勾股定理说课稿优质课
勾股定理说课稿15篇
勾股定理说课稿15篇勾股定理说课稿1一、说教材本课时是华师大版八年级(上)数学第14章第二节内容,是在掌握勾股定理的基础上对勾股定理的应用之一。
勾股定理是我国古数学的一项伟大成就。
勾股定理为我们提供了直角三角形的三边间的数量关系,它的逆定理为我们提供了判断三角形是否属于直角三角形的依据,也是判定两条直线是否互相垂直的一个重要方法,这些成果被广泛应用于数学和实际生活的各个方面。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析,使学生获得较为直观的印象,通过联系和比较,了解勾股定理在实际生活中的广泛应用。
据此,制定教学目标如下:1、知识和方法目标:通过对一些典型题目的思考,练习,能正确熟练地进行勾股定理有关计算,深入对勾股定理的理解。
2、过程与方法目标:通过对一些题目的探讨,以达到掌握知识的目的。
3、情感与态度目标:感受数学在生活中的应用,感受数学定理的美。
教学重点:勾股定理的应用。
教学难点:勾股定理的正确使用。
教学关键:在现实情境中捕抓直角三角形,确定好直角三角形之后,再应用勾股定理。
二、说教法和学法1、以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
2、切实体现学生的主体地位,让学生通过观察,分析,讨论,操作,归纳理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
3、通过演示实物,引导学生观察,操作,分析,证明,使学生获得新知的成功感受,从而激发学生钻研新知的欲望。
三、教学程序本节内容的教学主要体现在学生的动手,动脑方面,根据学生的认知规律和学习心理,教学程序设置如下:一、回顾问:勾股定理的内容是什么?勾股定理揭示了直角三角形三边之间的关系,今天我们来学习这个定理在实际生活中的应用。
二、新授课例1、如图所示,有一个圆柱,它的高AB等于4厘米,底面周长等于20厘米,在圆柱下底面的A点有一只蚂蚁,它想吃到上底面与A点相对的C点处的食物,沿圆柱侧面爬行的最短路线是多少?(课本P57图14.2.1)①学生取出自制圆柱,,尝试从A点到C点沿圆柱侧面画出几条路线。
勾股定理说课稿三篇【精选】
勾股定理说课稿三篇勾股定理说课稿篇1一、教材分析(一)教材地位这节课是九年制义务教育初级中学教材北师大版八年级第一章第一节《探索勾股定理》第一课时,它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题.过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想.情感态度与价值观:激发学生爱国热情,让学生体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学.(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解.二、教法与学法分析:学情分析:八年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够.另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合八年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式, 选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人.三、教学过程设计1.创设情境,提出问题2.实验操作,模型构建3.回归生活,应用新知4.知识拓展,巩固深化5.感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树 20__年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值.(2) 某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?设计意图:以实际问题为切入点引入新课,反映了数学________于实际生活,产生于人的需要,也体现了知识的发生过程,解决问题的过程也是一个“数学化”的过程,从而引出下面的环节.二、实验操作模型构建1.等腰直角三角形(数格子)2.一般直角三角形(割补)问题一:对于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积有何关系?设计意图:这样做利于学生参与探索,利于培养学生的语言表达能力,体会数形结合的思想.问题二:对于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面积也有这个关系吗?(割补法是本节的难点,组织学生合作交流) 设计意图:不仅有利于突破难点,而且为归纳结论打下基础,让学生的分析问题解决问题的能力在无形中得到提高.通过以上实验归纳总结勾股定理.设计意图:学生通过合作交流,归纳出勾股定理的雏形,培养学生抽象、概括的能力,同时发挥了学生的主体作用,体验了从特殊——一般的认知规律.三.回归生活应用新知让学生解决开头情景中的问题,前呼后应,增强学生学数学、用数学的意识,增加学以致用的乐趣和信心.四、知识拓展巩固深化基础题,情境题,探索题.设计意图:给出一组题目,分三个梯度,由浅入深层层练习,照顾学生的个体差异,关注学生的个性发展.知识的运用得到升华.基础题: 直角三角形的一直角边长为3,斜边为5,另一直角边长为X,你可以根据条件提出多少个数学问题?你能解决所提出的问题吗?设计意图:这道题立足于双基.通过学生自己创设情境,锻炼了发散思维.情境题:小明妈妈买了一部29英寸(74厘米)的电视机.小明量了电视机的屏幕后,发现屏幕只有58厘米长和46厘米宽,他觉得一定是售货员搞错了.你同意他的想法吗?设计意图:增加学生的生活常识,也体现了数学源于生活,并用于生活。
初中数学《勾股定理》说课稿(精选6篇)
初中数学《勾股定理》说课稿初中数学《勾股定理》说课稿(精选6篇)作为一位杰出的老师,常常需要准备说课稿,说课稿是进行说课准备的文稿,有着至关重要的作用。
那么优秀的说课稿是什么样的呢?以下是小编整理的初中数学《勾股定理》说课稿,仅供参考,大家一起来看看吧。
初中数学《勾股定理》说课稿篇1一、教学背景分析1、教材分析本节课是学生在已经掌握了直角三角形有关性质的基础上进行学习的,通过20xx年国际数学家大会的会徽图案,引入勾股定理,进而探索直角三角形三边的数量关系,并应用它解决问题。
学好本节不仅为下节勾股定理的逆定理打下良好基础,而且为今后学习解直角三角形奠定基础,在实际生活中用途很大。
勾股定理是直角三角形的一条非常重要的性质,是几何中一个非常重要的定理,它揭示了直角三角形三边之间的数量关系,将数与形密切地联系起来,它有着丰富的历史背景,在理论上占有重要的地位。
2、学情分析通过前面的学习,学生已具备一些平面几何的知识,能够进行一般的推理和论证,但如何通过拼图来证明勾股定理,学生对这种解决问题的途径还比较陌生,存在一定的难度,因此,我采用直观教具、多媒体等手段,让学生动手、动口、动脑,化难为易,深入浅出,让学生感受学习知识的乐趣。
3、教学目标:根据八年级学生的认知水平,依据新课程标准和教学大纲的要求,我制定了如下的教学目标:知识与能力目标:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理;培养在实际生活中发现问题总结规律的意识和能力.过程与方法目标:通过创设情境,导入新课,引导学生探索勾股定理,并应用它解决问题,运用了观察、演示、实验、操作等方法学习新知。
情感态度价值观目标:感受数学文化,激发学生学习的热情,体验合作学习成功的喜悦,渗透数形结合的思想。
4、教学重点、难点通过分析可见,勾股定理是平面几何的重要定理,有着承上启下的作用,在今后的生活实践中有着广泛应用。
因此我确定本课的教学重难点为探索和证明勾股定理。
初中数学《勾股定理》优秀说课稿(优秀3篇)
初中数学《勾股定理》优秀说课稿(优秀3篇)初中数学《勾股定理》优秀说课稿篇一教学目标1、灵活应用勾股定理及逆定理解决实际问题。
2、进一步加深性质定理与判定定理之间关系的认识。
重难点1、重点:灵活应用勾股定理及逆定理解决实际问题。
2、难点:灵活应用勾股定理及逆定理解决实际问题。
一、自主学习1、若三角形的三边是⑴1、、2;⑴;⑴32,42,52⑴9,40,41;⑴(m+n)2-1,2(m+n),(m+n)2+1;则构成的是直角三角形的有()A、2个B、3个?C、4个?D、5个2、已知:在⑴ABC中,⑴A、⑴B、⑴C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?⑴a=9,b=41,c=40;⑴a=15,b=16,c=6;⑴a=2,b=,c=4;二、交流展示例1(P33例2)某港口P位于东西方向的`海岸线上。
“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后分别位于Q、R处,并相距30海里。
如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?分析:⑴了解方位角,及方位名词;⑴依题意画出图形;⑴依题意可求PR,PQ,QR;⑴根据勾股定理的逆定理,求⑴QPR;⑴求⑴RPN。
小结:让学生养成“已知三边求角,利用勾股定理的逆定理”的意识。
例2、一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;⑴设未知数列方程,求出三角形的三边长;⑴根据勾股定理的逆定理,判断三角形是否为直角三角形。
三、合作探究例3、如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知⑴B=90°。
勾股定理说课稿(汇总17篇)
勾股定理说课稿(汇总17篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!勾股定理说课稿(汇总17篇)教案模板包括教学目标、教学内容、教学方法、教学手段等要素,可以帮助教师全面把握教学过程。
勾股定理说课稿三篇
勾股定理说课稿三篇勾股定理说课稿篇1课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析〔一〕教材所处的地位这节课是九年制义务教育课程标准试验教科书八班级第一章第一节探究勾股定理第一课时,勾股定理是几何中几个重要定理之一,它提醒的是直角三角形中三边的数量关系。
它在数学的进展中起过重要的作用,在现时世界中也有着广泛的作用。
同学通过对勾股定理的学习,可以在原有的根底上对直角三角形有进一步的熟悉和理解。
〔二〕依据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进展简洁的计算和实际运用。
3、在探究勾股定理的过程中,让同学经受“观看—猜想—归纳—验证”的数学思想,并体会数形结合和特别到一般的思想方法。
4、通过介绍勾股定理在中国古代的讨论,激发同学喜爱祖国,喜爱祖国悠久文化的思想,鼓励同学发奋学习。
〔三〕本课的教学重点:探究勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二班级同学的学问构造和心理特征,本节课可选择引导探究法,由浅入深,由特别到一般地提出问题。
引导同学自主探究,合作沟通,这种教学理念反映了时代精神,有利于提高同学的思维力量,能有效地激发同学的思维主动性,根本教学流程是:提出问题—试验操作—归纳验证—问题解决—课堂小结—布置作业六局部。
学法分析:在教师的组织引导下,采纳自主探究、合作沟通的研讨式学习方式,让同学思索问题,猎取学问,把握方法,借此培育同学动手、动脑、动口的力量,使同学真正成为学习的主体。
三、教学过程设计〔一〕提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,假设梯子的底部离墙基的距离是 2.5米,请问消防队员能否进入三楼灭火?问题设计具有肯定的挑战性,目的是激发同学的探究欲望,教师引导同学将实际问题转化成数学问题,也就是“已知始终角三角形的两边,如何求第三边?”的问题。
勾股定理说课稿
勾股定理说课稿勾股定理说课稿范文(精选10篇)作为一名老师,通常会被要求编写说课稿,说课稿有助于学生理解并掌握系统的知识。
我们应该怎么写说课稿呢?以下是小编收集整理的勾股定理说课稿范文,仅供参考,希望能够帮助到大家。
勾股定理说课稿 1 我说课的题目是华师版八年级上册第十四章第一节第一课时《勾股定理》。
教材分析:如果说数学思想是解决数学问题的一首经典老歌,那么本节课蕴含的由特殊到一般的思想、数学建模的思想、转化的思想就是歌中最为活跃的音符!本节的内容是在学习了二次根式之后的教学,是在学生已经掌握了直角三角形的有关性质的基础上进行的后继学习,是中学数学几个重要定理之一。
它揭示了直角三角形三条边之间的数量关系,是解直角三角形的主要根据之一,是解决四边形、圆等知识的灵魂,在实际生活中有着极其广泛的应用。
勾股定理的发现、验证和应用蕴含着丰富的文化价值,在理论上占有重要地位,因此本节在教材中起着承前启后的桥梁作用。
新课标下的数学教学不仅是知识的教学,更应注重能力的培养及情感的教育,因此,根据本节在教学中的地位和作用,结合初二学生不爱表现、好静不好动的特点,我确定本节教学目标如下:1、探索并利用拼图证明勾股定理。
2、利用勾股定理解决简单的数学问题。
3、感受数学文化,体会解决问题方法的多样性和数形结合的思想。
本着课标的要求,在吃透教材的基础上,我确定本节的教学重点、难点、关键如下:勾股定理的证明和简单应用是本节的重点,用拼图的方法证明勾股定理是难点,而解决难点的关键是充分利用图形面积的各种表示方法构造恒等式。
为了讲清重点、突破难点、抓住关键,使学生达到预定目标,我对教法和学法分析如下:教法分析:新课程标准强调要从学生已有的经验出发,最大限度的激发学生学习积极性,新课程下的数学教师更应是学生学习活动的组织者、引导者、合作者,因此,鉴于教材的重点和初二学生的认知水平,我以学生充分预习为前提,以学生的动手操作、讲解为中心,让学生亲历亲为,体会做数学的过程,激发学生的探索兴趣,使课堂活跃起来,提高课堂效率。
《勾股定理》优秀说课稿(精选12篇)
《勾股定理》优秀说课稿(精选12篇)《勾股定理》优秀说课稿篇1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
第一、情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二、追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
2023探索《勾股定理》说课稿范文(精选5篇)
2023探索《勾股定理》说课稿范文(精选5篇)2023探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
关于勾股定理说课稿四篇
关于勾股定理说课稿四篇篇一:勾股定理的引入大家好!今天我要给大家讲解的是数学中的一个重要定理——勾股定理。
勾股定理是数学中的一条基本定理,也是我们学习几何的基础。
它的发现和应用可以追溯到古代中国和古希腊时期。
勾股定理的证明方法有很多,其中一种最常见的方法是利用几何图形进行证明。
下面我将为大家介绍勾股定理的定义、历史背景以及一个简单的证明方法。
首先,我们来看一下勾股定理的定义。
勾股定理是指在直角三角形中,直角边的平方等于另外两条边的平方和。
换句话说,设直角三角形的两条直角边分别为a和b,斜边为c,则有a² + b² = c²。
这就是勾股定理的数学表达式。
接下来,我们了解一下勾股定理的历史背景。
勾股定理最早可以追溯到古代中国的《周髀算经》和《九章算术》中。
在中国,勾股定理被称为“勾股数学”,并被广泛应用于农业、建筑和天文学等领域。
而在古希腊,勾股定理被归功于毕达哥拉斯学派的数学家毕达哥拉斯。
他将勾股定理应用于几何学,并给出了一个简单的证明方法。
最后,我们来看一下勾股定理的证明方法。
一个简单的证明方法是通过几何图形进行证明。
我们可以画一个直角三角形,并在每条边上标出相应的长度。
然后,根据勾股定理的定义,我们可以计算出每条边的平方和,验证它们是否相等。
如果相等,那么我们就证明了勾股定理的正确性。
总结一下,勾股定理是数学中的一条基本定理,它在几何学中有着广泛的应用。
它的定义是直角三角形的直角边的平方等于另外两条边的平方和。
勾股定理的历史可以追溯到古代中国和古希腊时期。
证明勾股定理的方法有很多,其中一种常见的方法是通过几何图形进行证明。
希望通过今天的讲解,大家对勾股定理有了更深入的了解。
篇二:勾股定理的应用大家好!今天我要给大家讲解的是勾股定理的应用。
勾股定理是数学中的一条基本定理,它不仅在几何学中有着广泛的应用,还可以用于解决实际问题。
下面我将为大家介绍勾股定理在几何学和实际问题中的应用。
探索《勾股定理》说课稿范文(精选5篇)
探索《勾股定理》说课稿范文(精选5篇)探索《勾股定理》说课稿范文(精选5篇)1一、教材分析:(一)教材的地位与作用从知识结构上看,勾股定理揭示了直角三角形三条边之间的数量关系,为后续学习解直角三角形提供重要的理论依据,在现实生活中有着广泛的应用。
从学生认知结构上看,它把形的特征转化成数量关系,架起了几何与代数之间的桥梁;勾股定理又是对学生进行爱国主义教育的良好素材,因此具有相当重要的地位和作用。
根据数学新课程标准以及八年级学生的认知水平我确定如下学习目标:知识技能、数学思考、问题解决、情感态度。
其中情感态度方面,以我国数学文化为主线,激发学生热爱祖国悠久文化的情感。
(二)重点与难点为变被动接受为主动探究,我确定本节课的重点为:勾股定理的探索过程。
限于八年级学生的思维水平,我将面积法(拼图法)发现勾股定理确定为本节课的难点,我将引导学生动手实验突出重点,合作交流突破难点。
二、教学与学法分析教学方法叶圣陶说过"教师之为教,不在全盘授予,而在相机诱导。
"因此教师利用几何直观提出问题,引导学生由浅入深的探索,设计实验让学生进行验证,感悟其中所蕴涵的思想方法。
学法指导为把学习的主动权还给学生,教师鼓励学生采用动手实践,自主探索、合作交流的学习方法,让学生亲自感知体验知识的形成过程。
三、教学过程我国数学文化源远流长、博大精深,为了使学生感受其传承的魅力,我将本节课设计为以下五个环节。
首先,情境导入古韵今风给出《七巧八分图》中的一组图片,让学生利用两组七巧板进行合作拼图。
让学生观察并思考三个正方形面积之间的关系?它们围成了怎么样三角形,反映在三边上,又蕴含着怎么样数学奥秘呢?寓教于乐,激发学生好奇、探究的欲望。
第二步追溯历史解密真相勾股定理的探索过程是本节课的重点,依照数学知识的循序渐进、螺旋上升的原则,我设计如下三个活动。
从上面低起点的问题入手,有利于学生参与探索。
学生很容易发现,在等腰三角形中存在如下关系。
《勾股定理》说课稿(优秀5篇)
《勾股定理》说课稿(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作资料、求职资料、报告大全、方案大全、合同协议、条据文书、教学资料、教案设计、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic model essays, such as work materials, job search materials, report encyclopedia, scheme encyclopedia, contract agreements, documents, teaching materials, teaching plan design, composition encyclopedia, other model essays, etc. if you want to understand different model essay formats and writing methods, please pay attention!《勾股定理》说课稿(优秀5篇)作为一名无私奉献的老师,总不可避免地需要编写说课稿,说课稿有助于学生理解并掌握系统的知识。
精选勾股定理说课稿四篇
精选勾股定理说课稿四篇勾股定理说课稿篇1一、教材分析:勾股定理是学生在已经掌握了直角三角形的有关性质的基础上进行学习的,它是直角三角形的一条非常重要的性质,是几何中最重要的定理之一,它揭示了一个三角形三条边之间的数量关系,它可以解决直角三角形中的计算问题,是解直角三角形的主要根据之一,在实际生活中用途很大。
教材在编写时注意培养学生的动手操作能力和分析问题的能力,通过实际分析、拼图等活动,使学生获得较为直观的印象;通过联系和比较,理解勾股定理,以利于正确的进行运用。
据此,制定教学目标如下:1、理解并掌握勾股定理及其证明。
2、能够灵活地运用勾股定理及其计算。
3、培养学生观察、比较、分析、推理的能力。
4、通过介绍中国古代勾股方面的成就,激发学生热爱祖国与热爱祖国悠久文化的思想感情,培养他们的民族自豪感和钻研精神。
二、教学重点:勾股定理的证明和应用。
三、教学难点:勾股定理的证明。
四、教法和学法:教法和学法是体现在整个教学过程中的,本课的教法和学法体现如下特点:以自学辅导为主,充分发挥教师的主导作用,运用各种手段激发学生学习欲望和兴趣,组织学生活动,让学生主动参与学习全过程。
切实体现学生的主体地位,让学生通过观察、分析、讨论、操作、归纳,理解定理,提高学生动手操作能力,以及分析问题和解决问题的能力。
通过演示实物,引导学生观察、操作、分析、证明,使学生得到获得新知的成功感受,从而激发学生钻研新知的欲望。
五、教学程序:本节内容的教学主要体现在学生动手、动脑方面,根据学生的认知规律和学习心理,教学程序设计如下:(一)创设情境以古引新1、由故事引入,3000多年前有个叫商高的人对周公说,把一根直尺折成直角,两端连接得到一个直角三角形,如果勾是3,股是4,那么弦等于5。
这样引起学生学习兴趣,激发学生求知欲。
2、是不是所有的直角三角形都有这个性质呢?教师要善于激疑,使学生进入乐学状态。
3、板书课题,出示学习目标。
(二)初步感知理解教材教师指导学生自学教材,通过自学感悟理解新知,体现了学生的自主学习意识,锻炼学生主动探究知识,养成良好的自学习惯。
勾股定理说课稿(优秀7篇)
勾股定理说课稿(优秀7篇)一、教材分析(一)教材地位与作用勾股定理它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)教学目标知识与能力:掌握勾股定理,并能运用勾股定理解决一些简单实际问题。
过程与方法:经历探索及验证勾股定理的过程,了解利用拼图验证勾股定理的方法,发展学生的合情推理意识、主动探究的习惯,感受数形结合和从特殊到一般的思想。
情感态度与价值观:激发爱国热情,体验自己努力得到结论的成就感,体验数学充满探索和创造,体验数学的美感,从而了解数学,喜欢数学。
(三)教学重点:经历探索及验证勾股定理的过程,并能用它来解决一些简单的实际问题。
教学难点:用面积法(拼图法)发现勾股定理。
突出重点、突破难点的办法:发挥学生的主体作用,通过学生动手实验,让学生在实验中探索、在探索中领悟、在领悟中理解。
二、教法与学法分析:学情分析:七年级学生已经具备一定的观察、归纳、猜想和推理的能力.他们在小学已学习了一些几何图形的面积计算方法(包括割补、拼接),但运用面积法和割补思想来解决问题的意识和能力还不够。
另外,学生普遍学习积极性较高,课堂活动参与较主动,但合作交流的能力还有待加强.教法分析:结合七年级学生和本节教材的特点,在教学中采用“问题情境----建立模型----解释应用---拓展巩固”的模式,选择引导探索法。
把教学过程转化为学生亲身观察,大胆猜想,自主探究,合作交流,归纳总结的过程。
学法分析:在教师的组织引导下,学生采用自主探究合作交流的研讨式学习方式,使学生真正成为学习的主人。
三、教学过程设计1、创设情境,提出问题2、实验操作,模型构建3、回归生活,应用新知4、知识拓展,巩固深化5、感悟收获,布置作业(一)创设情境提出问题(1)图片欣赏勾股定理数形图 1955年希腊发行美丽的勾股树20xx年国际数学的一枚纪念邮票大会会标设计意图:通过图形欣赏,感受数学美,感受勾股定理的文化价值。
勾股定理说课稿范文10篇
Management is a serious love.整合汇编简单易用(页眉可删)勾股定理说课稿范文10篇勾股定理说课稿篇1课题:“勾股定理”第一课时内容:教材分析、教学过程设计、设计说明一、教材分析(一)教材所处的地位这节课是九年制义务教育课程标准实验教科书八年级第一章第一节探索勾股定理第一课时,勾股定理是几何中几个重要定理之一,它揭示的是直角三角形中三边的数量关系。
它在数学的发展中起过重要的作用,在现时世界中也有着广泛的作用。
学生通过对勾股定理的学习,可以在原有的基础上对直角三角形有进一步的认识和理解。
(二)根据课程标准,本课的教学目标是:1、能说出勾股定理的内容。
2、会初步运用勾股定理进行简单的计算和实际运用。
3、在探索勾股定理的过程中,让学生经历“观察—猜想—归纳—验证”的数学思想,并体会数形结合和特殊到一般的思想方法。
4、通过介绍勾股定理在中国古代的研究,激发学生热爱祖国,热爱祖国悠久文化的思想,激励学生发奋学习。
(三)本课的教学重点:探索勾股定理本课的教学难点:以直角三角形为边的正方形面积的计算。
二、教法与学法分析:教法分析:针对初二年级学生的知识结构和心理特征,本节课可选择引导探索法,由浅入深,由特殊到一般地提出问题。
引导学生自主探索,合作交流,这种教学理念反映了时代精神,有利于提高学生的思维能力,能有效地激发学生的思维积极性,基本教学流程是:提出问题—实验操作—归纳验证—问题解决—课堂小结—布置作业六部分。
学法分析:在教师的组织引导下,采用自主探索、合作交流的研讨式学习方式,让学生思考问题,获取知识,掌握方法,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体。
三、教学过程设计(一)提出问题:首先创设这样一个问题情境:某楼房三楼失火,消防队员赶来救火,了解到每层楼高3米,消防队员取来6.5米长的云梯,如果梯子的底部离墙基的距离是2.5米,请问消防队员能否进入三楼灭火?问题设计具有一定的挑战性,目的是激发学生的探究欲望,教师引导学生将实际问题转化成数学问题,也就是“已知一直角三角形的两边,如何求第三边?”的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
赵爽弦图
a (1)
b
(2)
c
c
(4)
证
(b-a)2 (3)
法
为弘扬我国古
(2) c
c
代的数学文化 ,采用拼图方
法证明,感受
(3)
c2 4•1ab(ba)2古明代才人智民。的聪
2
a2+b2-2ab = c2-2ab
(4)
可得 a2 + b2 = c2
:
应用巩固
设计目的: 1、勾股定理的应用 2、做题规范。
∵ 5824625480 742 5476
荧屏对角线大约为74厘米 ∴售货员没搞错
第三组 歇一歇
欣赏优美图形
动画
GOUGUDINGLI
设计目的: 1、应用勾股定理作图, 感受这类与众不同曲线的 美,欣赏丰富多彩的图形 世界 2、让学生得到精神上的 放松,心情舒畅,享受学 习的乐趣。
美丽的毕达哥拉斯树
感悟与评价
本节课你学到了什么?
重要的 思想方 法及数 学思想
定理内容
勾股 定理
观察 猜
想归纳 验证, 数形结 合思想
定理运用
布置作业
1、完成习题5.2 A组1、2 2、并通过查找、翻阅有关证明勾股定理的多种方法的资料,题目自定 ,写一篇以勾股定理为主
创 性归 应 课 布 设 质纳 用 堂 置 情 探验 巩 小 作 境 究证 固 结 业
教学过程
一
让学生欣赏毕达格拉斯发现勾股定理的故事,通过故事激发学 生的好奇心,到底毕达格拉斯是怎样研究的直角三角形三边的 数量关系,进入探究过程。
计算斜边上正方 形面积时,学生 会有各种方法求 出,教师要鼓励 他们运用自己的 语言进行表达和 交流。
面积为 _2_4__.
第二组小明的妈妈买了一部29英寸(约74厘米)
想 一
的电视机。小明量了电视机的屏幕后,发 现屏幕只有58厘米长和46厘米宽,他觉得 一定是售货员搞错了。你同意他的想法吗
想 ?你能解释这是为什么吗?
我们通常所说
的29英寸或74厘米 的电视机,是指其 荧屏对角线的长度
用贴近学生生活的有趣 的题目,学生进一步了 解勾股定理的广泛应用
3分钟 11分钟 11分钟 15分钟 3分钟 2分钟
勾
2、板书设计
股
定
理
§5.2 勾股定理
例题 例题
作业 作业
b
c
a a2+b2=c2
GOUGUDINGLI
3、设计理念
• 本课创设愉悦和谐的学习气氛,优化教 学手段,设计力求实现 “五性一化” 特色:
• 1)注重了活动性 (2)突出了开放性。 (3)加强了探究性。(4)夯实了合作性。 (5)渗透了文化性。 (6)数学生活化。
青岛版八年级数学上册第五章第二节
说课程序 教材分析 教法学法 教学过程 设计说明
GOUGUDINGLI
教材分析
• 教材地位作用
• 教学目标
– 知识与能力目标: – 过程与方法目标: – 情感态度与价值观:
• 教学重点、难点
勾⒈展股经合定历情探推理索理是勾能学股力生定,在理体已及会经验数掌证形握勾 结了股 合直定 思角理 想三的角过形程有,关发性质的 基2础.会上应进行用学勾习股的定,理它解是决直简角三单角的形问的题一。条非常重要的
设计目的: 1、在方格纸上通过计算面积的方法探索勾股定理。 2、教师鼓励学生充分经历这一观察,尝试求出三个正方形 的面积。
设计目的:1、设置表格,学生能发现两个较小的正方形面积 之和等于最大正方形的面积。 2、提出问题,研究满足勾股定理的条件。
设计 目的
设计目的: 1、引导学生将三个正方形的面积关系与直角三角形 三边的联系起来,使学生体会数形结合的思想。 2、引导出后面所学勾股定理的内容
在性探质【索,教勾是学股几重定何点理中】的最勾过重股程要定中的理,定的让理证学之明生一与经,应它用揭示了直角三角 通历形过“三【介观条教绍察边学我-之难猜国间点想古的】-代数归用和量纳面西关-积方验系法数证,方学”为法家的以证关数后明于学学勾勾习股股解定定直理角三角形奠
理久思般定的文想的基研化,思础究的并想。,情体方勾激感会法股发,数。定学激形理生励结历热学合爱生史和祖奋悠从国 发久特, 学殊,热 习到有爱 。一重祖要国的悠文化价值 ,在实际生活中广泛应用。
教法 学法
• 教法:针对八年级学生的知识结构和心理特征, 本节课采取自主探究,合作交流式教学,有利于 提高学生的思维能力,能有效地激发学生的思维 积极性。
• 学法:学生通过观察、分析、讨论、操作、归纳, 理解定理,提高学生动手操作能力,团队合作能 力以及分析问题和解决问题的能力。使学生真正 成为学习的主体。
几何直角边的平方和 等于斜边的平方.
弦c 股b
┏
勾a
a2+b2=c2
人类最伟大的十个科学发现之一 .
漫话勾股定理
介绍古代人民对勾股定理的研究 ,及勾股定理的悠久历史,激发 学生的学习兴趣,体会勾股定理 的重大意义和文化价值。
归纳验证
第一组、做一做:
1 求下列图中表示边的未知数x、y、z的值.
第一组难度较小 ,可以让大部分
的学生应用勾股
定理进行简单的
2X25
81
144
5
计算,同时也体 验到成功的喜悦 ,增进数学学习
3 5 的信心。
144
169
①
②
4z ③
2 直角三角形的两直角边为5、12,则三角形的周长为 30
3 在△ABC中,∠C=90°,如果c=10, a=6,那么△ABC的
【设计说明】第二个作业活动是开放的,它不仅为每个学生搭建了进 一步探索和思考数学活动的平台,而且给了他们施展自我才能的舞台。 在这个数学活动中,学生是完全自由的学习个体,是学习真正的主人, 只要我们相信他们、尊重他们、激励他们,他们的创新潜能就能被充分 开发,使他们终身受益。
设计说明
1、时间分配
1、创设情境 2、实验操作 3、归纳验证 4、应用巩固 5、课堂小结 6、推荐作业
谢谢! 再见!