【原创】行列式计算7种技巧7种手段

合集下载

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解. 2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A •=0, nn nn nnnn nn B A B C A •=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa a a n ()()βγβγβγλ--•-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D =.再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20cos 21001cos 21001cos cos 21D 111k •-=++++k k()10cos 21001cos 21001cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9; 当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ. 即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式.4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n a a a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()1221112211000010000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式. 4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D=n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是德蒙德行列式,但可以考虑构造1+n 阶的德蒙德行列式来间接求出n D 的值. 构造1+n 阶的德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

计算行列式常用的7种方法

计算行列式常用的7种方法

行列式的计算方法介绍7种常用方法1 三角化方法:通过行列初等变换将行列式化为三角型行列式.例1 计算n+1阶行列式xa a a a a x a a a a x D nnn32121211=+2 把某一行(列)尽可能化为零 例2 计算:yy x x D -+-+=222222222222222243 递归法(数学归纳法):设法找出D n 和低级行列式间的关系,然后进行递归.例4 证明:βαβαβαβααββααββα--=++++=++1110000010001000n n n D例5 证明范德蒙行列式(n ≥2)∏≤<≤-----==nj i jin nn n n n nn x x x x x x x x x x x x x x V 111312112232221321)(11114 加边法:对行列式D n 添上一适当行和列,构成行列式D n+1,且D n+1=D n 例6 证明:)11(11111111111111111111121321∑=+=++++=ni in nn a a a a a a a a D5 拆分法:将行列式表为行列式的和的方法.即如果行列式的某行(或列)元素均为两项和,则可拆分为两个行列式之和 例7 设abcd=1,求证:011111111111122222222=++++ddd d c c c c b b b ba a a a6 利用行列式的乘积:为求一个行列式D 的值,有时可再乘上一个适当的行列式∆;或把D 拆分为两个行列式的积. 例8(1)1)cos()cos()cos()cos(1)cos()cos()cos()cos(1)cos()cos()cos()cos(1121332312322113121n n n n n n D αααααααααααααααααααααααα------------=(2)设S k =λ1k +λ2k +⋯+λn k (k=1,2…),求证:∏≤<≤-+-+--=nj i j in n nn n nn s s s s s s s s s s s s s s s n 1222111432321121)(λλ7 利用拉普拉斯定理求行列式的值.拉普拉斯定理是行列式按某一行(或列)展开定理的推广.定义(1) 在n 阶行列式D 中,任取k 行k 列 (1≤k ≤n),位于这k 行k 列交叉处的k 2个元素按原来的相对位置组成的k 阶行列式S ,称为D 的一个k 阶子式.如:D=3751485210744621则D 的一个2阶子式为:S=8261 在一个n 阶行列式中,任取k 行,由此产生的k 阶子式有C kn 个.(2) 设S 为D 的一个k 阶子式,划去S 所在的k 行k 列,余下的元素按原来的相对位置组成的n-k 阶行列式M 称为S 的余子式.又设S 的各行位于D 中的第i 1,i 2…i k 行,S 的各列位于D 中的第j 1,j 2…j k 列,称A=(-1)(i1+i2+…+ik)+(j1+j2+…+jk)M.如:3751485210744621则D 的一个2阶子式为:S=8261M=3517为S 的2阶子式 M=(-1)(1+3)+(1+3)3517为S 的代数余子式.拉普拉斯定理:若在行列式D 中任取k 行 (1≤k ≤n-1),则由这k 行所对应的所有k 阶子式与它们的代数余子式的乘积等于D. 例9 计算2112100012100012100012=D 例10 块三角行列式的计算 设:⎪⎪⎭⎫ ⎝⎛=⨯⨯n n m m C B A *0或 ⎪⎪⎭⎫⎝⎛=⨯⨯n n m m C B A 0* 则:detA=(detB)(detC).特别地:若A=diag(A 1,A 2,…,A t ),则DetA=(detA 1)(detA 2)…(detA t ).例11 设分块矩阵⎪⎪⎭⎫⎝⎛=D C B A 0,其中0为零阵,B和D可逆,求A-1.例12 计算nn b b b a a a D 1001000102121 =例13 设:⎪⎪⎭⎫ ⎝⎛=C B A , BC T =0.证明:|AA T |=|BB T ||CC T |.(注:可编辑下载,若有不当之处,请指正,谢谢!)。

行列式计算7种技巧

行列式计算7种技巧

行列式计算7种技巧7种手段编者:Castelu韩【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读一.7种技巧:【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212n n n n n n nnnnnna a a a a a a a a a a a a a a a a a技巧2:互换行列式的任意两行(列),行列式的值将改变正负号111212122221222111211212n n n n n n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面1111121111121221222222122211212n n nn n n i n n n n n nnn n nnb a b a b a a a a b a b a b a a a a b b a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性11121111211112111221212121212nnn t t t t tn tn t t tn t t tn n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n n s s sns t s t sn tnt t tn t t tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积111111111111111111110000m m nm mm m n m mm n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)nnik ik kj kj k k D a A i n a A j n ======∑∑二.7种手段:【手段】所谓行列式计算的手段,即在计算行列式时,观察已给出的原始行列式或进行化简后的行列式,只要它们符合已知的几种行列式模型,就可以直接计算出这些行列式手段1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---手段2:对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学1212121112121222()1212(1)n nnn n p p p p p np p p p n n nna a a a a a a a a a a a τ=-∑运用数学软件Matlab 按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A = [ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans =a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b *l*o+i*e*c*p-i*e*d*o-e*n*c*l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p +i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g手段3:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式11121222100n nn iii nna a a a a a a ==∏,11212211200niii n n nna a a a a a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零手段4:若行列式中有两行( 列)对应元素相等,则此行列式的值等于零0a a e i b b f j c c g k ddhl =手段5:若行列式中有一行(列)的元素全为零,则此行列式的值为零00000a e i b f j c g k dhl =手段6:若行列式中有两行(列)元素成比例,则此行列式的值等于零0a ka e i b kb f j c kc g k dkdhl =手段7:范德蒙德(Vandermonde)行列式1222212111112111()n n i j n i j n n n nx x x x x x x x x x x ≥>≥---=-∏三.跟踪训练【解题思路】为了使读者能够巩固前文叙述的7种技巧和7种手段,本人附上一些行列式的习题以供参考.解题时,一般先观察题目所给出的原始行列式,若原始行列式能够用7种手段的其中一种进行计算,则可直接得出答案,否则,一般先利用7种技巧对原始行列式进行化简,使之转化成能够用7种手段的其中一种进行计算的行列式,再得出答案.读者在利用7种技巧时,要注意技巧之间的搭配使用计算下列行列式的值: 习题1:120114318---解答:1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--[手段1] 习题2:0000000000b f d a ce解答:123412341234()12341234123433112432400000(1)0000004,3,1,4,2,()(3142)3,00000(1)00000p p p p p p p p p p p p b f d a a a a a ce p p p p p p p p bf d a a a a abcda ceτττ=-=======-=-∑观察行列式中元素的位置及由级排列中各数不能相等知因此[手段2]习题3:12345678910111213141516解答:21431234113156785171091011129111113141516131151c c c c -=-[技巧5,手段4] 习题4:3333333333333333x x x x ---+---+--解答:4122131414233333333333333333333333333333133313331333001333001333001333000000ii x x x x x x c c x x x x x x x r r x x x x r r x x x x r r xx x xr r xx x x x=-----+--+-+----+----------+--=-----------↔-=--∑[技巧2,技巧3,技巧5,手段3] 习题5:11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏[技巧7,手段1,手段6]习题6:444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a a a a a a a a a a a ----------------解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)a a a a a D a a a a a a a a a a a a a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a -------==[技巧2,手段7] 习题7:12211000010000000001nn n x x x x a a a a x a -----+解答:111121232212112112121,1000100(1)000011,,,,,,n n n n n n n nn n n n n n n n n n n n n D x D xD a xx DxD a D xD a D xD a D xD a D x a x x x D x a x a x a x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:[技巧7,手段3]习题8:()ab a bc dc d 其余未写出元素均为零:解答:22(22)2122(1)2(1)2221,23,,2,221,23,,2,000000(1)00()()()n n n n nn n D n n n n n n a bc dabD ab c d c d D D ad bc Dad bc D ad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得[技巧2,技巧6]。

行列式的计算方法 - 多项式 行列式 与计算方法

行列式的计算方法 - 多项式 行列式 与计算方法

(先将行列式表成两个低阶同型的行列式的线形 关系式,再用递推关系及某些低阶(2阶,1阶) 行列式的值求出 D 的值)
13

计算2n阶行列式
a D2 n 0 a c c
0 b d
b
0
解 按第一行展开,有
a D2 n a 0 c 0 0 a b c d d 0 0 0 b
1
1、定义法:适用于0比较多的行列式. 2、利用性质化三角形行列式 3、 按行(列)展开
4、 其他方法: 析因子法 箭形行列式 行(列)和相等的行列式 递推公式法 加边法(升级法) 拆项法 数学归纳法
2
(一)析因子法
例:计算
1 1 2 D 1 2 x 2 3 2 3
2 3 2 3 1 5 2 1 9 x
n 1
D
n1 n 1 n 3 n 2 n 1 2 n 2 n1

1 n( n 1) 1 D 2 1 1
rn rn1 rn1 rn 2 r2 r1 n( n 1) 2
2 3 n 1
3 4 1 2
n1 n n 1 n3 n2 n 2 n1
第1列,得:
a0 c1 Dn1 c2 cn
b1 a1
b2 a2
Dn1
bi ci a1a2 an (a0 ) i 1 ai
5
n
可转为箭形行列式的行列式:
1 a1 1 1 1 a2 1) 1 a1 x 2) x x a2 1 1 , ai 0, i 1,2,3 n. 1 1 an
18
Dn x1 x2 xn1a xn Dn1 Dn1 x1 x2 xn2a xn1 Dn2 ,

行列式的计算技巧与方法总结讲解

行列式的计算技巧与方法总结讲解

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n nn i i --⎪⎭⎫ ⎝⎛-=∑=2221111mm x x m x nn i i --⎪⎭⎫ ⎝⎛-=∑=0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m ni i n 11.2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ∙=0, nn nn nnnn nn B A B C A ∙=0.例7 解行列式γβββββγββββγλbbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ--∙-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:100100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ∙-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--∙+∙=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211210,nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b nnn,n n n a c a c a c b b b a2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()⎪⎭⎫ ⎝⎛+--∙-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式.4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab ba ab b a abb a ab b a n +++++=10000000000000100000100000D.解:按第一列展开,得()ba ab ba b a ab b a abb a ab D b a n n +++++-+=-100000010000100000D 1()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322 .故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121 n n n n b ab b a a ++++=--11 .4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n nna a a a a a a a a a a a这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nna a a a a a a a a a a a a a. 4.6.3 例题解析例18 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= , 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D =n .分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n . ∴()()111111---++++==+=n n n n D D D()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .。

行列式的计算技巧

行列式的计算技巧

行列式的计算技巧行列式的计算技巧很多,在这里,我们介绍常见的一些行列式的计算技巧,主要包括 行和或列和相等,爪型(歪爪型)、范德蒙(伪范德蒙)、加边法、递推降阶法、层层递加(减)法等等。

方法1 行(列)和相等这类行列式的计算一般把行列式的行全部加到第一行,或者把所有的列全部加到第一列,习惯上,我们可以全部加到第一列,提取公因子后,第一列全部变成1,从而方便我们植1造0,或者在此时观察行列式的特点, 进一步化成上三角或者下三角来进行计算。

例1 .兰州大学2004招收攻读硕士研究生考试工试题第四大题第(1)小题。

求如下行列式的值。

12121123123n nn n x a a a a x a a D a a a a a a a x+=[分析] 我们再仔细看一下,每行的元素的和数都是一样的,那么我们从第2列开始到第n+1列都加到第1列,现提出公因式,这样行列式的次数就降了一次。

解:1211221211232312323111()11ni n i nn i ni nn n i i nn i n i ni i a xa a a a a a a xxa a xa a D a x a a a a x a a a a a xa xa a x==+===++==+++∑∑∑∑∑对行列式xa a a a a a a x a a a n nn 32322211111 进行观察,此时一般有两种途径,一种是在第一列造0,把第二行开始后的每一行都减去第一行,或者利用第一列的1,把第一列的倍数加到其他列来造0,具体采用哪个看具体问题,在本题中,可以考虑把第一列的1a -倍加到第2列, 第一列的2a -倍加到第3列,,第一列的n a -倍加到最后一列,。

从而有)())()((1010010001)(1111)(2112312231211323222111n n i i nni i n n n ni i n a x a x a x x a a x a a a a a a a a a x x a xa a a a a a a xa a a x a D ---+=------+=+=∑∑∑===+方法2 爪(歪爪)型行列式此类行列式有三条线构成,类似一个爪子,或者歪爪,可以采用去爪的方法来做,特别注意歪爪只能去掉歪了的爪子,在去爪的过程中,利用主对角线上的元素来去爪子,层层递进即可。

行列式的计算技巧与方法总结(同名4612)

行列式的计算技巧与方法总结(同名4612)

行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a K ΛM O M M M K K K 2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211321333231222111000000=. 例2 计算行列式nn nnb a a a a a b a a a a ++=+KM O M M M K K 21211211n 111D . 解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 000n n na a ab b b b b +==KK M M M O M K.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n nn n ---=ΛM O M M ΛΛ212121. 解: mx x mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===ΛM O M MΛΛ212121n Dmx x x m x x x m x n n n n i i --⎪⎭⎫ ⎝⎛-=∑=ΛM O M M ΛΛ2221111mm x x m x n n i i --⎪⎭⎫ ⎝⎛-=∑=ΛM OM M ΛΛ0000121()⎪⎭⎫ ⎝⎛--=∑=-m x m n i i n 11. 2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn ΛM M O M M M ΛΛΛ. 解:从最后一行开始每行减去上一行,有1111111111*********D n ---------=ΛM M O M M M ΛΛΛn n 1111120022200021321----=ΛM M O M M M ΛΛΛn n 0111100011000011132122ΛM M O M M M ΛΛΛ+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211ΛΛM M O M M MΛMΛn n a a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n ΛΛM M O M M M ΛΛΛ ()()()()()n n n a a a n a a a n ΛΛ21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a x x x x n n nKKM M O M M M O K K -----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211K .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++=Λ,其中i A 是子式i M 对应的代数余子式.即nn nn nnnn nnB A BC A •=0, nn nn nnnnnn B A B C A •=0. 例7 解行列式γβββββγββββγλΛMO M M M M ΛΛΛb bbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=ΛM O M M M M ΛΛΛ00000D n b aa a a()()βγβγββββγλ---+-=ΛM O M M M M ΛΛΛ00000021n b a a aa n ()()βγβγβγλ--•-+-=ΛMO M M Λ000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110ΛΛM M O M M M ΛΛΛ. 解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D ΛΛM M OM M M ΛΛΛ=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------ΛΛM M O M M M ΛΛΛ. 从第二列开始,每列乘以()1-加到第一列,得:10010000010000011111)1n D ------=ΛΛM M O M M M ΛΛΛ( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos ΛΛM M O M M M ΛΛΛ=n D . 解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1ΛΛM M O M M M ΛΛΛ=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ΛM O M M M ΛΛΛ•-=++++k k()10cos 21001cos 21001cos 11ΛM O M M M ΛΛΛβββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立. 即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠∆,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=∆,则特征方程有重根21x x =,则()11-+=n n x nB A D . 在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n ΛΛM M M O M M M M ΛΛΛ=.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--•+•=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221ΛΛM M O M M M ΛΛΛ.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-110010000001100001010001D 133221ΛΛM M O M M M ΛΛΛ .1101000001100010000110001000001100011000113322113322nnn nn n a a a a a a a a a a a a a a a -------+-------=--ΛΛM MO M M M ΛΛΛΛΛM M O M M M ΛΛΛ上面第一个行列式的值为1,所以nnn n a a a a a a a ------=-11001000010011D 13321ΛΛM M O M MΛΛ 111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a ΛΛΛ2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ.故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.3.3 特征值法3.3.1 概念及计算方法设n λλλΛ,,21是n 级矩阵A 的全部特征值,则有公式 n A λλλΛ21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλΛ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零. 证明:因为n A λλλΛ21=,则A 可逆()n i i n ΛΛ2,1000A 21=≠⇔≠⇔≠⇔λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念形如nn n nn a a a a a a a a a a M OKK K 333223221131211,nnn n n a a a a a a a a a a ΛO M M M 321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法 由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a K ΛM O M M M K K K 2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a K ΛM O M M M K K K 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a OM Λ2211210,nnnc a c a c a a b b b M N Λ2211012,nnn b b b a a c a c a c ΛNM 2101122,121122a b b b c a c a c a nn nΛMO这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321OM Λ,其中.,2,1,0n i a i Λ=≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i Λ=列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321OM Λ nni ia a a a a 00011113221OM Λ∑=-=⎪⎪⎭⎫⎝⎛-=∑=ni i n aa a a a 21321Λ. 4.3 “么”字型行列式4.3.1 概念形如n nn b b b a a c a c a c ΛNN 2101122,nn n a b c a b c a b c a OO2221110,n n nc a c a c a a b b b N N Λ2211012,0111222a c b a c b a c b a n n n OM O ,1021122c a c a b a b c a b nn n NN M ,n nna c a c a cb b b a O OΛ2211210,0121122a b b b c a c a c a nn nΛO O,nnn b a b c b a b a c a c 12211201NN 这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+M NN M NN .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑MN MN()()()⎪⎭⎫ ⎝⎛+--•-=∑=+ni i nn n b 121111()()⎪⎭⎫ ⎝⎛+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a ΛΛM M M M MΛΛ00000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a ΛΛM M M M MΛΛ000000000D 12211-=. 解:按第一列展开,得()122111221100010000-+-+-+=n n n nn n b b a b b a b b a a D ΛM O M M ΛΛΛΛM O M M Λ()n n n b b b a a a ΛΛ211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab b a ab b a abb a ab b a +++++10000000000100000100000ΛΛM M O M M M M M ΛΛΛ 这样的行列式,叫做“三对角型”行列式.4.5.2 计算方法对于这样的行列式,可直接展开得到两项递推关系式,然后变形进行两次递推或利用数学归纳法证明. 4.5.3 例题解析例17 求行列式ba ab b a ab b a abb a ab b a n +++++=10000000000000100000100000D ΛΛM M O M M M M M ΛΛΛ. 解:按第一列展开,得()ba ab b a b a ab b a abb a ab D b a n n +++++-+=-10000010000100000D 1ΛΛM M O M M M ΛΛΛ ()21---+=n n abD D b a .变形,得()211D ----=-n n n n aD D b aD .由于2221,b ab a D b a D ++=+=, 从而利用上述递推公式得()211D ----=-n n n n aD D b aD ()()n n n n b aD D b aD D b =-==-=---122322Λ.故()nn n n n n n n n n b ab b a D a b b aD a b aD D ++++==++=+=------12211121ΛΛn n n n b ab b a a ++++=--11Λ.4.6 Vandermonde 行列式4.6.1 概念形如113121122322213211111----n nn n n n n a a a a a a a a a a a a ΛM O M M M ΛΛΛ这样的行列式,成为n 级的范德蒙德行列式.4.6.2 计算方法通过数学归纳法证明,可得()∏≤<≤-----=11113121122322213211111i j j i n nn n n nn a a a a a a a a a a a a a a ΛM O M M M ΛΛΛ. 4.6.3 例题解析例18 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ, 其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ,故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.5、行列式的计算方法的综合运用有些行列式如果只使用一种计算方法不易计算,这时就需要结合多种计算方法,使计算简便易行.下面就列举几种行列式计算方法的综合应用.5.1 降阶法和递推法例19 计算行列式2100012000002100012100012D ΛΛM M O M M M ΛΛΛ=n . 分析:乍一看该行列式,并没有什么规律.但仔细观察便会发现,按第一行展开便可得到1-n 阶的形式.解:将行列式按第一行展开,得212D ---=n n n D D . 即211D ----=-n n n n D D D .∴12312211=-=-==-=----D D D D D D n n n n Λ. ∴()()111111---++++==+=n n n n D D D ΛΛ()121+=+-=n n .5.2 逐行相加减和套用范德蒙德行列式例20 计算行列式43423332232213124243232221214321sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1sin 1sin 1sin 11111D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕϕ++++++++++++=解:从第一行开始,依次用上一行的()1-倍加到下一行,进行逐行相加,得43332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin 1111ϕϕϕϕϕϕϕϕϕϕϕϕ=D .再由范德蒙德行列式,得()∏≤<≤-==4143332313423222124321sin sin sin sin sin sin sin sin sin sin sin sin sin sin 1111i j j i D ϕϕϕϕϕϕϕϕϕϕϕϕϕϕ.5.3 构造法和套用范德蒙德行列式例21 求行列式n nn nn n n n nnn x x x x x x x x x x x x D ΛΛMM MM ΛΛΛ21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值. 构造1+n 阶的范德蒙德行列式,得()nn nn nn n n n n n n n n n n n x x x x x x x x x x x x x x x x x x x x x f ΛΛΛM M O M MΛΛΛ21111211222221222221211111--------=.将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++=Λ,其中,1-n x 的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j in x xx x x x x x x f 121Λ.由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121Λ.故有()()∏≤<≤-+++=ni j j in n x xx x x D 121Λ.。

行列式的计算技巧与方法总结讲解

行列式的计算技巧与方法总结讲解

行列式的计算技巧与方法总结讲解行列式的几种常见计算技巧和方法2.1 定义法适用于任何类型行列式的计算,但当阶数较多、数字较大时,计算量大,有一定的局限性.例1 计算行列式0004003002001000.解析:这是一个四级行列式,在展开式中应该有244=!项,但由于出现很多的零,所以不等于零的项数就大大减少.具体的说,展开式中的项的一般形式是43214321j j j j a a a a .显然,如果41≠j ,那么011=j a ,从而这个项就等于零.因此只须考虑41=j 的项,同理只须考虑1,2,3432===j j j 的这些项,这就是说,行列式中不为零的项只有41322314a a a a ,而()64321=τ,所以此项取正号.故004003002001000=()()241413223144321=-a a a a τ.2.2 利用行列式的性质即把已知行列式通过行列式的性质化为上三角形或下三角形.该方法适用于低阶行列式. 2.2.1 化三角形法上、下三角形行列式的形式及其值分别如下:nn n nn a a a a a a a a a a a a a2211nn333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 例2 计算行列式nn n n b a a a a a b a a a a ++=+21211211n 111D .解析:观察行列式的特点,主对角线下方的元素与第一行元素对应相同,故用第一行的()1-倍加到下面各行便可使主对角线下方的元素全部变为零.即:化为上三角形.解:将该行列式第一行的()1-倍分别加到第2,3…(1n +)行上去,可得121n 11210000D 0n n na a ab b b b b +==.2.2.2 连加法这类行列式的特征是行列式某行(或列)加上其余各行(或列)后,使该行(或列)元素均相等或出现较多零,从而简化行列式的计算.这类计算行列式的方法称为连加法.例3 计算行列式mx x x x m x x x x mx D n n n n ---=212121.解: mxx m x m xx x mxn ni in ni in ni i-----=∑∑∑===212121n Dmx x x m x x x m x n n n n i i --?-=∑=2221111mm x x m x nn i i --??? ??-=∑= 0000121()??? ??--=∑=-m x m n2.2.3 滚动消去法当行列式每两行的值比较接近时,可采用让邻行中的某一行减或者加上另一行的若干倍,这种方法叫滚动消去法.例4 计算行列式()2122123123122121321D n ≥-------=n n n n n n n n nn.解:从最后一行开始每行减去上一行,有1111111111111111321D n ---------=n n 1111120022200021321----=n n 0111100011000011132122+-=-n n n ()()21211-++-=n n n .2.2.4 逐行相加减对于有些行列式,虽然前n 行的和全相同,但却为零.用连加法明显不行,这是我们可以尝试用逐行相加减的方法.例5 计算行列式111110000000000000D 32211n na a a a a a a ----=. 解:将第一列加到第二列,新的第二列加到第三列,以此类推,得:13210000000000000000D 321+----=n na a a a n()()()()()n n n a a a n a a a n 21n 21n 2211111+-=+--=+.2.3 降阶法将高阶行列式化为低阶行列式再求解.2.3.1 按某一行(或列)展开例6 解行列式1221n 1000000000100001D a a a a a xx x x n n n-----=.解:按最后一行展开,得n n n n n a x a x a x a D ++++=---12211 .2.3.2 按拉普拉斯公式展开拉普拉斯定理如下:设在行列式D 中任意选定了()1-n k 1k ≤≤个行.由这k 行元素所组成的一切k 级子式与它们的代数余子式的乘积的和等于行列式D.即n n 2211A M A M A M D +++= ,其中i A 是子式i M 对应的代数余子式.即nn nn nn nn nnB A BC A ?=0, nn nn nnnn nn B A B C A ?=0.例7 解行列式γβββββγββββγλbbaa a a n =D .解:从第三行开始,每行都减去上一行;再从第三列开始,每列都加到第二列,得βγβγγββββγλ---=0000D n b aa a a()()βγβγββββγλ---+-=0000021n b aa aa n ()()βγβγβγλ-+-=000021n ba n ()()[]()21n 2-----+=n ab n βγβλλγ.2.4 升阶法就是把n 阶行列式增加一行一列变成n+1阶行列式,再通过性质化简算出结果,这种计算行列式的方法叫做升阶法或加边法.升阶法的最大特点就是要找每行或每列相同的因子,那么升阶之后,就可以利用行列式的性质把绝大多数元素化为0,这样就达到简化计算的效果.其中,添加行与列的方式一般有五种:首行首列,首行末列,末行首列,末行末列以及一般行列的位置.例8 解行列式D=111110111110111110111110 .解:使行列式D 变成1+n 阶行列式,即111010110110101110011111D=. 再将第一行的()1-倍加到其他各行,得:D=1101001001010001111111--------. 从第二列开始,每列乘以()1-加到第一列,得:00100000100000101111)1n D ------=( ()()1n 11n --=+.2.5数学归纳法有些行列式,可通过计算低阶行列式的值发现其规律,然后提出假设,再利用数学归纳法去证明.对于高阶行列式的证明问题,数学归纳法是常用的方法.例9 计算行列式βββββcos 211cos 200000cos 210001cos 210001cos=n D .解:用数学归纳法证明. 当1=n 时,βcos 1=D . 当2=n 时,ββββ2cos 1cos 2cos 211cos 22=-==D .猜想,βn D n cos =.由上可知,当1=n ,2=n 时,结论成立.假设当k n =时,结论成立.即:βk D k cos =.现证当1+=k n 时,结论也成立.当1+=k n 时,βββββcos 211cos 200000cos 210001cos 210001cos 1=+k D .将1+k D 按最后一行展开,得()βββββcos 20000cos 21001cos 21001cos cos 21D 111k ?-=++++k k()10cos 21001cos 2101cos 11 βββkk ++-+ 1cos 2--=k k D D β.因为βk D k cos =,()()βββββββsin sin cos cos cos 1cos 1k k k k D k +=-=-=-,所以1+k D 1cos 2--=k k D D βββββββsin sin cos cos cos cos 2k k k --= ββββsin sin cos cos k k -= ()β1cos +=k .这就证明了当1+=k n 时也成立,从而由数学归纳法可知,对一切的自然数,结论都成立.即:βn D n cos =.2.6 递推法技巧分析:若n 阶行列式D 满足关系式021=++--n n n cD bD aD .则作特征方程02=++c bx ax .① 若0≠?,则特征方程有两个不等根,则1211--+=n n n Bx Ax D .② 若0=?,则特征方程有重根21x x =,则()11-+=n n x nB AD .在①②中, A ,B 均为待定系数,可令2,1==n n 求出.例10 计算行列式94000005940000000594000005940000059D n =.解:按第一列展开,得21209---=n n n D D D .即020921=+---n n n D D D .作特征方程02092=+-x x .解得5,421==x x .则1154--?+?=n n n B A D .当1=n 时,B A +=9;当2=n 时,B A 5461+=. 解得25,16=-=B A ,所以1145++-=n n n D .3、行列式的几种特殊计算技巧和方法3.1 拆行(列)法3.1.1 概念及计算方法拆行(列)法(或称分裂行列式法),就是将所给的行列式拆成两个或若干个行列式之和,然后再求行列式的值.拆行(列)法有两种情况,一是行列式中有某行(列)是两项之和,可直接利用性质拆项;二是所给行列式中行(列)没有两项之和,这时需保持行列式之值不变,使其化为两项和. 3.1.2 例题解析例11 计算行列式nn n n a a a a a a a a --------=-1110000011000110001D 133221.解:把第一列的元素看成两项的和进行拆列,得nn n n a a a a a a a a --+-+--+-+--=-11010000001100001010001D 133221.1101000001100010000110001000001100011000113322113322nn n nnn a a a a a a a a a a a a a a a -------+-------=--上面第一个行列式的值为1,所以nn n n a a a a a a a ------=-1101000010011D 13321111--=n D a .这个式子在对于任何()2≥n n 都成立,因此有111--=n n D a D()()n n n a a a a a a D a a 2112112211111---+++-==--=()∏∑==-+=ij j ii a 1n111.3.2 构造法3.2.1 概念及计算方法有些行列式通过直接求解比较麻烦,这时可同时构造一个容易求解的行列式,从而求出原行列式的值. 3.2.2 例题解析例12 求行列式n nn nn nn n nnn x x x x x x x x x x x x D21222212222121111---=.解:虽然n D 不是范德蒙德行列式,但可以考虑构造1+n 阶的范德蒙德行列式来间接求出n D 的值.构造1+n 阶的范德蒙德行列式,得()nnnn nn n nn n n n nn n n nx x x x x x x x x x x x x x x x x x x x x f21111211222221222221211111--------=. 将()x f 按第1+n 列展开,得()n n n n n n n n x A x A x A A x f 1,111,1,21,1++-+++++++= ,其中,1-n x的系数为()()n n n n n n D D A -=-=+++11,1.又根据范德蒙德行列式的结果知()()()()()∏≤<≤----=ni j j ix x x x x x x f 121 .由上式可求得1-n x 的系数为()()∏≤<≤-+-ni j j in x xx x x 121 .故有()()∏≤<≤-+++=ni j j in n x xx x x D 121 .3.3 特征值法3.3.1 概念及计算方法设n λλλ ,,21是n 级矩阵A 的全部特征值,则有公式n A λλλ 21=.故只要能求出矩阵A 的全部特征值,那么就可以计算出A 的行列式.3.3.2 例题解析例13 若n λλλ ,,21是n 级矩阵A 的全部特征值,证明:A 可逆当且仅当它的特征值全不为零.证明:因为n A λλλ 21=,则A 可逆()n i i n 2,1000A 21=≠?≠?≠?λλλλ.即A 可逆当且仅当它的特征值全不为零.4、几类特殊的行列式的巧妙计算技巧和方法4.1 三角形行列式4.1.1 概念nn n n n a a a a a a a a a a 333223221131211,nnn n n a a a a a a a a a a321333231222111这样的行列式,形状像个三角形,故称为“三角形”行列式. 4.1.2 计算方法由行列式的定义可知,nn nnn nn a a a a a a a a a a a a a2211333223221131211000000=,nn nnn n n a a a a a a a a a a a a a 2211321333231222111000000=. 4.2 “爪”字型行列式4.2.1 概念形如nn na c a c a cb b b a2211nn n c a c a c a a b b b2211012,n nn b b b a a c a c a c 211122,121122a b b b c a c a c a n n n这样的行列式,形状像个“爪”字,故称它们为“爪”字型行列式. 4.2.2 计算方法利用对角线消去行列式中的“横线”或“竖线”,均可把行列式化成“三角形”行列式.此方法可归纳为:“爪”字对角消竖横. 4.2.3 例题解析例14 计算行列式na a a a 111111321,其中.,2,1,0n i a i =≠分析:这是一个典型的“爪”字型行列式,计算时可将行列式的第.),3,2(n i i =列元素乘以ia 1-后都加到第一列上,原行列式可化为三角形行列式.解:na a a a 111111321nni ia a a a a 00011113221∑=-=-=∑=ni i n aa a a a 21321. 4.3 “么”字型行列式4.3.1 概念形如n n n b b b a a c a c a c 211122,nn na b c a b c a b c a2221110,n n nc a c a c a a b b b 2211012,0111222a cb ac b a c b a nn n ,121122c a c a b a b c a b n nn,n n n a c a c a c b b b a 2211210,0121122a b b b c a c a c a nnn,nnn b a b c b a b a c a c 12211201这样的行列式,形状像个“么”字,因此常称它们为“么”字型行列式. 4.3.2 计算方法利用“么”字的一个撇消去另一个撇,就可以把行列式化为三角形行列式.此方法可以归纳为:“么”字两撇相互消.注意:消第一撇的方向是沿着“么”的方向,从后向前,利用n a 消去n c ,然后再用1-n a 消去1-n c ,依次类推. 4.3.3 例题解析例15 计算1+n 阶行列式nn n b b b D 1111111111----=-+ .解:从最后一行开始后一行加到前一行(即消去第一撇),得nnn ni ini in b b b bb D 11111111-+--+-=-==+∑∑()()()??+--?-=∑=+ni i nn n b 121111()()+--=∑=+ni i n n b 12311.4.4 “两线”型行列式4.4.1 概念形如nnn a b b b a b a0000000012211-这样的行列式叫做“两线型”行列式. 4.4.2 计算方法对于这样的行列式,可通过直接展开法求解. 4.4.3 例题解析例16 求行列式nn n n a b b b a b a00000000D 12211-=. 解:按第一列展开,得()12211122110001000-+-+-+=n n n nn n b b a b b a b b a a D()n n n b b b a a a 211211+-+=.4.5 “三对角”型行列式4.5.1 概念形如ba ab ba ab b a abb a ab b a +++++10000000000100000100000这样的行列式,叫做“三对角型”行列式.。

【原创】行列式计算7种技巧7种手段

【原创】行列式计算7种技巧7种手段

行列式计算7种技巧7种手段编者:Castelu【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212n n n n n n nnnnnna a a a a a a a a a a a a a a a a a =技巧2:互换行列式的任意两行(列),行列式的值将改变正负号111212122221222111211212n n n n n n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面1111121111121221222222122211212n n nn n ni n n n n n nnn n nnb a b a b a a a a b a b a b a a a a bb a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性11121111211112111221212121212n n n t t t t tn tn t t tn t t tn n n nnn n nnn n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n ns s sns t s t sn tnt t tnt t tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积111111111111111111110000m m nm mm m n m mm n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)nnik ik kj kj k k D a A i n a A j n ======∑∑二.7种手段:【手段】所谓行列式计算的手段,即在计算行列式时,观察已给出的原始行列式或进行化简后的行列式,只要它们符合已知的几种行列式模型,就可以直接计算出这些行列式 手段1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---手段2:对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学软件)定义:1212121112121222()1212(1)n n nn n p p p p p np p p p n n nna a a a a a a a a a a a τ=-∑运用数学软件Matlab 按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A =[ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans =a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b*l*o+i*e*c*p-i*e*d*o-e*n*c *l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p+i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g手段3:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式11121222100n nn ii i nna a a a a a a ==∏,11212211200nii i n n nna a a a a a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零手段4:若行列式中有两行(列)对应元素相等,则此行列式的值等于零0a a e i b b f j c c g k ddhl =手段5:若行列式中有一行(列)的元素全为零,则此行列式的值为零00000a e i b f j c g k dhl=手段6:若行列式中有两行(列)元素成比例,则此行列式的值等于零0a ka e i b kb f j c kc g k dkdhl =手段7:范德蒙德(Vandermonde)行列式1222212111112111()n n i j n i j n n n nx x x x x x x x x x x ≥>≥---=-∏三.跟踪训练【解题思路】为了使读者能够巩固前文叙述的7种技巧和7种手段,本人附上一些行列式的习题以供参考.解题时,一般先观察题目所给出的原始行列式,若原始行列式能够用7种手段的其中一种进行计算,则可直接得出答案,否则,一般先利用7种技巧对原始行列式进行化简,使之转化成能够用7种手段的其中一种进行计算的行列式,再得出答案.读者在利用7种技巧时,要注意技巧之间的搭配使用计算下列行列式的值: 习题1:120114318--- 解答:1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--[手段1]习题2:0000000000b f d a ce解答:123412341234()12341234123433112432400000(1)0000004,3,1,4,2,()(3142)3,00000(1)00000p p p p p p p p p p p p b f d a a a a a cep p p p p p p p b f d a a a a abcda ceτττ=-=======-=-∑观察行列式中元素的位置及由级排列中各数不能相等知因此[手段2]习题3:12345678910111213141516解答:21431234113156785171091011129111113141516131151c c c c -=-[技巧5,手段4]习题4:3333333333333333x x x x ---+---+--解答:41221314142333333333333333333333333333331333133313330013330013330133300000ii x x x x x x c c x x x x x x x r r x x x x r r x x x x r r xx x xr r x x x xx=-----+--+-+----+----------+--=-----------↔-=--∑[技巧2,技巧3,技巧5,手段3]习题5:11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a ba b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏[技巧7,手段1,手段6]习题6:444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a a a a a a a a a a a ---------------- 解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)a a a a a D a a a a a a a a a a a a a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a -------==[技巧2,手段7]习题7:12211000010000000001nn n x x x x a a a a x a -----+解答:111121232212112112121,1000100(1)00011,,,,,,n n n n n n n n n n n n n n n n n n n n nD x D xD a x x D xD a D xD a D xD a D xD a D x a x x x D x a x a x a x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:[技巧7,手段3]习题8:()aba b c dcd其余未写出元素均为零:解答:22(22)2122(1)2(1)2221,23,,2,221,23,,2,000000(1)0()()()n n nn nn n D n n n n n n a b c d abDa b cdcdD Dad bc Dad bc D ad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得[技巧2,技巧6]。

行列式的计算方法

行列式的计算方法

专题讲座五行列式的计算方法1.递推法例1求行列式的值:(1)的构造是:主对角线元全为;主对角线上方第一条次对角线的元全为,下方第一条次对角线的元全为1,其余元全为0;即为三对角线型。

又右下角的(n)表示行列式为n阶。

解把类似于,但为k阶的三对角线型行列式记为。

把(1)的行列式按第一列展开,有两项,一项是另一项是上面的行列式再按第一行展开,得乘一个n– 2 阶行列式,这个n– 2 阶行列式和原行列式的构造相同,于是有递推关系:(2)移项,提取公因子β:类似地:(递推计算)直接计算若;否则,除以后移项:再一次用递推计算:∴,当β≠α(3)当β = α,从从而。

由(3)式,若。

∴注递推式(2)通常称为常系数齐次二阶线性差分方程. 注1仿照例1的讨论,三对角线型的n阶行列式(3)和三对角线型行列式(4)有相同的递推关系式(5)(6)注意两个序列和的起始值相同,递推关系式(5)和(6)的构造也相同,故必有由(4)式,的每一行都能提出一个因子a,故等于乘一个n阶行列式,这一个行列式就是例1的。

前面算出,故例2 计算n阶范德蒙行列式行列式解:即n阶范德蒙行列式等于这n个数的所有可能的差的乘积2.拆元法例3:计算行列式解①×(x + a)②×(x – a)3.加边法例4计算行列式分析:这个行列式的特点是除对角线外,各列元素分别相同.根据这一特点,可采用加边法. 解4.数学归结法例5计算行列式解:猜测:证明(1)n = 1, 2, 3 时,命题成立。

假设n≤k– 1 时命题成立,考察n=k的情形:故命题对一切自然数n成立。

5.消去法求三对角线型行列式的值例6求n阶三对角线型行列式的值:(1)的构造是:主对角线元全为2,主对角线上方第一条次对角线与下方第一条次对角线的元全为1,其余的元全为0。

解用消去法,把中主对角线下方第一条次对角线的元1全部消成0:首先从第二行减去第一行的倍,于是第二行变为其次从第三行减去第二行(指新的第二行,以下同)的倍,则第三行变为再从第四行减去第三行的倍,则第四行变为类似地做下去,直到第n行减去第n– 1行的倍,则第n行变为最后所得的行列式为(2)上面的行列式是三角型行列式,它的主对角线元顺次为93)又主对角线下方的元全为0。

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结

行列式的计算方法和技巧大总结行列式是线性代数中的一个重要概念,用于表示线性方程组的性质和解的情况。

在计算行列式时,有许多方法和技巧可以帮助我们简化计算过程。

以下是行列式计算方法和技巧的大总结。

1. 二阶矩阵行列式:对于一个2x2的矩阵A,行列式的计算方法是ad-bc,其中a、b、c和d分别为矩阵A的元素。

2. 三阶矩阵行列式:对于一个3x3的矩阵A,行列式的计算方法是a(ei-fh) - b(di-fg) + c(dh-eg),其中a、b、c、d、e、f、g和h分别为矩阵A的元素。

3.行变换法:行变换是一种常用的简化计算行列式的方法。

行变换可以通过交换行、倍乘行和行加减法三种操作来实现。

当进行行变换时,行列式的值保持不变。

4.行列式的性质:行列式有以下性质:a)交换行,行列式的值相反;b)两行交换位置,行列式的值相反;c)同行相等,行列式的值为0;d)其中一行乘以一个数k,行列式的值变为原来的k倍;e)两行相加(减),行列式的值保持不变。

5.定义展开法:行列式的定义展开法可以通过选取任意一行或一列对行列式进行展开。

展开定理是一种递归的方法,它将一个复杂的行列式分解成若干个简单的行列式,从而简化计算过程。

6.三角矩阵行列式:对于一个上(下)三角矩阵,它的行列式等于对角线上的元素相乘。

这是因为在上(下)三角矩阵中,除了对角线上的元素外,其他元素都为0,因此它们的乘积为0。

7.克拉默法则:克拉默法则适用于解线性方程组时的行列式计算。

克拉默法则使用行列式来计算方程组的解。

具体来说,对于n个方程n个未知数的线性方程组,如果系数矩阵的行列式不为零,那么该方程组有唯一解,可以通过求解该方程组的克拉默行列式来得到方程组的解。

8.外积法则:在向量代数中,我们可以使用外积法则计算向量的叉乘。

对于两个三维向量a和b,它们的叉乘可以表示为a×b,它的模就是行列式的值。

具体计算方法是:ijka1a2a3b1b2b3其中,i、j和k是单位向量,a1、a2、a3和b1、b2、b3分别为向量a和向量b的坐标。

(完整版)行列式的计算方法(课堂讲解版)

(完整版)行列式的计算方法(课堂讲解版)

计算 n 阶行列式的若干方法举例n 阶行列式的计算方法好多,除非零元素较少时可利用定义计算(①依据某一列或某一行睁开②完整睁开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特色,灵巧选用方法,值得注意的是,同一个行列式,有时会有不一样的求解方法。

下边介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算0L0100L200例计算行列式 D n M M M Mn 1L0000L00n解D n中不为零的项用一般形式表示为a1n 1a2n 2 L a n 11a nn n!.该项列标摆列的逆序数(n 1)(n2)t(n-1 n-2 1n)等于,2(n 1)( n 2)故 D n( 1)2n!. 2.利用行列式的性质计算例:一个 n 阶行列式D n a ij的元素满足a ij aji,i , j1,2,L , n, 则称D n为反对称行列式,证明:奇数阶反对称行列式为零 .证明:由 a ij aji 知a ii a ii,即 a ii0, i1,2,L ,na12a13La1na120a23La2n故行列式 D n可表示为D n a13a230L a3n,由行列式的性质A A ,L L L L La1 na2na3n L00a12a13La1n0a12a13La1na120a23La2 na120a23L a2n( 1)n D nD n a13a230L a3 n( 1)n a13a230L a3nL L L L L L L L L La1n a2 na3 n L0a1 na2na3 n L0当 n 为奇数时,得 D=-D ,因此得 D= 0.n n n13.化为三角形行列式若能把一个行列式经过合适变换化为三角形, 其结果为行列式主对角线上元素的乘积。

所以化三角形是行列式计算中的一个重要方法。

化三角形法是将原行列式化为上(下)三角形行列式或对角形行列式计算的一种方法。

这是计算行列式的基本方法重要方法之一。

行列式的计算方法

行列式的计算方法

(二)箭形行列式 a0 b1 c1 a1 Dn +1 = c2 0 " " cn 0
b2 " bn 0 " 0 a2 " 0 , ai ≠ 0, i = 1, 2,3" n. " " " 0 " an
解:把所有的第 i + 1 列 (i = 1, 2" n) 的 −
ci 倍加到第 1 列,得: ai
行列式计算方法
1. 利用行列式的定义直接计算:适用于行列式中零比较多的情形. 2. 化行列式为三角形行列式——初等变换法 1) 保留某行 (列) 不动, 将其它的行 (列) 分别乘上常数加到这一行 (列) 上。 2) 将某行(列)的倍数分别加到其它各行(列) 3) 逐行(列)相加 4) 加边法——在原行列式的边上增加一行一列,使行列式级数增加 1, 但值不变。 例1 计算行列式
n
0 # bn a1 " an b1 " # #
n a 0 = b1b2 " bn (1 + ∑ i ). i =1 bi #
1+ ∑
i =1
ai bi
c1 +
ci +1 (i = 1, 2," , n + 1) bi
0 # 0
0 " bn
2) 1 0 a1 0 1 a1 a1 + a2 " a1 + an −1 −a1 ri − r1 (i = 2,3," , n + 1) −1 a2 0 " a2 + an # # # " # −1 an 0 n +1 an + a2 "

关于行列式的计算方法

关于行列式的计算方法

行列式的计算方法综述目录1.定义法(线性代数释疑解难参考)2.化三角形法(线性代数释疑解难参考)3.逐行(列)相减法(线性代数释疑解难参考)4.升降法(加边法)(线性代数释疑解难参考)5.利用范德蒙德行列式(线性代数释疑解难参考)6.递推法(线性代数释疑解难参考)7.数学归纳法(线性代数释疑解难参考)8.拆项法(课外辅导书上参考)9.换元方法(课外辅导书上参考)10.拆因法(课外辅导书上参考)线性代数主要内容就是求解多元线性方程组,行列式的计算其中起重要作用。

下面由我介绍几种常见的计算行列式的方法:1.定义法由定义看出,n级行列式有!n个项。

n较大时,!n是一个很大的数字。

直接用定义来计算行列式是几乎不可能的事。

但在n 级行列式中的等于零的项的个数较多时,它展开式中的不等于零的项就会少一些,这时利用行列式的定义来计算行列式较方便。

例1.算上三角行列式1112122200n nnna a a a a a解:展开式的一般项为()()1212121n nj j j j j nj a a a τ-11121222112200n n nn nna a a a a a a a a =同样,可以计算下三角行列式的值。

112122112212000nnn n nna a a a a a a a a =2.化三角形法画三角形法是先利用行列式的性质将原行列式作某种保值变形,化为上(下)三角形行列式,再利用上(下)三角形行列式的特点(主对角线上元素的乘积)求出值。

例2.计算n a b b bb ab b D b b ab b b ba =解:各行加到第一行中()()()111n a n b a n b a n bb a b D bba+-+-+-=()11111b a bba nb b b ab b b ba=+-⎡⎤⎣⎦ 把第二列到第n 列都分别加上第一列的()1-倍,有()()()110000110000n b a b a n b a n b a b bab bab--=⎡+-⎤=⎡+-⎤--⎣⎦⎣⎦-3.逐行(列)相减法有这样一类行列式,每相邻两行(列)之间有许多元素相同,且这些相同元素都集中在某个角上。

行列式计算方法技巧

行列式计算方法技巧

行列式计算方法技巧行列式是线性代数中的一个重要概念,它在矩阵理论、向量空间和线性变换等方面具有广泛的应用。

计算行列式的方法有很多,下面将介绍几种常用的行列式计算方法技巧。

1.展开法:行列式的展开法是计算行列式的基本方法。

对于一个n阶的行列式,可以选择第一行展开,也可以选择第一列展开。

展开时可以用代数余子式或代数余子式的乘积来表示。

例如,一个3阶行列式的展开公式如下:a11a12a1a21a22a2a31a32a3det(A) = a11·A11 + a12·A12 + a13·A13其中,A11、A12、A13分别是a11、a12、a13的代数余子式。

2.三角行列式法:当行列式矩阵满足特定的条件时,可以利用三角行列式法来简化行列式的计算。

例如,如果一个行列式中的行(列)元素与上一行(列)对应元素的倍数相等,那么这个行列式的值为0。

又如,对于上三角矩阵来说,它的行列式等于对角线上的元素乘积。

3.列变换法:列变换法是一种简化行列式计算的技巧。

对于一个n阶行列式,可以通过进行列变换来简化计算过程。

根据列变换法,可以对行列式进行以下操作:(1)交换两列的位置;(2)用一个非零数乘以列的所有元素;(3)将列的倍数加到另一列上。

利用列变换来简化行列式计算过程,可以减少计算量,提高效率。

4.克莱姆法则:克莱姆法则是一种行列式计算方法,适用于求解线性方程组的解。

对于一个n阶方程组Ax=b,如果方程组的系数矩阵A的行列式值不等于0,那么可以利用克莱姆法则求解方程组的解。

克莱姆法则的基本思想是,对于方程组Ax = b,将矩阵A的第i列换成矩阵b,得到新的矩阵Ai。

通过计算新矩阵Ai的行列式值det(Ai)与矩阵A的行列式值det(A)的比值,可以求得方程组的解。

5.全排列法:全排列法是一种直观的行列式计算方法,适用于小阶行列式。

对于一个2阶行列式和3阶行列式来说,可以通过全排列法来计算行列式的值。

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结

行列式的计算技巧与方法总结1、记住性质,这是计算行列式的前提 将行列式D 的行与列互换后得到的行列式,称为D 的转置行列式,记为TD 或'D ,即若,212222111211nnn n n n a a a a a a a a a D =则nnnn n n T a a a a a a a a a D212221212111=.性质 1 行列式与它的转置行列式相等, 即.TD D =注 由性质1知道,行列式中的行与列具有相同的地位,行列式的行具有的性质,它的列也同样具有.性质 2 交换行列式的两行(列),行列式变号.推论 若行列式中有两行(列)的对应元素相同,则此行列式为零.性质3 用数k 乘行列式的某一行(列), 等于用数k 乘此行列式, 即.2121112112121112111kD a a a a a a a a a k a a a ka ka ka a a a D nnn n in i i n nnn n in i i n ===第i 行(列)乘以k ,记为k i⨯γ(或k C i⨯).推论 1 行列式的某一行(列)中所有元素的公因子可以提到行列式符号的外面.推论2 行列式中若有两行(列)元素成比例,则此行列式为零.性质 4 若行列式的某一行(列)的元素都是两数之和, 例如,nnn n inin i i i i n a a a c b c b c b a a a D21221111211+++=.则21212111211212111211D D a a a c c c a a a a a a b b b a a a D nnn n in i i n nn n n in i i n +=+=.性质 5 将行列式的某一行(列)的所有元素都乘以数k 后加到另一行(列)对应位置的元素上, 行列式不变.注: 以数k 乘第j 行加到第i 行上,记作jikr r +;以数k 乘第j 列加到第i 列上,记作jikc c +.2、利用“三角化”计算行列式计算行列式时,常用行列式的性质,把它化为三角形行列式来计算. 例如化为上三角形行列式的步骤是:如果第一列第一个元素为0, 先将第一行与其它行交换使得第一列第一个元素不为0; 然后把第一行分别乘以适当的数加到其它各行,使得第一列除第一个元素外其余元素全为0;再用同样的方法处理除去第一行和第一列后余下的低一阶行列式,如此继续下去,直至使它成为上三角形行列式,这时主对角线上元素的乘积就是所求行列式的值.例2若210101321-=D , 则.213102011D DT=-=例3(1)01212111001211121---=--(第一、二行互换). (2)12110211012110121---=--(第二、三列互换)(3)0725011011=(第一、二两行相等) (4)0337224112=---(第二、三列相等)例4(1)02222510211=--因为第三行是第一行的2倍.(2)075414153820141=---因为第一列与第二列成比例,即第二列是第一列的4倍.例5若121013201--=D , 则D 2121013201)2(121013402-=---=----又 D 412101320141240112204=--=--. 例6 设,1333231232221131211=a a a a a aa a a 求.53531026333231232221131211a a a a a aa a a ----解 利用行列式性质,有33323123222113121153531026a a a a a a a a a ----=3332312322211312115353522a a a a a a a a a ---5)3(2⋅-⋅-=333231232221131211a a a a a a a a a15)3(2⋅⋅-⋅-=.30=例7(1).110111311103111132+=++=(2)()1)2(1272305)2(11121272305211--+--++=----+122720521112730511---+--=.例8 因为,12310403212213==++--+而15)40()29(02213123=+++=-+-. 因此022131233212213-+-≠++--+.注: 一般来说下式是不成立的22211211222112112222212112121111b b b b a a a a b a b a b a b a +≠++++.例9(1)13201013113214113112----r r ,上式表示第一行乘以-1后加第二行上去, 其值不变.(2)33204103113214113113c c +--,上式表示第一列乘以1后加到第三列上去, 其值不变.例10计算行列式2150321263-=D .解 先将第一行的公因子3提出来:,21503242132150321263-=-再计算.162354100430201541104702215421087042127189087042132150324213=⨯====----=-=D例11 计算.3351110243152113------=D解 21c c D→3315112043512131-------14125r r r r +-7216011264802131------32r r ↔72160648011202131----- 242384r r r r-+ 15100010811202131----3445r r +.4025001080011202131=---例12计算.3111131111311113=D解 注意到行列式的各列4个数之和都是6.故把第2,3,4行同时加到第1行,可提出公因子6,再由各行减去第一行化为上三角形行列式.D4321r r r r +++311113111131111163111131111316666= 141312r r r rr r --- .4820000200002011116=注:仿照上述方法可得到更一般的结果:.)]()1([1---+=n b a b n a abbbb b a b b b b a例13 计算.1111000000332211a a a a a a ---解 根据行列式的特点,可将第1列加至第2列,然后将第2列加至第3列,再将第3列加至第4列,目的是使4D 中的零元素增多.4D12c c +1121000000033221a a a a a --23c c +1321000000003321a a a a -34c c +.44321000000000321321a a a a a a =例14 计算.3610363234232dc b a c b a b a a dc b a cb a b a ad c b a cb a ba ad c b aD ++++++++++++++++++=解 从第4行开始,后一行减前一行:Dr r r r r r ---33412.363023200c b a b a a c b a b a a cb a b a a dc b a +++++++++3423r r r r --.20200ba aab a a a cb a b a a dc b a +++++34r r -..0020004a ab a a cb a b a a dcba =++++三、 行列式按行(列)展开(降阶法)1、行列式按一行(列)展开定义1 在n 阶行列式D 中,去掉元素ija 所在的第i 行和第j 列后,余下的1-n 阶行列式,称为D 中元素ija 的余子式, 记为ijM , 再记ijj i ij M A +-=)1(称ijA 为元素ija 的代数余子式.引理(常用) 一个n 阶行列式D , 若其中第i 行所有元素除ija 外都为零,则该行列式等于ija与它的代数余子式的乘积,即ijij A a D =定理 1 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和, 即),,,2,1(2211n i A a A a A a D inin i i i i =+++=或).,,2,1(2211n j A a A a A a D njnj j j j j =+++=推论 行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零, 即,,02211j i A a A a A a jninj i j i ≠=+++或.,02211j i A a A a A a nj ni j i j i ≠=+++2、用降价法计算行列式(常用) 直接应用按行(列)展开法则计算行列式, 运算量较大, 尤其是高阶行列式. 因此, 计算行列式时,一般可先用行列式的性质将行列式中某一行(列)化为仅含有一个非零元素, 再按此行(列)展开,化为低一阶的行列式, 如此继续下去直到化为三阶或二阶行列式.3、拉普拉斯定理(一般少用)定义 2 在n 阶行列式D 中,任意选定k 行k 列)1(n k ≤≤, 位于这些行和列交叉处的2k 个元素,按原来顺序构成一个k 阶行列式M , 称为D 的一个k 阶子式,划去这k 行k 列, 余下的元素按原来的顺序构成k n -阶行列式,在其前面冠以符号kk j j i i +++++- 11)1(,称为M 的代数余子式,其中ki i ,,1为k 阶子式M 在D 中的行标,kj j j ,,,21为M 在D 中的列标.注:行列式D 的k 阶子式与其代数余子式之间有类似行列式按行(列)展开的性质.定理 2 (拉普拉斯定理) 在n 阶行列式D 中, 任意取定k 行(列))11(-≤≤n k ,由这k 行(列)组成的所有k阶子式与它们的代数余子式的乘积之和等于行列式D .例15求下列行列式的值:(1)214121312-- (2)120250723解 (1) 213142131)1(21122214121312-⨯+-⨯--⨯=--.272856)61(4)32()14(2-=--=--+--+-=(2).3)45(312253120250723=-=⨯=例16计算行列式.5021011321014321---=D解521011321014321---=D 313422r r r r ++520711321014107----109211206527211417)1()1(2123223-=---⨯-=-++r r r r.241861926)1(122-=--=--⨯=+例17计算行列式.532004140013202527102135----=D解 53204140132021352)1(053200414001320252710213552-----=----=+D53241413252---⋅-=1213)2(r r r r -++6627013210---.1080)1242(206627)2(10-=--=--⋅-=例18求证21)1(11213112211132114321-+-=---n n x x xxx x x n xxn x n n.证 D3221143r r r r r r r r nn -----1111111111000011000111001111011110xxxx x x x ----1100011100111101111111111)1(1x x x x n -----=+3221143r r r r r r r r nn ----- .)1(110000000100001000010000)1(211-++-=-----n n n x xxx x x xxx例19设,3142313*********------=D D 中元素ija 的余子式和代数余子式依次记作ijM 和ijA ,求14131211A A A A +++及41312111M M M M +++.解 注意到14131211A A A A+++等于用1,1,1,1代替D 的第1行所得的行列式,即314231315011111114131211-----=+++A A A A3413r r r r +-11202250111111---11222511---=12c c +.42052001202511=-=--又按定义知,31413131501112514131211141312111-------=-+-=+++A A A A M M M M34r r +311501121)1(0010313150111251---=----312r r -.0311501501=-----例20 用拉普拉斯定理求行列式 2100321003210032 的值.解 按第一行和第二行展开2100321003210032=2132)1(21322121+++-⨯2031)1(31023121+++-⨯+2030)1(32033221+++-⨯+0121+-=.11-=。

行列式的计算方法总结

行列式的计算方法总结
6. 利用范德蒙德行列式. 计算行列式: 解: 令: ,这是一个级范德蒙德行列式. 一方面,由范德蒙德行列式得.可看做是关于的一个次多项式. 另一方面,将按最后一列展开,可得一个关于的多项式,其中的系数与所求 行列式的关系为. 由来计算的系数得:,
故有 其ቤተ መጻሕፍቲ ባይዱ的例子: ……每一行提公因子,
7.利用数学归纳法证明行列式.(对行列式的级数归纳) 证明当时, 证明时,将按第一行(或第一列)展开得,利用归纳假设可得. 8. 利用递推公式. 例子: 计算行列式 解: 按第一行展开得: ,将此式化为: (1) 或 (2) 利用递推公式(1)得: ,即. (3) 利用递推公式(2)得: ,即. (4) 由(3)(4) 解得: 其它的例子 ,按第一行展开可得 ,此时令则, 变形为,此为递推公式.利用刚才的例子可求得结果. 这里即是方程的两个根. 9. 分拆法.将行列式的其中一行或者一列拆成两个数的和,将行列式分解 成两个容易求的行列式的和. 例子: : 除第一行外,其余各行加上第一行的倍,所得行列式按第一列展开,按第 一列展开. , 故, 由的对称性质,亦可得,这两个式子中削去,可得结论, .
行列式的计算方法总结:
1. 利用行列式性质把行列式化为上、下三角形行列式. 2. 行列式按一行(一列)展开,或按多行(多列)展开(Laplace定理). 几个特别的行列式: ,,其中分别是阶的方阵. 例子: , 利用Laplace定理,按第行展开,除级子式外其余由第行所得的级子式均为 零. 故,此为递推公式,应用可得 . 3. 箭头形行列式或者可以化为箭头形的行列式. 例: -----()
注: (1) 同一个行列式,可有多种计算方法.要利用行列式自身元素的特点, 选择合适的计算方法.
(2) 以上的各种方法并不是互相独立的,计算一个行列式时,有时需要综 合运用以上方法,

行列式计算方法14725

行列式计算方法14725

行列式计算方法1、 定义法:适用于0比较多的行列式.2、 按行(列)展开 ─ 降阶.适用于某行(列)0较多的行列式.3、 利用7条基本性质,化为三角形行列式4、 其他方法1)、析因子法例:计算221123122323152319x D x -=-解:由行列式定义知D 为x 的4次多项式.又,当1x =±时,1,2行相同,有0D =, 1x ∴=±为D 的根.当2x =±时,3,4行相同,有0D =, 2x ∴=±为D 的根.故D 有4个一次因式,1,1,2,2x x x x +-+-设 (1)(1)(2)(2),D a x x x x =+-+-令0x =,则112312231223152319D ==-,即:1(1)2(2)12.a ⋅⋅-⋅⋅-=- 3.a ∴=-3(1)(1)(2)(2)D x x x x ∴=-+-+-2)、 ①、 可转为箭形行列式的行列式:箭形行列式:012111220000,0,1,2,3.0n n i nna b b b c a D c a a i n c a +=≠=箭形行列式解法:把所有的第1i +列(1,2)i n =的iic a -倍加到第1列,得: 11201()ni in n i ib c D a a a a a +==-∑某些行列式(关于对角线对称的行列式)可转为箭形行列式计算,例如12111111)1111na a a a +++ 12)na x x x a xb x xxa方法:第2至第n 行分别减去第1行,转为箭形行列式,自己练习. ②、 么型的行列式:112232111231,0, 1,2,3.n i n n n n na b a ba D a i nb a bc c c c a ----=≠=解法:第1列的11b a -加于第2列;第2列的22b a -加于第3列;……;第1n -列的11n n b a ---加于第n 列,即可变为三角形行列式。

计算行列式常用的7种方法

计算行列式常用的7种方法

计算行列式常用的7种方法行列式是线性代数中的重要概念,用于描述线性方程组的性质和解的情况。

在计算行列式时,有多种方法可供选择,下面将介绍行列式的常用计算方法。

1.代数余子式展开法代数余子式展开法是计算行列式的最常用方法之一、对于n阶行列式,可以选择其中的任意一行或一列展开。

选择一行展开时,可以使用代数余子式,即将每一元素乘以其代数余子式后再求和。

例如,对于3阶行列式\(\begin{bmatrix}a & b & c\\ d & e & f\\ g & h &i\end{bmatrix}\)选择第一行展开,计算行列式的值为\(aA_{11} - bA_{12} +cA_{13}\),其中\(A_{ij}\)表示第i行第j列元素的代数余子式。

类似地,可以选择列展开,使用代数余子式计算行列式的值。

2.初等变换法初等变换法是计算行列式的另一种常用方法。

通过一系列的行变换或列变换,将行列式转化为三角形矩阵或对角矩阵。

对于三角形矩阵,行列式的值即为对角线上元素的乘积;对于对角矩阵,行列式的值即为对角线上元素的乘积。

初等变换包括行交换、行缩放和行加减,可以有效地简化行列式的计算过程。

3.拉普拉斯展开法拉普拉斯展开法是计算行列式的一种常用方法,适用于任意阶的行列式。

选择其中的一行或一列展开,将行列式拆解为一系列子行列式的乘积。

每个子行列式的阶数比原行列式小1,可以继续进行递归的计算。

拉普拉斯展开法可以使用代数余子式进行计算,也可以利用构造矩阵的方式计算。

4.三对角矩阵法三对角矩阵法适用于计算特殊形式的行列式,即矩阵中除了对角线和相邻对角线上的元素外,其他元素都为0的情况。

计算三对角矩阵的行列式可以通过逐步化简为二阶或一阶行列式进行计算。

这种方法可以加速计算过程,特别适用于较大阶数的行列式。

5.特殊行列式法对于特殊形式的行列式,例如范德蒙行列式、希尔伯特行列式等,可以利用其特殊性质进行计算。

各种行列式的计算方法

各种行列式的计算方法

各种行列式的计算方法宝子们,今天咱们来唠唠行列式的计算方法呀。

一、定义法。

这就像是最基础的招式啦。

按照行列式的定义,把所有可能的排列组合算出来。

不过呢,这个方法可有点费时间,就像你要一个一个数小珠子一样,要是行列式的阶数大一点,那可就累得够呛。

比如说二阶行列式,按照定义算起来还比较轻松,就是主对角线元素相乘减去副对角线元素相乘。

但是三阶或者更高阶的,那可就复杂得多喽。

二、三角形行列式法。

这个方法可就比较巧妙啦。

我们想办法把行列式通过行变换或者列变换变成上三角或者下三角行列式。

为啥呢?因为三角形行列式的值就等于主对角线元素的乘积呀,多方便。

就像把一堆乱乱的东西整理得整整齐齐的,然后一下子就能算出结果。

比如说给你一个行列式,你就观察一下,哪行或者哪列加上或者减去其他行或者列的倍数,能让它慢慢变成三角形的样子。

三、按行(列)展开法。

这个方法就像是拆积木一样。

你可以按照行列式的某一行或者某一列展开。

比如说按第一行展开,那这个行列式的值就等于这一行的每个元素乘以它对应的代数余子式然后相加。

代数余子式呢,就像是这个元素的小跟班,有自己的计算方法。

这个方法在行列式里有很多零元素的时候特别好用,就像走捷径一样,直接找那些简单的部分来计算。

四、行列式的性质法。

行列式有好多有趣的性质呢。

比如说两行(列)交换,行列式的值就变成原来的相反数;某一行(列)乘以一个数加到另一行(列),行列式的值不变。

我们就可以利用这些性质,把行列式变得简单一些再去计算。

就像给行列式做个小整容,让它变得更可爱(好计算)。

宝子们,行列式的计算方法就这么些啦,多做做练习,就会发现其实也没有那么难啦。

加油哦!。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式计算7种技巧7种手段编者:Castelu【编写说明】行列式是线性代数的一个重要研究对象,是线性代数中的一个最基本,最常用的工具,记为det(A).本质上,行列式描述的是在n 维空间中,一个线性变换所形成的平行多面体的体积,它被广泛应用于解线性方程组,矩阵运算,计算微积分等.鉴于行列式在数学各领域的重要性,其计算的重要性也不言而喻,因此,本人结合自己的学习心得,将几种常见的行列式计算技巧和手段归纳于此,供已具有行列式学习基础的读者阅读一.7种技巧: 【技巧】所谓行列式计算的技巧,即在计算行列式时,对已给出的原始行列式进行化简,使之转化成能够直接计算的行列式,由此可知,运用技巧只能化简行列式,而不能直接计算出行列式 技巧1:行列式与它的转置行列式的值相等,即D=D T111211121121222122221212nn n n n n nnnn nna a a a a a a a a a a a a a a a a a =技巧2:互换行列式的任意两行(列),行列式的值将改变正负号111212122221222111211212nn n nn n nnn n nna a a a a a a a a a a a a a a a a a =-技巧3:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面1111121111121221222222122211212nnnn n ni n n n n n nnn n nnb a b a b a a a a b a b a b a a a a bb a b a b a a a a ==∏技巧4:行列式具有分行(列)相加性11121111211112111221212121212n nnt t t t tn tn t t tn t t tn n n nnn n nn n n nna a a a a a a a abc b c b c b b b c c c a a a a a a a a a +++=+技巧5:将行列式的某一行(列)的各元素乘以同一数k 后加到另一行(列)对应的元素上,行列式的值不变111211112112112212121212n n s s sn s t s t sn tnt t tn t t tn n n nnn n nna a a a a a a a a a ka a ka a ka a a a a a a a a a a a a +++=技巧6:分块行列式的值等于其主对角线上两个子块行列式的值的乘积11111111111111111111000m m n m mm m n m mm n nnn nmn nna a a ab b a ac c b b a a b b c c b b =技巧7:[拉普拉斯按一行(列)展开定理] 行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和11(1,2,,)(1,2,,)n nik ik kj kj k k D a A i n a A j n ======∑∑二.7种手段:【手段】所谓行列式计算的手段,即在计算行列式时,观察已给出的原始行列式或进行化简后的行列式,只要它们符合已知的几种行列式模型,就可以直接计算出这些行列式 手段1:对于2阶行列式和3阶行列式,可以直接使用对角线法则进行计算1112112212212122a a a a a a a a =-,111213212223112233122331132132112332122133132231313233a a a a a a a a a a a a a a a a a a a a a a a a a a a =++---手段2:对于4阶以上的行列式,若行列式中有很多元素为零,则根据定义进行计算较为方便,否则较为复杂(常见于计算机程序和数学软件)定义:1212121112121222()1212(1)n n nnn p p p p p np p p p n n nna a a a a a a a a a a a τ=-∑运用数学软件Matlab 按定义计算4阶行列式: >> syms a b c d e f g h i j k l m n o p >> A=[a,b,c,d;e,f,g,h;i,j,k,l;m,n,o,p] A =[ a, b, c, d] [ e, f, g, h] [ i, j, k, l] [ m, n, o, p] >> det(A) ans =a*f*k*p-a*f*l*o-i*a*g*p+i*a*h*o+a*n*g*l-a*n*h*k-e*b*k*p+e*b*l*o+i*e*c*p-i*e*d*o-e*n*c *l+e*n*d*k+i*b*g*p-i*b*h*o-i*f*c*p+i*f*d*o+i*n*c*h-i*n*d*g-m*b*g*l+m*b*h*k+m*f*c*l-m*f*d*k-i*m*c*h+i*m*d*g手段3:上三角行列式,下三角行列式,主对角线行列式,副对角线行列式11121222100n nn ii i nna a a a a a a ==∏ ,112122112000nii i n n nna a a a a a a ==∏,1212()n nλλλλλλ=其余未写出元素均为零,1(1)2212(1)()n n n nλλλλλλ-=-其余未写出元素均为零手段4:若行列式中有两行(列)对应元素相等,则此行列式的值等于零0a a e i b b f jc c g k ddhl=手段5:若行列式中有一行(列)的元素全为零,则此行列式的值为零00000a e i b f jc g kd h l=手段6:若行列式中有两行(列)元素成比例,则此行列式的值等于零0a ka e i b kb f jc kc g kd kd h l=手段7:范德蒙德(Vandermonde)行列式1222212111112111()nn i j n i j n n n nx x x x x x x x x x x ≥>≥---=-∏三.跟踪训练【解题思路】为了使读者能够巩固前文叙述的7种技巧和7种手段,本人附上一些行列式的习题以供参考.解题时,一般先观察题目所给出的原始行列式,若原始行列式能够用7种手段的其中一种进行计算,则可直接得出答案,否则,一般先利用7种技巧对原始行列式进行化简,使之转化成能够用7种手段的其中一种进行计算的行列式,再得出答案.读者在利用7种技巧时,要注意技巧之间的搭配使用计算下列行列式的值: 习题1:120114318--- 解答:1201141182(4)30(1)(1)0132(1)81(4)(1)4318--=⨯⨯+⨯-⨯+⨯-⨯--⨯⨯-⨯-⨯-⨯-⨯-=--[手段1]习题2:0000000000b f d a c e解答:123412341234()12341234123433112432400000(1)0000004,3,1,4,2,()(3142)3,00000(1)00000p p p p p p p p p p p p b f d a a a a a cep p p p p p p p b f d a a a a abcda ceτττ=-=======-=-∑观察行列式中元素的位置及由级排列中各数不能相等知因此[手段2]习题3:12345678910111213141516解答:21431234113156785171091011129111113141516131151c c c c -=-[技巧5,手段4]习题4:3333333333333333x x x x ---+---+--解答:412213141423333333333333333333333333333313331333133300133300133300133300000ii x x x x x x c c x x x x xx x r r x x x x r r x x xx r r xx x x r r xx x x x=-----+--+-+----+----------+--=-----------↔-=--∑[技巧2,技巧3,技巧5,手段3]习题5:11121314122223241323333414243444a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b解答:1112131412222324132333341424344422232412131412131411233334122333341322232414243444243444243444,a b a b a b a b a ba b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b =-+-按第一列展开1213142223242333341213141213142223242223242434442333342342342121423333412423333412234234,0,(b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b b b b D a a b b a b a b a b a b b a b a b a b a a a a a a a a =-=由于行列式和有两行元素成比例因此值为3234214124233334234222121412434232334243241421124332233423321421123223433414122123)()()()[()()]()()()()(b b b b b a b b a b a b a b a a a a a b b a b b a a b b a a b b a a b a b b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b -=-+--=--+-=---=--323443314111)()()i i i i i a b a b a b a b a b a b ++=--=--∏[技巧7,手段1,手段6]习题6:444443333322222(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)123411111a a a a a a a a a a a a a a a a a a a a ---------------- 解答:432122222533333444444321432122222,111111234(1)(1)(2)(3)(4)(1)(2)(3)(4)(1)(2)(3)(4)111114321(1)(1)(4)(3)(2)(1)(4)aa a a a D a a a a a a a a a a a a a a a a a a a a a a a a a a +++++++++----=-----------------=-------将行列式上下翻转后再左右翻转不难得3333344444(3)(2)(1)(4)(3)(2)(1)4!3!2!1!288a a a a a a a a a -------==[技巧2,手段7]习题7:1221100001000000001nn n x x x xa a a a x a -----+解答:111121232212112112121,1000100(1)00011,,,,,,n n n n n n n n n n n n n n n n n n n n nD x D xD a x x D xD a D xD a D xD a D xD a D x a x x x D x a x a x a x a +--------------=+--⇒=+=+=+=+=+=+++++按第一列展开得的递推公式将上述各式的两边分别乘以后全部相加并化简得:[技巧7,手段3]习题8:()a b a b c d cd其余未写出元素均为零:解答:22(22)2122(1)2(1)2221,23,,2,221,23,,2,000000(1)00()()()n n nn nn n D n n n n n n a b c d abDab c d cdD Dad bc Dad bc D ad bc --------=-==-==-=-将中的第行依此与第行行第行对调再将第列依此与第列列第列对调得[技巧2,技巧6]。

相关文档
最新文档