随机信号分析与处理习题解答_罗鹏飞
随机信号分析与处理习题解答罗鹏飞.pdf

P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n , 0 < p < 1
求 X 的均值和方差。 解法一:直接按照定义计算
n
n
∑ ∑ E( X ) = mP{X = m} = mCnm pm (1− p)n−m
m=0
m=0
∑n
=m
n!
pm (1− p)n−m
第 1 章 随机变量基础
1.1 设有两个随机变量 X 和 Y,证明
fY|X ( y | x) =
f (x, y) f X (x)
,
f X |Y
(x
|
y)
=
f (x, y) fY (y)
y x+Δx
∫ ∫ f (x, y)dxdy
提示:首先证明 F ( y | x < X ≤ x + Δx) = −∞ x
02
⋅
P{ X i
=
0}
=
p
,
D(Xi )
=
E
(
X
2 i
)
−
E2(Xi)
=
p
−
p2
=
p(1 −
p)
n
随机信号分析课后习题答案

第一次作业:练习一之1、2、3题1.1离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F(3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。
《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学⼤纲《随机信号分析与处理》教学⼤纲(执笔⼈:罗鹏飞教授学院:电⼦科学与⼯程学院)课程编号:070504209英⽂名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3⼀、课程概述(⼀)课程性质地位本课程是电⼦⼯程、通信⼯程专业的⼀门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析⽅法以及随机信号通过系统的分析⽅法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取⽅法。
其⽬的是使学⽣通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本⽅法,培养学⽣运⽤随机信号分析与处理的理论解决⼯程实际问题的能⼒,提⾼综合素质,为后续课程的学习打下必要的理论基础。
本课程是电⼦信息技术核⼼理论基础。
电⼦信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电⼦信息类应⽤型⼈才知识结构中不可或缺的必备知识。
⼆、课程⽬标(⼀)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析⽅法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和⾮线性系统分析⽅法3.理解和掌握典型随机过程的特点及分析⽅法;4.掌握参数估计的概念、规则和性能分析⽅法;5.掌握信号检测的概念、规则和性能分析⽅法;6.掌握⾼斯⽩噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能⼒⽬标是:1.具有正确地理解、阐述、解释⽣活中的随机现象的能⼒,即培养统计思维能⼒;2.运⽤概率、统计的数学⽅法和计算机⽅法分析和处理随机信号的能⼒;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能⼒;4.培养⾃主学习能⼒;5.培养技术交流能⼒(包括论⽂写作和⼝头表达);6.培养协作学习的能⼒;(⼆)过程与⽅法依托“理论、实践、第⼆课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论⽂、⽹络教学等多种教学形式,采⽤研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学⽅法和⼿段,使学⽣加深对随机信号分析与处理的基本概念、基本原理以及应⽤的理解,并使学⽣通过⾃主学习、⼩组作业、案例研究、实验、课题论⽂等主动学习形式,培养⾃学能⼒和协同学习的能⼒,使学⽣不仅获得知识、综合素质得到提⾼。
随机信号分析与处理答案

随机信号分析与处理答案【篇一:随机信号分析与生活】>指导老师:xxx20 年月日姓名:xxx学号:xxxxxxxx目录交通 ....................................................................................................... .. 21 目的 (2)2 论文的主要内容 (2)3 引言 (3)4 马尔科夫预测法的基本原理 (4)5 交通流数据清洗及去噪 (5)6 交通流预测模型构造 (5)7 总结 (6)气象 ....................................................................................................... .. 61、基于最大事后概率的最大似然估计 (7)2、基于tof的空气场温度可视化实验 (9)2..1 实验系统 (9)2.2 空气场温度设定 ........................................................................92.3 tof 测量 .....................................................................................93、总结 (10)股票 (11)参考文献 (13)随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,时目标检测、估计、滤波等信号处理的理论基础,在通信、雷达、自动控制、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论将广泛和深入。
交通短时交通流预测对城市交通流控制与诱导系统的发展具有着重要的意义,预测结果的好坏将直接影响到城市交通流控制与诱导的效果。
随机信号分析罗鹏飞

2 | | 0 R X ( ) lim X e
∴mX =0
2 |0| X
X
X
0 rX ( )d e 0
0
| |
1 1 d e |0
(2)
m X lim R X ( ) lim (1 | |) 0
可算出线性变换矩阵的秩r(L)=3,且 X=[X1,X2, X3]T 的协方差阵为单位矩阵I,易知Y服从三维 正态分布,Y的均值为mY=Lm =O,协方差阵为
LKLT 1 2 1 6 1 3 1 2 1 6 1 3 1 0 2 1 0 0 2 1 0 1 0 2 6 0 0 1 1 0 3 1 6 1 6 2 6 1 6 1 6 2 6 1 3 1 3 1 3
2.4 设随机过程 X (t) = b + Nt,已知 b为常量, N 为正态随机变量,其均值为 m,方差为σ2。 试求随机过程X(t)的一维概率密度及其均值和 方差。 解:∵ N 为正态随机变量,∴X(t)也是正态随 机变量。
2.13 已知随机过程 X (t ) = cosΩt ,其中Ω为均 匀分布于 (ω1,ω2)中的随机变量。试求: (1)均值为mX (t) ; (2)自相关函数 RX (t1, t2) 。 1 解:Ω的概率密度函数为: f () 2 1 (1)均值:mX (t) =E{X(t)} costf ()d 2 1 1 2 sin t |1 cost d 1 (2 1 )t 2 1 sin 2 t sin 1t (2 1 )t
m
m jm m jm a e a e m 0
北邮随机信号分析与处理第2章习题解答_2

不满足严格平稳。
思考:是否满足广义平稳?
3
2.17
随机过程由下述三个样本函数组成,且等概率发生:
X (t, e1 ) 1, X (t, e2 ) sin t, X (t, e3 ) cos t (1)计算均值 mX (t ) 和自相关函数 RX (t1 , t2 );
(2)该过程是否为平稳随机过程? 解: 1 1 1
ftp服务器地址
ftp://10.108.142.57
用户名和密码均为:sjxhfx
包括每次课的课件和部分习题解答
1
2.14
广义平稳随机过程 Y (t ) 的自相关矩阵如下,试确定矩阵中用 表示的元素。 2 1.3 0.4 2 1.2 0.8 RY 0.4 1.2 1.1 0.9 2 解:由自相关函数的性质
2
2.15
根据掷骰子试验,定义随机过程为
K X (t ) cos t ( K 1, 2,3, 4,5,6) 3 (1)求 X (1) 、X (2) 的概率密度; (2) X (t ) 是否为平稳随机过程?
解:
1/ 2, K 1,5 1/ 2, K 2, 4 K X (1) cos 1, K 3 3 1, K 6
E[ A(t1 ) A(t2 )cos t1 cos t2 ] E[ A(t1 ) B(t2 )cos t1 sin t2 ] E[ B(t1 ) A(t2 )sin t1 cos t2 ] E[ B(t1 ) B(t2 )sin t1 sin t2 ] RA (t1, t2 )cos t1 cos t2 RB (t1, t2 )sin t1 sin t2 R( )cos t1 cos t2 R( )sin t1 sin t2 R( )cos(t1 t2 ) R( )cos( )
信号分析与处理课程习题2参考解答-2010(共5篇)

信号分析与处理课程习题2参考解答-2010(共5篇)第一篇:信号分析与处理课程习题2参考解答-2010P57-101Ω-j52-j5Ω(1)方法1:先时移→F[x(t-5)]=X(Ω)e,后尺度→F[x(2t-5)]=X()eΩt05Ω-j-j1Ω1Ω方法2:P40时移+尺度→F[x(at-t0)]=X()ea→F[x(2t-5)]=X()e2 |a|a221Ω-j(2)方法2:P40时移+尺度→F[x(at-t0)]=X()e|a|aΩt0aΩ→F[x(-t+1)]=X(-Ω)ejΩ(3)P42频域卷积定理→F[x1(t)⋅x2(t)]=X1(Ω)*X2(Ω)2π→F[x(t)⋅cos(t)]=X(Ω)*[πδ(Ω+1)+πδ(Ω-1)]=X(Ω+1)+X(Ω-1)2π22P57-12F[x(t)]=⎰x(t)e-∞∞-jΩtdt=⎰τ-2E(t+)eτ2ττdt+⎰22Eτ8ωττωτ(-t+)e-jΩtdt=2sin2()=Sa2()τ2424ωτP57-13假设矩形脉冲为g(t)=u(t+)-u(t-),其傅里叶变换为G(Ω),则22F[x(t)]=F[E⋅g(t+)-E⋅g(t-)]=E⋅G(Ω)eEΩτ=⋅G(Ω))2j2P57-15ττττjΩτ-E⋅G(Ω)e-jΩτ=E⋅G(Ω)(ejΩτ-e-jΩτ)图a)X(Ω)=|X(Ω)|e-1jΩ⎧AejΩt0,|Ω|<Ω0=⎨|Ω|>Ω0⎩0,→x(t)=F[X(Ω)]=2π⎰Ω0AejΩt0ejΩtdΩ=AΩ0Asin(Ω0(t+t0))=Sa(Ω0(t+t0))π(t+t0)π图b)X(Ω)=|X(Ω)|ejΩ⎧-jπ⎪Ae,-Ω0<Ω<0⎪jπ⎪=⎨Ae2,0<Ω<Ω0⎪0,|Ω|>Ω0⎪⎪⎩→x(t)=F[X(Ω)]=2π-1⎰-Ω0Ae-jπejΩt1dΩ+2π⎰Ω0Ae2ejΩtdΩ=jπA2A2Ω0t(cos(Ω0t-1))=-sin()πtπt2第二篇:高频电子信号第四章习题解答第四章习题解答4-1 为什么低频功率放大器不能工作于丙类?而高频功率放大器则可工作于丙类?分析:本题主要考察两种放大器的信号带宽、导通角和负载等工作参数和工作原理。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案

证明:设τ = t2 − t1
Rz
(τ
)
=
E[z( t1 )z( t 2
)]
≤
E[
z2
(t1)
+ 2
z2
(t2
)]
=
1 2
E[z2
(t1 )
+
z2
(t2
)]
=
1 2
E[z
2
(t1
)]+
1 2
E[z2(t2 Nhomakorabea)]=
1 2
(R
z
(0)
+
R
z
(0))
=
R
z
(0)
(平稳过程)
所以, R z (0)
= σz2
+
可看作一个随机过程 X (t) = Acos(Ωt + Θ) ,其中 A, Ω, Θ 是相互独立的随机变量,且已知
f
A
(a)
=
⎧ ⎪ ⎨
2a A02
,
a ∈ (0, A0 ) ,
fΩ (ω) = ⎪⎨⎧1010 ,
ω
∈ (250,350) ,
fΘ (θ
)
=
⎪⎧ ⎨
1 2π
,
θ ∈ (0, 2π )
⎪⎩0, 其他
第 2 章习题解答
2.1 设有正弦波随机过程 X (t) = V cosωt ,其中 0 ≤ t < ∞ , ω 为常数,V 是均匀分布于 [0,1] 区间的随机变量。
(1)画出该过程两条样本函数;
(2)确定随机变量
X (ti ) 的概率密度,画出 ti
=
0,
π 4ω
信号分析与处理_习题答案.

∫ ∫ [ ] T
x(t − t0 )
=
t
−∞ x(τ − t0 )dτ =
t −t0 −∞
x(λ)dλ = y(t − t0 ) ,时不变系统。
因果系统。
(3) y(t) = x 2 (2t)
T ax1 (t ) + bx2 (t ) ≠ aT x1 (t ) + bT x2 (t ) ,非线性系统。
= ay1 (t ) + by2 (t )
,线性系统。
T x (t − t0 )= x(t − t0 − 2) + x(2 − t − t0 ) ≠ y(t − t0 ) ,时变系统。
t 有可能小于 2 − t ,故为非因果系统。
t
∫ (2) y(t) = x(τ )dτ −∞
T ax1 (t ) + bx2 (t )= aT x1 (t ) + bT x2 (t ) ,线性系统。
(2) x(2 − t) ;
dx(t)
(5)
;
dt
(3) x(1 − 2t) ;
t
∫ (6) x(x )dx −∞
x(t)
4
4
4
4
2
2
2
2
-2 o 2
t
-1 o 1 2 3 t
题 1.3 图
o 1 2 3 4 t -1 o 1 2 t
2
t
∫ ξ(ξ)dξ −∞
10
4
-2 o 2 t
8
6
d 2
-2
-4 o 2 4 6 8t
4 2
−2
o 2t
1.4 给定序列
2n + 1 −3 ≤ n ≤ −1
北邮随机信号分析与处理第2章习题解答_1

[ E ( X 2 ) E 2 ( X )] [ E ( XY ) E ( X ) E (Y )] t1 [ E ( XY ) E ( X ) E (Y )] t2 [ E (Y 2 ) E 2 (Y )] t1t2
mY (t ) E[ X (t ) (t )] E[ X (t )] (t ) mX (t ) (t )
协方差函数:
KY (t1 , t2 ) RY (t1, t2 ) mY (t1 )mY (t2 ) E{[( X (t1 ) (t1 )][ X (t2 ) (t2 )]} [mX (t1 ) (t1 )][mX (t2 ) (t2 )] E[ X (t1 ) X (t2 )] E[ X (t1 ) (t2 )] E[ X (t2 ) (t1 )] E[ (t1 ) (t2 )]
2 x1 x1 2 2 2 2 2 2 200 A0 x1 x3 50 A0 x12 x3
7
(0 x1 A0 , 250 x2 350, x1 x3 x1 )
2.5
X 3 的边缘概率分布为
x3
A0
350
250
f X1 X 2 X 3 ( x1 , x2 , x3 )dx2 dx1 2 x1
有
J1
1 a y
2 2
J2
1 a2 y2
于是
1 1 1 fY | A ( y | a ) 2 a 2 y 2 2
( y a)
1 a2 y2
1
a2 y2
9
2.5
由全概率公式
fY ( y ) f A (a ) fY | A ( y | a )dad f A (a) f ( ) fY | A ( y | a )dad
《随机信号分析与处理》教学大纲

《随机信号分析与处理》教学大纲(执笔人:罗鹏飞教授学院:电子科学与工程学院)课程编号:070504209英文名称:Random Signal Analysis and Processing预修课程:概率论与数理统计、信号与系统、数字信号处理学时安排:60学时,其中讲授54学时,实践6学时学分:3一、课程概述(一)课程性质地位本课程是电子工程、通信工程专业的一门学科基础课程。
该课程系统地介绍随机信号的基本概念、随机信号的统计特性分析方法以及随机信号通过系统的分析方法;介绍信号检测、估计、滤波等信号处理理论的基本原理和信息提取方法。
其目的是使学生通过本课程的学习,掌握随机信号分析与处理的基本概念、基本原理和基本方法,培养学生运用随机信号分析与处理的理论解决工程实际问题的能力,提高综合素质,为后续课程的学习打下必要的理论基础。
本课程是电子信息技术核心理论基础。
电子信息系统中的关键技术是信息获取、信息传输、信息处理,这些技术的理论基础就是随机信号的分析、检测、估计、滤波等理论,这正是本课程的主要内容。
因此,本课程内容是电子信息类应用型人才知识结构中不可或缺的必备知识。
二、课程目标(一)知识与技能通过本课程的学习,掌握随机信号分析与处理基本概念和基本分析方法。
内容包括:1.理解和掌握随机过程基本概念和统计描述;2.掌握随机过程通过线性和非线性系统分析方法3.理解和掌握典型随机过程的特点及分析方法;4.掌握参数估计的概念、规则和性能分析方法;5.掌握信号检测的概念、规则和性能分析方法;6.掌握高斯白噪声中最佳检测器的结构和性能分析。
通过本课程的学习,要达到的能力目标是:1.具有正确地理解、阐述、解释生活中的随机现象的能力,即培养统计思维能力;2.运用概率、统计的数学方法和计算机方法分析和处理随机信号的能力;3.初步具备雷达、通信、导航等技术领域的信号处理系统的分析、设计、仿真的科学研究能力;4.培养自主学习能力;5.培养技术交流能力(包括论文写作和口头表达);6.培养协作学习的能力;(二)过程与方法依托“理论、实践、第二课堂”三个基本教学平台,通过课堂教学、概念测试、课堂研讨、案例研究、作业、实验、课程论文、网络教学等多种教学形式,采用研究型、案例式、互动研讨、基于团队学习、基于MATLAB的教学以及基于多媒体的教学等多种教学方法和手段,使学生加深对随机信号分析与处理的基本概念、基本原理以及应用的理解,并使学生通过自主学习、小组作业、案例研究、实验、课题论文等主动学习形式,培养自学能力和协同学习的能力,使学生不仅获得知识、综合素质得到提高。
随机信号分析与处理习题解答_罗鹏飞

P{X = m} = Cnm p m (1 − p)n−m , m = 0,1, 2,....n
n
∑ 所以 X = Xi 服从参数为 n,p 的二项分布。 i =1
且有 E( Xi ) = 1⋅ P{Xi = 1}+ 0 ⋅ P{Xi = 0} = p ,
E
(
X
2 i
)
= 12
⋅
P{ X i
= 1}+
函数 g(x) 的图像如下
解法一:根据概率分布函数的定义计算。
当 y ≤ 0 时, FY ( y) = P{Y ≤ y} = P{X < x0} + P{X > x1} = P{X < x0}+1− P{X < x1} = F (x0 ) +1− F (x1)
当 y ≤ A 时, FY ( y) = P{Y ≤ y} = P{x0 < X < x1} = FX (x1) − FX (x0 )
所以 Y 的概率分布函数为
FY ( y) = [1− FX (x1) + FX (x0 )]U ( y) + [FX (x1) − FX (x0 )]U ( y − A)
解法二:从概率密度 fY ( y) 入手求概率分布函数 FY ( y) 。 由图可知 g(x) 的取值只可能为 0 或 A,求Y 的概率分布函数,也就是对 g(x) 取 0 或 A
<
X
≤
x2 )
=
P{Y ≤ y, x1 < X ≤ x2} P{x1 < X ≤ x2}
=
y x2 f (x, y)dxdy
−∞ x1
FX (x2 ) − FX (x1 )
随机信号分析与处理答案(罗鹏飞,张文明编著)

H( f )
2 2
f 图 ( 利 用 w 2 f , 得 到
2
4 2si nT)f ( ) H( f ) (注意图中要标出最大值及所对应的频率,且
为正数) 4.
(2)
R(0,1) E[ X (0) X (1)] E[2 cos 2 cos(2 )] 4 E[cos cos ] 1 1 4 [(cos 2 0) (cos 2 ) ] 2 2 2 1 4 2 2
5. P85:2.6 问题还需增加“求均值,自相关函数及验证平稳性”
作业一的参考答案 1. P28:1.10
f XY ( x, y ) fY ( y )
1 0
解:利用 f X /Y ( x / y )
fY ( y )
所以
f XY ( x, y)dx
2ax 2by a 2by dx ab ab
f X /Y ( x / y )
解: (1)
互相关系数 XY
Cov( X , Y ) 2 3 D( X ) D(Y )
CZW Cov(2 X Y , X 2Y )
(2)
E[(2 X Y )( X 2Y )] E (2 X Y ) E ( X 2Y ) 2
(3)
因为 X , Y 为高斯随机变量 所以
解:
因为 A , B 为独立的高斯随机变量 所以
E( AB) E( A) E( B) 0 E[ X ] E( A)cos wt E( B)cos wt 0
随机信号分析与处理答案(罗鹏飞,张文明编著)

作业一的参考答案1. P28:1.10解:利用 /(,)(/)()XY X Y Y f x y f x y f y =10222()(,)Y XY ax by a byf y f x y dx dx a b a b+∞-∞++===++⎰⎰所以 /2()/()2()(/)(2)/()(2)X Y ax by a b ax by f x y a by a b a by +++==+++//1/4(/1/4)(/)12()441224X Y X Y y f x y f x y ax b ax b a b a b ===++==++10(/1/4)(/1/4)48326(2)X Y E X Y xf x y dxax b a b x dx a b a b +∞-∞===++==++⎰⎰(2) 同理利用 /0.50.5(,)(/)()XY Y X x x X f x y f y x f x ===可得到 /134(/)(/1/2)26()Y X a bE Y X yf y x dy a b +∞-∞+====+⎰2. P29:1.15解:由题意可得,1()1,E X = 4()1E X =,1()2D X =,4()2D X =, 1441(,)(,)0Cov X X Cov X X ==。
所以 (1) 均值矩阵'11⎡⎤=⎢⎥⎣⎦m ,协方差矩阵'2002⎡⎤=⎢⎥⎣⎦K Y 的分布为''14(,)(,)TY X X N =m K(2) 1(2)2E X =,23()1E X X +=-,34()1E X X -=-所以 Z 的均值矩阵''211⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦m 1111(2,2)(2)4()428Cov X X D X D X ===⨯=,123123123121312121313(2,)[(2)()](2)()(22)21(10)2[(,)()()(,)()()]22[11(1)010]22Cov X X X E X X X E X E X X E X X X X Cov X X E X E X Cov X X E X E X +=+-+=+-⨯⨯-+=++++=+⨯-++⨯+=同理可得 134341(2,)0(,2)Cov X X X Cov X X X -==-, 23()6D X X +=,23343423(,)(,)2Cov X X X X Cov X X X X +-=-+=,34()2D X X -=所以 协方差矩阵''820262022⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦K , Z 满足的分布为''''(,)Z N m K(3) Z 的特征函数''''1()exp[()]2T T z w j Φ=-m w w K w其中 ''''12328201,262,[ ]1022T w w w ⎡⎤⎡⎤⎢⎥⎢⎥=-==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦m K w3. 随机变量,X Y 具有高斯分布特征,1,2,X Y m m ==,协方差矩阵为44[][]49XXYYXY CC C C C -==-, 其中22,X XY Y C C σσ==,XY C 和YX C 是XY 的两个协方差。
随机信号处理考试8

《随机信号分析与处理》期中自我测评试题(三)一、选择题(28分,每小题有四个选项,正确的选项可能不止一个,请把你认为正确的选项填在括号内,不选、少选、多选均不得分)1.下列说法那些是对的?(1)严格平稳随机过程一定也是广义平稳随机过程;(2)广义平稳随机过程也一定是严格平稳随机过程;(3)各态历经过程一定是广义平稳随机过程;(4)广义平稳随机过程一定是各态历经过程。
()2.设随机过程,其中为常数,在上均匀分布,则(1) ;(2) 是广义平稳随机过程,但不是各态历经过程;(3)是广义平稳随机过程,也是各态历经过程;(4) 是非平稳随机过程。
( )3.根据噪声等效通能带和相关时间的概念,白噪声通过一个线性系统后,(1)输出过程的相关时间与系统的等效噪声带宽无关;(2)输出过程的功率等于输出过程的相关时间乘以系统的等效噪声带宽;(3)如果系统的噪声等效通能带越大,输出过程的相关时间越小;(4)如果系统的噪声等效通能带越大,输出过程的相关时间越大;()4.马尔可夫序列的的特点是(1)在现在的状态已知道的条件下,未来的状态只与现在有关,与过去无关;(2)未来的状态只与过去有关,与现在无关;(3)具有平稳性和各态历经性;(4)相邻时刻的状态是相互独立的。
()5.关于平稳随机过程的功率谱,(1)表示单位频带内信号的频率分量消耗在单位电阻上的平均功率的统计平均值;(2)平稳随机过程的功率谱是相关函数的傅立叶变换;(3)功率谱密度是实函数、奇函数;(4)功率谱密度是实函数、偶函数。
()6. 根据正态随机过程的特点,(1)任意两个时刻的状态不相关的话,也必定是独立的;(2)任意两个时刻的状态不相关,但不一定独立;(3)广义平稳的正态随机过程也必定是严格平稳的;(4)广义平稳的正态随机过程不一定是严格平稳的。
7.根据窄带随机信号的特点,(1)窄带随机信号的功率谱集中在某个中心频率为中心的频带内,且中心频率远高于频带带宽;(2)窄带随机信号的包络和相位都是服从正态分布的;(3)窄带随机信号的时域波形具有准正弦振荡的形式;(4)窄带正态随机信号一定是马尔可夫过程。
随机信号分析(第3版)第三章习题及答案

3.1 随机电压信号()U t 在各不同时刻上是统计独立的,而且,一阶概率密度函数是高斯的、均值为0,方差为2,试求:(1)密度函数();f u t 、()1212,;,f u u t t 和()1212,,...,;,,...,k k f u u u t t t ,k 为任意整数;(2)()U t 的平稳性。
3.1解:(1)2(;)}4x f u t =-22121,2121,12,21(;,)()()exp{}44u u f u u t t f u t f u t π+==-211,212,1(,,;,,)()}4kiki k k i i i uf u u u t t t f u t ====-∑∏(2)由于任意k 阶概率密度函数与t 无关,因此它是严平稳的。
3.23.33.4 已知随机信号()X t 和()Y t 相互独立且各自平稳,证明新的随机信号()()()Z t X t Y t =也是平稳的。
3.4解:()X t 与()Y t 各自平稳,设X m =[()]E X t ,Y m =[()]E Y t ,()[X()X()]X R E t t ττ=+,()[Y()Y()]Y R E t t ττ=+Z ()[Z()][()Y()][()][()]X Y m t E t E X t t E X t E Y t m m ===⨯=,为常数(,)[Z()Z()][()Y()()Y()][X()()][Y()()]()()()Z X Y Z R t t E t t E X t t X t t E t X t E t Y t R R R τττττττττ+=+=++=+⨯+=⨯=∴()Z R τ仅与τ有关,故Z()t =()Y()X t t 也是平稳过程。
3.5 随机信号()()010sin X t t ω=+Θ,0ω为确定常数,Θ在[],ππ-上均匀分布的随机变量。
若()X t 通过平方律器件,得到2()()Y t X t =,试求:(1)()Y t 的均值; (2)()Y t 的相关函数;(3)()Y t 的广义平稳性。
北邮随机信号分析与处理第1章习题解答

记
Y1 Y Y 2 YN
线性变换 Y LX
L 为 N N 矩阵
15
1.12
假定 L 为满秩,得 x L-1y 由多维随机变量的函数的求解表达式
f Y (y ) f X (L-1y ) J f X (L-1y )
1
条件均值为
f XY ( x, y ) 2(ax by) fY | X ( y | x ) (0 x, y 1) f X ( x) 2ax b 将 X 1/ 2 代入,得 a 2by fY | X ( y | x 1/ 2) (0 y 1) ab
E (Y | X 1/ 2)
因此的概率分布函数可写为其中为常数假定随机变量的概率分布函数已知其中为常数假定随机变量的概率分布函数已知设随机变量的联合概率密度为根据条件概率密度可得到条件均值为10已知随机变量由条件均值得到边缘均值为的边缘概率密度为因此11由条件均值得到边缘均值的详细推导过程
ftp服务器地址
ftp://10.108.142.57
n odd
3
1.3 (2/2)
fY ( y )
n
f X ( xn )
dxn dy d (arcsin y n ) d ( arcsin y n ) f X ( arcsin y n ) dy dy n odd
n even
f X (arcsin y n )
n even
f X (arcsin y n )
1 1 y2
f X ( arcsin y n )
(完整版)随机信号处理考题答案

(完整版)随机信号处理考题答案填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F (+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
= ∑m
m=0 n
= ∑m
m =1
= np ∑
n −1
(n − 1)(n − 2) [n − (m − 1)] m −1 p (1 − p )[( n −1) −( m −1)] (m − 1)! m =1
n
= np ∑ = np ∑
n −1
(n − 1)(n − 2) m! m=0 (n − 1)(n − 2)
−∞
+∞
1.5 设 Y = g ( X ) ,其中
⎧ A x0 < x < x1 g ( x) = ⎨ ⎩0 else 假定随机变量 X 的概率分布函数已知,求 Y 的概率分布函数。 函数 g ( x) 的图像如下
解法一:根据概率分布函数的定义计算。 当 y ≤ 0 时, FY ( y ) = P{Y ≤ y} = P{ X < x0 } + P{ X > x1} = P{ X < x0 } + 1 − P{ X < x1}
f ( x, y ) = f X |Y ( x | y ) f Y ( y ) = f Y | X ( y | x) f X ( x)
1.2 设随机变量 X 服从二项式分布,其概率分布律为
m m P{ X = m} = C n p (1 − p) n − m , m = 0,1, 2,....n , 0 < p < 1
根据 X i 相互之间的独立性,所以对于服从二项分布的 X =
n n n
,
∑X
i =1
i
有
E ( X ) = E (∑ X i ) = ∑ E ( X i ) = np
i =1 i =1
D( X ) = D(∑ X i ) = ∑ D( X i ) = np(1 − p)
i =1 i =1
n
n
1.3 设随机变量 Y 与 X 满足如下函数关系
所以 X 的方差为
D( X ) = E ( X 2 ) − E 2 ( X ) = n(n − 1) p 2 + np − (np) 2 = np(1 − p)
解法二:设 X 1 , X 2 ,… , X n 相互独立,且都服从 (0 − 1) 分布,分布规律为
P{ X i = 0} = 1 − p , P{ X i = 1} = p , i = 1, 2,… , n ,
= F ( x0 ) + 1 − F ( x1 )
当 y ≤ A 时, FY ( y ) = P{Y ≤ y} = P{x0 < X < x1} = FX ( x1 ) − FX ( x0 ) 所以 Y 的概率分布函数为
FY ( y ) = [1 − FX ( x1 ) + FX ( x0 )]U ( y ) + [ FX ( x1 ) − FX ( x0 )]U ( y − A)
P(Y = 0) = 1 − P( x0 < X ≤ x1 )
对于 g ( x) 取 A 的情况,只有 −c < x ≤ c 的时候才有可能:
P(Y = A) = P ( x0 < X ≤ x1 )
所以 Y 的概率密度函数为
fY ( y ) = P(Y = 0)δ( y ) + P (Y = A)δ( y − A)
≈
f ( x, y )Δx f X ( x)Δx
f Y | X ( y | x) = lim f Y | x < X ≤ x + Δx ( y | x < X ≤ x + Δx) =
Δx →0
f ( x, y ) f X ( x)
同理可得
f X |Y ( x | y ) =
于是有
f ( x, y ) f Y ( y)
m
故有
m m P{ X = m} = C n p (1 − p) n − m , m = 0,1, 2,....n
所以 X =
∑X
i =1
n
i
服从参数为 n,p 的二项分布。
且有 E ( X i ) = 1 ⋅ P{ X i = 1} + 0 ⋅ P{ X i = 0} = p ,
E ( X i2 ) = 12 ⋅ P{ X i = 1} + 02 ⋅ P{ X i = 0} = p D( X i ) = E ( X i2 ) − E 2 ( X i ) = p − p 2 = p(1 − p)
第1章
随机变量基础
1.1 设有两个随机变量 X 和 Y,证明
f Y | X ( y | x) =
f ( x, y ) f ( x, y ) , f X |Y ( x | y ) = f X ( x) f Y ( y)
y x + Δx −∞ x
∫ ∫ 提示:首先证明 F ( y | x < X ≤ x + Δx ) =
求 X 的均值和方差。 解法一:直接按照定义计算
m m E ( X ) = ∑ mP{ X = m} = ∑ mCn p (1 − p) n − m m =0 m =0 n n
= ∑m
m=0 n
n
n! p m (1 − p) n − m m !(n − m)! n(n − 1)(n − 2) (n − m + 1) m p (1 − p) n − m m! n(n − 1)(n − 2) (n − m + 1) m p (1 − p) n − m m!
0
− y1 / y
2 2
=−
y1 2 y2
f Y1Y2 ( y1 , y 2 ) = f X1 X 2 ( x1 , x 2 ) J =
y1
2 y2
f X 1 X 2 ( y1 , y1 / y 2 )
f Y2 ( y 2 ) = ∫ f Y1Y2 ( y1 , y 2 )dy1 = ∫
−∞
+∞
+∞
解法二:从概率密度 fY ( y ) 入手求概率分布函数 FY ( y ) 。 由图可知 g ( x) 的取值只可能为 0 或 A,求 Y 的概率分布函数,也就是对 g ( x) 取 0 或 A 可能性的讨论。 对于 g ( x) 取 0 的情况,只有 x > c 或 x < −c 的时候才有可能:
( n − m)
p m (1 − p)[( n −1) − m ]
m =0
[(n − 1) − m + 1] m p (1 − p)[( n −1) − m ] m!
n
= np[ p + (1 − p)]n −1 = np
注意:根据多项式展开式 ( a + b) =
n
∑C a b
i =0 i n
n
i n −i
= [1 − P ( x0 < X ≤ x1 )]δ( y ) + P( x0 < X ≤ x1 )δ( y − A) = [1 − FX ( x1 ) + FX ( x0 )]δ( y ) + [ FX ( x1 ) − FX ( x0 )]δ( y − A)
注意其中的 1 − FX ( x1 ) + FX ( x0 ) 和 对 fY ( y ) 求积分可以得到 Y 的概率分布函数 FY ( y ) ,
解答: F ( y | x1 < X ≤ x 2 ) = 上式对 y 求导,得
P{Y ≤ y, x1 < X ≤ x 2 } ∫−∞ ∫x1 f ( x, y )dxdy = P{x1 < X ≤ x 2 } FX ( x 2 ) − FX ( x1 )
y
x2
f Y | x1 < X ≤ x2 ( y | x1 < X ≤ x 2 ) =
则X =
∑X
i =1
n
i
服从参数为 n,p 的二项分布,即 P{ X = m} = C n p (1 − p )
m m
n−m
。
X 的所有可能取值为 0,1, 2,… , n 。由独立性可知,X 以特定的方式取 m(如前 m 个取 1,后 m 个取 0)的概率为 p (1 − p )
m n−m
。而 X 取 m 的两两互不相容的方式有 Cn 种可能,
所以,当 y ≤ 1 时有
dx n 1 = dy 1− y2
fY ( y ) = = =
1 1− y 1 1− y 1 1− y
2 2 2
n =−∞ +∞
∑ [g ∑ [g ∑g
+∞
+∞
−1
( x2 n ) + g −1 ( x2 n +1 )] (arcsin y − θ + 2π n) + g −1 (π − arcsin y − θ + 2π n)]
FX ( x1 ) − FX ( x0 ) 是常数。
f Y | x < X ≤ x + Δx ( y | x < X ≤ x + Δx) =
最后求Δx→0 的极限。
f ( x, y )dxdy
FX ( x + Δx) − FX ( x)
,然后对 y 求导得,
∫
x + Δx
x
f ( x, y )dx
FX ( x + Δx) − FX ( x)
≈
f ( x, y )Δx f X ( x)Δx
−1
n =−∞
−1
n =−∞
( xn )
即 Y 的概率密度为
+∞ ⎧ 1 g −1 ( xn ) ∑ ⎪ 2 fY ( y ) = ⎨ 1 − y n =−∞ ⎪ 0 ⎩
y ≤1 else
1.4 设有随机变量 X 1 和 X 2 ,求 Y = X 1 X 2 和 Z = X 1 X 2 的概率密度。 解答: (1) Y = X 1 X 2 设