智能风机是什么

智能风机是什么
智能风机是什么

从哪里来到哪里去,又能创造哪些客户价值,这两个问题因为智能风机的到来将成为行业话题。

记者:远景是最早提出智能风机概念的公司,也因此吸引了一批汽车和航空领域的国际顶尖研发人才。您怎么看汽车和航空工业百年积累的工业技术在风电行业的应用以及智能风机未来的演化?

刘曙源:我们会问,再过10年、30年,风机会是什么样子?未来不好预测,但从昨天和今天的汽车比较中不难发现,不管从工作原理,还是设计的概念结构上,汽车的本质没变,但在其智能化水平上,今天的汽车却有了质的飞跃,它已搭乘了几十甚至上百个控制单元,有上千万行的软件代码在上面运行,这使得今天的汽车驾驶者不需要像几十年前的驾驶者那样,在学开车的同时,一定要学会修车。因为,今天的汽车给驾乘者带来的安全和舒适体验已和几十年前的汽车不可同日而语。

从汽车工业的发展变化看,当前的风电工业水平可能类似半个世纪前的汽车工业,尽管近年来风机在单机功率和扫风面积增大方面发展迅速,但其智能化水平却与当年600-800kW 的小风机相当,并没有显著提升。所以,要预言未来的风机演化,我们可以推断半个世纪后的风机在原理和概念结构上与今天的风机不会有本质的不同,但风机的智能化演化则会呈现无止境的态势。这一点,是由客户日益增长的对风机的风能转化效率要求所决定的。

在一种提升效率的极致追求下,我们看到了行业不断放大的风轮直径,115米和121米风轮都已在市场出现,但一味单方面放大风轮直径真的能满足客户大幅提升风能转换效率的需求吗?看看汽车的历程,当驾乘者追求驾驶速度和动力性能时,最直接的方法是增大发动机的排量。可是,人人都知道如果用30年前的化油器技术来控制发动机的进油和进气,即使提升到4.0的排量,所增加的输出动力也有限,且很不经济。所以,今天我们看到了智能化的电子喷射技术控制的发动机和涡轮增压的发动机,排量并不是一味的提升。相反,1.4T 的发动机成为经济型轿车受欢迎的配置。

具体到远景智能风机,我要提到远景全球研发团队中的孙博士,之前他是波音公司的翼型设计专家,他认为从高速飞机到低速飞机的变化不仅仅是简单增大机翼和机身的比例,而是主要依靠低速高升力翼型的设计,以及空气动力学和智能控制的集成。低风速风机的设计同样如此,简单增大叶轮直径并非最经济有效的设计方法,适合低风速的高升力翼型设计和智能控制的集成才是低风速风机成功的关键。

远景风机不仅有先进的硬件传感器,更有大量的软件传感器和在航空航天以及汽车行业成功应用的先进控制算法,相比传统风机几万行的控制软件代码,远景智能风机控制系统搭载的软件系统代码超过200万行。

当客户在追求风轮直径增大来提升风能转换效率时,因风轮增大而急剧增加的风机安全性风险被显著放大。目前,叶片安装导致的桨距角对零误差还停留在过去的水平上,正负1到2度的误差在目前的制造和安装工艺中不可避免,这对于100米以下风轮直径的风机问题不大,但对直径超过105米的风轮,叶片不对称所产生的疲劳载荷会急剧增加,远景在110风轮风机上做过载荷测量,数据表明1度以上的桨距角对零误差导致的疲劳载荷增加已显著超出设计标准,这对风机的长期安全性运行带来巨大风险。这不难理解远景智能风机控制软件中仅桨距角误差补偿算法的软件代码量就超过1万行。

记者:业内提及远景大多与低风速技术有关,但对远景智能风机也只是个概念。在您看来,远景智能风机在低风速风电场有何优势?

刘曙源:在我看来,与其说低风速技术,不如说智能风机有更高的能量可利用率更合适。低风速风场风能量小,远景智能风机领先行业的风能转换效率成为业主在低风速风电场得以盈利的决定性因素。对于低风速风能的转换,行业内还存在一些误解:面对年风频分布图分析低风速风电场风资源时,我们会发现低于6米/秒风速的时间超过50%,不足4米/秒风速

的时间超过30%,从而认为低风速技术一定要降低风机的切入风速,提高500kW以下功率段的功率曲线效率。其实,这混淆了风速和风能的概念,风能不等同于风速,而是和风速成三次方的关系。如果从风能的角度来看年风频分布图,你会看到年风频分布会整体右移,而这时你也发现,虽然6米/秒以下风速占全年时间的50%以上,但这部分风速所蕴含的风能还不足全年的15%,3米/秒以下风速的风能占全年风能的比例还不足千分之几。因此,将风机切入风速降低到2米/秒,本质上没有意义,只是徒然增加了自耗电和器件损耗。

从低风速风场的风能分布来看,风速在8米/秒到12米/秒段的风能,尽管其仅占全年时间的30%,但所蕴含的风能则超过全年的70%以上。不幸的是,恰恰这个风速区间的风能是最难以捕获的,这也是实际风能转换效率和理论风能转换效率偏差发生最大的风速区间。原因很简单,风机在这个风速区间正是风机额定风速上下的范围,这个时候的风机控制面临着一个尴尬的境地,理想情况是,当超过额定风速时,风机的控制目标是将风能卸掉,但不能多也不能少,正好够满发;而当风速低于额定风速时,风机的控制目标是尽量捕获最多的能量,但现实情况是,风速在瞬态会时而高于额定风速,时而低于额定风速,如果不采用激光雷达技术,我们很难预见下一时刻的风速,风机可能在风速高于额定风速时过度变桨而卸掉了更多的风能,导致不能满发。相反,当风速低于额定风速时,风机也可能还处于上一时刻卸掉风能的变桨状态,导致风能转换效率进一步降低,而大风轮惯量的增加,也加剧了这种低能量转化在传统风机的常态化。这就是为什么有些使用了大风轮传统风机的业主抱怨风机过度偏离理论发电性能的原因。

说到智能风机针对低风速的技术特点,远景智能控制技术中有一个基于神经网络的样本训练预测模型,这个有数十万行代码的在线运行软件模型能够不断通过历史样本训练,实现对风场风速模式的识别,这在很大程度上避免远景智能风机在低能量转化工况下运行的几率。其实,这项技术在汽车行业已得到广泛应用,比如发动机控制系统可以通过历史的过程,识别出驾驶者的驾驶习惯,从而提升发动机的控制性能。风场也是一样,尽管下一时刻的风速难以预测,但只要风场的风速特点有所不同,远景智能风机就能识别,这也是远景智能风机在低风速风能蕴含量最大的风速区间风能转换效率行业领先的重要原因。

风机控制柜说明书

防排烟风机控制箱操作说明书 一、产品功能 本设备为防排烟风机控制设备,具有消防联动开关信号启动、消防联动DC24V信号启动、防火阀闭锁启停功能、过流声光报警、电源电压过压、欠压、错相、缺相报警等功能。 二、防排烟风机控制箱通电前的检查 1、通电前请检查电源进线、电源出线是否正确连接。 2、检查所有端子或元器件是否有松动现象,如有松动现象,请重新拧紧或重新插好,如 继电器等插拔式元件。 3、仔细核对外接线的端子号,查看电源回路是否有短路和接错的现象。 三、防排烟风机控制箱操作文字说明 1、带双电源的防排烟风机控制箱(以下简称控制箱),确认两路进线是否正确可靠接入,接着实验双电源是否能够自动转换,接入相序是否有错相报警,如有报警请调换进线接线或调换相序继电器XXJ上的采样线L1,L2,L3任意2根线既可; 2、闭合断路器QF1,控制箱上电,门板面板上绿色指示灯亮。 3、在启动前,检查防火阀接入处是否接入防护阀信号,若没有防火阀信号请您短接端子排 上111和113;检查风机负载线是否正确接入。 4、手自动转换开关置于手动位置,操作启动按钮,查看合闸指示灯是否灯亮;操作停止按 钮,查看合闸指示灯是否灯灭,同时观看风机运转情况。 5、手自动转换开关置于自动位置,当发生消防命令时,应启动风机,合闸指示灯亮,消防 联动报警灯亮及报警,这是正常现象。消防联动信号若是无源短接信号请接到101和125上,若是DC24V信号请接到端子的“+”和“-”上; 6、运行过程中若出现过流报警,请您调节电动机保护器至合适位置;过流报警可操作“消 音”按钮消除报警声,黄色指示灯亮。 四、故障诊断 五、控制箱端子接线说明 1、防火阀闭锁点为无源闭点信号1JX1,2;线号为“111”“113”

智能控制器在风机及水泵中的应用

凌晓杰1 陆伟青2 (1.浙江省超维建筑设计院浙江杭州 310011 ) (2.安科瑞电气股份有限公司上海嘉定 201801) 摘要:随着建筑行业快速发展,BA设备监控系统,通过联网,对分布于监控现场的区域智能分站(即DDC)与各种特定的末端设备进行连接,对建筑内的各种用电设备(如送排风风机、给排水、电梯、照明等)进行实时集中监视和管理的专业楼宇自动化控制。本文以风机、水泵为对象,结合建筑行业应用标准,介绍了风机水泵的工作原理和控制要求,最后结合智能控制器给出专业化解决方案。 关键词:BA设备监控系统消防风机水泵智能控制器 一、引言 风机、水泵是一种通用类机械,广泛应用于工业、农业及生活等各个领域,同时各类设计规范对于风机、水泵在建筑领域不同场合下的控制保护也有相应的具体要求。随着建筑行业快速发展,楼宇自动监控系统(BAS,Build Automatic Monitor System)也普遍应用于楼宇和大型公共建筑建设项目中。 二、智能控制器 智能控制器采用Freescale公司推出的32位ColdFire V1 内核 MCF51EM256的处理器作为控制核心,4路16位SAR型ADC,3个SPI、3个SCI和1个I2C接口,3个定时模块硬件,独立的RTC时钟和两个安全的FLASH内存,丰富的GPIO口,丰富的CPU片山资源保证了模块的可靠性和先进性。 控制器集测量、保护、控制、总线通讯为一体,取代了原有用分列元件配置的各种保护继电器、电测仪表、转换开关、按钮及信号指示灯,集成了直接启动、星三角启动等多种控制方式。同时提供操作次数、运行时间、跳闸事件等重要管理信息的记录,总线通信功能可以同管理系统进行数据交换和远程控制,提高了楼宇智能化水平,简化了传统的控制柜设计。

风机电气控制系统

风机电气控制系统新誉风电公司

目录 1.电气控制系统概述(可参考控制系统使用说明书) 2.风机发电控制方法 3.风机监视控制 4.接线原理图 5.机舱柜和塔筒柜 6.安全系统的概念 7.风机故障(故障等级、引起的停机种类、故障清除的种类)8.风机的自耗功率 9.风机的操作

1.电气控制系统概述 电气控制系统包括如下内容(其中塔筒柜和机舱柜一起构成风机主控系统): 塔筒柜、机舱柜、变桨控制系统、变流器、发电机的控制和监视部分、齿轮箱的电气部分、液压站和高速轴刹车的电气部分、偏航电气部分、风机的传感器部分。 塔筒柜部分包括控制器PLC(带中央处理器模块)、控制开关、电网检测、UPS 电源、HMI触摸屏(人机界面)、变流器控制接口。 机舱柜部分包括控制器PLC的远程输入输出模块(不带中央处理器)、控制开关、保护电路、与发电机控制和监视的接口电路、与齿轮箱电气部分的接口电路、液压站和高速轴刹车电气接口电路、偏航控制电路、风机传感器接口、与变桨系统的接口电路。 变桨系统包括变桨控制柜和伺服执行系统,变桨系统作为主控制系统的执行机构,其任务是根据风机主控制器的指令完成执行变桨操作,以及在非安全的情况下(如与风机主控失去通讯,电网故障,安全系统故障等)完成快速收桨动作。变桨系统本身是一套伺服系统。整个系统包括伺服驱动器(3套独立的)、电机、备用电池柜(三套独立的)及其他部件如限位开关、传感器、配电柜等。 发电机和变流器是实现机械能往电能转换的机构,控制系统通过控制发电机的转矩和转速来控制风机发电功率。 齿轮箱、液压站和高速轴刹车的电气接口是用来检测这些部件的状态并控制这些部件的运行。 偏航电气部分是用来控制系统的偏航动作的。 风机的传感器是用来检测风速、风向、风机振动、环境温度、风机的扭缆状态、风轮的锁定状态等。 机舱柜和塔筒柜的功能描述见操作说明书

风机自动控制技术监督实施细则标准范本

管理制度编号:LX-FS-A46051 风机自动控制技术监督实施细则标 准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

风机自动控制技术监督实施细则标 准范本 使用说明:本管理制度资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 总则 第一条为提高中国大唐集团新能源股份有限公司(以下简称新能源公司)所属风电企业设备可靠性,确保发电设备安全、经济运行,根据国家及行业标准和《中国大唐集团公司技术监控管理办法》,特制订本细则。 第二条风机自动控制技术监督工作应认真贯彻“安全第一,预防为主,综合治理”方针,实行技术责任制。按照依法监督、分级管理原则,从设计审查、设备选型、安装、调试、试生产到运行、检修和

风机控制系统结构原理分解

风机控制系统结构

一、风力发电机组控制系统的概述 风力发电机组是实现由风能到机械能和由机械能到电能两个能量转换过程的装置,风轮系统实现了从风能到机械能的能量转换,发电机和控制系统则实现了从机械能到电能的能量转换过程,在考虑风力发电机组控制系统的控制目标时,应结合它们的运行方式重点实现以下控制目标: 1. 控制系统保持风力发电机组安全可靠运行,同时高质量地将不断变化的风能转化为频率、电压恒定的交流电送入电网。 2. 控制系统采用计算机控制技术实现对风力发电机组的运行参数、状态监控显示及故障处理,完成机组的最佳运行状态管理和控制。 3. 利用计算机智能控制实现机组的功率优化控制,定桨距恒速机组主要进行软切入、软切出及功率因数补偿控制,对变桨距风力发电机组主要进行最佳尖速比和额定风速以上的恒功率控制。 4. 大于开机风速并且转速达到并网转速的条件下,风力发电机组能软切入自动并网,保证电流冲击小于额定电流。对于恒速恒频的风机,当风速在4-7 m/s之间,切入小发电机组(小于300KW)并网运行,当风速在7-30 m/s之间,切人大发电机组(大于500KW)并网运行。 主要完成下列自动控制功能: 1)大风情况下,当风速达到停机风速时,风力发电机组应叶尖限速、脱网、抱液压机械闸停机,而且在脱网同时,风力发电机组偏航90°。停机后待风速降低到大风开机风速时,风力发电机组又可自动并入电网运行。 2)为了避免小风时发生频繁开、停机现象,在并网后10min内不能按风速自动停机。同样,在小风自动脱网停机后,5min内不能软切并网。 3)当风速小于停机风速时,为了避免风力发电机组长期逆功率运行,造成电网损耗,应自动脱网,使风力发电机组处于自由转动的待风状态。 4)当风速大于开机风速,要求风力发电机组的偏航机构始终能自动跟风,跟风精度范围 ±15°。 5)风力发电机组的液压机械闸在并网运行、开机和待风状态下,应该松开机械闸,其余状态下(大风停机、断电和故障等)均应抱闸。 6)风力发电机组的叶尖闸除非在脱网瞬间、超速和断电时释放,起平稳刹车作用。其余时间(运行期间、正常和故障停机期间)均处于归位状态。 7)在大风停机和超速停机的情况下,风力发电机组除了应该脱网、抱闸和甩叶尖闸停机外,

智能风机控制器

第一章绪论 1.1课题背景 目前对于电器产品中冷却风扇的要求越来越高,电机作为冷却风扇的驱动源既要高效节能,又要静音。传统上广泛使用的是交流电机(如:罩极式电机、电容式启动电机等),虽然其结构简单,成本低。但其所固有的体积大,效率低等缺点,已越来越不适应家电产品小型化和高效化的要求。因此,效率高、体积小的直流无刷电机在冷却风扇系统中得到了应用。但是,目前在使用无刷风扇电机作为冷却风扇驱动源的系统中,电动机的转速是恒定的,而不是根据热负荷的大小相应的调整电机转速,因而造成了电能的无用消耗[1]。投影仪、大功率电源、数据通讯交换机和路由器等设备的散热是一个值得考虑的问题。这些应用功耗极大,使设计人员在设计时要用风扇来冷却电子元件。如果吹向元器件的气流等于或小于每分钟六到七立方英尺即可满足冷却要求。那么直流无刷风扇是一个不错的选择目前已有很多微处理机将控制电机必需的功能做在芯片中,而且体积越来越小,像模拟/数字转换器(ADC)、脉冲宽度调制(PWM)等。单片机在检测和控制系统中得到了广泛的应用。温度检测、电机转速控制等方面,都有单片机的应用。温度控制集成电路的迅速发展,也使温度检测技术越来越智能化了,这促使了冷却散热电子产品技术有了长足的发展。 1.2 研究的目的和意义 随着电子技术的飞速发展,当今的电子设备如不考虑热设计,通常会产生过热现象。强迫空气冷却作为比较经济方便的冷却手段在电子设备热设计中得到了普遍应用。而运用强迫空气冷却电子设备的首要任务是选择合适的风扇来提供足够的冷却空气。大多数风扇的使用寿命都在几千小时左右,多数功率设备都存在负荷变化的特点,在停止工作或负荷较轻时可能并不需要风扇,而仅靠散热片的被动散热就能满足散热需求;是否满足散热需求的标准就是温度,在工作温度高于一定程度时,风机开始工作,提供主动散

智能风机是什么

从哪里来到哪里去,又能创造哪些客户价值,这两个问题因为智能风机的到来将成为行业话题。 记者:远景是最早提出智能风机概念的公司,也因此吸引了一批汽车和航空领域的国际顶尖研发人才。您怎么看汽车和航空工业百年积累的工业技术在风电行业的应用以及智能风机未来的演化? 刘曙源:我们会问,再过10年、30年,风机会是什么样子?未来不好预测,但从昨天和今天的汽车比较中不难发现,不管从工作原理,还是设计的概念结构上,汽车的本质没变,但在其智能化水平上,今天的汽车却有了质的飞跃,它已搭乘了几十甚至上百个控制单元,有上千万行的软件代码在上面运行,这使得今天的汽车驾驶者不需要像几十年前的驾驶者那样,在学开车的同时,一定要学会修车。因为,今天的汽车给驾乘者带来的安全和舒适体验已和几十年前的汽车不可同日而语。 从汽车工业的发展变化看,当前的风电工业水平可能类似半个世纪前的汽车工业,尽管近年来风机在单机功率和扫风面积增大方面发展迅速,但其智能化水平却与当年600-800kW 的小风机相当,并没有显著提升。所以,要预言未来的风机演化,我们可以推断半个世纪后的风机在原理和概念结构上与今天的风机不会有本质的不同,但风机的智能化演化则会呈现无止境的态势。这一点,是由客户日益增长的对风机的风能转化效率要求所决定的。 在一种提升效率的极致追求下,我们看到了行业不断放大的风轮直径,115米和121米风轮都已在市场出现,但一味单方面放大风轮直径真的能满足客户大幅提升风能转换效率的需求吗?看看汽车的历程,当驾乘者追求驾驶速度和动力性能时,最直接的方法是增大发动机的排量。可是,人人都知道如果用30年前的化油器技术来控制发动机的进油和进气,即使提升到4.0的排量,所增加的输出动力也有限,且很不经济。所以,今天我们看到了智能化的电子喷射技术控制的发动机和涡轮增压的发动机,排量并不是一味的提升。相反,1.4T 的发动机成为经济型轿车受欢迎的配置。 具体到远景智能风机,我要提到远景全球研发团队中的孙博士,之前他是波音公司的翼型设计专家,他认为从高速飞机到低速飞机的变化不仅仅是简单增大机翼和机身的比例,而是主要依靠低速高升力翼型的设计,以及空气动力学和智能控制的集成。低风速风机的设计同样如此,简单增大叶轮直径并非最经济有效的设计方法,适合低风速的高升力翼型设计和智能控制的集成才是低风速风机成功的关键。 远景风机不仅有先进的硬件传感器,更有大量的软件传感器和在航空航天以及汽车行业成功应用的先进控制算法,相比传统风机几万行的控制软件代码,远景智能风机控制系统搭载的软件系统代码超过200万行。 当客户在追求风轮直径增大来提升风能转换效率时,因风轮增大而急剧增加的风机安全性风险被显著放大。目前,叶片安装导致的桨距角对零误差还停留在过去的水平上,正负1到2度的误差在目前的制造和安装工艺中不可避免,这对于100米以下风轮直径的风机问题不大,但对直径超过105米的风轮,叶片不对称所产生的疲劳载荷会急剧增加,远景在110风轮风机上做过载荷测量,数据表明1度以上的桨距角对零误差导致的疲劳载荷增加已显著超出设计标准,这对风机的长期安全性运行带来巨大风险。这不难理解远景智能风机控制软件中仅桨距角误差补偿算法的软件代码量就超过1万行。 记者:业内提及远景大多与低风速技术有关,但对远景智能风机也只是个概念。在您看来,远景智能风机在低风速风电场有何优势? 刘曙源:在我看来,与其说低风速技术,不如说智能风机有更高的能量可利用率更合适。低风速风场风能量小,远景智能风机领先行业的风能转换效率成为业主在低风速风电场得以盈利的决定性因素。对于低风速风能的转换,行业内还存在一些误解:面对年风频分布图分析低风速风电场风资源时,我们会发现低于6米/秒风速的时间超过50%,不足4米/秒风速

推荐-畜舍通风换气风机自动控制设计 精品 精品

微机原理课程设计报告题目:畜舍通风换气风机自动控制设计学生姓名:刘桂奇 学号:20XX17010121 专业班级:计算机科学与技术08101班 同组姓名: 王国策 指导教师:杨红杰 设计时间:20XX年上学期第19周指导老师意见: 评定成绩:签名: 日期:年月日

目录

一、设计前言 1.1设计目的意义 随着智能畜禽农业规模的不断扩大,环境的好坏对农业产品健康的影响逐步地体现出来,只有创造一个空气新鲜,温、湿度适宜,干暖舒适的环境条件,才能让农业产品更好的生长,保持旺盛,发病率降低,获得较高的增长速度和转换率,创造较高的经济效益。因此,调控好室内空气、湿度和温度等环境,是农业产品管理的最根本问题。 1.2设计任务 通过A/D采集并存储蓄舍温度,根据蓄舍温度要求,通过D/A输出控制信号,控制风机的转速及风机的启动、停止,实现蓄舍温度及空气的自动调节。 1.3设计要求 (1)当温度≤18℃,风机不转动,并且四个红灯闪烁。 (2)当18℃<温度≤20℃,启动风机低速转动。 (3)当20℃<温度≤25℃,启动风机中速转动。 (4)当25℃<温度≤30℃,启动风机高速转动。 (5)当温度超过30℃,红色发光二极管全亮、喇叭连续发声报警。 (6)用直流电机带动风机,计算机输出的数字量经D/A转换后变为高、中、低三种电压,控制直流风机的三种转速。 二、总体设计 使用可编程并行接口8255对实验箱上的温度检测芯片DS18B20进行控制和数据传输,编写程序对数据进行读取并转换为相应的BCD码,判断从外界采集的温度并根据此温度与所在的不同区间的温度来调用的相应的子程序,并利用DA0832进行数模转换来控制风机的转动。利用8255PA端口控制LED灯的显示、

风机变桨控制系统简介

风力发电机组变桨系统介绍

一.概述 双馈风机

风轮:风轮一般由叶片、轮毂、盖板、连接螺栓组件和导流罩组成。风轮是风力机最关键的部件,是它把空气动力能转变成机械能。大多数风力机的风轮由三个叶片组成。叶片材料有木质、铝合金、玻璃钢等。风轮在出厂前经过试装和静平衡试验,风轮的叶片不能互换,有的厂家叶片与轮毂之间有安装标记,组装时按标记固定叶片。组装风轮时要注意叶片的旋转方向,一般都是顺时针。固定扭矩要符合说明书的要求。 风轮的工作原理:风轮产生的功率与空气的密度成正比。风轮产生的功率与风轮直径的平方成正比;风轮产生的功率与风速的立方成正比;风轮产生的功率与风轮的效率成正比。风力发电机风轮的效率一般在0.35—0.45之间(理论上最大值为0.593)。贝兹(Betz)极限 风机四种不同的控制方式: 1.定速定浆距控制(Fixed speed stall regulated) 发电机直接连到恒定频率的电网,在发电时不进行空气动力学控制 2.定速变浆距控制(Fixed speed pitch regulated) 发电机直接连到恒定频率的电网,在大风时浆距控制用于调节功率 3.变速定浆距控制(Variable speed stall regulated) 变频器将发电机和电网去耦(decouples),允许转子速度通过控制发电机的反力矩改变.在大风时,减慢转子直到空气动力学失速限制功率到期望的水平. 4.变速变浆距控制(Variable speed pitch regulated) 变频器将发电机和电网去耦(decouples), 允许通过控制发电机的反力矩改变转子速度.在大风时,保持力矩, 浆距控制用于调节功率.

风机设备自动控制方案

鑫元公司通风系统风机自动控制改造方案主题:矿山井下通风自动控制系统 关键词:矿山环境自动控制节能减费环境检测系统闭环控制为实现设备自动控制,实现成本全过程控制目标,达到减员增效目的针对本公司现状对设备提出一下自动化改造方案: 1、引言 在实际工作中,当工作面一氧化碳浓度超标时,必须人为开启风机。另一方面,当浓度降低时,风机依然在工作,又要工作人员去关停风机。为解决上述问题,我们提出风机自动化改造方案。 本方案采用一氧化碳传感器,继电器、直流电源板时间继电器等控制,根据设定的浓度数值,自动在相应浓度时作出通风机开停机动作,精确度高,动作准确。 1、系统简述 对井下风机进行自动化控制设计,采用手动,自动双控模式,自动控制部分采用MIC-500-A型一氧化碳检测仪,实现一氧化碳在线实时监测,当一氧化碳浓度超标时,一氧化碳检测仪给出风机启动信号,控制风机启动主接触器吸合,风机启动,当一氧化碳浓度降低至可正常生产工作时在电路中加装时间继电器延时0-99秒可调,风机在延时后自动停止,避免风机频繁启停现象出现,在自动模式出现故障时只需将控制模式转换至手动风机可实现人为控制,采用冗余设计保证井下通风正常减少对生产影响。 2、工作原理图

3、硬件配置及功用简介 系统主要包括: (1)一氧化碳检测仪MIC-500-CO-A 0-1000PPM 气体报警器描述:MIC-500-CO-A 一氧化碳检测仪应用于一氧化碳浓度检测及一氧化碳泄漏报警,可以精确进行一氧化碳含量检测,采用原装进口一氧化碳传感器,具有信号稳定,灵敏度及精度高等优点,3线制隔爆接线方式适用于各种危险场所。 气体报警器特点: ●防爆等级为ExdIICT6 ●高精度、长寿命的进口一氧化碳传感器 ●防爆、防雷、防静电设计,抗EMI、EMC等电磁干扰 ●防高浓度气体冲击的自动保护功能

风电主控系统

风电主控系统 风机的控制系统是风机的重要组成部分,它承担着风机监控、自动调节、实现最大风能捕获以及保证良好的电网兼容性等重要任务,它主要由监控系统、主控系统、变桨控制系统以及变频系统(变频器)几部分组成。 各部分的主要功能如下: 监控系统(SCADA):监控系统实现对全风场风机状况的监视与启、停操作,它包括大型监控软件及完善的通讯网络。 主控系统:主控系统是风机控制系统的主体,它实现自动启动、自动调向、自动调速、自动并网、自动解列、故障自动停机、自动电缆解绕及自动记录与监控等重要控制、保护功能。它对外的三个主要接口系统就是监控系统、变桨控制系统以及变频系统(变频器),它与监控系统接口完成风机实时数据及统计数据的交换,与变桨控制系统接口完成对叶片的控制,实现最大风能捕获以及恒速运行,与变频系统(变频器)接口实现对有功功率以及无功功率的自动调节。 变桨控制系统:与主控系统配合,通过对叶片节距角的控制,实现最大风能捕获以及恒速运行,提高了风力发电机组的运行灵活性。目前来看,变桨控制系统的叶片驱动有液压和电气两种方式,电气驱动方式中又有采用交流电机和直流电机两种不同方案。究竟采用何种方式主要取决于制造厂家多年来形成的技术路线及传统。 变频系统(变频)器:与主控制系统接口,和发电机、电网连接,直接承担着保证供电品质、提高功率因素,满足电网兼容性标准等重要作用。 从我国目前的情况来看,风机控制系统的上述各个组成部分的自主配套规模还相当不如人意,到目前为止对国外品牌的依赖仍然较大,仍是风电设备制造业中最薄弱的环节。而风机其它部件,包括叶片、齿轮箱、发电机、轴承等核心部件已基本实现国产化配套(尽管质量水平及运行状况还不能令人满意),之所以如此,原因主要有: (1)我国在这一技术领域的起步较晚,尤其是对兆瓦级以上大功率机组变速恒频控制技术的研究,更是最近几年的事情,这比风机技术先进国家要落后二十年时间。前已述及,我国风电制造产业是从2005年开始的最近四年才得到快速发展的,国内主要风机制造厂家为了快速抢占市场,都致力于扩大生产规模,无力对控制系统这样的技术含量较高的产品进行自主开发,因此多直接从MITA、Windtec等国外公司采购产品或引进技术。

智能风机控制器(双速)

产品概述

本款控制器简明说明: 1.端子6和7在自动状态下常闭,在手动状态下常开; 2.防火阀在一般情况下时常闭的,风机功能正常,遇特殊情况防火阀打开,风机功能无效; 3.远程启停是控制低速风机; 4.消防模块是控制高速风机,外接DC24v输入(不分正负方向)启停,也可以用+12v端 子(即8号端子)启停,自动状态有效。 5.强制启动时控制器高速风机,外接DC24v输入(不分正负方向)启停,也可以用+12v 端子(即8号端子)启停,自动/手动状态均有效。 6.过载信号常开或常闭可以由长按“低速启动”按键切换。 本产品的品质保证依下列规定办理: 一、确属生产商责任的品质保证具体条款: 1.出货后三个月内包换、包修。 2. 出货后二十四个月内保修。 二、无论何时、何地使用本公司产品,均享受终身有偿服务。 三、本产品出现品质或产品事故的责任,最多承担第一条的第1 或 2 的责任,若用户需要更多的责任赔偿保证,请自行事先向保险公司投保。 四、本产品的保修期为出货日期起 24个月。 五、若属下述原因引起的故障,即使在保修期内,也属有偿修理: 1.不正确的操作(依使用说明书为准)或未经允许自行修理或改造引起的问题。 2.超出标准规范要求使用控制器造成的问题。 3.购买后跌损或搬运不当等人为因素。 4.因使用环境不良所引起的器件老化或故障。 5.因地震、火灾、风水灾、雷击、电源或其他自然灾害或灾害相伴原因引起的损坏。 6.因运输过程中的损坏(注:运输方式由客户指定,本公司代办理)。 7.制造厂家标示的品牌、商标序号、铭牌等毁损或无法辨认时。 8.对于安装、配线、操作、维护或其他使用情况不能客观实际描述给本公司的服务单位。 10. 对于包换、包修的服务,须将货退回本公司,经确认责任归属后,方可以退换或修理。

风机变频控制系统

变频风机恒温系统 一、关于变频风机恒温系统原理 1)系统原理 变频风机恒温系统是指在环境温度变化的情况下,总保持风 管网温度基本恒定,这样,既可满足用户对温度的需求,又 不使电动机全速转动,造成电能的浪费。根据给定温度信号 和反馈温度信号,控制变频器调节马达转速,从而达到控制 系统温度的目的。变频风机恒温系统如图所示: 2)温度控制信号算法处理 在该控制系统中,温度信号的检测采用热电偶对(TC)E 型,热电偶对采集到的温度变送信号经温度控制器PID运算后输出为4—20mA电流信号,对应变频器的运行频率为0—50HZ;通常情况下风管网允许正常温度为某 一值P1,而正常工作条件下管网允许最高温度为某一值P1+ P X,(P X为温控

器预设值)两者对应的模拟电流为4mA,20mA(对应变频器的运行频率为0—50HZ)则有如下函数关系: P= P1+P X*(I p—4)/(20-4) 在上式中,P为某一时刻时管网温度。 类似地,变频器控制信号电流函数关系为 If= [ (20—4) *(P—P1)]/ P X+4 该系统为一单回路PID系统,由于系统控制要求不十分苛刻,所以采用PI 控制即可实现目标。

二、系统主要配置: 1 温度控制器DTA4848C、 2 台达VFD-B变频器、 3 热电偶对(TC)E 型、 4 断路器BM60-SN 3P 5 接触器S-P12 AC220V 三、系统功能 系统控制面板布局及功能 面板布局如下图所示:

1、“自动/手动”开关:切换自动与手动两种状态。将开关转向“自动”,表明 系统工作在自动状态;将开关转向“手动”,表明系统工作在手动状态。 (注:只有自动控制信号引入时自控才有效) 2、“启动”与“停止”按钮:用于控制风机的启动与停止。按“启动”按钮启 动风机,此时启动指示灯亮,按“停止”按钮,停止风机,此时停止指示灯亮。(注:“启动”与“停止”按钮只在自动/手动按钮打到手动时才起 作用)

智能风机控制系统

按键控制灯亮与灭 【任务描述】 当按下速度按钮,数码管显示当前速度,默认速度为0,速度设为1、2、3种速度;当按下倒计时键,数码管就显示定时,每按一次定时键,定时时间增加10秒钟,最多60秒,即00→10→20→30→40→50→60→00。 【源程序】 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; PWMOUT EQU P3.7 CLK BIT P2.0 DA T BIT P2.1 KEYPORT EQU P3;P3.0 P3.1 ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; t0cnt equ 30h ;0 1 2 3 speed equ 31h dtime equ 32h LEDBUF EQU 40H ;40h-43h KEYV AL EQU 33H cnt4ms equ 34h sec_flag bit 00h ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ORG 0 LJMP MAIN ORG 000BH LJMP T0_ISR MAIN: MOV SP,#50H mov cnt4ms,#0 mov speed,#0 mov dtime,#0 LCALL T0_INIT lcall TOLEDBUF lcall DISPSER4 LP: LCALL KSCAN mov a,KEYV AL

jz nnn1 LCALL KPROC lcall TOLEDBUF lcall DISPSER4 nnn1: mov a,dtime jnz nnn CLR PWMOUT ; sjmp LP nnn: lcall speedout jnb sec_flag,LP clr sec_flag dec dtime lcall TOLEDBUF lcall DISPSER4 sjmp LP T0_INIT: MOV TMOD,#01H MOV IE,#82H MOV TH0,#0FCH;-(SYSCLK/1000/12) MOV TL0,#66H SETB TR0; RET T0_ISR: MOV TH0,#0FCH;-(SYSCLK/1000/12) MOV TL0,#66H push acc push PSW inc t0cnt mov a,t0cnt cjne a,#4,retx mov t0cnt,#0 inc cnt4ms mov a,cnt4ms cjne a,#250,retx mov cnt4ms,#0 setb sec_flag 【仿真运行结果】

风机自动控制技术监督实施细则(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 风机自动控制技术监督实施细 则(新版) Safety management is an important part of production management. Safety and production are in the implementation process

风机自动控制技术监督实施细则(新版) 总则 第一条为提高中国大唐集团新能源股份有限公司(以下简称新能源公司)所属风电企业设备可靠性,确保发电设备安全、经济运行,根据国家及行业标准和《中国大唐集团公司技术监控管理办法》,特制订本细则。 第二条风机自动控制技术监督工作应认真贯彻“安全第一,预防为主,综合治理”方针,实行技术责任制。按照依法监督、分级管理原则,从设计审查、设备选型、安装、调试、试生产到运行、检修和技术改造的全过程实施技术监督。 第三条风机自动控制技术监督的主要任务是通过对风机自动控制仪表及控制装置进行正确的系统设计、设备选型、安装调试、维护、检修、校验、系统试验、技术改造和技术管理等工作,保证风机自动控制设备完好、正确和可靠工作。

第四条依靠科技进步,采用和推广成熟的、行之有效的新技术、新方法,不断提高风机自动控制技术监督专业水平。 第五条风机自动控制技术监督是一项综合性的技术管理工作,各级技术监控管理体系主管领导要把它作为经常性的重要基础工作来抓,要组织协调基建、试验、检修、运行等各部门、各专业,分工负责,密切配合,共同做好风机自动控制技术监督工作。 第六条本细则适用于新能源公司、技术监控服务单位及风电公司。 监督机构与职责 第七条新能源公司风电风机自动控制技术监督工作实行三级管理:第一级为新能源公司;第二级为技术监控服务单位;第三级为风电公司。 第八条新能源公司成立以副总经理或总工程师为组长的技术监控领导小组,下设技术监控管理办公室。其职责如下: 1、贯彻国家、行业、集团有关风机自动控制技术监督的法规、条例、规定,监督、检查其执行情况;

伺服电机控制系统的三种控制方式

伺服电机控制系统的三种控制方式 力辉伺服控制系统一般分为三种控制方式:速度控制方式,转矩控制方式,位置控制方式。速度控制和转矩控制都是用模拟量来控制的,位置控制是通过发脉冲来控制的。 (1)如果对电机的速度、位置都没有要求,只要输出一个恒转矩,当然是用转矩模式。 (2)如果对位置和速度有一定的精度要求,而对实时转矩不是很关心,用转矩模式不太方便,用速度或位置模式比较好。如果上位控制器有比较好的闭环控制功能,用速度控制效果会好一点。如果本身要求不是很高,或者基本没有实时性的要求,用位置控制方式对上位控制器没有很高的要求。 就伺服驱动器的响应速度来看,转矩模式运算量最小,驱动器对控制信号的响应最快;位置模式运算量最大,驱动器对控制信号的响应最慢。 对运动中的动态性能有比较高的要求时,需要实时对电机进行调整。那么如果控制器本身的运算速度很慢(比如PLC,或低端运动控制器),就用位置方式控制。如果控制器运算速度比较快,可以用速度方式,把位置环从驱动器移到控制器上,减少驱动器的工作量,提高效率(比如大部分中高端运动控制器);如果有更好的上位控制器,还可以用转矩方式控制,把速度环也从驱动器上移开,这一般只是高端专用控制器才能这么干,而且,这时完全不需要使用伺服电机。 换一种说法是: 1、转矩控制:转矩控制方式是通过外部模拟量的输入或直接的地址的赋值来设定电机轴对外的输出转矩的大小,具体表现为例如10V对应5Nm的话,当外部模拟量设定为5V时电机轴输出为2.5Nm;如果电机轴负载低于2.5Nm时电机正转,外部负载等于2.5Nm 时电机不转,大于2.5Nm时电机反转(通常在有重力负载情况下产生)。可以通过即时的改变模拟量的设定来改变设定的力矩大小,也可通过通讯方式改变对应的地址的数值来实现。 应用主要在对材质的受力有严格要求的缠绕和放卷的装置中,例如饶线装置或拉光纤设备,转矩的设定要根据缠绕的半径的变化随时更改以确保材质的受力不会随着缠绕半径的变化而改变。 2、位置控制:位置控制模式一般是通过外部输入的脉冲的频率来确定转动速度的大小,通过脉冲的个数来确定转动的角度,也有些伺服可以通过通讯方式直接对速度和位移进行赋值。由于位置模式可以对速度和位置都有很严格的控制,所以一般应用于定位装置。

风机自动控制技术

摘要 可编程控制器(PLC)是一种以微处理器为核心,综合了计算机技术、自动控制技术和网络通信技术的通用工业控制装置。它具有使用方便、维护容易、可靠性好、性能价格比高等特点,广泛应用于工业控制的众多领域。煤矿主通风机是煤矿生产的重要设备,通风机能否正常工作,直接影响煤矿的生产活动。因此对主通风机实现在线监控有很重要的意义。 本文针对通风机的工作环境和运行特点,以PLC为主控设备,介绍了可编程序控制器(PLC)在煤矿通风系统中的应用;探讨了通风机实现自动控制系统的系统组成和设计;涉及硬件设备的选型与组态;编制了通风机实现自动控制梯形图;并简要介绍了PLC与其他智能装置及个人计算机联网,组成的控制系统。 本系统提高了主通风机设备的自动化管理水平,有力地保证了主通风机设备的经济、可靠运行,为设备的管理和维修提供了可靠的科学依据。 关键词:煤矿通风机; PLC;在线控制 目录 引言 (1) 第1章绪论 ..........................................................................................................2 1.1 课题的研究意义 ..................................................................................................2 1.2 PLC及风机控制系统的发展状况 . (2) 第二章总体方案设计 ..................................................................................................5 2.1 控制系统的要求 .................................................................................................5 2.2 系统构成及工作原理 .........................................................................................5 2.3 变频调速节能分 .................................................................................................5 2.4 变频调速的依据 .................................................................................................6 2.5 离心风机控制原理分析 (6) 第2章系统硬件设计 ................................................................................................10 3.1 第3章温度传感器的选择 ...........................................................................................10 3.2 PLC的选择 ........................................................................................................10 3.2.1 FP0系列PLC的特点 ................................................................................ 10 3.2.2 PLC控制系统设计流程 ............................................................................ 10 3.3 变频器的选择 (11) 第4章系统软件设计 ................................................................................................15 4.1 PLC程序设计 ....................................................................................................15 4.1.1 离心风机转换过程分析 ........................................................................... 18 4.1.2 系统工作状态 ........................................................................................... 18 4.1.3 状态转换过程的实现方法 ....................................................................... 19 4.2 程序设计的梯形图 (19) 第5章系统可靠性设计及调试 ................................................................................23 5.1 系统的可靠性设计 ................................................................................................23 5.2 系统调试 ...............................................................................................................23 5.21 软件系统的调试 .............................................................................................23 5.22 硬件系统的调试 .............................................................................................23 5.23

东汽风机控制系统完整版

东汽风机控制系统 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

第一章风机控制系统概述 风机所有的监视和控制功能都通过控制系统来实现,它们通过各种连接到控制模块的传感器来监视、控制和保护。控制系统给出叶片变桨角度和发电机系统转矩值,因而作用给电气系统的分散控制单元的上位机和旋转轮毂的叶片变桨调节系统。采用最优化的能量场算法,使风机不遭受没必要的动态压力。 它包括电网电压、频率、相位、转轴转速、齿轮箱、发电机、现场的各种温度、摆动、振动、油压、刹车衬套的磨损、电缆的弯曲和气象数据的监视。危机故障的冗余检查,以及在紧急情况下,甚至在控制系统不运行或缺乏外部电源的情况,它们通过硬接线连接安全链立即触发和关闭风机。甚至在主电源完全耗尽,为确保最大的安全,照明灯光还是能继续照明。 运行数据可以通过连接到远程通讯模块或因特网的PC机进行历史数据的调用,也就是说,风机的完整的状况信息可以被熟悉的操作人员和维护人员获知利用。但是要提供安全密码等级,正确的安全密码才允许远程控制。 1 风力发电机组的基本控制要求 风力发电机组的启动、停止、切入(电网)和切出(电网)、输入功率的限制、风轮的主动对风,以及对运行过程中故障的监测和保护必须能够自动控制。风力资源丰富的地区通常都是在海岛或边远地区的甚至海上,发电机组通常要求能够无人值班运行和远程监控,这就要求发电机组的控制系统有很高的可靠性。 2 控制系统的基本功能 并网运行的FD型风力发电机组的控制系统具备以下功能: (1)根据风速信号自动进入启动状态或从电网切出。 (2)根据功率及风速大小自动进行转速和功率控制。 (3)根据风向信号自动偏航对风。 (4)发电机超速或转轴超速,能紧急停机。 (5)当电网故障,发电机脱网时,能确保机组安全停机。 (6)电缆扭曲到一定值后,能自动解缆。 (7)当机组运行过程中,能对电网、风况和机组的运行状况进行检测和记录,对 出现的异常情况能够自行判断并采取相应的保护措施,并能够根据记录的数据,生 成各种图表,以反映风力发电机组的各项性能。

风机控制器

2kW风机通信控制电源 用户手册 山东圣阳电源股份有限公司 版本号V1.0

尊敬的用户,感谢您选用山东圣阳电源股份有限公司生产的FSC系列太阳能控制电源。请您在使用前仔细阅读本使用手册!当您收到设备时,请检查设备及附件是否符合下列清单,若发现遗失,请尽快和我公司联系。

安全技术要求 1.使用前请仔细阅读本使用手册,并妥善保管; 2.太阳能控制电源只能按照本公司规定的用途使用,未经授权的修改和使用非本公司所出售或推荐的零配件都可能导致系统出现故障。 3.必须由本公司授权的专业人员安装和接线,在确定无误的情况下方可接通运行,以保证控制电源能够正常工作。 4.控制电源应放置在室内通风良好的地方,并有保持室内温度变化范围不超过-15℃~45℃的保温和散热措施,附近严禁有易燃易爆强腐蚀物品。 5.运行过程中,太阳能控制电源外部端子及内部各器件均带电,请勿触碰;面板上的制动及蓄电池等相关开关均不能随意改变其状态。 6.所有电器设施的安装均应符合YT/T5040-2005(通信电源设备安装工程设计规范)的要求; 7.长期接触腐蚀性气体、安装在超市环境下都将严重影响控制电源的性能。 8.在运输及安装过程中严禁对控制电源进行踩踏、撞击、重摔、雨淋、暴晒; 9.太能能控制电源需与相应的蓄电池组配合使用,请先确认蓄电池组配备正确; 10.未经培训和授权的人员,不得擅自拆开机器或打开控制电源内部以试图检修,否则,有可能导致不必要的设备损坏,还会导致设备保修的终止。 太阳能控制电源属于精密设备,请用户妥善保管和放置,如有问题,请按照使用手册所示的电话联系本公司,将有专人负责处理,谢谢合作! 免责声明 由于违反本说明书建议和提及的规范,以及忽视蓄电池生产商的安全建议而造成的任何损失,特别是蓄电池的损坏,本公司不承担责任。如果将本产品交由非指定人员进行维修、不正常使用、错误安装或者错误系统设计而导致的损坏,本公司不承担任何责任。

相关文档
最新文档