第七章 多重共线性

合集下载

7.1多重共线性的概念及产生原因

7.1多重共线性的概念及产生原因
第一节多重共线性的概念及产生原因第二节多重共线性的后果第三节多重共线性的检验第四节多重共线性的修正方法第五节案例分析第一节多重共线性的概念及产生原因多重共线性产生的原因对于k元线性回归模型如果模型的解释变量之间存在着较强的相关关系则称模型存在多重共线性
第七章 多重共线性
• 本章主要内容: 本章主要内容: 第一节 多重共线性的概念及产生原因 第二节 多重共线性的后果 第三节 多重共线性的检验 第四节 多重共线性的修正方法 第五节 案例分析
多重共线性有两种情况: 多重共线性有两种情况:完全多重共线性和 近似多重共线性。 近似多重共线性。
如果存在一组不全为零的数λ0 , λ1 , λ2 ,⋯ , λk,使得
λ0 + λ1 X 1i + λ2 X 2i + ⋯ + λk X ki = 0
则称模型存在完全多重共线性。 则称模型存在完全多重共线性。 完全多重共线性
(2)解释变量中含有滞后变量 ) 在计量经济学模型中, 在计量经济学模型中,往往需要引入滞后经济 变量来反映真实的经济关系。例如,以相对收入 变量来反映真实的经济关系。例如, 假说为理论假设,则居民消费C 假说为理论假设,则居民消费 t的变动不仅受当 期收入Y 的影响, 的影响, 期收入 t的影响,还受前期收入 Yt-1的影响,于 是建立以下模型: 是建立以下模型:
Ct = β 0 + β1Yt + β 2Yt −1 + ut
显然, 显然,当期收入和前期收入之间存在着较强的线 性相关性。 性相关性。
3.利用截面数据建立模型也可能出现多重共线性 利用截面数据建立模型也可能出现多重共线性 多重共线性一般与时间序列有关, 多重共线性一般与时间序列有关,但在截面 一般与时间序列有关 数据中也经常出现。例如,在生产函数中, 数据中也经常出现。例如,在生产函数中,大企 业拥有大量的劳动力和资本,小企业只有较少的 业拥有大量的劳动力和资本, 劳动力和资本, 劳动力和资本,投入的劳动量和资本量通常是高 度相关的。 度相关的。 在多元线性回归模型中, 在多元线性回归模型中,我们关心的并不是 多重共线性的有无,而是多重共线性的程度。当 多重共线性的有无,而是多重共线性的程度。 有无 程度 多重共线性程度过高时, 多重共线性程度过高时,将给最小二乘估计带来 严重的后果。 严重的后果。

多重共线性

多重共线性

第二章知多元线性回归模型参数向量的最小二乘估计量为: 1 X X X Y 这一表达式成立的前提条件是解释变量X 1 , X 2 , X k 之间没有多重共线性. 如果矩阵X 不是满秩的,则X X 也不是满秩的.必有: X X 0, 从而 X X 不存在, OLS失效, 此时称该模型存在完全的多重共线性.
解释变量的精确线性组合表示,它们的相关系数的绝对值为1.
X s ,h =
Var X is Var X ih ch cs
n
Cov( X is , X ih )


n
n i 1
( X is X is )( X ih X ih )
2
i1 ( X is X is )
则:
x y x
i1 i 2 i1
, 而1与 2却无法估计.
2 在近似共线性下OLS参数估计量的方差变大
我们前面已论述, 在近似共线性下,虽然可以得到OLS估计量: ) X X 1 2 Var (

由于此时 X X 0, 引起 X X 主对角线元素较大, 即 i的方差较大.
1
对此, 如果我们合并两个(或多个)高度线性相关的变量, 可以使用OLS , 但两个(或多个)变量前的参数将无法估计. 例如,对于回归模型:Yi 0 1 X i1 2 X i 2 i i 1, 2 , n 如果有:X i 2 X i1 , 合并两变量 : Yi 0 1 2 X i1 i , 令 1 2 ,
n
( X ih X ih ) i1
n 2
2
1 X s , h 1 在近似的多重共线性下则得不到这样的精确线性组合, 它们的相关系数的绝对值近似为1.

多重共线性考试考试与答案

多重共线性考试考试与答案

第七章 多重共线性习题与答案1、多重共线性产生的原因是什么?2、检验多重共线性的方法思路是什么?有哪些克服方法?3、考虑一下模型:Y t =β1+β2X t +β3X 1-t +4βX 2-t +5βX 3-t +6βX 4-t +u t其中Y =消费,X =收入,t =时间。

上述模型假定了时间t 的消费支出不仅是时间t 的收入,而且是以前多期的收入的函数。

例如,1976年第一季度的消费支出是同季度收入合1975年的四个季度收入的函数。

这类模型叫做分布滞后模型(distributed lag models )。

我们将在以后的一掌中加以讨论。

(1) 你预期在这类模型中有多重共线性吗?为什么?(2)如果预期有多重共线性,你会怎么样解决这个问题?4、已知回归模型μβα++=N E ,式中E 为某类公司一名新员工的起始薪金(元),N 为所受教育水平(年)。

随机扰动项μ的分布未知,其他所有假设都满足。

(1)从直观及经济角度解释α和β。

(2)OLS 估计量αˆ和βˆ满足线性性、无偏性及有效性吗?简单陈述理由。

(3)对参数的假设检验还能进行吗?简单陈述理由。

5、根据1899—1922年在美国制造业部门的年度数据,多尔蒂(Dougherty )获得如下回归结果:LogY=2.81 - 0.53logK+ 0.91logL + 0.047tSe =(1.38)(0.34) (0.14) (0.021)R 2=0.97 F=189.8其中Y =实际产生指数,K=实际资本投入指数,L=实际劳力投入指数,t =时间或趋势。

利用同样数据,他又获得一下回归:(1)回归中有没有多重共线性?你怎么知道?(2)在回归(1)中,logK 的先验符号是什么?结果是否与预期的一致?为什么或为什么不?(3)你怎样替回归的函数形式(1)做辩护:(提示:柯柏—道格拉斯生产函数。

)(4)解释回归(1)在此回归中趋势变量的作用为何?(5)估计回归(2)的道理何在?(6)如果原先的回归(1)有多重共线性,是否已被回归(2)减弱?你怎样知道?(7)如果回归(2)被别看作回归(1)的一个受约束形式,作者施加的约束是什么呢?(提示:规模报酬)你怎样知道这个约束是否正确?你在哪一种检验?说明你的计算。

第七章 多重共线性

第七章 多重共线性

2
X 1i 1 r 2
2
ˆ 同理:Var b2

2
X 2i 1 r 2
2
第二节
多重共线性的影响后果
2
ˆ 当完全不共线时,r=0, Var b1
X
2 1i
当不完全共线时,r越接近1,相关程度越高, bi Var ˆ 越大,参数估计值越不准确。
第四节
多重共线性的解决方法
三、逐步回归法 (1)计算因变量对每一个解释变量的回归方程,并分别 进行统计检验,从中选取最合适的基本回归方程。 (2)逐一引入其他解释变量,重新进行回归,在模型中 每个解释变量均显著,参数符号正确, R 2 值有所提高的前 提下,从中再选取最合适的二元回归方程。 (3)在选取的二元回归方程的基础上以同样的方式引 入第三解释变量;如此引入,直至无法引入新变量为止。
第四节
多重共线性的解决方法
(2)如果历年的平均收入弹性与近期的收入弹性 近似相等,就可以用 a2代替原模型中的 b2 。将原模 ln y a2 ln I b0 b1 ln P 型变为 y1 ln y a2 ln I 令:
p1 ln P 再利用时间序列数据求出价格弹性 b1 以及 b0即可。
第四节
多重共线性的解决方法
二、间接剔除重要的解释变量 1、利用已知信息 所谓已知信息,就是在建立模型之前,根据经 济理论、统计资料或经验分析,已知的解释变量之 间存在某种关系。为了克服模型的多重共线性,可 以将解释变量按已知关系加以处理。
第四节
多重共线性的解决方法
例如:柯布-道格拉斯生产函数
y aL K e
ln y / K ln a ln L / K

第七章多重共线性精品课件

第七章多重共线性精品课件
i 0 1 1i 2
2i
bk xki ui
进行估计时,将 Xj从模型中排除,并不引起拟合优度 减少许多,那么,这个被排除在模型之外的解释变量 与留在模型中的解释变量多重共线,排除是应当的。
第三节、 多重共线性的的处理
一、剔除引起共线性的解释变量(这是最重要的方法, 保留在模型中变量的经济意义不再仅仅是自身的作用, 也包含了与其共线并被排除变量的作用。)

2
I n)
二、多重共线性的概念
考虑模型中只有两个解释变量的情况,此时 模型可以表示为:
Y b0 b1 X1 b2 X 2 u
若存在不全为0的常数 1 , 2 ,使下列关 系式成立:
1 X1 2 X 2 0
则称自变量 X 1 , X 2 存在完全的线性关系。
此时两者之间的相关系数为1。实际中完全多 重共线的情况并不多见,一般出现不同程度的 近似多重共线,即有以下关系成立:
第七章、多重共线性
本章内容
第一节、 多重共线性的概 念、产生的原因及其后果 第二节 、多重共线性的检 验 第三节、 多重共线性的的 处理 约瑟夫· 斯蒂格利茨 第四节 多重共线性的案例 2001年诺贝尔奖 分析
获得者
第一节、 多重共线性的概念、产生的原因 及其后果 一、单方程计量经济模型回顾 1、模型形式:
ji 0 1
1i
ˆ j 1 x j 1i ˆ j 1 x j 1i ˆ k xki
如果判定系数很大,F检验显著,则Xj可用其他解释变 量的线性组合表出,即 Xj 与其他解释变量多重共线。 应将Xj从解释变量中排除。 (2)或者,在对原模型
y b b x b x
四、多重共线性的影响
1、对于完全共线,由于矩阵逆不存在,所以参数的 OLS估计失效。

多重共线性讲义

多重共线性讲义
当存在不完全多重共线性时,从上面已经知道,参数的OLS估计量方差 较大,其标准误也就较大,从而使得参数估计量的精度较低。
9
3.参数估计量经济含义不合理 如果模型中两个解释变量具有线性相关性,例如 X2= X1 ,这时,X1和
X2前的参数1、2并不反映各自与被解释变量之间的结构关系,而是反映它 们对被解释变量的共同影响。1、2已经失去了应有的经济含义,于是经常 表现出似乎反常的现象:例如1本来应该是正的,结果恰是负的。
如果存在 c1X1i+c2X2i+…+ckXki+vi=0 i=1,2,…,n
其中ci不全为0,vi为随机误差项,则称为 不完全多重共线性或欠完 全多重共线性(approximate multicollinearity)。
4
7.2.产生多重共线性的原因
一般地,产生多重共线性的主要原因有以下四个方面: (1)经济变量相关的共同趋势 时间序列样本:经济繁荣时期,各基本经济变量(收入、消费、 投资、价格)都趋于增长;衰退时期,又同时趋于下降。 横截面数据:生产函数中,资本投入与劳动力投入往往出现高度 相关情况,大企业二者都大,小企业都小。 (2)滞后变量的引入 在经济计量模型中,往往需要引入滞后经济变量来反映真实的经济 关系。 例如,消费=f(当期收入, 前期收入),显然,两期收入间有较强的 线性相关性。
14
15
2、辅助回归法
利用模型中每一个解释变量分别以其余解释变量为解释变量进行回归, 并计算相应的拟合优度。
如果某一种回归 X j c 1X1 2 X 2 ... j1X j1 j1X j1 ... k X k
的判定系数较大,说明Xj与其他X间存在共线性。 判别的标准是回归模型是否通过F检验。

多重共线性

多重共线性

我们可以分别作y对x1和y对x2的回归,以便弄清 x1和x2单独对y的影响如何:
yˆi 9.4092 1.6449 x1i (0.0704)
线性。
如果存在不为零的常数 1, 2 ,使得下式成立
1 x1i 2 x2i vi 0 其中vi是随机项,这表示解释变量x1和x2之间存在近 似的线性关系,则说x1和x2之间高度相关,即存在不 完全多重共线性。 完全多重共线性和不完全多重共线性,统称为多重 共线性。因此,所谓多重共线性是指解释变量之间 存在完全的线性关系或近似的线性关系。
§7.2 多重共线性的后果
一般模型
Y X U
(7.2.11)
完全多重共线,即解释变量中存在
0 1 x1i k xki 0 (7.2.12)
其中λi不全为零。于是
rk(X) < k +1
(7.2.13)
便有
| X′X |=0
(7.2.14)
从而使得参数估计量
ˆ ( X X )1 X Y
i=1,2,…,k,皆有R2i=0。
多重共线性基本上是一种样本现象。因为人们在制 定模型时,总是尽量避免将理论上具有严格线性关 系的变量作为自变量收集在一起,因此,实际问题 中的多重共线性并不是自变量之间存在理论上或实 际上的线性关系造成的,而是由于所收集的数据(自 变量观察值)之间存在近似的线性关系所致。
例7.2.1 设因变量y和自变量x1、x2具有表7.2.1所示的 观察值,我们用模型
yi 0 1 x1i 2 x2i ui
拟合表7.2.1中的数据。
表7.2.1
y、x1和x2的观察值
yi 30 35 40 45 50 60 68 80 92 104 x1i 10 15 18 22 28 32 38 42 50 55 x2i 9.8 14.9 17.6 21.6 27.6 31 37.2 42.3 50.2 54.6

第七章多重共线性

第七章多重共线性

X i fi ( X1, X 2 , , X i1, X i1, , X k )
X k fk ( X1, X 2 , , X k1)
对应的判定系数 R12, R22, , R2j , , Rk2

R2j
对应为以 X j 为被解释变量的回归方程。
显然,这些判定系数中最大且接近于1的那 一个R2i所对应的变量Xi,是与其他解释 变量发生多重共线性最严重的一个
(2)估计多重共线性的范围,即判断哪些 变量之间存在共线性。
有几点我们要明白:
(1) 多重共线性是一个程度问题而不是存在与否 的问题。
(2) 由于多重共线性是在假定解释变量是非随机 的条件下出现的问题,因而它是样本的特征,而 不是总体的特征。
因此,我们不仅可以“检测多重共线性”,而且 可以测度任何给定样本的多重共线性程度。
X1 9
X2i、2, 25, 48 X 2 25
X3i、1, 23, 24
X 3 16
view correlations
它们两两简单相关系数不大,但是严格共线性
所以,用简单相关系数判断模型是否存在多重共线性,只 适用于两个解释变量的情况
(二)估计多重共线性的范围
如果存在多重共线性,需进一步确定究竟由哪些变 量引起。
多重共线性是一个程度问题
若解释变量两两之间完全不相关,则不存在 该问题;
若其中部分解释变量之间完全相关,则根本 不能用OLS进行回归;
若解释变量之间存在一定程度的线性关系, 则是本章所要解决的多重共线性的问题。
2.参数的方差 因为估计值的方差为:
Var(1)
2 x22i
x12i x22i ( x1i x2i )2
注意: 完全共线性的情况并不多见,一般出现的

第七章多重共线性

第七章多重共线性

第七章多重共线性第七章多重共线性若线性模型不满⾜假定6,就称模型有多重共线性。

§7.1 多重共线性的概念⼀. 基本概念:假定6 ()1k r X k n =+<,是指模型中所有⾃变量12,,,,k x x x 1线性⽆关,也可理解为矩阵X 的列向量线性⽆关。

若不满⾜该假定,即 ()1k r X k <+,则称12,,,,k x x x 1存在完全多重共线性,12,,,,k x x x 1存在严格的线性关系,这是⼀种极端情况;若12,,,,k x x x 1之间的线性关系不是严格的,⽽是⼀种近似的线性关系,则称⾼度相关或存在不完全多重共线性。

如,01122i i i i y x x u βββ=+++ 若12,λλ?不全为零,使11220i i x x λλ+=,完全多重共线性11220i i i x x v λλ++= 不完全多重共线性完全多重共线性和不完全多重共线性统称为多重共线性。

解释变量(⾃变量)之间的线性关系可⽤拟合优度2i R 描述,2i R 表⽰i x 对其它解释变量的拟合优度,21i R = 完全 21i R ≈⾼度 20i R = ⽆⼆. 产⽣的原因:在实际经济问题中主要是不完全多重共线性。

其产⽣的主要原因是:1. 两个解释变量具有相同或相反的变化趋势;(家庭能耗与住房⾯积、⼈⼝)⽣产、需求.......2. 数据收集的范围过窄,造成解释变量之间有相同或相反变化的假象;3. 某些解释变量之间存在某种近似的线性关系;(各解释变量有相同的时间趋势)4. ⼀个变量是另⼀个变量的滞后值;供给5. 解释变量的选择不当也可能引起变量间的多重共线性。

6. 过度决定模型。

(观测值个数少于参数个数)对于正确设置的模型,多重共线性基本上是⼀种样本现象。

§7.2 多重共线性的后果⼀. 完全多重共线性当模型具有完全多重共线性时,⽆法进⾏参数的OLS 估计;设模型 Y XB U =+,若有完全多重共线性,即()1k r X k <+,则()1T r X X k <+ 1()T X X -?不存在1()T TB X X X Y ∧-?=不存在,同样 21()()Tj u jj V X X βσ∧-=也不存在,显著性检验和预测都⽆法进⾏。

第七章 多重共线性及其处理

第七章 多重共线性及其处理

第七章 多重共线性及其处理第一部分 学习辅导一、本章学习目的与要求1.理解多重共线性的概念;2.掌握多重共线性存在的主要原因;3.理解多重共线性可能造成的后果;4.掌握多重共线性的检验与修正的方法。

二、本章内容提要本章主要介绍计量经济模型的计量经济检验。

即多重共线性问题。

多重共线性是多元回归模型可能存在的一类现象,分为完全共线与近似共线两类。

模型的多个解释变量间出现完全共线性时,模型的参数无法估计。

更多的情况则是近似共线性,这时,由于并不违背所有的基本假定,模型参数的估计仍是无偏、一致且有效的,但估计的参数的标准差往往较大,从而使得t 统计值减小,参数的显著性下降,导致某些本应存在于模型中的变量被排除,甚至出现参数正负号方面的一些混乱。

显然,近似多重共线性使得模型偏回归系数的特征不再明显,从而很难对单个系数的经济含义进行解释。

多重共线性的检验包括检验多重共线性是否存在以及估计多重共线性的范围两层递进的检验。

而解决多重共线性的办法通常有逐步回归法、差分法以及使用额外信息、增大样本容量等方法。

(一)多重共线性及其产生的原因当我们利用统计数据进行分析时,解释变量之间经常会出现高度多重共线性的情况。

1.多重共线性的基本概念多重共线性(Multicollinearity )一词由弗里希(Frish )于1934年在其撰写的《借助于完全回归系统的统计合流分析》中首次提出。

它的原义是指一个回归模型中的一些或全部解释变量之间存在有一种“完全”或准确的线性关系。

如果在经典回归模型Y X βε=+中,经典假定(5)遭到破坏,则有()1R X k <+,此时称解释变量k X X X ,,,21 间存在完全多重共线性。

解释变量的完全多重共线性,也就是解释变量之间存在严格的线性关系,即数据矩阵X 的列向量线性相关。

因此,必有一个列向量可由其余列向量线性表示。

同时还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,但是却有近似的线性关系,即解释变量之间高度相关。

多重共线性

多重共线性

2.采用综合统计检验法
R2与F值较大,但t检验值较小,说明各解释变量对Y的联合线 性作用显著,但各解释变量间存在共线性而使得它们对Y的独 立作用不能分辨,故t检验不显著。
3.3 多重共线性
3、辅助回归模型检验 通过每个解释变量对其它解释变量的辅助回归模型
xi a0 a1 x1 ai 1 xi 1 ai 1 xi 1 ak xk
3.3多重共线性
• • • • 多重共线性及其产生原因 多重共线性的后果 多重共线性的检验 多重共线性的方法
一、多重共线性及其产生原因
1.多重共线性的概念---解释变量间相关
对于多元线性回归模型 yi=b0+b1x1i+b2x2i+…+bkxki+εi 存在一组不全为零的常数λ1,λ2,…λk,使得 λ1x1i + λ2x2i +…+ λkxki +νi=0 其中νi是一个随机误差项,则称模型存在着多重共线性。 “共线性”:变量间线性相关 “多重”:多种组合 “完全多重共线性”: νi=0
3.3 多重共线性
例5.服装需求函数。根据理论和经验分析,影响居民服 装需求的主要因素有:可支配收入X、流动资产拥有量 K、服装类价格指数P1和总物价指数P0 。教材P124的表 3-4给出了有关统计资料。 设服装需求函数为 :Y=a+b1x+b2P1+b3P0+b4K+ε (1)相关系数检验 键入:COR Y X K P1 P0 输出的相关系数矩阵为:
3.3 多重共线性
2、间接剔除重要的解释变量 ⑴利用附加信息
例如,著名的Cobb-Dauglas 生产函数中
附加信息: α +β =1 则

计量经济学题库第7章多重共线性

计量经济学题库第7章多重共线性

第7章 多重共线性习 题一、单项选择题1.如果回归模型中解释变量之间存在完全的多重共线性,则最小二乘估计量( )A.不确定,方差无限大B.确定,方差无限大C.不确定,方差最小D.确定,方差最小2.多元线性回归模型中,发现各参数估计量的t 值都不显著,但模型的F 值确很显著,这说明模型存在( )A .多重共线性B .异方差C .自相关D .设定偏误 3.逐步回归法既检验又修正了( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性4.如果模型中的解释变量存在完全的多重共线性,参数的最小二乘估计量是( )A .无偏的 B. 有偏的 C. 不确定 D. 确定的 5.设线性回归模型为,下列表明变量之间具有完全多重共线性的是( )A .B .C .D .其中v 为随机误差项6.简单相关系数矩阵方法主要用于检验( )A .异方差性 B.自相关性 C .随机解释变量 D.多重共线性 7.设为解释变量,则完全多重共线性是( )8.下列说法不正确的是( )A. 多重共线性产生的原因有模型中大量采用滞后变量,)(22很大或R R 01122i i i iY X X u βββ=+++1202*0*0i i X X ++=1202*0*0i i X X v +++=1200*0*0i i X X ++=1200*0*0i i X X v +++=21,x x 221211211.0.021.0(.02x x A x x B x e C x x v v D x e +==++=+=为随机误差项)B. 多重共线性是样本现象C. 检验多重共线性的方法有DW检验法D. 修正多重共线性的方法有增加样本容量二、多项选择题1.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. t检验与F检验综合判断法C. DW检验法D. ARCH检验法E. White 检验2.如果模型中解释变量之间存在共线性,则会引起如下后果()A. 参数估计值确定B. 参数估计值不确定C. 参数估计值的方差趋于无限大D. 参数的经济意义不正确E. DW统计量落在了不能判定的区域3.能够检验多重共线性的方法有()A. 简单相关系数矩阵法B. DW检验法C. t检验与F检验综合判断法D. ARCH检验法E. 辅助回归法(又待定系数法)三、判断题1.多重共线性问题是随机扰动项违背古典假定引起的。

多重共线性

多重共线性

第七章 多重共线性Multi-Collinearity多重共线性 ƒ ƒ ƒ ƒ 一、多重共线性的概念 二、多重共线性的检验 三、克服多重共线性的方法 四、案例一、多重共线性的概念 对于模型 Yi=β0+β1X1i+β2X2i+…+βkXki+μi i=1,2,…,n 其基本假设之一是解释变量是互相独立的。

如果某两个或多个解释变量之间出现了相 关性,则称为多重共线性。

如果存在 c1X1i+c2X2i+…+ckXki=0 性。

如果存在 c1X1i+c2X2i+…+ckXki+vi=0 性或交互相关。

i=1,2,…,n其中: ci不全为0,则称为解释变量间存在完全共线i=1,2,…,n其中ci不全为0,vi为随机误差项,则称为 近似共线注意: 完全共线性的情况并不多见,一般出现的是 近似共线性。

二、多重共线性的检验(1)对两个解释变量的模型,采用简单相关系数法 求出X1与X2的简单相关系数r,若|r|接近1,则说 明两变量存在较强的多重共线性。

(2)对多个解释变量的模型,采用经验检验法 模型特征:R2与F值较大,但t检验值较小,三、克服多重共线性的方法(◆)逐步回归法以Y为被解释变量,逐个引入解释变量,构 成回归模型,进行模型估计。

根据拟合优度的变化决定新引入的变量是否 独立。

如果拟合优度变化显著,则说明新引入的变 量是一个独立解释变量; 如果拟合优度变化很不显著,则说明新引入 的变量与其它变量之间存在共线性关系。

四、案例根据理论和经验分析,影响粮食生产(Y)的 主要因素有: 农业化肥施用量(X1);粮食播种面积(X2) 成灾面积(X3); 农业机械总动力(X4); 农业劳动力(X5) 已知中国粮食生产的相关数据,建立中国粮食 生产函数: Y=β0+β1 X1 +β2 X2 +β3 X3 +β4 X4 +β4 X5 +μ年份粮食产量表 4.3.3 中国粮食生产与相关投入资料 受灾面积 粮食播种面 农业机械总 农业化肥施 用量 X 1 (万公斤) 1659.8 1739.8 1775.8 1930.6 1999.3 2141.5 2357.1 2590.3 2806.1 2930.2 3151.9 3317.9 3593.7 3827.9 3980.7 4083.7 4124.3 4146.4 积 X2 (千公顷) 114047 112884 108845 110933 111268 110123 112205 113466 112314 110560 110509 109544 110060 112548 112912 113787 113161 108463Y1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 (万吨) 38728 40731 37911 39151 40208 39408 40755 44624 43529 44264 45649 44510 46662 50454 49417 51230 50839 46218X3(公顷) 16209.3 15264.0 22705.3 23656.0 20392.7 23944.7 24448.7 17819.3 27814.0 25894.7 23133.0 31383.0 22267.0 21233.0 30309.0 25181.0 26731.0 34374.0动力 X 4 (万千瓦) 18022 19497 20913 22950 24836 26575 28067 28708 29389 30308 31817 33802 36118 38547 42016 45208 48996 52574农业劳动 力X5 (万人) 31645.1 31685.0 30351.5 30467.0 30870.0 31455.7 32440.5 33330.4 34186.3 34037.0 33258.2 32690.3 32334.5 32260.4 32434.9 32626.4 32911.8 32797.51、用OLS法估计上述模型:ˆ = −12816.44 + 6.213 X + 0.421X − 0.166 X − 0.098 X − 0.028 X Y 1 2 3 4 5(-0.91)(8.39)(3.32)(-2.81)(-1.45)(-0.14)R2接近于1; 给定α=5%,得F临界值 F0.05(5,12)=3.11 F=638.4 > 15.19, 故认上述粮食生产的总体线性关系显著成立。

07多重共线性 EVIEW 处理方法

07多重共线性 EVIEW 处理方法

第七章 多重共线模型案例导入:根据理论与经验分析,影响居民服装需求d C 的主要因素有可支配收入Y 、流动资产拥有量L 、服装类价格指数Pc 和总物价指数0P 。

下表给出了某地10年间有关统计资料。

服装需求函数有关统计资料年份d C (百万元) Y (百万元) L (百万元) 服装类价格指数Pc 物价总指数0P 19988.4 82.9 17.1 92 94 19999.6 88.0 21.3 93 96 200010.4 99.9 25.1 96 97 200111.4 105.3 29.0 94 97 200212.2 117.7 34.0 100 100 200314.2 131.0 40.0 101 101 200415.8 148.0 44.0 105 104 200517.9 161.8 49.0 112 109 200619.3 174.2 51.0 112 111 2007 20.8 184.7 53.0 112 111 背景知识:在多元线性回归模型经典假设中,其重要假定之一是回归模型的解释变量之间不存在线性关系,即解释变量1X ,2X ,……,k X 中的任何一个都不能是其他解释变量的线性组合。

如果违背这一假定,即线性回归模型中某一个解释变量与其他解释变量间存在线性关系,就称线性回归模型中存在多重共线性。

在经济现象中,经济变量之间常常因为存在具有相同方向的变化趋势、存在较密切关系、采用滞后变量作为解释变量、数据收集范围过窄等原因而造成存在多重共线性。

较高程度的多重共线性可能对最小二乘估计产生如下严重后果:增大最小二乘估计量的方差;参数估计值不稳定,对样本变化敏感;检验可靠性降低,产生弃真的错误。

由于参数估计量方差增大,在进行显著性检验时,t 检验值将会变小,可能使某些本该参数显著的检验结果变得不显著,从而将重要变量舍弃。

多重共线性是较为普通存在的现象,在运用最小二乘法进行多元线性回归时,不但要检验解释变量间是否存在多重共线性,还要检验多重共线性的严重程度。

计量经济学 第七章 多重共线性

计量经济学  第七章  多重共线性

第七章 多重共线性“多重共线性”一词由R. Frisch 1934年提出,它原指模型的解释变量间存在线性关系。

7.1多重共线性及产生的原因 7.1.1.非多重共线性假定111211212221121111k k T T Tk x x xx xx X x x x ---=如果rk (X 'X ) = rk (X ) < k 或`0X X =称解释变量是完全共线性相关。

在实际经济问题中,完全多重共线性和完全无多重共线性两种极端情况都是极少的,大多数情况是解释变量存在不完全的多重共线性,或者近似的多重共线性,可一表示为:1122110k k x x x u λλλ--++++= 7.1.2.多重共线性的经济解释(1)经济变量在时间上有共同变化的趋势。

如在经济上升时期,收入、消费、就业率等都增长,当经济收缩期,收入、消费、就业率等又都下降。

当这些变量同时进入模型后就会带来多重共线性问题。

0.E+001.E+112.E+113.E+114.E+11808284868890929496980002GDPCONS0.E +001.E +112.E +113.E +114.E +110.0E +005.0E +101.0E +111.5E +112.0E +112.5E +11C O N SG D P o f H o n g K o n g(2)解释变量与其滞后变量同作解释变量。

滞后变量与原因变量在经济意义上没有本质区别,只是时间上的差异,原因变量与解释变量有相关关系,滞后变量也会有相关关系。

(见下图) (3)解释变量之间往往存在密切的关联度。

对同一经济现象的解释变量,往往存在密切的相关关系,如生产函数,资本大,需投入的劳动力也应趆多。

0.E+001.E+112.E+113.E+114.E+11GDP0.E+001.E+112.E+113.E+114.E+110.E+001.E+112.E+113.E+114.E+11GDP(-1)GDP7.2.多重共线性的后果(1) 当 `0X X =,X 为降秩矩阵,则 (X 'X ) -1不存在,βˆ= (X 'X )-1 X 'Y 不可计算。

《多重共线性》课件

《多重共线性》课件

诊断方法比较
检验统计量
检验统计量提供量化指标,可以 明确指出多重共线性的程度,但 其依赖于样本数据,稳定性相对
较差。
图形化诊断
图形化诊断直观易理解,但可能存 在主观性,并且难以量化多重共线 性的程度。
综合运用
在实际应用中,应综合运用多种方 法进行多重共线性的诊断,以确保 诊断结果的准确性和可靠性。
Condition Index
Condition Index是诊断多重共线性的另一种统计量,当某些Condition Index值特别 大时,可能存在多重共线性问题。
图形化诊断
散点图
通过绘制自变量间的散点图,可以直 观地观察到是否存在线性关系,从而 初步判断是否存在多重共线性问题。
相关系数矩阵
通过绘制相关系数矩阵,可以观察到 自变量间的相关系数,当某两个自变 量的相关系数接近1或-1时,可能存 在多重共线性问题。
多重共线性的影响
参数估计值不稳定
01
模型中的参数估计值会随着样本的微小变化而发生较大的变化
,导致模型预测的不稳定性。
模型预测精度降低
02
由于参数估计值的不准确,会导致模型的预测精度降低,预测
结果的可信度下降。
模型解释性差
03
由于解释变量之间的高度相关关系,使得模型难以解释各个解
释变量对因变量的影响程度,降低了模型的解释性。
多重共线性PPT课件
目 录
• 多重共线性的定义 • 多重共线性的成因 • 多重共线性的诊断 • 多重共线性的处理 • 案例分析
01
多重共线性的定义
什么是多重共线性
1
共线性是指解释变量之间存在高度相关性的现象 。
2
在多元线性回归模型中,如果解释变量之间存在 高度相关关系,会导致模型估计的参数不准确, 甚至出现完全错误的结论。

计量经济学第七章

计量经济学第七章

用时间序列自身的历史数 据来预测未来值的一种模 型。
用历史白噪声的线性组合 来表示时间序列的一种模 型。
结合了自回归模型和移动 平均模型的特点,用历史 数据和历史白噪声的线性 组合来预测未来值的一种 模型。
02
线性回归模型
线性回归模型介绍
01
线性回归模型是一种统计学上的分析方法,用于研究
两个或多个变量之间的关系。
使读者能够掌握时间序列分析的基本 方法,理解时间序列数据的特性,能 够运用相关模型进行实证分析。
关键概念与术语
01
02
03
04
05
时间序列
平稳性
自回归模型(AR 移动平均模型( 自回归移动平均
模型)
MA模型)
模型(A…
按时间顺序排列的一组数 据,通常用于描述某个变 量随时间变化的情况。
时间序列的统计特性不随 时间变化而变化,即其均 值、方差和自协方差等不 随时间改变。
用于检验单个自变量对 因变量的影响是否显著 。
用于检验自变量之间是 否存在高度相关性,如 果存在多重共线性,则 可能导致回归系数的估 计不准确。
用于检验误差项是否具 有相同的方差,如果异 方差性存在,则可能导 致回归系数的标准误差 被低估,从而影响假设 检验的结果。
03
多元线性回归模型
多元线性回归模型介绍
03
将深入探讨计量经济学在实证研究和政策分析中的应用,如经济增长、 金融市场、劳动市场等领域的实证分析。
04
将学习如何处理计量经济学中的复杂数据和问题,如缺失数据、异常 值、内生性等问题。
THANK YOU
异常值或离群点
数据中的异常值或离群点可能导致异方差性 的出现。
异方差性的后果

第七章 多重共线性

第七章 多重共线性
三、多重共线性产生的后果
由前述可知,多重共线性分完全多重共线性和不完全多重共线性两种情况,两种情况都会对模型进行最小二乘估计都会产生严重后果。
(一)完全多重共线性 产生的后果
以二元线性回归模型为例,
EMBED Equation.3 (7-4)
以离差形式表示,假设其中 EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 , EMBED Equation.3 ,常数 EMBED Equation.3 ,则, EMBED Equation.3 , EMBED Equation.3 的最小二乘估计量为
情况3、新引入变量后,方差增大
在多元线性回归模型中新引入一个变量后,发现模型中原有参数估计值的方差明显增大,则说明解释变量间可能存在多重共线性。
二、拟合优度 EMBED Equation.3 检验
对多元线性回归模型中各个解释变量相互建立回归方程,分别求出各回归方程的拟和优度,如果其中最大的一个接近1, EMBED Equation.3 显著大于临界值,该变量可以被其他变量线性解释,则其所对应的解释变量与其余解释变量间存在多重共线性。
多重共线性是较为普通存在的现象,从上节分析可知,较高程度的多重共线性会对最小二乘估计产生严重后果,因此,在运用最小二乘法进行多元线性回归时,不但要检验解释变量间是否存在多重共线性,还要检验多重共线性的严重程度。
一、不显著系数法
情况1、 EMBED Equation.3 很大,t小
EMBED Equation.3
EMBED Equation.3
分别求出上述各个方程的拟合优度 EMBED Equation.3 ,如果其中最大的一个 EMBED Equation.3 接近于1,则它所对应的解释变量 EMBED Equation.3 与其余解释变量间存在多重共线性。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章 多重共线性
基本概念
(1)多重共线性; (2)完全多重共线性;
(3)不完全多重共线性;
练习题
1、什么是变量之间的多重共线性?举例说明。

3、完全多重共线性和不完全多重共线性之间的区别是什么?
4、产生多重共线性的经济背景是什么?
5、多重共线性的危害是什么?为什么会造成这些危害?检验多重共线性的方法思路是什么?有哪些克服方法?
6、考虑下列一组数据
Y
-10 -8 -6 -4 -2 0 2 4 6 8 10 2X 1 2 3 4 5 6 7 8 9 10 11 3X
1
3
5
7
9
11
13
15
17
19
21
现在我们进行如下的回归分析:
12233i i Y X X u βββ=+++
请回答如下问题:
(1)你能估计出该模型的参数吗?为什么? (2)如果不能,你能估计哪一参数或参数组合? 7、将下列函数用适当的方法消除多重共线性: (1)消费函数为
012C W P u βββ=+++
其中C 、W 、P 分别表示消费、工资收入和非工资收入,W 和P 可能高度相关,但研究表明
1
22ββ=。

(2)需求函数为
0123s Q Y P P u ββββ=++++
其中Q 、Y 、P 和s P 分别为需求量、收入水平、该商品价格水平及其替代品价格水平,P 和s P
可能高度相关。

基本概念解释
(1)多重共线性指两个或两个以上解释变量之间存在某种线性相关关系。

(2)完全多重共线性指,在有多个解释变量模型中,解释变量之间的线性关系是准确的。

在此情况下,不能估计解释变量各自对被解释变量的影响。

(3)不完全多重共线性指,在实际经济活动中,多个解释变量之间存在多重共线性问题,但解释变量之间的线性关系是近似的,而不是完全的。

练习题答案
1、如果在经典回归模型Y X U β=+中,如果基本假定6遭到破坏,则有()1k r x k <+,此时称解释变量之间存在完全多重共线性。

解释变量之间的完全多重共线性也就是,解释变量之间存在严格的线性关系。

在实际中还有另外一种情况,即解释变量之间虽然不存在严格的线性关系,却有近似的线性关系,即指解释变量之间高度相关,这种解释变量之间高度相关称之为不完全多重共线性。

完全多重共线性和不完全重共线性,统称为多重共线性。

3、完全多重共线性指的是变量之间的线性关系是准确的,而不完全多重共线性指的是变量之间的线性关系是近似的。

4、在现实经济运行中,许多经济变量在随时间的变化过程中往往存在共同的变化趋势,使之产生多重共现性;使用截面数据建立回归模型时,根据研究的具体问题选择的解释变量常常从经济意义上存在着密切的关联度;在建模过程中由于认识上的局限造成变量选择不当,从而引起变量之间的多重共线性;在模型中大量采用滞后变量也容易产生多重共线性。

5、对于模型01122i i i k ki i Y X X X ββββμ=+++++()1,2,,i n =,如果某两个或多个解释变量之间出现了相关性,则称为模型存在多重共线性。

多重共线性的危害有几个方面:一是在完全共线性下参数估计量不存在,理由是()
1
'X X -不存在;二是近似共线性下OLS 参数估计量非有效,理由是参数估计量的方差将可能变得很大;三是参数估计量经济意义不合理,如当2X 与3X 存在线性关系时,2X 与3X 前的参数并不能反映各自与被解释变量之间的结构关系:四是变量的显著性检验失去意义,因为无论是t 检验还是F 检验,都与参数估计量的方差有关;五是模型的预测功能失效。

检验多重共线性的方法思路:用统计上求相关系数的原理,如果变量之间的相关系数较大则认为它们之间存在多重共线性。

克服多重共线性的方法主要有:排除引起共线性的变量,差分法,减少参数估计量的方差,利用先验信息改变参数的约束形式,增加样本容量,岭回归法等。

6、(1)不能,因为模型存在多重共线性的问题,即3X =22X -1,所以不能得到参数的唯一估计值。

(2)我们可以估计出来(31ββ-)和(322ββ+)。

7、(1)将先验信息1
22ββ=代入到模型中,然后估计(W+P/2)对消费的影响。

(2)可以考虑对模型中的变量取对数,然后进行回归。

相关文档
最新文档