年内购买课外书籍的费用,其余的钱计划买这些玩具去看望市福利院的孩子们.某周日小明在商店选中了一种小熊玩具,单价是10元,按原计划买了若干个,•结果他的压岁钱还余30%,于是小明又多买了6个小熊玩具,这样余下的钱仅是压岁钱的10%.(1)问小明原计划买几个小熊玩具,小明的压岁钱共有多少元(2)为了保证小明购书费用不少于压岁钱的20%,•问小明最多可比原计划多买几个玩具例8.某超市对顾客实行优惠购物,规定如下: (1)若一次购物少于200元,则不予优惠;(2)若一次购物满200元,但不超过500元,按标价给予九折优惠; (3)若一次购物超过500元,其中500元以下部分(包括500元)给予九折优惠,超过500元部分给予八折优惠.小李两次去该超市购物,分别付款198元和554元,现在小张决定一次性地购买和小李分两次购买同样多的物品,他需付多少元例9.春秋旅行社为吸引市民组团去天水湾风景区旅游,推出了如图1对话中收费标准.某单位组织员工去天水湾风景区旅游,共支付给春秋旅行社旅游费用27000元.请问该单位这次共有多少员工去天水湾风景区旅游图1如果人数超过25人,每增加1人,人均旅游费用降如果人数不超过25例10.为了支援四川人民抗震救灾,某休闲用品有限公司主动承担了为灾区生产2万顶帐篷的任务,计划10天完成.(1)按此计划,该公司平均每天应生产帐篷 顶;(2)生产2天后,公司又从其它部门抽调了50名工人参加帐篷生产,同时,通过技术革新等手段使每位工人....的工作效率比原计划提高了25%,结果提前2天完成了生产任务.求该公司原计划安排多少名工人生产帐篷第二讲 方程与方程组同步练习 班级 姓名【基础巩固】1.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m+n 的值为__________.2.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 .3.已知关于x 的方程322=-+x mx 的解是正数,则m 的取值范围为____________. 4.已知x ay b=⎧⎨=⎩是方程组||223x x y =⎧⎨+=⎩的解,则a+b 的值等于 .5. 若x 与y 互为相反数,且532=-y x ,则=+332y x _________.6.一家商店将某种服装按成本价提高40%后标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本为 元.7.已知方程组325(1)7x ykx k y-=⎧⎨+-=⎩的解x,y,其和x+y=1,则k=_____8.篮球巨星姚明在一场比赛中24投14中,拿下28分,其中三分球三投全中,那么姚明两分球投中球,罚球投中球.9. 用换元法解分式方程13101x xx x--+=-时,如果设1xyx-=,将原方程化为关于y的整式方程,那么这个整式方程是()A.230y y+-= B.2310y y-+= C.2310y y-+= D.2310y y--= 10.一条船顺流航行是逆流航行的速度的3倍,则船在静水中航速与水的流速之比为()A.3:1 :1 :1 :211.方程(3)(1)3x x x-+=-的解是()A.0x= B.3x= C.3x=或1x=-D.3x=或0x=12.08年省政府提出确保到2010年实现全省森林覆盖率达到63%的目标,已知08年我省森林覆盖率为%,设从08年起我省森林覆盖率年平均增长率为x,则可列方程()A.()60.051263%x+= B.()60.051263x+=C.()260.05163%x+= D.()260.05163x+=13.方程4x+y=20的正整数解有()组.A.2 B.3142()x y=+,则x-y的值为()A.-1 B.1 C.2 D.315.两位数的大小恰好等于其个位与十位数字之和的4倍,这样的两位数共有( )个B.416.方程12x ⨯+23x ⨯+…+19951996x⨯=1995的解是( ) .1996 C【能力拓展】17.解下列关于x 的方程:(1)ax-1=bx (2) x 2-6x+9=(5-2x )2(3)271132x y y x -=⎧⎪⎨--=⎪⎩ (4)3215122=-+-x x x18.已知关于x ,y 的方程组⎩⎨⎧=+=+12by ax y x 与⎩⎨⎧=-=-452by ax y x 的解相同,求a ,b的值.19. 已知等腰三角形两边长分别是方程28150x x -+=的两根,求此等腰三角形的周长.20.已知a,b 是一元二次方程x 2-x -1=0的两个根,求代数式3a 2+2b 2-3a-2b的值.21.已知:关于x的方程0+kxx.(1)求证:方程有两个不相等的-122=实数根;(2)若方程的一个根是-1,求另一个根及k值.22.某人沿着向上移动的自动扶梯从顶部朝下走到底部用了7min30s,而他沿着自动扶梯从底部朝上走到顶部只用了1min30s,那么此人不走,•乘着扶梯从底部到顶部需用几分钟若停电,此人沿扶梯从底部走到顶部需几分钟(假定此人上,下扶梯的行走速度相同)路段为普通公路,其余路段为高速公23. 一辆汽车从A地驶往B地,前13路.已知汽车在普通公路上行驶的速度为60km/h,在高速公路上行驶的速度为100km/h,汽车从A地到B地一共行驶了.请你根据以上信息,就该汽车行驶的“路程”或“时间”,提出一个用二元一次方程组.......解决的问题,并写出解答过程.24.通惠新城开发某工程准备招标,指挥部现接到甲、乙两个工程队的投标书,从投标书中得知:乙队单独完成这项工程所需天数是甲队单独完成这项工程所需天数的2倍;该工程若由甲队先做6天,剩下的工程再由甲、乙两队合作16天可以完成.(1)求甲、乙两队单独完成这项工程各需要多少天(2)已知甲队每天的施工费用为万元,乙队每天的施工费用为万元,该工程预算的施工费用为19万元.为缩短工期,拟安排甲、乙两队同时开工合作完成这项工程,问:该工程预算的施工费用是否够用若不够用,需要追加预算多少万元请说明理由.25.如图,在Rt △ABC 中,∠C=90°,AC=6cm ,BC=8cm .点P 、Q 同时由A 、B 两点出发,分别沿AC 、BC 方向都以1cm/s 的速度匀速移动,几秒后△PCQ 的面积是△ABC 面积的一半QCBA第二讲 方程(典型例题)例1.(1) 当a ≠4时,•方程有惟一解x=84b a +-; 当a=4且b=-8时,方程有无数个解;当a=4且b ≠-8时,方程无解;(2)x=1或2;(3) ⎩⎨⎧==17y x ;(4) x=23-.例2.k=103. 例3. ∵原方程有两个不相等的实数根,224(4(12)(1)480b ac k k -=---⋅-=-+∴.> ,∴2k <. 又∵原方程中,21≠-k ,10k +≥,∴112k k -≠≥且 ∴1122k k -≠≤且<. 例=4. 例. 例6.⎩⎨⎧==010y x ,⎩⎨⎧==27y x ,⎩⎨⎧==44y x ,⎩⎨⎧==61y x 例7.(1)由小明原计划买x 个小熊玩具,压岁钱共有y 元 由题意,得1030%,10(6)10%.y x y y x y -=⎧⎨-+=⎩ 解这个方程组,得21300x y =⎧⎨=⎩答:小明原计划买21个小熊玩具,压岁钱共有300元. (2)设小明比原计划多买z 个小熊玩具,由题意得300-10(21+z )≥20%×300,解得z≤3. 例8. (1)小李第一次购物付款198元.①当小李购买的物品不超过200元时,不予优惠,此时实际购买198元的物品;②当小李购买的物品超过200元时,设小李购买x 元的物品,依题意可得:x ×90%=198,解之,得x=220即小李实际购买220元的物品. (2)小李第二次购物付款554元,因为554>500,故第二次小李购物超过500元,•设第二次小李购物y 元,依题意可得:(y -500)×80%+500×90%=554,解之得y=630,即小李实际购买630元的物品.当小张决定一次性购买和小李分两次购买同样多的物品时,•小张应购买的物品为:198+630=828(元)或者220+630=850(元),此时应付款为:500×90%+(828-500)×80%=(元)或者:500×90%+(850-500)×80%=730(元)答:小张应付款元或730元.例9. 设该单位这次共有x 名员工去天水湾风景区旅游.因为1000×25=25000<27000,所以员工人数一定超过25人.则根据题意,得[1000-20(x -25)]x =27000.整理,得x 2-75x +1350=0,解这个方程,得x 1=45,x 2=30. 当x =45时,1000-20(x -25)=600<700,故舍去x 1;当x 2=30时,1000-20(x -25)=900>700,符合题意.答:该单位这次共有30名员工去天水湾风景区旅游.例10.(1)2000(2)设该公司原计划安排x 名工人生产帐篷,则由题意得:20002000022000(125)(1022)(50)x x -⨯+=--+%,5163(50)x x ∴=+. ∴解这个方程,得750x =.经检验,750x =是所列方程的根,且符合题意.答:该公司原计划安排750名工人生产帐篷.第二讲 方程(同步练习)【基础巩固】1.-2 2.k >14-且0k ≠ 3.m >-6 且m ≠-4 4.1或5 5.-1 6.1257.533 8.8,3 9.A 10.B 11.D 12.D 13.C 14.C 15.B 16.B 【能力拓展】17.(1)当a ≠b 时,方程有惟一解x=1a b-;当a=b 时,方程无解;(2)x=38或2;(3) ⎩⎨⎧-==31y x ; (4) x=21-18. ⎩⎨⎧-==13y x ⎪⎪⎩⎪⎪⎨⎧==2365b a 19.11或13. 20.∵ a ,b 是方程x 2-x -1=0的两个根 ∴ a= a 2-1 ,b= b 2-1∴ 3a 2+2b 2-3a -2b=3a 2+2b 2-3(a 2-1)-2(b 2-1)=5.21.(1)略;(2)另一根为21;k=1.22.设此不走,乘着扶梯从底部到顶部需要xmin ,停电时此人从底部走到顶部需用ymin ,依题意得 1111.51117.5x y y x ⎧+=⎪⎪⎨⎪-=⎪⎩解得 3.752.5x y =⎧⎨=⎩ 故乘着扶梯从底部到顶部需要用3min45s ;•停电时此人从底部走到顶部需要用2min30s . 23.答案不唯一,略。
一次方程与方程组知识点总结归纳
![一次方程与方程组知识点总结归纳](https://img.taocdn.com/s3/m/f1d55b5666ec102de2bd960590c69ec3d5bbdbbd.png)
一次方程与方程组知识点总结归纳一、一元一次方程。
1. 定义。
- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
- 一般形式:ax + b=0(a≠0),其中a是未知数x的系数,b是常数项。
例如2x + 3 = 0就是一元一次方程。
2. 方程的解。
- 使方程左右两边相等的未知数的值叫做方程的解。
例如x = - (3)/(2)是方程2x+3 = 0的解。
3. 等式的性质。
- 性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
如果a=b,那么a±c = b±c。
- 性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
如果a = b,那么ac=bc;如果a=b(c≠0),那么(a)/(c)=(b)/(c)。
- 利用等式的性质可以求解一元一次方程,例如解方程2x+3 = 0,首先根据等式性质1,两边同时减3得2x=-3,再根据性质2,两边同时除以2得x = - (3)/(2)。
4. 一元一次方程的解法步骤。
- 去分母(若方程中存在分母时):根据等式性质2,在方程两边同时乘以各分母的最小公倍数,将分母去掉。
例如方程(x + 1)/(2)+(x - 1)/(3)=1,分母2和3的最小公倍数是6,方程两边同时乘以6得3(x + 1)+2(x - 1)=6。
- 去括号:根据乘法分配律将括号去掉。
如3(x + 1)+2(x - 1)=6去括号后变为3x+3 + 2x-2 = 6。
- 移项:把含未知数的项移到方程一边,常数项移到另一边,移项要变号。
例如3x+3 + 2x-2 = 6移项后得3x+2x=6 - 3+2。
- 合并同类项:将方程中同类项合并。
如3x+2x=6 - 3+2合并同类项得5x = 5。
- 系数化为1:根据等式性质2,方程两边同时除以未知数的系数。
如5x = 5两边同时除以5得x = 1。
二、二元一次方程(组)1. 二元一次方程。
方程与方程组知识点
![方程与方程组知识点](https://img.taocdn.com/s3/m/be52678bf5335a8103d2206f.png)
第三章方程与方程组一、一元一次方程1•等式用等号表示相等关系的式子,叫做等式. 等式的性质:(1)等式的两边都加上 (或减去)同一个数或同一个整式,所得的结果仍是等式. 即若a=b,贝U a_m 二b_m.(2) _______________________________________________ 等式的两边都乘以同一个数(或除以同一个不为 ________________________________________________ 的数),所得结果仍是等式•即a b若a = b,贝U am = bm,或(m = 0)m m2.方程含有未知数的等式叫方程叫方程.使方程左右两边相等的未知数的值,叫做方程的解.求方程的解的过程叫解方程.3•同解方程及方程的同解原理(1 )如果两个方程的解相同,那么两个方程叫同解方程.(2)方程的同解原理:①方程的两边都加上(或减去)同一个数或同一个整式,所得方程与原方程是同解方程.②方程的两边都乘以同一个数(或除以同一个不为0的数),所得方程与原方程是同解方程.4.一元一次方程在方程中,只含一个未知数,且未知数的指数是1,这样的方程叫做一元一次方程.标准形式:ax • b = 0(a = 0) 最简形式:ax二b(a = 0)补含字母系数的方程ax=b的解(1)若a = 0,则方程有唯一解x = b;a(2)若a=0,且b=0,方程变为0 • x=0,则方程有无数个解;(3)若a=0,且0,方程变为0・x=b,则方程无解.5•解一元一次方程的一般步骤(1)去分母;(2)去括号;(3)移项;(4)合并同类项,化为最简形式ax=b; (5)方程两边同除以未知数的系数(系数化为1),得出方程的解.6 .列方程解应用题的方法及步骤(1 )审题:明确己知是什么,未知是什么及相互关系,并用x表示题中一个合理未知数.(2 )根据题意找出能表示应用题含义的等量关系(关键一步)(3)据等量关系列出正确方程.(4 )解出方程:求出未知数的值.(5)检验、作答,检验应是:检验所求的解既能使方程成立,又能使它符合实际意7 •一兀一次方程应用题的主要类型(1)和差倍分问题 (2)等积变形 (3) 行程问题 (4 )百分比浓度问题(5)劳力调配 (6) 比例问题 (7 )工程问题(8)商品利润率问题(9) 数字问题&几个典型问题 储蓄问题 (1) 本金 顾客存入银行的钱叫本金 (2)利息 银行付给储户的酬金叫利息(3) 本息和 本息和=本金+利息 (4) 期数 存款的时间(年、月等) (5)利率 每个期数内的利息与本金之比.记本金为P,利率为i ,期数为n 则① 单利:本息和=本金+本金利率期数=本金 (1+利率期数),即S=P (1+in )利息税=利息税率 =本金+ 利息一利息税率=本金+ 利息(1—税率) 最后金额=本息和一税金 市场经济问题 (2)进价,原价,售价,利润率的关系:利润原价汉0.1x —进价打x 折:实际售价=原价X 0.1x .此时,禾U 润率=——=——-----进价进价练习:原价为a ,实际售价为b ,则打 _______________ 折,折扣率为 __________ . 行程问题有相遇问题,追及问题、逆(顺)流问题,上坡、下坡问题等,在运动形式上分直线 运动及曲线运动(如环形跑道、时钟问题)基本量之间的关系:路程 =速度 时间(s =v t )(1)相遇问题:s 甲 ■ s^ = s (或V 甲t V z t 二S), t 为甲、乙相遇时间.(2)追及问题:s 甲=s 乙■ s 0 ( V 甲 v z ,s 0为追及初距离),V 甲t=V 乙t ■ S 0义.②复利:本息和=本金(1+利率)n即 S=P (1+i )(1)利润=售价一进价 利润率=利润=售价进价进价 进价 〜S 甲B工程问题基本量之间的关系:工作量=工作效率X工作时间. 常见等量关系:甲的工作量+乙的工作量基本量之间的关系:现产量=原产量X (1+增长率)• 百分比浓度问题基本量之间的关系:溶质=溶液X浓度. 水中航行问题基本量之间的关系:V静-v水 =切顺,v静- v水二V逆,v顺-v逆= 2v水川顺-v^ = 2v静二、二元一次方程组1.二元一次方程组的相关概念含有两个未知数,并且未知数的项的次数都是1的方程叫做二元一次方程.一般形式:ax by c 0 a 0,b = 0 .含有两个未知数的两个一次方程所组成的一组方程叫做二元一次方程组. 适合一个二元一次方程的一组未知数的值,叫做二元一次方程的一个解. 二元一次方程组中各个方程的公共解,叫做这个二元一次方程组的解.2 .解二元一次方程组(1)代入消元法(代入法):①用含有x(或y )代数式表示y (或x),即变成y=ax,b(或x=ay,b)的形式;②将y =ax - b(或x =ay ■ b)代入另一个方程中,消去y (或x),得到一个关于x(或y)的一元一次方程;③解这个一元一次方程,求出x(或y)的值;④把x(或y)的值代入y=ax,b(或x=ay,b)中,求出y (或x)的值,从而得到方程组的解.(2)加减消兀法(加减法):①方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;②把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;③解这个一元一次方程;④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.I ------------ ----------------------------------------------- --------------------------------------------: 补三元一次方程组: 三元一次方程就是含有三个未知数,并且含有未知数的项的次数都是1的整式方程.; 由三个一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.i 解三元一次方程组的一般步骤:[… ①利用代入法或加减法-把方程组中一个方程与另两个方程分别组成两组,逍去两组______________《中考基础知识大扫描》中的同一个未知数,得到关于另外两个未知数的二元二次方程组; ■: ②解这个二元一次方程组,求出两个未知数的值;. : ③将求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个一i元一次方程;: ④解这个一元一次方程,求出最后一个未知数的值,从而得到方程组的解. iI __________________________________________________________________________________________________________________________________________________________________________________________________ I3 •二元一次方程组的应用能分析出题目中的等量关系列二元一次方程组.*4 •二元一次方程与一次函数新课标要求:能根据一次函数的图象求二元一次方程组的近似解.(1)一次函数与二元一次方程(组)以二元一次方程ax + by=c ( a,b = 0 )的解为坐标的点组成的图象与一次函数a cy x 的图象相同.b b广二元一次方程组」a i X+ b,y = c,的解可以看作是两个一次函数y = _ a i X十G和耳x + b2 y = c2b, b| a? C2y -x -的图象的交点.b2b2(2)一次函数与二元一次方程(组)的应用在实际生活中,如何应用函数知识解决实际问题,关键是建立函数模型,即列出符合题意的函数解析式,再利用方程(组)求解.三、一元二次方程1•一元二次方程的概念方程的两边都是关于未知数的整式,这样的方程叫做整式方程.含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程.一般形式:ax2bx c 二0(a = 0)其中ax2叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项.2•一元二次方程的解法(1)直接开平方法形如(x a)^ b的一元二次方程当b 一0时,x • a二.b , x二-a -、b,当b <0时,方程没有实数根.(2)配方法通过配成完全平方式的方法得到了一元二次方程的根,这种解一元二次方程的方法称为配方法.用配方法解一元二次方程ax2 bx c 0的一般步骤:①二次项系数化为1:方程两边都除以二次项系数;②移项:使方程左边为二次项和一次项,右边为常数项;③配方:方程两边都加上一次项系数一半的平方,把原方程化为(X • m)2二n的形式;④用直接开平方法解变形后的方程.2 b c小2丄b cax bx c = 0 =x x 0= x x 二a a a a2 b , b 、2 c , b、2/ b、2b2「4ac一x x ()() =(x )二a 2a a 2a a4a(3)公式法用求根公式解一元二次方程的方法称为公式法.对于一元二次方程ax2bx c = 0(a = 0),当b2 -4ac _ 0时,它的根是:f b2_4acx =2a用公式法解一元二次方程的一般步骤:①把方程化为一般形式,确定a,b,c的值;②求出b2 -4ac的值;③若b2 -4ac _0,则把a,b,c及b2 -4ac的值代入一元二次方程的求根公式:「b 二、b2—4ac 2x ,求出X i, X2;若b -4ac:::0,则方程没有实数根.2a(4)分解因式法当一元二次方程的一边为0时,将另一边分解成两个一次因式的乘积,这种解一元二次方程的方法称为因式分解法.用因式分解法解一元二次方程的一般步骤:①将方程的右边化为零;②将方程的左边分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;一④解这两个二元一次方程,它们的解就是原方程的解. ___________ ________ _________ ______ i 补判别式、韦达定理;:1 .一元二次方程根的判别式[: 我们就把b2 -4ac叫做一元二次方程ax2 bx 0的根的判别式,通常用“丄”; 来表示,即—c. I I '元二次方程根的情况与判别式 的关系:厶>0=方程有两个不相等的实数根;二=0:=方程有两个相等的实数根;匚<0:=方程没有实数根; / _0:=方程有两个实数根.2 •一元二次方程根与系数的关系(韦达定理)如果方程ax 2 • bx • c = 0(a = 0)的两个实数根是 X i ,X 2,那么两根之和,等于方程i 的一次项系数除以二次项系数所得的商的相反数;两根之积,等于常数项除以二次项系数[I 所得的商,即为+x 2 =—b , X r X 2 =c .;a a:韦达定理的两个重要推论::I I推论1:如果方程x 2 px ■ q = 0的两个根是x 1, x 2,那么x 1 x 2 - - p , x/2二q .I I推论2 :以两个数x 1,x 2为根的一元二次方程(二次项系数为1)是I2x -(为 x 2)x x 1 x 2 = 0.一元二次方程的根与系数的关系的应用:(1) 验根,不解方程,利用韦达定理可以检验两个数是不是一元二次方程的两个根. (2) 由已知方程的一个根,求出另一个根及未知系数. ⑶不解方程,可以利用韦达定理求关于x 1,x 2的对称式的值,X 1,X 2互换,代数式不变,那么,我们就称这类代数;式为关于x 1,x 2的对称式.i: (4)已知方程的两根,求作这个一元二次方程. : (5)已知两数的和与积,求这两个数.; (6)已知方程两个根满足某种关系,确定方程中字母系数的值. i (7)证明方程系数之间的特殊关系.: (8)解决其它问题,如讨论根的范围,判定三角形的形状等. :根的符号的讨论:I2X1X 2 ,2X 1 x 2X 1X 22 %「x 2 X 1 x 2说明:如果把含x 1, x 2的代数式中;利用韦达定理,还可进一步讨论根的符号,设一元二次方程ax2• bx • c = 0 (a = 0)III的两根为x1,x2,则II■⑴A >0,且X j X2 >0二两根同号.IIII二0,且X1X2 0, x i x2・0:=两根同正;II! 二0,且x1x2 0, x.) x2:::0二两根同数.II»(2)也a 0,且x1 x2■< 0 二ac v 0二两根异号.II;ac c0,且为+x2=0二两根异号且正根的绝对值较大;II: ac c0,且%+x2 £0二两根异号且负根的绝对值较大.;补二元二次方程组i ;含有两个未知数,并且含未知数的项的最高次数是2的整式方程叫做二元二次方程.关;I I 于x, y的二元二次方程的一般形式为:ax2■ bxy cy2dx e^ f = 0( a,b,c至少有[2 2一个不为0). ax ,bxy,cy叫做二次项,a,b,c叫做二次项系数;dx , ey叫做一次项,d,e : 叫做一次项系数;f叫做常数项. [ ;由一个二元一次方程和一个二元二次方程组成的方程组,或由两个二元二次方程组成[ 的方程组都叫做二元二次方程组. 1 : 二元二次方程组的解法:: :1.由一个二元一次方程和一个二元二次方程组成的方程组的解法:: :(1)代入法[ : ①把二元一次方程中的一个未知数用含有另一个未知数的代数式表示;: : ②把这个代数式代入二元二次方程,得到一个一元方程;1 ; ③解这个一元方程,求得一个未知数的值;[ ;④把所求得的这个未知数的值代入二元一次方程,求得另一个未知数的值,否则,如1果代入二元二次方程求另一个未知数,就会出现增解的问题;; ; ⑤所得的一个未知数的值和相应的另一个未知数的值分别组合在一起,就是原方程组[ 的解. : :(2)逆用韦达定理法[ X :卜y 二ai 对型如y 的方程组,可以根据一元二次方程根与系数的关系,把x, y看做一:: \Xy=b i元二次方程一_z2一二az…b 一二0 的两个根,一解这个方程'…求得的一z t,_z2的.值,就是一x, y .的值.所_:% = z 2;i 2 •由一个二元二次方程和一个可以分解为两个二元一次方程的方程组成的方程组的解法:;一般步骤:! ①先把方程组中的一个方程分解降次,化为两个一次方程;: ②将这两个一次方程分别与原方程组中的另一个方程联立, 方程和一个二元二次方程组成的方程组;一③解这两个新的方程组,所得的解都是原方程组的解:四、分式方程新课标要求:会解可化为一元一次方程的分式方程(方程中的分式不超过两个) (1) 分式方程的概念分母里含有未知数的方程叫分式方程. (2) 分式方程的解法解分式方程的思想是将“分式方程”转化为“整式方程” •它的一般解法是:① 去分母,方程两边都乘以最简公分母; ② 解所得的整式方程;③ 验根:将所得的根代入最简公分母,若等于 0就是增根,应该舍去;若不等于 0就是原方程的根. _______________________________________________________________________________' 补分式分式方程的特殊解法 换元法; 换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种 [特别形式,一般的去分母不易解决时,可考虑换元法. :用换元法解分式方程的一般步骤:;(1)设辅助的未知数,并用含辅助未知数的代数式去表示方程中另外的代数式; ■ (2)解所得的关于辅助未知数的新方程,求出辅助未知数的值; ;(3)把辅助未知数的值代入原式中,求出原未知数的值; :(4)检验做答.以原方程的解是两组对称解:h组成两个由一个二元一次。
七年级数学上册第3章一次方程与方程组3-4二元一次方程组及其解法第3课时二元一次方程组的解法__加减
![七年级数学上册第3章一次方程与方程组3-4二元一次方程组及其解法第3课时二元一次方程组的解法__加减](https://img.taocdn.com/s3/m/fc0a98cfd0f34693daef5ef7ba0d4a7303766c18.png)
-
5
3
38 y =-19
x
相等
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
4. 小琪在用“加减消元法”解二元一次方程组
− = − ,①
൝
时,利用①× a +②× b 消去 x ,则
+ = ②
a , b 的值可以是(
B
)
A. 2,3
B. 2,-3
C. 5,2
D. -5,2
第3章
3.4
第3课时
一次方程与方程组
二元一次方程组及其解法
二元一次方程组的解法——加减消元法
CONT
1星题
基础练
03
2星题
中档练
04
3星题 提升练
用加减消元法解二元一次方程组时,必须使这两个方程
中某一个未知数的系数的绝对值相同.
加减消元法
+ = − ①,
所以方程组的解为ቊ
= .
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
用适当的方法解二元一次方程组
− = ,
7. 二元一次方程组ቊ
最适宜用
+ =
加减 消元法
直接消元.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
= ,
− = ,
8. 已知①ቊ
3.2 第1课时 一元一次方程的概念和用移项解一元一次方程 课件-2024-2025学年沪科版七上
![3.2 第1课时 一元一次方程的概念和用移项解一元一次方程 课件-2024-2025学年沪科版七上](https://img.taocdn.com/s3/m/e76f8fea690203d8ce2f0066f5335a8102d266ba.png)
系数化为1,得 x=5. (2) 移项,得 x 3 x 1 3.
2
合并同类项,得 1 x 4.
2
系数化为1,得 x=-8.
例3 已知整式5x-7与4x+9的值互为相反数,求x的值.
解:由题意得5x-7+4x+9=0. 移项,得 5x+4x=7-9. 合并同类项,得 9x=-2. 系数化为1,得 x=-92 .
系数化为1
思考1:以上解方程“移项”的依据是什么? 移项的依据是等式的性质1.
思考2:“移项”起了什么作用?
通过移项,使等号左边仅含未知数的项,等号右边仅含常数的 项,目的是便于合并同类项,使方程更接近x=a的形式.
例2 解下列方程
(1)3x+7=32-2x; 2 x 3 3 x 1.
2 解:(1)移项,得 3x+2x=32-7.
获取新知
知识点1:一元一次方程的概念
观察下面的方程,它们有哪些特点?
3x-3=21 36+x=2(12+x) 4y+2=5y-5
①___只__含__有___一__个__未__知___数____ ②__未___知__数__的__次___数__都__是__1___ ③___等__式__两___边__都__是__整___式____
像这样,只含有一个未知数(元),未知数的次数都是1,且等式两 边都是整式的方程叫做一元一次方程.
一元一次方程的解也叫作根.
做一做
判断下列各式是不是一元一次方程. ①2x2-5=4;②-m+8=1;③x=1;④x+y=1;
√ √ ⑤x+3>0;⑥5x-2(x-1)=1;⑦ 2 7 4;⑧πx=12. √ √ x
注意:一元一次方程中求字母的值,需谨记两个条件: ①未知数的次数为1;②未知数的系数不为0.
2020-2022中考湖北专用专题05 一次方程与一次方程组(原卷版)
![2020-2022中考湖北专用专题05 一次方程与一次方程组(原卷版)](https://img.taocdn.com/s3/m/efa4b65c1fb91a37f111f18583d049649a660e47.png)
专题05 一次方程与一次方程组一.选择题1.(2022•十堰)我国古代数学名著《张邱建算经》中记载:“今有清酒一斗直粟十斗,醑酒一斗直粟三斗.今持粟三斛,得酒五斗,问清、醑酒各几何?”意思是:现在一斗清酒价值10斗谷子,一斗醑酒价值3斗谷子,现在拿30斗谷子,共换了5斗酒,问清、醑酒各几斗?如果设清酒x 斗,那么可列方程为( )A .10x+3(5﹣x )=30B .3x+10(5﹣x )=30C .x 10+30−x 3=5D .x 3+30−x 10=52.(2022•随州)我国元朝朱世杰所著的《算学启蒙》中记载:“良马日行二百四十里,驽马日行一百五十里.驽马先行一十二日,问良马几何追及之.”意思是:“跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,快马几天可以追上慢马?”若设快马x 天可以追上慢马,则可列方程为( )A .150(12+x )=240xB .240(12+x )=150xC .150(x ﹣12)=240xD .240(x ﹣12)=150x3.(2021•武汉)我国古代数学名著《九章算术》中记载“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:现有几个人共买一件物品,每人出8钱,多出3钱;每人出7钱,还差4钱.问人数,物价各是多少?若设共有x 人,物价是y 钱,则下列方程正确的是( )A .8(x ﹣3)=7(x+4)B .8x+3=7x ﹣4C .y−38=y+47D .y+38=y−474.(2020•恩施州)我国古代数学著作《九章算术》“盈不足”一章中记载:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何”.意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛,1个大桶加上5个小桶可以盛酒2斛.问1个大桶、1个小桶分别可以盛酒多少斛?设1个大桶盛酒x 斛,1个小桶盛酒y 斛,下列方程组正确的是( )A .{5x +y =3x +5y =2B .{5x +y =2x +5y =3C .{5x +3y =1x +2y =5D .{3x +y =52x +5y =15.(2020•随州)我国古代数学著作《孙子算经》中有“鸡兔同笼”问题:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何”.设鸡有x 只,兔有y 只,则根据题意,下列方程组中正确的是( )A .{x +y =352x +4y =94B .{x +y =354x +2y =94C .{2x +y =35x +4y =94D .{x +4y =352x +y =946.(2020•襄阳)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知3匹小马能拉1片瓦,1匹大马能拉3片瓦,求小马,大马各有多少匹.若设小马有x 匹,大马有y 匹,则下列方程组中正确的是( )A .{x +y =100y =3xB .{x +y =100x =3yC .{x +y =10013x +3y =100D .{x +y =10013y +3x =100 7.(2021•荆门)我国古代数学古典名著《孙子算经》中记载:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量,木条还剩余1尺;问长木多少尺?如果设木条长为x 尺,绳子长为y 尺,则下面所列方程组正确的是( )A .{y =x +4.512y =x −1 B .{y =x −4.512y =x +1 C .{y =x +4.52y =x −1 D .{y =x −4.52y =x +18.(2021•宜昌)我国古代数学经典著作《九章算术》中有这样一题,原文是:“今有共买物,人出八,盈三;人出七,不足四.问人数、物价各几何?”意思是:今有人合伙购物,每人出八钱,会多三钱;每人出七钱,又差四钱.问人数、物价各多少?设人数为x 人,物价为y 钱,下列方程组正确的是( )A .{y =8x −3y =7x +4B .{y =8x +3y =7x +4C .{y =8x −3y =7x −4D .{y =8x +3y =7x −49.(2022•宜昌)五一小长假,小华和家人到公园游玩.湖边有大小两种游船.小华发现1艘大船与2艘小船一次共可以满载游客32人,2艘大船与1艘小船一次共可以满载游客46人.则1艘大船与1艘小船一次共可以满载游客的人数为( )A .30B .26C .24D .2210.(2022•武汉)幻方是古老的数学问题,我国古代的《洛书》中记载了最早的幻方——九宫格.将9个数填入幻方的空格中,要求每一横行、每一竖列以及两条对角线上的3个数之和相等,例如图(1)就是一个幻方.图(2)是一个未完成的幻方,则x 与y 的和是( )A .9B .10C .11D .12二.填空题11.(2020•随州)幻方是相当古老的数学问题,我国古代的《洛书》中记载了最早的幻方﹣﹣九宫图.将数字1~9分别填入如图所示的幻方中,要求每一横行、每一竖行以及两条斜对角线上的数字之和都是15,则m 的值为 .12.(2020•孝感)有一列数,按一定的规律排列成13,﹣1,3,﹣9,27,﹣81,….若其中某三个相邻数的和是﹣567,则这三个数中第一个数是 .13.(2020•仙桃)篮球联赛中,每场比赛都要分出胜负,每队胜1场得2分,负1场得1分.某队14场比赛得到23分,则该队胜了 场.14.(2021•仙桃)我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么索长为 尺.(其大意为:现有一根竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对折后再去量竿,就比竿短5尺,则绳索长几尺.)15.(2022•仙桃)有大小两种货车,3辆大货车与4辆小货车一次可以运货22吨,5辆大货车与2辆小货车一次可以运货25吨,则4辆大货车与3辆小货车一次可以运货 吨.16.(2022•随州)已知二元一次方程组{x +2y =42x +y =5,则x ﹣y 的值为 .三.解答题17.(2022•荆州)已知方程组{x +y =3①x −y =1②的解满足2kx ﹣3y <5,求k 的取值范围. 18.(2020•黄冈)为推广黄冈各县市名优农产品,市政府组织创办了“黄冈地标馆”,一顾客在“黄冈地标馆”发现,如果购买6盒羊角春牌绿茶和4盒九孔牌藕粉,共需960元,如果购买1盒羊角春牌绿茶和3盒九孔牌藕粉共需300元,请问每盒羊角春牌绿茶和每盒九孔牌藕粉分别需要多少元?19.(2020•黄石)我国传统数学名著《九章算术》记载:“今有牛五、羊二,直金十九两;牛二、羊五,直金十六两.问牛、羊各直金几何?”译文:“假设有5头牛、2只羊,值19两银子;2头牛、5只羊,值16两银子.问每头牛、每只羊分别值银子多少两?”根据以上译文,提出以下两个问题:(1)求每头牛、每只羊各值多少两银子?(2)若某商人准备用19两银子买牛和羊(要求既有牛也有羊,且银两须全部用完),请问商人有几种购买方法?列出所有的可能.20.(2021•黄石)我国传统数学名著《九章算术》记载:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?”译文:有若干只鸡与兔在同一个笼子里,从上面数有35个头,从下面数有94只脚,问笼中各有几只鸡和兔?根据以上译文,回答以下问题:(1)笼中鸡、兔各有多少只?(2)若还是94只脚,但不知道头多少个,笼中鸡兔至少30只且不超过40只.鸡每只值80元,兔每只值60元,问这笼鸡兔最多值多少元?最少值多少元?。
金华地区中考第一轮《第5讲:一次方程与方程组》复习课件
![金华地区中考第一轮《第5讲:一次方程与方程组》复习课件](https://img.taocdn.com/s3/m/44a34ae00875f46527d3240c844769eae009a312.png)
①×3+②×2 得 5a=-5,即 a=-1,
把 a=-1 代入①得 b=-3,
则原式=a2-b2=1-9=-8
解析:第 1 题利用二元一次方程的定义得出关于 m,n 的一次方程;第 2 题把 x 与 y 的值代入方程组求出 a 与 b 的值,代入原式计算即可得到结果.
1.方程:含有未知数的等式叫做方程;使方程左右两边的值相等的未知 数的值叫做方程的解.
1.(2016·大连)方程 2x+3=7 的解是( D ) A.x=5 B.x=4 C.x=3.5 D.x=2
x=3
x+2y=5 2.(2016·温州)方程组3x-2y=7 的解是
y=1
.
x+2y=5, 3.(2016·金华)解方程组x+y=2. 【解析】直接用加减法解答即可.
解:xx++2yy==25
解方程的一般步骤及每步的理论根据和注意点:
去分母―根―据→等式性质 2注―― 意→点勿 分漏 子乘 是不 两含 项分 以母 上的 的项 代, 数式须加上括号.
去括号―根―据→去 法括 则号注―― 意→点括勿号漏前乘是括“号-内”某号一,项括. 号
分配律
内各项都要变号.
移项―根―据→(移等项式法性则质1)注――意→点移勿项漏要项变. 号,
合并同类项―根―据→ 合项并法同则类注――意→点数系母不数及变相它.加的指,字
6.下列方程变形中,正确的是( D ) A.方程 3x-2=2x+1,移项,得 3x-2x=-1+2 B.方程 3-x=2-5(x-1),去括号,得 3-x=2-5x-1 C.方程23t=32,未知数系数化为 1,得 t=1 D.方程x0-.21-0x.5=1 化成 5(x-1)-2x=1
14.若方程 3x+2a=12 和方程 2x-4=2 的解相同,求 a 的值.
新沪科版七上数学专题复习:一次方程与方程组【创新课件】
![新沪科版七上数学专题复习:一次方程与方程组【创新课件】](https://img.taocdn.com/s3/m/8480157accbff121dd368380.png)
期末复习专题 12.[期末·合肥肥西县]解方程组.
m2 +n3=13, 解:化简原方程m3 -组n4,=得3.34mm+ -23nn= =7386,.②① ①×3+②×2,得 17m=306,解得 m=18. 把 m=18 代入①, 得 3×18+2n=78,解得 n=12.所以mn==1128.,
期末复习专题
3.若关于x的方程ax+3=4x+1的解 为正整数,则整数a 的值为( A ) A.2或3 B.4 C.5 D.6
期末复习专题
4.已知方程组aaxx- +bbyy= =42,的解为xy==12,,则 2a-3b 的值为( B ) A.4 B.6 C.-6 D.-4
解得ab= =- 1,1.
期末复习专题
6.下列各方程组中,三元一次方程组有( B )
x+y=3, ①y+z=4,
z+x=2;
x+y-z=5,
②1x-y+z=-3, 2x-y+2z=1;
x+3y-z=1,
x+y-z=7,
③2x-y+z=3, ④xyz=1,
期末复习专题
13.在等式y=ax2+bx+c中,当x=1时,y=0; 当x=2时,y=4;当x=3时,y=10.当x=4时, y解的:值由是题多意少得?a4+ a+b+ 2b+c=c=0,4, 解得ab==11,, 9a+3b+c=10, c=-2. 所以等式为 y=x2+x-2. 当 x=4 时,y=42+4-2=18.
期末复习专题
8.如图,图中标有相同字母的物体的质量相 同,若A的质量为20 g,当天平处于平衡状 态时,B的质量为__1_0__g___.
期末复习专题
9.解方程. -25(3y+2)=110-32(y-1).
解:去分母,得-4(3y+2)=1-15(y-1). 去括号,得-12y-8=1-15y+15. 移项、合并同类项,得3y=24. 系数化为1,得y=8.
HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)
![HK沪科版 七年级数学 上册 同步课堂练习题作业 第三章 一次方程与方程组(全章 分课时)](https://img.taocdn.com/s3/m/03e213e8c77da26925c5b078.png)
第3章 一次方程与方程组3.1 一元一次方程及其解法第1课时 一元一次方程和等式的基本性质一、选择题:1、下列结论正确的是( )A .若x+3=y-7,则x+7=y-11;B .若7y-6=5-2y,则7y+6=17-2y;C .若0.25x=-4,则x=-1;D .若7x=-7x,则7=-7.2、下列说法错误的是( ).A .若ay a x =,则x=y; B .若x 2=y 2,则-4x 2=-4y 2; C .若-41x=6,则x=-23; D .若6=-x,则x=-6. 3、知等式ax=ay,下列变形不正确的是( ). A .x=yB .ax+1= ay+1C .ay=axD .3-ax=3-ay4、列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式;B .等式两边都乘以一个数,所得结果仍是等式;C .等式两边都除以同一个数,所以结果仍是等式;D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式;5、等式2-31-x =1变形,应得( ) A .6-x+1=3B .6-x-1=3C .2-x+1=3D .2-x-1=3 6、在梯形面积公式S=21(a+b )h 中,如果a=5cm,b=3cm,S=16cm 2,那么h=( ) A .2cm B .5cmC .4cmD .1cm 7、若关于x 的方程3(x-1)+a=b(x+1)是一元一次方程,则( ).A .a,b 为任意有理数B .a ≠0C .b ≠0D .b ≠38、方程12-x =4x+5的解是( ).A .x=-3或x=-32 B .x=3或x=32 C .x=-32 D .x=-39、下列方程①313262-=+x x ②4532x x =+ ③2(x+1)+3=x1 ④3(2x+5)-2(x-1)=4x+6.一元一次方程共有( )个. A.1 B.2C.3D.4 10.若ax +b=0为一元一次方程,则__________.11.当=m 时,关于字母x 的方程0112=--m x是一元一次方程. 12. 6.已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .13.用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x _________3,123=--=那么x x ;(3)如果;__________x ,521==那么x (4)如果________.3x ,32==那么y x 14.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x第2课时 利用移项解一元一次方程一、填空题1.如果,那么 .2.若代数式3(x-1)与(x-2)是互为相反数,则x=____________.3.已知方程①3x -1=2x +1 ②x x =-123 ③23231-=+xx ④413743127+-=++x x 中,解为x=2的是方程 . 4.若342=x 与x a a x 5)(3-=+有相同的解,那么_____. 5.已知2(a-b)=7,则5b-5a=__________.二、选择题6.下列各题的“移项”正确的是( )A. 由2x=3y-1得-1=3y+2xB. 由6x+4=3-x 得6x+x=3+4C. 由8-x+4x=7得-x+4x=-7-8D. 由x+9=3x-7得x-3x=-7-9.7.要是方程ax=b 的解为x=1,必须满足( )A. a=bB. a ≠0C.b ≠0 D a=b ≠0.三、解答题8.哥哥有存款300元,弟弟有存款120元,若从下月起哥哥每月存款100元,弟弟每月存款120元,那么几个月后两人的存款数相等?9.为了改善某边防中队的生活质量,我解放军后勤机关调拨一批水果,若每名军人3个水 果,则剩余20个水果;若每名军人4个水果,则还少25个水果,问有多少名军人? 多少 个水果?10.解方程:(1)2x+5=25-8x; (2)8x-2=7x-2; (3)2x+3=11-6x;(4)3x-4+2x=4x-3; (5)10y+7=12y-5-3y;(6)12x-1.5=3.5-13x; (7)20x·20%-3=50×30%+40x.3.1 一元一次方程及其解法第3课时 去括号解一元一次方程(一)选择题1.方程4(2-x )-4(x+1)=60的解是( )(A)7. (B) 76. (C) -76. (D)-7.` 2.下列方程的解法中,去括号正确的是( )(A) ,则. (B),则. (C),则. (D),则. (二)填空题3.当a=______时,方程的解等于.(三)解方程11. (x+1)-2(x-1)=1-3x12.2(x-2)-6(x-1)=3(1-x)第4课时 去分母解一元一次方程A 组(1)2x =3x-1 1512 (2)=-+x x(3)310.40.342x x -=+ (4)112[(1)](1)223x x x --=-((5)35.012.02=+--x x (6)43(1)323322x x ⎡⎤---=⎢⎥⎣⎦B 组(1)1111248x x x x -=++ (2) 12542.13-=-x x(3) x x -=+38 (4) 2x -13 =x+22 +1(5)3142125x x -+=- (6)31257243y y +-=-(7) 124362x x x -+--= (8) 301.032.01=+-+x xx x 23231423 =⎥⎦⎤⎢⎣⎡-⎪⎭⎫ ⎝⎛- x x 3221221413223=-⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛+3.2一元一次方程的应用第1课时 等积变形和行程问题1、用直径为4厘米的圆钢,铸造三个直径为2厘米,高为16厘米的圆柱形零件,问需要截取多长的圆钢?2、某机器加工厂要锻造一个毛胚,上面是一个直径为20毫米,高为40毫米的圆柱,下面也是一个圆柱,直径为60毫米,高为20毫米,问需要直径为40毫米的圆钢多长?3、某工厂锻造直径为60毫米,高20毫米的圆柱形瓶内装水,再将瓶内的水倒入一个底面直径6厘米、高10厘米的圆柱形玻璃杯中,能否完全装下?若装不下,那么瓶内水面还有多高?若未能装满,求杯内水面离杯口的距离。
方程与方程组
![方程与方程组](https://img.taocdn.com/s3/m/118bd8eabb4cf7ec4afed0e2.png)
方程与方程组一、知识点汇集:基础知识点:一、方程有关概念1、方程:含有未知数的等式叫做方程。
2、方程的解:使方程左右两边的值相等的未知数的值叫方程的解,含有一个未知数的方程的解也叫做方程的根。
3、解方程:求方程的解或方判断方程无解的过程叫做解方程。
4、方程的增根:在方程变形时,产生的不适合原方程的根叫做原方程的增根。
二、一元方程1、一元一次方程(1)一元一次方程的标准形式:ax+b=0(其中x是未知数,a、b是已知数,a≠0)(2)一玩一次方程的最简形式:ax=b(其中x是未知数,a、b是已知数,a≠0)(3)解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项和系数化为1。
(4)一元一次方程有唯一的一个解。
2、一元二次方程(1)一元二次方程的一般形式:(其中x是未知数,a、b、c是已知数,a≠0)(2)一元二次方程的解法: 直接开平方法、配方法、公式法、因式分解法(3)一元二次方程解法的选择顺序是:先特殊后一般,如果没有要求,一般不用配方法。
(4)一元二次方程的根的判别式:当Δ>0时方程有两个不相等的实数根;当Δ=0时方程有两个相等的实数根;当Δ< 0时方程没有实数根,无解;当Δ≥0时方程有两个实数根(5)一元二次方程根与系数的关系:若是一元二次方程的两个根,那么:,(6)以两个数为根的一元二次方程(二次项系数为1)是:三、分式方程(1)定义:分母中含有未知数的方程叫做分式方程。
(2)分式方程的解法:一般解法:去分母法,方程两边都乘以最简公分母。
特殊方法:换元法。
(3)检验方法:一般把求得的未知数的值代入最简公分母,使最简公分母不为0的就是原方程的根;使得最简公分母为0的就是原方程的增根,增根必须舍去,也可以把求得的未知数的值代入原方程检验。
四、方程组1、方程组的解:方程组中各方程的公共解叫做方程组的解。
2、解方程组:求方程组的解或判断方程组无解的过程叫做解方程组3、一次方程组:(1)二元一次方程组:一般形式:(不全为0)解法:代入消远法和加减消元法解的个数:有唯一的解,或无解,当两个方程相同时有无数的解。
第3章一次方程与方程组本章小结与复习-2024-2025学年初中数学七年级上册(沪科版)上课课件
![第3章一次方程与方程组本章小结与复习-2024-2025学年初中数学七年级上册(沪科版)上课课件](https://img.taocdn.com/s3/m/4cc3c111777f5acfa1c7aa00b52acfc788eb9f64.png)
1.从教材习题中选取. 2.完成练习册本课时的习题.
解:方程 2x=43的两边同时除以 2,得 x=23. 将 x=23代入方程 3(x+a)=a-5x,得 3×(32+a)=a-5×23,解得 a=-83.
例 3 已知方程组a4xx+-by=y=5-,1和33xa+ x+y=4b9y=,18 有相同的解,求(2a+3b)2017 的值.
解:将4x-y=5和3x+y=9组成方程组,得
本章小结与复习
沪科版七年级上册
1 等式的基本性质
1
性质1:等式的两边都加上(或减去)同一 个整式,所得结果仍是等式. 即
如果 a=b,那么 a+c=b+c,a-c=b-c.
2
性质2:等式的两边仍是等式. 即
如果
a=b,那么
ac=bc,
a c
=
bc(c≠0).
(2)如果方程组中不存在某个未知数的系数绝对值相等, 那么应选出一组系数求出它们的最小公倍数,然后将原方程组 变形,使新方程组的这组系数的绝对值相等,再加减消元.
(3)对于较复杂的二元一次方程组,应先化简,再作如上 加减消元的考虑.
6 三元一次方程组
由三个一次方程组成,且含三个未知数的方 程组,叫作三元一次方程组.
三元一次方程组的解法:通过消元转化成解 二元一次方程组的问题,再消元转化成解一元一 次方程的问题.
解三元一次方程组与解二元一次方程组有什 么联系和区别?
联系:都是消元,转化为一元一次方程, 最后求出方程组的解。
区别:未知数和方程的个数不同。
x=6-2y, 例 1 已知方程组 x-y=9-3k 求 k 的值.
3
性质3:如果 a=b,那么 b=a.(对称性).
沪科版数学七年级上册:第3章 一次方程与方程组 复习课件(30张PPT)
![沪科版数学七年级上册:第3章 一次方程与方程组 复习课件(30张PPT)](https://img.taocdn.com/s3/m/668803779ec3d5bbfc0a743a.png)
►考点三 一次方程与方程组的应用
例 4 [2012·铁岭] 为奖励在文艺汇演中表现突出的同学, 班主任派生活委员小亮到文具店为获奖同学购买奖品。小 亮发现,如果买 1 个笔记本和 3 支钢笔,则需要 18 元; 如果买 2 个笔记本和 5 支钢笔,则需要 31 元。求购买每 个笔记本和每支钢笔各多少元?
2.已知等式 3a=2b+5,则下列等式中不一 定成立的是(C ) A.3a-5=2b B.3a+1=2b+6
C.3ac=2bc+5 D.a=23b+53
3.下列结论错误的是( D) A.若 a=b,则 a-c=b-c B.若 a=b,则c2+a 1=c2+b 1 C.若 x=2,则 x2=2x D.若 ax=bx,则 a=b
►考点二 二元一次方程组的解法
例 2 用代入法解方程组: 3x-y=7, 5x+2y=8.
解:35xx- +y2=y=7,8.②① 由①,得 y=3x-7,③ 把③代入②,得 5x+2(3x-7)=8 解得 x=2。把 x=2 代入③, 得 y=-1,即xy==-2,1.
[解析] 观察两个方程系数的特点,可以发现方程 3x-y=7 中的 y 的系数是-1,所以选择方程 3x-y =7 变形比较简便。
第3章 一次方程与方程组 复习课件
第3章复习(一)
知识归纳
1.方程的有关概念
(1)方程:含有未知数的 等式 就叫做方程。 (2)一元一次方程:只含有 一 个未知数(元), 未知数的次数都是 1 ,这样的整式方程叫做一元
一次方程。
(3)二元一次方程:含有 两 个未知数,并且
未知数的次数都是 1 的整式方程叫二元一次
A.5 B.4 C.3 D.2
6.关于 x 的方程13x+2=-16(4x+m)的解是-161,则(m-
第3章一次方程与方程组测试卷
![第3章一次方程与方程组测试卷](https://img.taocdn.com/s3/m/b90408257c1cfad6185fa7c5.png)
第3章一次方程与方程组时间:120分钟满分:150分一、选择题(每小题4分,共40分)1.下列方程中,是一元一次方程的是()A.x+4y=1 B.x2-2x=3 C.2x-x3=1-3x2D.xy+6=3z2.下列等式变形错误的是()A.若x-1=3,则x=4 B.若12x-1=x,则x-2=2xC.若x-3=y-3,则x-y=0 D.若mx=my,则x=y3.下列各对数中,满足方程组5x-2y=3,x+y=2)的是()A.x=2,y=0)B.x=1,y=1)C.x=3,y=6)D.x=3,y=-1)4.用加减法解方程组4x+3y=7①,6x-5y=-1②)时,若要求消去y,则应() A.①×3+②×2 B.①×3-②×2C.①×5+②×3 D.①×5-②×35.若代数式18+a3比a-1的值大1,则a的值为()A.9 B.-9 C.10 D.-106.方程2y-12=12y-中被阴影盖住的是一个常数,此方程的解是y=-73.这个常数应是()A.1 B.2 C.3 D.47.甲队有工人272人,乙队有工人196人,如果要求乙队的人数是甲队人数的13,应从乙队调多少人去甲队?如果设应从乙队调x人到甲队,列出的方程正确的是() A.272+x=13(196-x) B.13(272-x)=196-xC.13(272+x)=196-xD.13×272+x=196-x8.已知方程组ax+by=2,bx+ay=4)的解为x=2,y=1)则a+b的值为()A.1 B.2 C.3 D.49.一只方形容器,底面是边长为5dm的正方形,容器内盛水,水深4dm.现把一个棱长为3dm的正方体沉入容器底,水面的高度将变为()A.5.08dm B.7dm C.5.4dm D.6.67dm10.一艘轮船在甲、乙两地之间航行,已知水流速度是5千米/时,顺水航行需要6小时,逆水航行需要8小时,则甲、乙两地间的距离是()A.220千米B.240千米C.260千米D.350千米二、填空题(每小题5分,共20分)11.如果x5-2k+2k=5是关于x的一元一次方程,则k=________.12.已知(x+y+3)2+|2x-y-1|=0,则xy 的值是________.13.甲、乙、丙三种商品单价的比是6∶5∶4,已知甲商品比丙商品的单价多12元,则三种商品共________元.14.关于x,y的二元一次方程组2x+y=10,kx+(k-1)y=16)的解满足x=2y,则k =________.三、解答题(共90分)15.(8分)解下列方程:(1)2(x+3)=-3(x-1)+2; (2)1-2+y6=y-1-2y4.16.(8分)解方程组:(1)x+y=5,2x+3y=11;)(2)4x-3y=9,2x+6y=12.)17.(8分)4月23日“世界读书日”期间,玲玲和小雨通过某图书微信群网购图书,请根据她们的微信聊天对话,求《英汉词典》和《读者》杂志的单价.18.(8分)已知方程组7x+3y=4,5x-2y=m-1)的解能使等式4x-3y=7成立.(1)求原方程组的解;(2)求代数式m2-2m+1的值.19.(10分)小李在解方程3x+52-2x-m3=1去分母时方程右边的1没有乘以6,因而得到方程的解为x=-4,求出m的值并正确解方程.20.(10分)某车间有技术工85人,平均每天每人可加工甲种部件16个或乙种部件10个,2个甲种部件和3个乙种部件配一套,问加工甲、乙部件各安排多少人才能使每天加工的甲、乙两种部件刚好配套?21.(12分)某班组织了一次法律知识竞赛,共有30道题,答对一题得4分,不答或答错一题扣2分.(1)小明同学参加了竞赛,成绩是84分,请问小明在竞赛中答对了多少道题?(2)小颖也参加了竞赛,考完后她说:“这次竞赛我一定能拿到100分.”请问小颖有没有可能拿到100分?试用方程的知识来说明理由.22.(12分)如图所示是一根可伸缩的鱼竿,鱼竿是用10节大小不同的空心套管连接而成.闲置时鱼竿可收缩,完成收缩后,鱼竿长度即为第1节套管的长度(如图①所示);使用时,可将鱼竿的每一节套管都完全拉伸(如图②所示).图③是这根鱼竿所有套管都处于完全拉伸状态下的平面示意图,已知第1节套管长50cm,第2节套管长46cm,以此类推,每一节套管均比前一节套管少4cm,完全拉伸时,为了使相邻两节套管连接并固定,每相邻两节套管间均有相同长度的重叠,设其长度为x cm.(1)请直接写出第5节套管的长度;(2)当这根鱼竿完全拉伸时,其长度为311cm,求x的值.23.(14分)小林在某商店购买商品A,B共三次,只有其中一次购买时,商品A,B同(1)在这三次购物中,第________次购物打了折扣;(2)求出商品A,B的标价;(3)若商品A,B的折扣相同,问商店是打几折出售这两种商品的?。
五元一次方程组题目
![五元一次方程组题目](https://img.taocdn.com/s3/m/64fde73849d7c1c708a1284ac850ad02de8007a6.png)
五元一次方程组题目题目:已知方程组:a +b +c +d +e = 5(1) 2a + b - c + 2d - e = 1(2) a - 2b + 3c - d + 2e = 7(3) 3a + 2b - c + 3d - 2e= - 1(4) 4a - 3b + 2c - d + 3e = 9(5)解析:1. 我们可以通过方程之间的加减消元来逐步简化方程组。
- 把方程(1)+(2),可得:- (a + b + c + d+e)+(2a + b - c + 2d - e)=5 + 1- 展开括号得:a+2a + b + b + c - c + d+2d+e - e = 6- 合并同类项得:3a+2b + 3d = 6(6)- 再把方程(1)×2-(3),即:- 2(a + b + c + d + e)-(a - 2b+3c - d + 2e)=2×5 - 7- 展开括号得:2a+2b + 2c + 2d+2e - a + 2b - 3c + d - 2e = 3- 合并同类项得:a + 4b - c+3d = 3(7)- 接着把方程(1)+(4),可得:- (a + b + c + d + e)+(3a + 2b - c + 3d - 2e)=5+( - 1)- 展开括号得:a+3a + b + 2b + c - c + d+3d+e - 2e = 4- 合并同类项得:4a+3b + 4d - e = 4(8)- 然后把方程(1)×3-(5),即:- 3(a + b + c + d + e)-(4a - 3b + 2c - d + 3e)=3×5 - 9- 展开括号得:3a+3b + 3c + 3d+3e - 4a + 3b - 2c + d - 3e = 6- 合并同类项得:-a + 6b + c+4d = 6(9)2. 此时我们得到了新的方程组:- 3a + 2b+3d = 6(6) a + 4b - c+3d = 3(7) 4a+3b + 4d - e = 4(8) -a + 6b + c+4d = 6(9) - 把方程(7)+(9),可得:- (a + 4b - c+3d)+(-a + 6b + c+4d)=3 + 6- 展开括号得:a - a+4b+6b - c + c+3d+4d = 9- 合并同类项得:10b + 7d = 9(10)- 再把方程(6)×2-(8),可得:- 2(3a + 2b+3d)-(4a+3b + 4d - e)=2×6 - 4- 展开括号得:6a+4b + 6d - 4a - 3b - 4d+e = 8- 合并同类项得:2a + b+2d+e = 8(11)3. 继续求解:- 由方程(10),我们可以表示出b=(9 - 7d)/(10)。
四元一次方程组和五元一次方程组的求解
![四元一次方程组和五元一次方程组的求解](https://img.taocdn.com/s3/m/ab52c218e518964bce847c03.png)
例题讲解
例6解方程组 x-y+z=1 (1) y-z+u=2 (2)
z-u+v=3 (3) x+u-v=4 (4) y+v-x=5 (5) 解: (3)+(4)得:x+z=7 (6) (2)+(3)得: y+v=5 推出v=5-y (7); (7)代入(5)得: x=0; 把x=0代入(6)得: z=7; 把x=0, z=7代入(1)得: y=6; 把y=6代入(7)得: v=-1; 把y=6, z=7代入(2)得: u=3. 所以原方程组的解: x=0, y=6 , z=7, u=3, v=-1。
例题讲解
例3 解方程组 x+2y=5 (1) y+2z=8 (2) z+2u=11 (3) u+2x=6 (4) 解: 由(4)得: u=6-2x (5) (2)-2×(3)得: y-4u=-14 (6) 把(5)代入(6)得: 8x+y=10 (7) 联立(1)和(7)得: x=1, y=2; 把x=1代入(5)得:u=4; 把y=2代入(2)得:z=3. 所以原方程组的解: x=1, y=2, z=3, u=4.
例题讲解
例2 解方程组27a+9b+3c+d=0 (1) 27a+6b+c=0 (2) a+b+c+d=8 (3) 3a+2b+c=-4 (4) 解: (1)-(3)得:13a+4b+c=-4 (5) 联立(2)、(4)、(5)得: a=1, b=-5, c=3; 把a=1, b=-5, c=3代入(3)得: d=9. 所以原方程组的解: a=1, b=-5, c=3, d=9.
中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析
![中考数学复习 一次方程与方程组 专题复习练习题含答案与部分解析](https://img.taocdn.com/s3/m/f9ef20eacaaedd3383c4d3f7.png)
中考数学复习 一次方程与方程组 专题复习练习1. 设x ,y ,c 是实数,( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则x c =y cD .若x 2c =y3c ,则2x =3y2. 若关于x 的一元一次方程x -m +2=0的解是负数,则m 的取值范围是( ) A .m ≥2 B .m >2 C .m <2 D .m ≤23. 二元一次方程组⎩⎪⎨⎪⎧x +y =6,x -3y =-2的解是( )A .⎩⎪⎨⎪⎧x =5,y =1 B .⎩⎪⎨⎪⎧x =4,y =2 C .⎩⎪⎨⎪⎧x =-5,y =-1 D .⎩⎪⎨⎪⎧x =-4,y =-2 4. 若二元一次方程组⎩⎪⎨⎪⎧x +y =3,3x -5y =4的解为⎩⎪⎨⎪⎧x =a ,y =b ,则a -b =( )A .1B .3C .-14D .745. 利用加减消元法解方程组⎩⎪⎨⎪⎧2x +5y =-10,①5x -3y =6, ②下列做法正确的是( )A .要消去y ,可以将①×5+②×2B .要消去x ,可以将①×3+②×(-5)C .要消去y ,可以将①×5+②×3D .要消去x ,可以将①×(-5)+②×26. 若代数式4x -5与2x -12的值相等,则x 的值是( )A .1B .32C .23D .27. 春节前夕,某服装专卖店按标价打折销售.小明去该专卖店买了两件衣服,第一件打七折,第二件打五折,共计260元,付款后,收银员发现结算时不小心把两件衣服的标价计算反了,又找给小明40元,则这两件衣服的原标价各是( ) A .100元、300元 B .100元、200元 C .200元、300元 D .150元、200元8. 某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x 道题,答错了y 道题,则( )A .x -y =20B .x +y =20C .5x -2y =60D .5x +2y =60 9. 学校八年级师生共466人准备参加社会实践活动.现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( )A .⎩⎪⎨⎪⎧x +y =10,49x +37y =466B .⎩⎪⎨⎪⎧x +y =10,37x +49y =466C .⎩⎪⎨⎪⎧x +y =466,49x +37y =10 D .⎩⎪⎨⎪⎧x +y =466,37x +49y =10 10. 甲、乙两名运动员在长为100 m 的直道AB(A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点……若甲跑步的速度为5 m/s ,乙跑步的速度为4 m/s ,则起跑后100 s 内,两人相遇的次数为( ) A .5 B .4 C .3 D .211. 已知x ,y 满足方程组⎩⎪⎨⎪⎧x -2y =5,x +2y =-3,则x 2-4y 2的值为 .12. 王大爷用280元买了甲、乙两种药材,甲种药材每千克20元,乙种药材每千克60元,且甲种药材比乙种药材多买了2kg ,则甲种药材买了 kg.13. 书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元,一律按原价打九折; ③一次性购书超过200元,一律打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是 元.14. 解方程组:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7. ②15. 解方程组:⎩⎪⎨⎪⎧2x +y =4,x -y =-1.16. 用消元法解方程组⎩⎪⎨⎪⎧x -3y =5, ①4x -3y =2 ②时,两名同学的解法如下:解法一:由①-②,得3x =3. 解法二:由②,得3x +(x -3y)=2.③(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处画“ ╳ ”; (2)请选择一种你喜欢的方法,完成解答.17. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0.求满足条件的m 的整数值.18. 已知关于x ,y 的方程组⎩⎪⎨⎪⎧mx +ny =7,2mx -3ny =4的解为⎩⎪⎨⎪⎧x =1,y =2,求m ,n 的值.19. 随着“互联网+”时代的到来,一种新型打车方式受到大众的欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按x 元/千米计算,耗时费按y元/分钟计算(总费用不足9元按9元计价).小明、小刚两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与打车时间如下表:(1)求x,y的值;(2)如果小华也用该打车方式,打车行驶了11千米,用了14分钟,那么小华的打车总费用为多少?20. 目前节能灯在城市已基本普及,为响应号召,某商场计划用3 800元购进甲、乙两种节能灯共120盏,这两种节能灯的进价、售价如下表:(1)甲、乙两种节能灯各购进多少盏?(2)全部售完120盏节能灯后,该商场获利多少元?答案与解析: 1. B 2. C 3. B4. D 解析: 把方程组的解代入方程组中得到关于a ,b 的二元一次方程组,解方程组求出a ,b 的值,即得所求代数式的值.把⎩⎪⎨⎪⎧x =a ,y =b代入二元一次方程组,得⎩⎪⎨⎪⎧a +b =3,3a -5b =4,解得⎩⎪⎨⎪⎧a =198,b =58,a -b =198-58=74.故选D .5. D6. B7. A 解析:设这两件衣服的原标价各是x 元、y 元.则可列方程组⎩⎪⎨⎪⎧0.7x +0.5y =260,0.5x +0.7y =260-40,解得⎩⎪⎨⎪⎧x =300,y =100,∴这两件衣服的原标价各是300元、100元.故选A . 8. C 9. A10. B 解析:设两人相遇的次数为x.依题意,得100×25+4x =100,解得x =4.5,∵x 为整数,∴x 取4.故选B . 11. -15解析:⎩⎪⎨⎪⎧x -2y =5, ①x +2y =-3, ②①×②,得(x -2y)(x +2y)=x 2-4y 2=-15.12. 5 解析:设甲种药材买了x kg ,则乙种药材买了(x -2)kg.依题意,得20x +60(x -2)=280,解得x =5.∴甲种药材买了5 kg. 13. 248元或296元解析;设第一次购书的原价为x 元,则第二次购书的原价为3x 元.依题意,得①当0<x≤1003时,x +3x =229.4, 解得x =57.35(舍去);②当1003<x≤2003时,x +910×3x=229.4,解得x =62,此时两次购书原价总和为4x =4×62=248;③当2003<x≤100时,x +710×3x=229.4,解得x =74, 此时两次购书原价总和为4x =4×74=296;④当100<x ≤200时,910x +710×3x=229.4,解得x≈76.47(舍去);⑤当x>200时,710x +710×3x=229.4,解得x≈81.93(舍去).综上可知,小丽这两次购书原价的总和是248元或296元.14. 解:⎩⎪⎨⎪⎧3x -2y =-1,①x +3y =7, ②由②,得x =7-3y.将x =7-3y 代入①,得3(7-3y)-2y =-1,解得y =2.将y =2代入x =7-3y ,得x =1.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2. 15. 解:⎩⎪⎨⎪⎧2x +y =4, ①x -y =-1, ②①+②,得3x =3,解得x =1.将x =1代入②,得1-y =-1,解得y =2.∴方程组的解为⎩⎪⎨⎪⎧x =1,y =2.16. 解:(1)解法一中的计算有误(标记略).(2)由①-②,得-3x =3,解得x =-1.把x =-1代入①,得-1-3y =5,解得y =-2,∴原方程组的解是⎩⎪⎨⎪⎧x =-1,y =-2.把①代入③,得3x +5=2.17. 解:①+②,得3x +y =3m +4.③ ②-①,得x +5y =m +4.④∵关于x ,y 的方程组⎩⎪⎨⎪⎧x -2y =m , ①2x +3y =2m +4 ②的解满足不等式组⎩⎪⎨⎪⎧3x +y≤0,x +5y >0,∴将③④代入不等式组,得⎩⎪⎨⎪⎧3m +4≤0,m +4>0,解得-4<m≤-43.∴满足条件的m 的整数值为-3,-2.18. 解:把⎩⎪⎨⎪⎧x =1,y =2代入原方程组,得⎩⎪⎨⎪⎧m +2n =7, ①2m -6n =4,②由①,得m =7-2n.③把③代入②,得2(7-2n)-6n =4, 解得n =1.把n =1代入③,得m =5. ∴m ,n 的值分别为5,1.19. 解:(1)根据题意,得⎩⎪⎨⎪⎧8x +8y =12,10x +12y =16,解得⎩⎪⎨⎪⎧x =1,y =12.(2)11×1+14×12=18(元).答:小华的打车总费用是18元.20. 解:(1)设购进甲种节能灯x 盏,乙种节能灯y 盏.由题意,得⎩⎪⎨⎪⎧25x +45y =3 800,x +y =120,解得⎩⎪⎨⎪⎧x =80,y =40.答:购进甲种节能灯80盏,乙种节能灯40盏.(2)根据题意,得80×(30-25)+40×(60-45)=1 000(元).答:全部售完120盏节能灯后,该商场获利1 000元.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答:甲、乙两种商品进价分别为150元,200元.
x 150, y 200.
80%(1 50%) x 90%(1 50%) 450.
P22
举一反三 7.(2014·石景山区二模)北京某郊区景点 门票价格:成人票每张40元,学生票每张是成人票的 半价.小明和小华两家人买了12张门票共花了420元,求 两家的学生和成人各有几人.
用一次方程(组)解决实际问题有以下步骤: (1)审题,找到两个等量关系; (2)设未知数,可直接设,也可间接设; (3)列方程(组); (4)解方程(组); (5)检验,检验是否符合实际问题; (6)答,包括单位.
自学检测2(8分钟) P20
考点3 一次方程组 1.用代入消元法解方程组:
2.用加减消元法解方程组:
n n
三、解一元一次方程:
解一元一次方程的一般步骤:①去分母,②去括号,③ 移项,④合并同类项,⑤未知数的系数化为1.
自学检测(8分钟)
考点1 等式的性质 【例1】把方程
P19
B.3(x+15)=1-5(x-7) D.3(x+15)=15-(x-7)
1 1 ( 5 x+15)=1- 3(x-7)去分母,下列正确的是(
方法技巧:若方程组中有一个方程的一个未知数 的系数为+1或-1时,用代入法较简便; 若方程组中同一个未知数的系数的绝对值相等 或成整数倍时,用加减法较简便.
考点4
一次方程(组)的应用
P21
【例4】某商场购进物品后,加价50%作为销售价.商场 搞优惠促销,决定由顾客抽奖确定折扣,某顾客购买 甲、乙两种商品,分别抽到八折和九折,共付款450元. 两种商品原销售价之和为525元,两种商品的进价分别 为多少元? 解:设甲、乙两种商品进价分别为x元、y元.根 (1 50%) x (1 50%) y 525, 据题意,得 解得
A.3(x+15)=15-5(x-7) C.3x+15=15-5(x-7) 举一反三
A)
1.下列方程变形中,正确的是(
D
)
A.方程3x-2=2x+1,移项,得3x-2x=-1+2 B.方程3-x=2-5(x-1),去括号,得3-x=2-5x-1
C.方程
D.方程
2 3 t 3 2
,未知数系数化为1,得t=1
2015年中考第一轮复习
学习目标(1分钟)
1.了解一元一次方程、二元一次方程(组)的有关概念。 2.会解一元一次方程、简单的二元一次方程组。 3.能够根据具体问题中的数量关系列出方程(组)。
自学指导1(5分钟)
P19
一、等式的基本性质: 1.等式两边同时加上(或减去)同一个代数式,所得结果 仍是等式. 即若a=b,则a±m=b±m. 2.等式两边同时乘同一个数(或除以同一个不为0的), 所得结果仍是等式.即若a=b,则am=bm, a b (n≠0). 二、一元一次方程的概念: 在整式方程中,只含有一个未知数,并且未知数的次数 是1,系数不等于0的方程,叫做一元一次方程. ax+b=0(a≠0)是一元一次方程的标准形式.
考点二 二元一次方程组 1.二元一次方程组 (1)了解二元一次方程组的定义; (2)二元一次方程的一般形式:ax+by=c. 2.解二元一次方程组的基本思路:消元 3.二元一次方程组的解法: (1)代入消元法;(2)加减消 元法;(3)图象法.
考点三 一元一次方程的应用 1.列方程(组)解应用题的一般步骤 (1)把握题意,搞清楚什么是条件,求什么; (2)设未知数; 直接设未知数,就事论事,问什么设什么, 间接设未知数. (3)找出能够包含未知数的等量关系 (一般情况下 设几个未知数,就找几个等量关系); (4)列出方程(组); (5)求出方程(组)的解; (6)检验(看是否符合题意); (7)写出答案(包括单位名称). 2. 列方程(组)解应用题的关键是: 确定等量关系.
当堂训练(15分钟)
P22 【精练课堂考点】 1.将方程2(x﹣1)=3(x﹣1)的两边同除以x﹣1, 得2=3,其错误的原因是( C ) A.方程本身是错的 B.方程无解 C.两边都除以了0 D.2(x﹣1)小于3(x﹣1) 2.如果 a+1与 互为相反数,那么a等于( ) A
解:设两家有学生x人,成人y人. 根据题意,得 x y 12,
20 x 40 y 420.
x 3, 解得 y 9. 答:两家的学生有3人,成人有9人.
点拨(5分钟)
考点一 一元一次方程 1.一元一次方程 在整式方程中,只含有一个未知数,并且未知数的次数是 1, 系数不等于 0 的方程,叫做一元一次方程.ax+b=0(a≠0) 是一元一次方程的标准形式. 2.解一元一次方程的一般步骤 (1) 去分母;(2)去括号; (3)移项; (4) 合并同类项; (5) 系 数化为 1.
解:(1)把①代入②,得2(y+5)-y=5.解得y=-5. 把y=-5代入①,得x=0. x 0, 所以方程组的解为 y 5.
(2)②×2,得4x-2y=4. ①-③,得y=-1. 1 把y=-1代入①,得 x 2 .
1 x , 所以方程组的解为 2 y 1.
3
2解一元一次方程:3(x-7)-5(x-4)=15. 解:3(x-7)-5(x-4)=15. 去括号,得:3x-21-5x+20=15. 移项、合并同类项,得:-2x=16. 系数化为1,得:x=-8.
一、解二元(或三元)一次方程组:
自学指导2(3分钟)
P19
解二元(或三元)一次方程组的基本思路是“消元”, 目的是转化为一元一次方程求解.消元的方法有两种, 分别是代入消元法和加减消元法. 二、一次方程(组)的应用:
x 1 x 1 ,化成3x=6 0.2 0.5
考点2 一元一次方程 3 x 2 x 1 1.解一元一次方程:(3x-2)-3x=6. 去括号,得6x-4-3x=6. 移项,得6x-3x=6+4. 易错警示:在去分母时, 合并同类项,得3x=10. 易忽视分数线的括号作用 10 未知数系化为1,得 x .