第1章油气藏流体的化学组成与性质

合集下载

油气藏流体性质

油气藏流体性质

油气藏流体性质油气藏是地球上一种特殊的储存形式,其对应储存的是石油和天然气等能源。

而油气藏的流体特性则极为重要,直接决定了储油储气能力以及开采方式等因素。

下面将就油气藏流体性质进行详细探讨。

1. 性质(1)物理性质:油气藏储存的主要是石油和天然气这两种化学物质,在常温下,二者都属于液态和气态物质。

天然气的密度约为空气的1/5,比石油轻,即石油的密度约为水的0.8倍。

而且,石油和天然气的比热容和热传导率都十分低,因此容易受到温度的影响。

此外,石油和天然气都具有极强的不可压缩性,这使得油气藏在地层中能够保持较为稳定的储存状态。

(2)化学性质:石油和天然气都属于有机化合物,具有较强的多态性和化学反应性。

其中,石油主要由碳、氢、氧、硫、氮等元素组成,而天然气则主要由甲烷等气态烷烃组成,具有较高的可燃性。

此外,在地层中,石油和天然气常常受到各种化学反应的影响,如与地层矿物、水等进行反应,从而产生了不同的化学物质。

这些化学反应也会对油气藏的开采和利用造成不同程度的影响。

(3)流动性和渗透性:油气藏的流体特性主要表现为其流动性和渗透性。

在油气藏中,石油和天然气都是通过孔隙、裂隙等细小空间流动和传输的。

但由于油气藏中的孔隙、裂隙等空间结构通常是非均匀的,因此其流动和传输性能也表现出明显的非均质性。

此外,油气藏的流体性态也受到地层温度、压力、降雨等因素影响,进而影响了油气流动的速率和方向。

2. 影响因素(1)地层性质:油气藏的流体性质与其所在的地层性质息息相关。

地层参数如压力、温度、孔隙度和渗透率等都能影响油气藏中流体的行为。

当地层渗透率高、孔隙度大、流通性好时,油气就能钻井开采,同时也由此排放部分流体到地表。

(2)地震活动:地震活动会对油气藏中的流体状态产生影响。

通过地震波向地下传播过程,可以促进油气藏中流体的流动。

但地震波作用也有可能破坏或改变油气藏中的地质结构,从而影响油气藏的储存和开采。

(3)化学反应:油气藏中的流体会通过各种化学反应,产生一些可燃气体和液体,这对油气藏的开采和利用具有很大的影响。

石油地质原理

石油地质原理

(一)聚集型天然气
1、气顶气:与石油共存于油气藏中呈游离气顶状态产出的天然气。 以烃类为主,除大量的甲烷外,还有重 烃气体和轻组分的液态烃,少量氮气和二氧化碳凝析气
2、气藏气:单独聚集的天然气。可分为干气气藏和湿气气藏。
干气气藏:甲烷含量大于95%,重烃气体含量少,采到地表也是气体。 湿气气藏:含较多的甲烷,还有乙、丙、丁烷液态烃等,重烃含量大于5%,采到地表除含较多气体外, 还凝结出许多液态气体。 3、凝析气:当地下温度、压力超过临界条件后,由液态烃 逆蒸发而形成的气体。开采出来后,由于地表压 力、温度较低,按照逆凝结规压差下,岩石允许流体通过其连通 孔隙 的性质。对于储集层而言,指在地层压力条件下,流体 的流动能力。其大小遵循达西定律。
三、孔隙度与渗透率之间的关系
储集层的孔隙度与渗透率之间没有严格的函数关系,一 般情况 下渗透率随有效孔隙度的增大而增大。
勘探开发研究院
第二章 储集层和盖层
四、储集层的孔隙结构 孔隙结构:指岩石所具有的孔隙和喉 道的几何形状、大小、分布以及相互关 系。 孔隙:是孔隙系统中的膨大部分。决 定了孔隙度大小。 喉道:是孔隙系统中的细小部分。决 定了储集层储集能力和渗透特征。 五、流体饱和度 流体饱和度:油、气、水在储集岩孔 隙中的含量分别占总孔隙体积的百分数 称为油、气、水的饱和度。在油藏的不 同高度上的油、气、水的饱和度是变化 的。
根据成因和大小分为:粒内、粒间、晶间、岩溶溶孔。
4、裂缝 依成因可分为: ①构造裂缝:边缘平直,延伸远,成组出现, 具有明显的方向性、穿层。 ②非构造裂缝:包括:成岩裂缝、 风化裂缝、 压溶裂缝、
勘探开发研究院
第二章 储集层和盖层
第四节 其它类型储集层 火山岩储集层:包括火山喷发岩和火山碎屑岩。主 要储集空间为构造裂缝或受溶解的构造裂缝,因此, 在构造裂缝发育的小型断陷盆地边缘与隆起过度带, 有火山岩储层。它往往发育于生油层之中或邻近的火 山岩,对含油有利。 结晶岩储集层:包括各种变质岩,储集空间主要 为风化孔、缝及构造缝。多发育在不整合带、盆地边 缘斜坡及盆地古突起,以此为储集层的油气藏属称基 岩油气藏。 泥质岩储集层:储集空间主要为构造裂缝或泥岩 中含有易溶成分石膏、盐岩等,经地下水溶蚀形成溶 孔、溶洞等。

油气田开发概论第1章、油层物理基础

油气田开发概论第1章、油层物理基础
低粘油——油层条件下原油粘度低于5mPa· s 中粘油——油层条件下原油粘度低于5~20mPa· s 高粘油——油层条件下原油粘度低于20~50mPa· s 凝析油——地层条件下为气相烃类,开采时当压力低于 露点压力后凝析出液态烃类(轻质油),一 般相对密度小于0.82 挥发油——地层条件下呈液态,相态上接近临界点,在 开发过程中挥发性强,一般相对密度小于0.825 高凝油——凝固点在40º C以上的高含蜡原油 稠油——油层下粘度高于50 mPa· s,相对密度大于0.92
>0.920
>0.95 >0.98
热采
热采 热采
(二)地层原油的高压物性 1、地层油的密度
地下原油的密度随温度的增加
而下降。 随压力变化的关系比较复杂:
以饱和压力为界,当压力小于饱和
压力时,随压力的增加,地层原油 的密度变小;当压力高于饱和压力 时,随压力的增加,密度增加。 地层油的密度一般采用高压PVT实验测定,有时也借 助某些分析资料和有关图表进行计算。
(一)原油的物理性质与分类 5、原油的闪点 闪点(闪火点)是指可燃液体的蒸气同 空气的混合物在临近火焰时能短暂闪火时的 温度。 6、原油的荧光性
原油的荧光性指原油在紫外线照射下发 出一种特殊光亮的特征,原油发荧光是一种 冷发光现象。
(一)原油的物理性质与分类 7、地面原油的分类
(1)根据原油中硫的含量分类
油气开采概论
第一章
油层物理基础
第一节 油藏流体的物理性质
在勘探或开发设计阶段,必须根据油藏流体
的物理性质进行油气田科学预测,如判断油藏类
型、油藏有无气顶、是否会出现凝析气等。
在油田开发过程中,必须了解地下流体的动、
静态参数,如体积系数、溶解系数、压缩系数、 粘度等,这样才能进行油藏工程研究与生产管理。

中国地质大学(武汉)专业课《石油及天然气地质学》复习要点

中国地质大学(武汉)专业课《石油及天然气地质学》复习要点

《石油及天然气地质学》复习要点#中国地质大学(武汉)考研专业课复习要点#第一章油气藏中的流体1.简述海相与陆相石油的基本区别?(1)石油类型(2)含蜡量(3)含硫量(4)钒和镍含量与比值(5)碳稳定同位素组成2.气藏气中常见的化学组成是什么?(1)主要成分:烃类,通常甲烷占优势(2)次要组成:非烃气(3)痕量到微量的惰性气体3.蒂索和怀特(1978)提出的石油分类?(1)石蜡型(2)环烷型(3)石蜡—环烷型(4)芳香—中间型(5)芳香—环烷型(6)芳香—沥青型4.石油的化合物组成?(1)正构烷烃(2)异构烷烃(3)环烷烃(4)芳烃和环烷芳烃(5)含硫、氮、氧化合物(6)生物标记化合物5.油田水的分类(Sulin,1948)?(1)硫酸钠型(2)重碳酸钠型(3)氯化镁型(4)氯化钙型6.油田水的来源?(1)沉积水(2)渗入水(3)转化水(4)深成水。

7.油田水的产状?(1)与油、气分布的相对位置,分为底水和边水(2)与油层的相对位置分为上层水、夹层水和下层水(3)按照水在储集层的存在状态可分为:气态水、吸附水、毛细管水和自由水8.油田水的化学组成?(1)无机组成:常量组分、微量组分(2)有机组分:烃类、酚和有机酸(3)溶解气:O2、H2、CO2、H2S、CH4、He等9.不同成因天然气的化学组成和碳氢稳定同位素的基本特征?(1)生物成因气:甲烷气及部分CO2和少量N2;δ13C1值一般-55‰〜-90‰之间;δD值较低。

(2)油型气:石油和凝析油伴生气,重烃气含量一般大于5%,最高可达40%〜50%,甚至可超过甲烷含量。

过成熟以甲烷为主,重烃气一般小于2%;碳稳定同位素:由石油伴生气→凝析油伴生气→过成熟干气,大致分别为-55‰〜-40‰、-45‰〜-30‰、≥-35‰;δD 偏高,与δ13C值频率分布特征一样,随烷烃气中碳数增加,δD值频率区间值变重。

(3)煤型气:重烃气含量有时可达10%以上,甲烷气一般占70%-95%.非烃气中普遍含N2和Hg蒸气,也常含CO2,但贫H2S;我国煤型气的δ13C1值分布在-41.8‰至-24.9‰之间。

油气田开发地质基础 第1章 油 气 水性质-xie

油气田开发地质基础  第1章 油 气 水性质-xie
8
(2)含氮化合物 石油中的含氮量一般在万分之几至千分之几。 我国大多数原油含氮量均低于千分之五。 石油中的含氮化合物包括碱性和非碱性两类。
碱性含氮化物多为吡啶、喹啉等及其同系物, 非碱性含氮化物主要是吡咯、卟啉、吲哚和咔
唑及其同系物。其中以金属卟啉化合物最为重 要。
9
金属卟啉化合物
在石油中钒、镍等重金属都与卟啉分子中的氮呈络合状态 存在,形成钒卟啉和镍卟啉 指相原油中卟啉类型与沉积环境有密切关系,海相石油富含钒 卟啉,陆相石油富含镍卟啉。我国原油一般以镍卟啉为主, V/Ni比值都小于1。 有机成因动物血红素 和植物叶绿素都属卟啉 化合物,前者为铁的络 合物,后者是镁的络合 物。它们同石油中这类 化合物的结构相同,所 以,在石油中发现卟啉 化合物,可作为石油有 机成因重要证据之一 石油低温生成卟啉的稳定性较差,在高温(>250℃)或氧化条 件下,卟啉可以发生开环裂解反应而被破坏。说明石油是在相对 10 低温的条件下生成。
23
6.溶解性 石油主要由各种烃类化合物组成,由于烃类难溶于水, 因此,石油在水中的溶解度很低。 若以碳数相同的分子进行比较,溶解度烷烃<环烷烃<芳香 烃。 除甲烷外,各族烃类在水中的溶解度均随分子量增大而减 小。 外界条件对石油在水中的溶解度有不同影响: (1)温度由150℃降低到25℃,石油的溶解度会降低 78~95%; (2)除烷烃中的气态馏分外,压力对烃类的溶解度影响 甚微; (3)水中无机组分含量和含盐量增加时,烃类的溶解度 会降低。 石油尽管难溶于水,但却易溶于许多有机溶剂,例如氯 仿、四氯化碳、苯、石油醚、醇等等。根据石油在有机溶剂 中的溶解性,有助于鉴定岩石中的石油含量及性质。
馏分 温度℃ 轻馏分 石油气 汽油 <35 煤油 中馏分 重馏分 柴油 重瓦斯油 润滑油 渣油 >530

油藏流体力学

油藏流体力学

油藏流体力学油藏流体力学是石油工程中的重要领域,研究油气藏中流体运动的行为及其影响因素。

在油藏开发和生产过程中,了解油藏流体力学的基本原理和特性对于优化采收率、提高产能至关重要。

一、油藏流体性质油藏中的流体主要包括油、水和天然气。

这些流体在岩石介质中的运动以及相互作用对于油藏的动态行为具有显著的影响。

以下是涉及到的一些重要性质:1. 渗透率:指的是岩石介质对流体运动的阻力程度,通常用单位面积上的流体通过速率来表示。

2. 孔隙度:指的是油气藏中矿物颗粒之间的孔隙空间占总体积的比例,决定流体的储存能力和流动性。

3. 饱和度:指的是岩石孔隙中的某种流体在孔隙总体积中的比例,如水饱和度、气饱和度和油饱和度等。

二、流体流动油藏中的流体流动遵循达西定律,即流体的速度与流体受到的压力梯度成正比。

在油藏开采过程中,常用的两种流动模式是线性流动和非线性流动。

1. 线性流动(Darcy流动):在低渗透率的油气藏中,当压力梯度较小、流动速度较慢时,流体流动符合达西定律,并且与孔隙介质的性质相关。

2. 非线性流动:在高渗透率的油气藏中,流体的速度和压力梯度之间的关系不再呈线性,流动模式更为复杂,例如油藏中的高速水环绕或气推驱动。

三、渗流方程油藏流体力学中的渗流方程是描述流体流动的基本方程,常用的有连续性方程和达西方程。

1. 连续性方程:用于描述油、水和气在油藏中的质量守恒关系,即流入等于流出。

2. 达西方程:描述油藏中流体速度与压力梯度之间的关系,是油藏流体力学中最重要的方程之一。

四、渗透率对油藏流体力学的影响渗透率是决定油气流体运动能力的重要参数,直接影响着油藏的开采效果和产能。

以下是渗透率对油藏流体力学的影响:1. 渗透率大小决定了流体在岩石介质中的运动能力,高渗透率油藏更容易获取更大的产量。

2. 渗透率对流体的渗流路径和分布具有重要影响,低渗透率油藏通常需要采用增产技术来提高产能。

3. 渗透率也影响着流体通过岩石孔隙的速度和温度分布,其中流体速度与渗透率成反比。

第一篇 第三章 储层流体的物理特性

第一篇 第三章  储层流体的物理特性

第三章储层流体的物理特性所谓储层流体,这里指的是储存于地下的石油、天然气和地层水。

其特点是处于地下的高压、高温下,特别是其中的石油溶解有大量的气体,从而使处于地下的油气藏流体的物理性质与其在地面的性质有着很大的差别。

例如,当储层流体从储层流至井底,再从井底流至地面的过程中,流体压力、温度都会不断降低,此时会引起一系列的变化—原油脱气、体积收缩、原油析蜡;气体体积膨胀、气体凝析出油;油田水析盐—即离析和相态转化过程,而这一系列变化过程对于油藏动态分析、油井管理、提高采收率等都有重要的影响。

又如,进行油田开发设计和数值模拟时,必须掌握有关地下流体的动、静态物理参数,如石油和天然气的体积系数、溶解系数、压缩系数、粘度等;在进行油气田科学预测方面,如在开采初期及开采过程中,油田有无气顶、气体是否会在地层中凝析等,都需要对油气的物理化学特性及相态变化有深刻的认识,才能作出判断。

因此可以毫不夸张地说,不了解石油、天然气和水的性质及其问的相互关系,不掌握它们的高压物性参数,那么,科学地进行油田开发、采油及油气藏数值模拟等便无从讲起。

第一节油气藏烃类的相态特征石油和天然气是多种烃类和非烃类所组成的混合物。

在实际油田开发过程中,常常可以发现:在同一油气藏构造的不同部位或不同油气藏构造上同一高度打井时,其产出物各不相同,有的只产纯气,有的则油气同产。

在油气藏条件下,有的烃是气相,而成为纯气藏;有的是单一液相的纯油藏;也有的油气两相共存,以带气顶的油藏形式出现。

在原油从地下到地面的采出过程中,还伴随有气体从原油中分离和溶解的相态转化等现象。

那么,油藏开采前烃类究竟处于什么相态,为什么会发生一系列相态的变化,其主要原因是什么?用什么方式来描述烃类的相态变化?按照内因是事物变化的根据,外因则是事物变化的条件,可以发现油藏烃类的化学组成是构成相态转化的内因,压力和温度的变化是产生相态转化的外部条件。

因此,我们从研究油藏烃类的化学组成人手,然后再进一步研究压力温度变化时对相态变化的影响。

油层物理(复习重点)

油层物理(复习重点)

在地面脱气后的体积之比,用 Bo 表示,即: VOR——原油在压力 p、温度 T 下的体积,m3;
Bo=VOR/VOS
VOS——原油在地面条件下(0.1MPa,20ºC)脱气后的体积,m3. 油藏原始条件(p,T)下的体积系数称为地层原油体积系数,记为 Boi。 原油收缩系数★★
地层油由地下至地面脱气后,其体积必然变小,这种现象称为地层原油的收缩,收缩的
它们在地面脱气后原油体积之比,用符号 Bt 表示。
定义:所谓原油压缩系数是指地下原油体积随压力的变化率。
(2)当 p>ps 时,体积系数随压力的增加而降低。这 是由于地下原油受压缩,体积 Vf 缩小,故 Bo 也减小。 (3)当 p=ps 时,溶解气油比 Rs 最大,体积系数 Bo 也最大。
地下油、气两相体积系数★
地下油、气两相体积系数是指:当油层压力低
于饱和压力时,地层中原油和析出气体的总体积与
Bt=Bo+(Rsi-Rs)Bg Rsi——地层油原始溶解气油比 Rs——压力为 p 时的溶解气油比 Bg——分离出的气体体积系数 地层原油的压缩系数★★★
对比温度 Tr=T/Tc
p——绝对压力
pc——临界压力 T、Tc 同理
对比状态定律指出,所有纯气体在相同的对比压力和对比温度下,都具有相同的压缩因
子。
视临界压力 ppc=∑yipci 视临界温度 Tpc=∑yiTci 视对比压力 ppr=p/ppc=p/∑yipci 视对比温度 Tpr=T/Tpc=T/∑yiTci ★★★天然气的体积系数 Bg 定义为:一定量的天然气在油气层条件(某一 p、T)下的体积 VR 与其在地面标准状态下(20Oc,0.1MP)所占体积 VSC 之比,即:
空间。边界面可以是客观存在的固体界面,也可以是假设的概念界面。边界面可以是运动的,

油气藏中的流体

油气藏中的流体
干气气藏:甲烷含量大于95%,重烃气体含量少,采到地表也是气体。
湿气气藏:含较多的甲烷,还有乙、丙、丁烷液态烃,还溶解了戊、己烷等,重烃含量大于5%,采到地表除含较多气体外,还凝结出许多液态气体。
(3)凝析气:当地下温度、压力超过临界条件后,由液态烃逆蒸发而形成的气体。开采出来后,由于地表压力、温度较低,按照逆凝结规律而逆凝结为轻质油即凝析油。
石油中含氧化合物可分为碱性和中性两大类。碱性含氮化合物主要是吡咯、吲哚、咔唑的同系物及酰胺等。原油中含有具有重要意义的中性含氮化合物,即卟啉化合物,它是石油有机成因的重要生物标志物。
卟啉是以4个吡咯环为基本结构,由4个次甲基(-CH=)桥键连接的含氮化合物。在石油中卟啉常与金属V、Ni络合形成有机络合物,它比较稳定,易保存,具有极强的吸光性和荧光性。卟啉本身在高温或氧化条件下易分解,说明石油是在温度不高、还原环境下形成,卟啉还易被粘土吸附,可应用于油气运移研究。
石油中正构烷烃的来源:
现代生物:如细菌、藻类。
含脂类的植物或蜡质(主要在高等植物的叶、孢子花粉、果实)。
有机质的演变、分解。
其含量主要取决于:
1.生成石油的原始有机质的类型:陆相原油含量多,海相原油含量少。
2.原油的成熟度:未成熟的石油,主要含大分子量的正构烷烃;成熟的石油中,主要含中分子量的正构烷烃;降解的石油中,主要含中、小分子量的正构烷烃;
1、正构烷烃
在常温常压下,C1~C4 的烷烃为气态,C5~C16 的烷烃为液态,C17+ 的高分子烷烃皆呈固态。
石油中已鉴定出的正烷烃有C1~C45,个别报导曾提及见到C60正烷烃,但大部分正烷烃碳数≤
C35。石油中多数占15.5%(体积),轻质石油可达30%以上,而重质石油可小于15%。

石油大学 油层物理课件 -第一章(1) 相态

石油大学 油层物理课件 -第一章(1) 相态

等压液化 等压汽化
2、油藏烃类的相态特性
(phase behavior of hydrocarbon)
2.1 单组分体系的相态特征
泡点线 液相区 临界点 泡点 饱和蒸汽压线 气液两相区 露点线 露点 气相区
★单调曲线
体系中两相共存 ★极值点 的压力和温度点。 的压力和温度点。 体系中两相共 ★存的最高压力 三个区 和最高温度点。 和最高温度点。 开始从液相中分离 开始从气相中凝结 出第一批气泡时的 出第一批液滴时的 压力、温度。 压力、温度。
单组分烃特点:泡点压力=露点压力。 单组分烃特点:泡点压力=露点压力。
一线
饱和蒸汽压线 气液两相共存的压力、温度点组成的线 气液两相共存的压力、 泡点线 液相中分离出气泡时压力、 液相中分离出气泡时压力、温度点组成的线 露点线 泡点 露点 临界点
气相中凝结出液珠时压力、 气相中凝结出液珠时压力、温度点组成的线 AC线上的点,也称饱和压力点 线上的点,也称饱和压力点 线上的点 饱和压力 AC线上的点 线上的点 C点,气液两相共存的最高压力、最高温度点 点 气液两相共存的最高压力、 油藏 气藏 油气藏
第一节 储层烃类系统的相态
2、油藏烃类的相态特性
(phase behavior of hydrocarbon)
相图
2、油藏烃类的相态特性
2.1 单组分体系的相态特征
(phase behavior of hydrocarbon)
P 1( 气 )
P2 = P 露
P2
P2
P2 = P 泡
P3( 液 )
储层烃类一般有气 三种相态; 通常: 储层烃类一般有气、液、固三种相态;
第一节 储层烃类系统的相态
2、油藏烃类的相态特性

油层物理学

油层物理学

第一章油气藏流体得化学组成与性质储层流体:储存于油(气)藏中得石油、天然气与地层水。

石油中得烃类及相态石油主要由烷烃、环烷烃与芳香烃三种饱与烃类构成,原油中一般未发现非饱与烃类。

烷烃又称石蜡族烃,化学通式Cn H2n+2,在常温常压(20℃,0、1MPa)下,C1~C4为气态,它们就是天然气得主要成分;C5~C16就是液态,它们就是石油得主要成分;C17以上得烷烃为固态,即所谓石蜡。

烷烃:带有直链或支链,但没有任何环结构得饱与烃。

石油得化学组成石油中主要含碳、氢元素,也含有硫、氮、氧元素以及一些微量元素,一般碳、氢元素含量为95%~99%,硫、氮、氧总含量不超过1%~5%。

石油中得化合物可分为烃类化合物与非烃类化合物;烃类化合物主要为烷烃、环烷烃、芳香烃;非烃类化合物主要为各种含硫化合物、含氧化合物、含氮化合物以及兼含有硫、氮、氧得胶质与沥青质。

含蜡量:指在常温常压条件下原油中所含石蜡与地蜡得百分比。

胶质:指原油中分子量较大(约300~1000),含有氧、氮、硫等元素得多环芳香烃化合物,通常呈半固态分散状溶解于原油中。

胶质含量:原油中所含胶质得质量分数。

沥青质含量:原油中所含沥青质得质量分数。

含硫量:原油中所含硫(硫化物或硫单质)得百分数。

原油得物理性质及影响因素包括颜色、密度与相对密度、凝固点、粘度、闪点、荧光性、旋光性、导电率等。

原油颜色得不同,主要与原油中轻、重组分及胶质与沥青质含量有关,胶质、沥青质含量高则原油密度颜色变深。

凝固点与原油中得含蜡量、沥青胶质含量及轻质油含量等有关,轻质组分含量高,则凝固点低;重质组分含量高,尤其就是石蜡含量高,则凝固点高。

原油得密度:单位体积原油得质量。

原油得相对密度:原油得密度(ρo )与某一温度与压力下得水得密度(ρw)之比。

我国与前苏联国家指1atm、20℃时原油密度与1atm、4℃纯水得密度之比,欧美国家则以1atm、60℉(15、6℃)时得原油与纯水得密度之比,γo欧美国家还使用API度凝固点:原油冷却过程中由流动态到失去流动性得临界温度点。

石油地质学课程知识点总结

石油地质学课程知识点总结

《石油与天然气地质学》复习题第一章油气藏中的流体——石油、天然气、油田水一、名词解释石油、石油的灰分、组分组成、石油的比重、石油的荧光性;天然气、气顶气、气藏气、凝析气(凝析油)、固态气水合物、煤型气、煤成气、煤层气;油田水、油田水矿化度二、问答题1. 简述石油的元素组成。

2. 简述石油中化合物组成的类型及特征。

3.何谓正构烷烃分布曲线?在油气特征分析中有哪些应用?4. 简述Tissot和Welte 三角图解的石油分类原则及类型。

5. 简述海陆相原油的基本区别。

(如何鉴别海相原油和陆相原油?)6. 描述石油物理性质的主要指标有哪些?7. 简述天然气依其分布特征在地壳中的产出类型及分布特征。

8. 油田水的主要水型及特征。

9. 碳同位素的地质意义。

第二章油气生成与烃源岩一、名词解释沉积有机质、干酪根、成油门限(门限温度、门限深度)、生油窗、烃源岩、有机碳、有机质成熟度、氯仿沥青“A”、CPI值、TTI法(值);二、问答题1.沉积有机质的生化组成主要有哪些?对成油最有利的生化组成是什么?2.按化学分类,干酪根可分为几种类型?简述其化学组成特征。

3.论述有机质向油气转化的现代模式及其勘探意义。

(试述干酪根成烃演化机制)4.试述有机质成烃的主要控制因素。

(简述时间—温度指数(TTI)的理论依据、方法及其应用。

)5.试述有利于油气生成的大地构造环境和岩相古地理环境(地质条件)。

6.天然气可划分哪些成因类型?有哪些特征?7.试述生油理论的发展。

8.评价生油岩质量的主要指标。

9.油源对比的基本原则是什么?目前常用的油源对比的指标有哪几类?第三章储集层和盖层一、名词解释储集层、绝对孔隙度、有效孔隙度、绝对渗透率、有效(相)渗透率、相对渗透率、孔隙结构、流体饱和度、砂岩体、盖层、排替压力二、问答题1.试述压汞曲线的原理及评价孔隙结构的参数。

2.碎屑岩储集层的孔隙类型有哪些?影响碎屑岩储集层物性的地质条件(因素)。

(简述碎屑岩储集层的主要孔隙类型及影响储油物性的因素。

第一章 渗流的基本概念和基本规律.渗流力学.中国石油大学(华东)

第一章 渗流的基本概念和基本规律.渗流力学.中国石油大学(华东)

层状油藏
储层厚度<含油高度(边水油藏)
块状油藏
储层厚度>含油高度(底水油藏)
5
第一节 油气藏及其简化
层状油藏
分布 -常存在于海相和内陆盆地沉积中,厚度较小,分布面积大 几何特征 - 具有多油层、多旋回的特点
- 纵向上按韵律可分为多个层组
- 层组内可分为几个油层 - 油层内可划分成若干小层 - 小层间有泥岩类隔夹层存在 渗流特征 - 只考虑层内平面流动,可忽略垂向层间交换 6
油气储集层是以岩石颗粒为骨架并含有大量微毛细
管孔隙的介质,所以,多孔介质也定义为:由大量毛细 管或微毛细管结构组成的固体介质
8
第二节 多孔介质及连续介质场
一、多孔介质的储容性
多孔介质的孔隙具有储集和容纳流体的能力
(1)孔隙(pore) 介质中未被固体物质占据的部分 骨架颗粒之间的空间 孔隙是多孔介质的储集空间 有效孔隙,死孔隙 孔径 ~ m
油气藏是一个孔隙连通体!
特征 高温、高压
2
第一节 油气藏及其简化 二、油气藏的分类
根据圈闭形成条件不同可分为三类:
• 构造油气藏
• 地层油气藏
• 岩性油气藏
3
第一节 油气藏及其简化 三、油气藏的“边界”
如果油藏外围有天然露头并与天然水源相通,称为“定压边界 油藏” ,如果外围封闭(断层遮挡或尖灭作用),无水源,则称为 “封闭边界油藏”。
32
第三节
渗流过程中的力学分析及驱动类型
2、驱动类型
驱动类型:依靠何种能量 把原油驱入井底。驱动类 型不同,采收率大小不同 气顶中压缩气体的弹性能 原油中溶解气的弹性能 原油本身的重力 水压驱动 弹性驱动
1、天然驱动能量

石油地质学课程知识点总结

石油地质学课程知识点总结

⽯油地质学课程知识点总结⽯油地质学课程知识点总结⼀、绪论1、⽯油地质学⼜称⽯油及天然⽓地质学,是研究地壳中油⽓藏及其形成原理和分布规律的⼀门科学。

2、⽯油的特点:⽯油热值⾼,⽐重低。

⽯油燃烧充分且易引燃。

具流动性。

开采容易,成本低,投产快。

⽤途⼴泛。

3、⽯油的作⽤:⼯业的⾎液⼯业⾷粮良⽥沃⼟战略资源4、学习⽯油地质学的主要任务就是:掌握油⽓藏的基本特征、形成原理、产出状态、分布规律,⽤以指导油⽓⽥的调查、勘探,以便更有效地发现和探明地下油⽓藏。

5、⽯油地质学的内容:⽣、储、盖、圈、运、保6、⽯油地质学是⼀门专业基础课,综合性强,需要的知识⾯⼴,必须全⾯地综合地质、地球化学、岩⽯矿物学、构造地质学、地史学、⽔⽂地质学和数学、物理等多种学科的知识,才能深⼊认识和掌握油⽓藏的特征,真正学好⽯油地质学。

⼆、第⼀章油⽓藏中的流体—⽯油、天然⽓和油⽥⽔1、⽯油(⼜称原油)—crude oil:⼀种存在于地下岩⽯孔隙介质中的由各种碳氢化合物与杂质组成的,呈液态和稠态的油脂状天然可燃有机矿产。

2、⽯油的组成⽯油的元素组成:碳、氢、氧、氮、硫灰分:微量元素,构成了⽯油的灰分。

⽯油的组分组成:油质、苯胶质、酒精苯胶质及沥青质。

⽯油的化合物组成:正构烷烃、异构烷烃、环烷烃、芳烃,和⾮烃化合物及沥青质。

原油的成熟度:未成熟的⽯油,主要含⼤分⼦量的正构烷烃;成熟的⽯油中,主要含中分⼦量的正构烷烃;降解的⽯油中,主要含中、⼩分⼦量的正构烷烃;原油中⼤于四环的环烷烃⼀般具有很⾼的旋光性,所以没成熟的原油旋光性⾼。

3、⽯油的物理性质颜⾊:从⽩⾊、淡黄、黄褐、深褐、墨绿⾊⾄⿊⾊⽐重:是指⼀⼤⽓压下,20℃⽯油与4℃纯⽔单位体积的重量⽐,⽤d420表⽰。

⼀般介于0.75~0.98之间。

通常把⽐重⼤于0.90的称为重质⽯油;⼩于0.90的称为轻质⽯油。

⽯油的粘度:代表⽯油流动时分⼦之间相对运动所引起的内摩擦⼒⼤⼩。

溶解性:⽯油难溶于⽔,但却易溶于多种有机溶剂。

《油层物理》教学大纲

《油层物理》教学大纲

教学大纲
参考学分:4 参考学时:64(含实验课学时) 参考实验学时:10
课程性质:必修
适用专业:石油工程专业
(1) 课程目的与任务
本课程是石油工程专业的一门专业基础课,其任务是通过各种教学环节,使学生掌握基本概念、基本理论、基本计算方法和基本实验技能,为后续课程学习及工作打下良好的基础。

应掌握油藏流体的物理性质(组成、相态、相平衡、高压物性等);应理解、掌握油藏储层岩石的物理性质(孔、渗、饱、比面、压缩性等);应理解、掌握界面现象、多孔介质中的多相渗流的机理(润湿性、毛管力、相对渗透率等);应掌握上述知识在石油工程中的作用,掌握油藏及岩石物理参数测试过程及工程应用。

(2) 课程基本要求
1、掌握岩石、油、气、水基本物性参数的定义,测量方法,经验公式计算方法。

掌握油藏流体的物性及相态变化规律(组成、相态、相平衡、高压物性等)。

2、掌握油藏储层岩石的物理性质(孔、渗、饱、比面、压缩性等)及影响因素。

3、正确理解和掌握孔隙介质中的界面现象、毛管力、多相流体分布,掌握油、水、气多相流动机理,解释油藏工程中的一些基本现象。

4、理论联系实际,能够在油藏工程计算中正确运用岩石、油、气、水物性参数。

(3) 课程内容
(4) 学时分配(授课学时)
(5)实验课(10学时)
主要内容是原油粘度测定、岩石的孔、渗、饱测定,以及油气界面张力的测定实验等。

实验要求:验证所学的基本理论,观察实验中的物理现象。

掌握科学实验的基本方法和基本技能,提高动手能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在原油从储层中渗流至井底、再从井底 流至地面的过程中,流体的压力、温度不 断发生变化(温度、压力降低),将伴随 着原油脱气、体积收缩、原油析蜡、气体 体积膨胀等现象及变化。
第一篇 储层流体的物化性质
在勘探或开发设计阶段,必须根据流体物 性进行油气田科学预测,例如判断油藏类型、 油藏有无气顶、气藏气体是否会在地层中凝 析等,这些都需要对油气的物理化学特性及 相态变化规律有深刻的认识,才能做出正确 判断和设计。
石油的化学组成







原油的物性与分类






油气藏分类
石油的元素组成 石油中烃类化合物 石油中非烃类化合物 原油的分子量、含蜡量及胶质沥青质含量
原油的物理性质 地面原油的分类 地层原油的分类
油气藏常规分类法 油气藏按埋藏深度分类
第一节 石油的化学组成 课程导入
油气藏开发过程中关注油气的物 理性质,但物理性质在很大程度上取 决于化学组成因此首先介绍油气的化 学组成。

天然气的视分子量和密度
层 流
天然气的高压物理性质
天然气状态方程及对比状态原理 天然气的高压物性

湿天然气和天然气水合物

油气藏烃类的相态特征
物 化
油气藏烃类的相态和汽液平衡
汽——液相平衡 油气体系中气体的溶解与分离

用相态方程求解油气分离问题实例

地层油的高压物性
储层流体的高压物性
地层水的高压物性 地层油气高压物性参数的测算
第一节 石油的化学组成 三、石油中的非烃类化合物
构成石油的主要是碳、氢元素。而硫、氮、 氧这些元素则以各种含硫、含氧、含氮的烃 类化合物的形态以及兼含有硫、氮、氧的胶 状、沥青状物质的形态存在于石油中,因为 已不是纯粹的碳氢化合物,所以被统称非纯 烃类化合物,俗称非烃类。显然,它们都是 极性物质。
胜利混合原油
孤岛原油
新疆克玛玛依混合原油
大港混合原油
江汉混合原油
加拿大
墨西哥
伊朗
哥伦比亚
罗马尼亚
俄罗斯杜依玛兹
表 1—1 原油的碳、氢元素含量示例
C,%
H,%
(C+H),%
85.7
13.3
99.0
86.3
12.2
98.5பைடு நூலகம்
84.2
11.7
95.9
86.1
13.3
98.4
85.7
13.4
99.1
84.9
流体高压物性参数应用示例—— 油气藏物质平衡方程
第一章 油气藏流体的 化学组成与性质
第一章 油气藏流体的化学组成与性质
石油中烃类主要是由烷烃、环烷烃和芳香 烃这三种饱和烃类构成。原油中一般未发现 非饱和烃类,如烯烃、炔烃。烷烃又称石蜡 族烃,其化学通式为CnH2n+2。烷烃由于其分 子量大小不同,存在的形态也不同。
12.2
97.1
83.4
10.4
93.8
84.2
11.4
95.6
85.4
12.8
98.2
83.6
11.9
95.5
87.2
11.3
98.5
83.9
12.3
96.2
H/C(原子比) 1.86 1.68 1.67 1.85 1.88 1.72 1.60 1.62 1.80 1.67 1.56 1.76
第一节 石油的化学组成
第一篇 储层流体的物化性质
第一篇 储层流体的物化性质
储层流体是指储存于油气藏中的石油、天 然气和地层水。
油气藏处于地下几千米深处,原始状态时 储层流体处于高压、高温状态。
高压下原油溶解有大量的天然气,从而使 处于地下的油气藏流体的物理性质与其在地 面的性质有着很大的差别。
第一篇 储层流体的物化性质
二、石油中烃类化合物 从化学组成来看: 石油可分为两大类,
即烃类和非烃类。
第一节 石油的化学组成
1、石油中的烷烃
在石油中带有直链或支链,但没有任何 环结构的饱和烃,称之为烷烃(或链烃)。 烷烃的化学性质很不活泼,在一般条件下不 易发生反应。但在加热或催化剂以及光化学 作用下,烷烃能起各种反应,例如卤化、磺 化、氧化以及裂化等反应。
第一节 石油的化学组成
本节主要内容:
一、石油的元素组成 二、石油中烃类化合物 三、石油中的非烃类化合物
第一节 石油的化学组成
一、石油的元素组成
石油中主要含碳、氢元素,也含硫、氮、氧元素及
一些微量元素。碳质量百分比为83-87%,氢质量百
分比为11-14%,两者合计一般为95-99%。
原油 产

大庆原油
第一章 油气藏流体的化学组成与性质
在常温常压下,C1~C4为气态,它们 是构成天然气的主要成分;C5~C16是液 态,它们是石油的主要成份;而C17以上 的烷烃为固态,即所谓石蜡。石油中固态 烃能以溶解或结晶状态存在于石油中。因 此,石油与天然气在化学结构上说均为烃 类,只是分子量不同而已。
第一章 油气藏流体的化学组成与性质
第一节 石油的化学组成
1、含氧化合物:环烷酸、苯酚和脂肪酸等; 2、含硫化合物:硫化氢、硫醇、硫醚和噻吩
等,此外石油中还含有元素 硫。 3、含氮化合物:吡咯、吡啶、喹琳、吲哚和 咔唑等杂环化合物。
第一节 石油的化学组成
石油的产地不同,烃类和非烃类的相 对含量,差别也很大。有的石油(轻质 石油)烃类含量可达90%以上,但有的 石油(重质石油)烃类含量甚至低到50% 左右。
第一节 石油的化学组成
4、胶质和沥青质:
是高分子杂环的氧、硫、氮化合物,具有较高 的或中等的界面活性,它们对石油的许多性质, 诸如颜色、比重、粘度和界面张力等都有较大的 影响,了解这类化合物的性质对提高原油采收率 尤为重要。
胶质是指原油中分子量较大(约300-1000)的、 含有氧、氮、硫等元素的多环芳香烃化合物,通 常呈半固态分散状溶解于原油中。胶质含量一般 在5-20%之间。
第一篇 储层流体的物化性质
油田开发过程中,必须掌握有关地下流 体的动、静态物理参数,如石油和天然气 的体积系数、溶解系数、压缩系数、粘度 等,才能进行油藏工程研究和生产管理。
第一篇 储层流体的物化性质
石油的化学组成
原油的物性与分类
油气藏流体的化学组成与性质
天然气的化学组成
油气藏分类
地层水的化学组成与分类
第一节 石油的化学组成
2、石油中的环烷烃
环烷烃是环状的饱和烃,其性质也比较 稳定,并且是石油主要的组成之一。有机 化学家曾经合成各种碳数的环烷烃。但是, 在石油中大量存在的却只有含五碳环的环 戊烷系和六碳环的环己烷系。
第一节 石油的化学组成
3、石油中的芳香烃
苯系芳香烃在石油中普遍存在,根据资 料介绍,曾从美国产石油中分离出带有不 同碳数烷基侧链的苯同系物40余种,侧链 可以是烷基的,也可以是环烷基的。
相关文档
最新文档