人教版高中数学 教案+学案综合汇编 第1章:集合与简易逻辑 课时8
高一数学教案第一章 集合与简易逻辑_0566文档
2020高一数学教案第一章集合与简易逻辑_0566文档EDUCATION WORD高一数学教案第一章集合与简易逻辑_0566文档前言语料:温馨提醒,教育,就是实现上述社会功能的最重要的一个独立出来的过程。
其目的,就是把之前无数个人有价值的观察、体验、思考中的精华,以浓缩、系统化、易于理解记忆掌握的方式,传递给当下的无数个人,让个人从中获益,丰富自己的人生体验,也支撑整个社会的运作和发展。
本文内容如下:【下载该文档后使用Word打开】第一章集合与简易逻辑本章概述 1.教学要求[1]理解集合、子集、交集、并集、补集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合.[2]掌握简单的含绝对值不等式、简单的高次不等式、分式不等式的解法;熟练掌握一元二次不等式的解法.[3]理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;掌握充要条件.2.重点难点重点:有关集合的基本概念;一元二次不等式的解法及简单应用;逻辑联结词“或”、“且”、“非”与充要条件.难点:有关集合的各个概念的涵义以及这些概念相互之间的区别与联系;“四个二次”之间的关系;对一些代数命题真假的判断.3.教学设想利用实例帮助学生正确掌握集合的基本概念;突出一种数学方法――元素分析法;渗透两种数学思想――数形结合思想与分类讨论思想;掌握三种数学语言――文字语言、符号语言、图形语言的转译.1.1集合(2课时)目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
教学重点:集合的基本概念及表示方法教学难点:运用集合的两种常用表示方法――列举法与描述法,正确表示一些简单的集合教学过程:第一课时一、引言:(实例)用到过的“正数的集合”、“负数的集合”、“不等式2x-1>3的解集”如:几何中,圆是到定点的距离等于定长的点的集合。
集合与元素:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
《第一章-集合与常用逻辑用语》大单元整体教学设计
《第一章集合与常用逻辑用语》大单元整体教学设计一、内容分析与整合(一)教学内容分析《第一章集合与常用逻辑用语》是高中数学学习的起点,为学生后续学习函数、数列、不等式等数学内容提供了重要的逻辑基础。
本章内容主要分为五个部分:集合的概念、集合间的基本关系、集合的基本运算、充分条件与必要条件、以及全称量词与存在量词。
这些内容不仅在数学内部逻辑上紧密相连,而且在实际问题解决中也具有广泛的应用价值。
集合是现代数学的基本概念之一,它是描述事物群体及其相互关系的重要工具。
通过学习集合的概念,学生能够理解集合的确定性、互异性、无序性,并掌握集合的表示方法(如列举法、描述法等)。
集合的学习有助于学生形成分类讨论的数学思想,为后续学习打下坚实基础。
集合间的基本关系主要包括子集、真子集、相等关系等。
这些关系揭示了集合之间的层次结构和相互联系,是学习集合运算和逻辑推理的基础。
学生需要掌握判断集合间关系的方法,并能根据具体问题灵活应用。
集合的基本运算包括并集、交集、补集等。
这些运算是集合论中的重要内容,也是解决实际问题中常用的数学工具。
学生需要掌握集合运算的定义、性质及运算法则,并能够进行复杂的集合运算。
充分条件与必要条件是逻辑推理中的基本概念,它们描述了条件与结论之间的逻辑关系。
通过学习充分条件与必要条件,学生能够理解命题之间的逻辑关系,掌握推理的基本方法,提高逻辑思维能力。
全称量词与存在量词是数学语言中的重要组成部分,它们用于描述具有普遍性或特殊性的数学命题。
学生需要理解全称命题与特称命题的区别,掌握全称量词与存在量词的含义及用法,并能够运用量词进行逻辑推理和命题证明。
(二)单元内容分析本单元内容不仅涵盖了集合论和逻辑推理的基础知识,更在数学学科中占据着举足轻重的地位。
集合论,作为现代数学大厦的基石之一,为我们提供了一个描述和研究数学对象及其相互关系的强大框架。
它使我们能够更清晰地理解和表达数学中的基本概念,为深入学习更复杂的数学知识打下坚实的基础。
2019-2020年高中数学 第一章集合与简易逻辑教案8
2019-2020年高中数学 第一章集合与简易逻辑教案8教学目的:(1)巩固与型不等式的解法,并能熟练地应用它解决问题;掌握分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式;(2)培养数形结合的能力,分类讨论的思想,培养通过换元转化的思想方法,培养抽象思维的能力;(3)激发学习数学的热情,培养勇于探索的精神,勇于创新精神,同时体会事物之间普遍联系的辩证思想教学重点:分类讨论的方法解决含多个绝对值的不等式以及含参数的不等式教学难点:如何正确分类与分段,简单的参数问题授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:(略)教学过程:一、复习引入:与型不等式与型不等式的解法与解集不等式的解集是;不等式的解集是不等式的解集为 {})0(|><+<-c c b ax c x ;不等式的解集为 {})0(,|>>+-<+c c b ax c b ax x 或二、讲解范例:例1 解不等式 1 | 2x-1 | < 5.分析:怎么转化?怎么去掉绝对值?方法:原不等式等价于⎪⎩⎪⎨⎧≥-->-<-112512512x x x ① 或 ⎪⎩⎪⎨⎧-≤-->-<-112512512x x x ②解①得:1x<3 ; 解②得:-2< x 0.∴原不等式的解集为 {x | -2< x 0或1x<3}方法2:原不等式等价于 12x-1<5或 –5<2x-1 -1即22x<6 或 –4<2x0.解得 1x<3 或 –2< x 0.∴原不等式的解集为{x | -2< x 0或1x<3}小结:比较两种解法,第二种解法比较简单,在解法二中,去掉绝对值符号的依据是 a| x |b axb 或 -bx-a (a0).练习:解下列不等式: ⎭⎬⎫⎩⎨⎧≤<<≤-627231|x x x 或 例2 解不等式:|4x-3|>2x+1.分析:关键是去掉绝对值 方法1:原不等式等价于⎩⎨⎧+>--<-⎩⎨⎧+>-≥-12)34(0341234034x x x x x x 或, 即⎪⎪⎩⎪⎪⎨⎧<<⎪⎩⎪⎨⎧>≥3143243x x x x 或, ∴x>2或x<, ∴原不等式的解集为{x| x>2或x<}.方法2:整体换元转化法分析:把右边看成常数c ,就同一样∵|4x-3|>2x+14x-3>2x+1或4x-3<-(2x+1) x>2 或x<,∴原不等式的解集为{x| x>2或x<}.例3 解不等式:|x-3|-|x+1|<1.分析:关键是去掉绝对值方法1:零点分段讨论法(利用绝对值的代数定义)①当时,∴ ∴ 4<1②当时∴,∴③当时-4<1 ∴综上 原不等式的解集为也可以这样写:解:原不等式等价于①或②或 ③,解①的解集为φ,②的解集为{x|<x<3},③的解集为{x|x3},∴原不等式的解集为{x|x>}.方法2:数形结合从形的方面考虑,不等式|x-3|-|x+1|<1表示数轴上到3和-1两点的距离之差小于1的点∴原不等式的解集为{x|x>}.练习:解不等式:| x+2 | + | x | >4.分析1:零点分段讨论法解法1:①当x-2时,不等式化为 -(x+2)- x > 4 即x<-3. 符合题义②当 –2<x<0时,不等式化为x+2-x>x 即2>4.不合题义,舍去③当x0时,不等式化为x+2+x>4即x>1.符合题义综上:原不等式的解集为{x | x<-3或x>1}.分析2:从形的方面考虑,不等式| x+2 | + | x | >4表示数轴上到-2和0两点的距离之和大于4的点解法2:因取数轴上点1右边的点及点-3左边的点到点-2、0的距离之和均大于4∴原不等式的解集为 {x | x<-3或 x>1}.例4.解关于的不等式①,②解:∵,分类讨论如下① Ⅰ.Ⅱ },|{0a x a x a <<->时,解集为当① Ⅰ.Ⅱ },0|{0≠=x x a 时,解集为当Ⅲ },|{0a x a x x a >-<>或时,解集为当例5.解关于的不等式.解:原不等式化为:,在求解时由于a+1的正负不确定,需分情况讨论.①当a+10即a-1时,由于任何实数的绝对值非负,∴解集为.②当a+1>0即a> -1时,- (a+1)<2x+3< a+1 => < x <.综上得: ① ②}2224|{1-<<+-->a x a x a 时,解集为. 练习:课本第16页练习1、2备用例题例1.解下列不等式:(1) (2)解(1) ⎭⎬⎫⎩⎨⎧≤<<≤-∈627231|x x R x 或(2) 例2.已知不等式的解集为,求的值.例3.解关于的不等式..三、课内练习课本第16页练习1、2四、小结:1.对含有绝对值的不等式的解法,通过上面的例子我们可以看到,其关键就在于去掉绝对值,而去掉绝对值,则需要对绝对值中的零点进行讨论,一般来说一个零点分两个范围,两个零点分三个零点,依次类推.2.对于含有绝对值的不等式,如果其中含有字母参数,则根据基本的绝对值不等式的解法进行分类讨论,讨论时,不重复,也不要遗漏.五、作业:课本第16页习题4,课本第42页复习参考题7六、板书设计(略)七、课后记:。
高一数学第一章《集合》教案
高一数学第一章《集合》教案高一数学第一章《集合》教案(通用6篇)作为一名辛苦耕耘的教育工作者,时常要开展教案准备工作,教案是保证教学取得成功、提高教学质量的基本条件。
那么什么样的教案才是好的呢?以下是店铺收集整理的高一数学第一章《集合》教案,欢迎大家分享。
高一数学第一章《集合》教案篇1教学目标:(1) 知识与技能:了解集合的含义,理解并掌握元素与集合的“属于”关系、集合中元素的三个特性,识记数学中一些常用的的数集及其记法,能选择自然语言、列举法和描述法表示集合。
(2) 过程与方法:从圆、线段的垂直平分线的定义引出“集合”一词,通过探讨一系列的例子形成集合的概念,举例剖析集合中元素的三个特性,探讨元素与集合的关系,比较用自然语言、列举法和描述法表示集合。
(3) 情感态度与价值观:感受集合语言的意义和作用,培养合作交流、勤于思考、积极探讨的精神,发展用严密谨慎的集合语言描述问题的习惯。
教学重难点:(1) 重点:了解集合的含义与表示、集合中元素的特性。
(2) 难点:区别集合与元素的概念及其相应的符号,理解集合与元素的关系,表示具体的集合时,如何从列举法与描述法中做出选择。
教学过程:【问题1】在初中我们已经学习了圆、线段的垂直平分线,大家回忆一下教材中是如何对它们进行定义的?[设计意图]引出“集合”一词。
【问题2】同学们知道什么是集合吗?请大家思考讨论课本第2页的思考题。
[设计意图]探讨并形成集合的含义。
【问题3】请同学们举出认为是集合的例子。
[设计意图]点评学生举出的例子,剖析并强调集合中元素的三大特性:确定性、互异性、无序性。
【问题4】同学们知道用什么来表示一个集合,一个元素吗?集合与元素之间有怎样的关系?[设计意图] 区别表示集合与元素的的符号,介绍集合中一些常用的的数集及其记法。
理解集合与元素的关系。
【问题5】“地球上的四大洋”组成的集合可以表示为{太平洋、大西洋、印度洋、北冰洋},“方程(x- 1)(x+2)=0的所有实数根”组成的集[设计意图]引出并介绍列举法。
人教版高中数学 教案+学案综合汇编 第1章:集合与简易逻辑 课时00
第一章集合与简易逻辑第一教时教材:集合的概念目的:要求学生初步理解集合的概念,知道常用数集及其记法;初步了解集合的分类及性质。
过程:一、引言:(实例)用到过的“正数的集合”、“负数的集合”如:2x-1>3⇒x>2所有大于2的实数组成的集合称为这个不等式的解集。
如:几何中,圆是到定点的距离等于定长的点的集合。
如:自然数的集合0,1,2,3,……如:高一(5)全体同学组成的集合。
结论:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
指出:“集合”如点、直线、平面一样是不定义概念。
二、集合的表示:{ …} 如{我校的篮球队员},{太平洋、大西洋、印度洋、北冰洋}用拉丁字母表示集合:A={我校的篮球队员} ,B={1,2,3,4,5}常用数集及其记法:1.非负整数集(即自然数集)记作:N2.正整数集N*或N+3.整数集Z4.有理数集Q5.实数集R集合的三要素:1。
元素的确定性;2。
元素的互异性;3。
元素的无序性(例子略)三、关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集A 记作a∈A ,相反,a不属于集A 记作a∉A (或a∈A)例:见P4—5中例四、练习P5略五、集合的表示方法:列举法与描述法1.列举法:把集合中的元素一一列举出来。
例:由方程x2-1=0的所有解组成的集合可表示为{-1,1}例;所有大于0且小于10的奇数组成的集合可表示为{1,3,5,7,9} 2.描述法:用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例{不是直角三角形的三角形}再见P6例②数学式子描述法:例不等式x-3>2的解集是{x∈R| x-3>2}或{x| x-3>2}或{x:x-3>2}再见P6例六、集合的分类1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合例题略3.空集不含任何元素的集合Φ七、用图形表示集合P6略八、练习P6小结:概念、符号、分类、表示法九、作业P7习题1.1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。
2019-2020年高中数学 第一章集合与简易逻辑教案1
2019-2020年高中数学第一章集合与简易逻辑教案1教学目的:⒈理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合;掌握带绝对值的不等式与一元二次不等式的解法.⒉理解逻辑联结词“或”、“且”、“非”的含义;理解四种命题及其相互关系;进一步了解反证法,会用反证法证明简单的问题;掌握充要条件的意义.教学重点:1.有关集合的基本概念;2.逻辑联结词“或”、“且”、“非”与充要条件教学难点:1.有关集合的各个概念的含义以及这些概念相互之间的区别与联系;2. 对一些代数命题真假的判断.授课类型:复习授课课时安排:1课时教具:多媒体、实物投影仪内容分析:这一章主要讲述集合的初步知识与简易逻辑知识两部分内容.集合部分主要包括集合的有关概念、集合的表示及集合同集合之间的关系.简易逻辑知识部分主要介绍逻辑联结词“或”、“且”、“非”、四种命题及其相互关系、充要条件等有关知识.教学过程:一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:【知识点与学习目标】:【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其他问题的方法.【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1、等价转化的数学思想;2、求补集的思想;3、分类思想;4、数形结合思想.【解题规律】1、如何解决与集合的运算有关的问题:1)对所给的集合进行尽可能的化简;2)有意识应用维恩图来寻找各集合之间的关系;3)有意识运用数轴或其它方法来直观显示各集合的元素.2.如何解决与简易逻辑有关的问题:1)力求寻找构成此复合命题的简单命题;2)利用子集与推出关系的联系将问题转化为集合问题二、基本知识点:集合:1、集合中的元素属性:(1)(2)(3)2、常用数集符号:N Z Q R3、子集:数学表达式4、补集:数学表达式5、交集:数学表达式6、并集:数学表达式7、空集:它的性质(1)(2)8、如果一个集合A有n个元素(CradA=n),那么它有个个子集,个非空真子集注意:(1)元素与集合间的关系用符号表示;(2)集合与集合间的关系用符号表示解不等式:1、绝对值不等式的解法:(1)公式法:|f(x)|>g(x) |f(x)|<g(x)(2)几何法(3)定义法(利用定义打开绝对值)(4)两边平方2、一元二次不等式或的求解原理:利用二次函数的图象通过二次函数与3、分式、高次不等式的解法:4、一元二次方程实根分布:简易逻辑:1、命题的定义:可以判断真假的语句叫做命题2、逻辑联结词、简单命题与复合命题:“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题构成复合命题的形式:p或q(记作“p∨q” );p且q(记作“p∧q” );非p(记作“┑q” )3、“或”、“且”、“非”的真值判断(1)“非p”形式复合命题的真假与P的真假相反;(2)“p且q”形式复合命题当P与q同为真时为真,其他情况时为假;(3)“p或q”形式复合命题当p与q同为假时为假,其他情况时为真.4、四种命题的形式:原命题:若P则q;逆命题:若q则p;否命题:若┑P则┑q;逆否命题:若┑q则┑p(1)交换原命题的条件和结论,所得的命题是逆命题;(2)同时否定原命题的条件和结论,所得的命题是否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题是逆否命题.5、四种命题之间的相互关系:原命题若p 则q否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互一个命题的真假与其他三个命题的真假有如下三条关系:(原命题逆否命题)①、原命题为真,它的逆命题不一定为真 ②、原命题为真,它的否命题不一定为真 ③、原命题为真,它的逆否命题一定为真 6、反证法:从命题结论的反面出发(假设),引出(与已知、公理、定理…)矛盾,从而否定假设证明原命题成立,这样的证明方法叫做反证法7、如果已知pq 那么我们说,p 是q 的充分条件,q 是p 的必要条件 判断两条件间的关系技巧:(1) (2) 注意:(1)复合命题的三种形式与假言命题中的四种命题的区别(2)复合命题中的“p 或q ”与假言命题中的“若p 则q ”它们的“P ”的区别 三、巩固训练(一)、选择题:1、下列关系式中不正确的是( ) A 0 B 0 C 0 D 02、下列语句为命题是( )A 等腰三角形B 对顶角相等C ≥0 D0是自然数吗? 3、命题“方程|x|=1的解是x=±1”中,使用逻辑联结词的情况是( ) A 使用了逻辑联结词“或” B 使用了逻辑联结词“且” C 使用了逻辑联结词“非”D 没有使用逻辑联结词 4、不等式的解集为( ) A B C D5、不全为0的充要条件是( ) A 都不是0 B 最多有一个是0 C 只有一个是0 D 中至少有一个不是06、≥( )A 充分而不必要条件B 必要而不充分条件C 充分必要条件D 即不充分也不必要条件7、如果命题的充分条件,是命题的必要条件,命题是命题q r q p 则 A 即不充分也不必要条件 B 必要而不充分条件 C 充分而不必要条件 D 充要条件8、至少有一个负的实根的充要条件是( ) A B C D (二)、填空题:9、不等式的解集是则= =10、分式不等式的解集为:_______________.11、命题“”的逆命题、否命题、逆否命题中,真命题有____个. 12、设A=,B=,若AB ,则的取值范围是________. (三)、解答题:13、解下列不等式 ① ②③|<| ④()14、利用反证法证明:15、已知一元二次不等式对一切实数都成立,求的取值范围16、已知集合A={}==++++R A x p x x ,若01)2(|2,求实数的取值范围(表示正实数集合)2019-2020年高中数学第一章集合与简易逻辑教案2一、选择题:(本大题共12小题,每小题4分,共48分)1.下列命题正确的是( )A. {实数集}B.C. D.2.在①1{0,1,2};②{1}∈{0,1,2};③{0,1,2}{0,1,2};④、{0}上述四个关系中,错误的个数是()A、1个B、2个C、3个D、4个3.已知全集,,,,则()A、B、C、D、4.已知集合,,若,则实数应该满足的条件是()A、B、C、D、5.下列说法正确的是()A、任一集合必有真子集;B、任一集合必有两个子集;C、若,则A、B之中至少有一个为空集;D、若,则6.已知集合P=,Q=,那么等于A、(0,2),(1,1)B、{(0,2 ),(1,1)}C、{1,2}D、7.若和同时成立,则的取值范围是()A、B、C、或 D8.不等式的解集是()A、{|<-2或>1}B、{|-2<<1}C、{|}D、R9.方程至少有一个负根,则()A、或B、C、D、10.“”是“或”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件11.当时,关于的不等式的解集是()A、{或}B、{或}C、{}D、{}12.不等式的解集为R ,则的取值范围是( ) A 、 B 、 C 、 D 、 二、填空题:(本大题共4小题,每小题4分,共16分) 13.已知集合A={,,2},B={2,,2}且,=,则= 14.已知全集U = R ,不等式的解集A ,则 15.不等式的解集是 16.有下列四个命题: ①、命题“若,则,互为倒数”的逆命题; ②、命题“面积相等的三角形全等”的否命题; ③、命题“若≤1,则有实根”的逆否命题; ④、命题“若∩=,则”的逆否命题其中是真命题的是 (填上你认为正确命题的序号)三、解答题:(本大题共4小题, 36分)17.(本题8分)若}06|{},065|{2=-==+-=ax x B x x x A ,且,求由实数a 组成的集合 18.(本题8分)用反证法证明:若、、,且,,,则、、中至少有一个不小于019.(本题10分,每小题5分)解下列关于的不等式: ① ②20.(本题10分) 已知集合,}0)1(|{2≤++-=a x a x x M ,,,且,求实数的取值范围附加题:我校高中部先后举行了数理化三科竞赛,学生中至少参加一科竞赛的有:数学807人,物理739人,化学437人,至少参加其中两科的有:数学与物理593人,数学与化学371人,物理与化学267人,三科都参加的有213人,试计算参加竞赛的学生总数集合与简易逻辑复习小结 基本训练题参考答案一、选择题:(本大题共12小题,每小题4分,共48分)二、填空题:(本大题共4小题,每小题4分,共16分) 13 0或 14 或 15 或 16 ①、②、③ 三、解答题:(本大题共4小题, 36分) 17.(本题8分)由实数a 组成的集合为{0,2,3} 18.(本题8分) 证明: 假设、、均小于0,即: ----① ; ----② ; ----③;①+②+③得0)1()1()1(222<-+-+-=++c b a z y x , 这与0)1()1()1(222≥-+-+-c b a 矛盾, 则假设不成立, ∴、、中至少有一个不小于0 19.(本题10分,每小题5分)解下列关于的不等式: ①、解:且 ②、解:原不等式化为:①、当时, 其解集为: ②、当时, 其解集为: ③、当时, 其解集为:或 ④、当时, 其解集为:或 ⑤、当时, 其解集为: 20.(本大题10分)解:依题意,集合,}0)1(|{2≤++-=a x a x x M ,,, 由知,∴实数的取值范围J 附加题:由公式或如图填数字计算Card(ABC)= Card(A)+ Card(B)+ Card(C)- Card(AB) - Card(AC) - Card(CB)+ Card(ABC)。
高一数学教案:集合与简易逻辑
高一数学教案:集合与简易逻辑【】欢迎来到查字典数学网高一数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。
因此小编在此为您编辑了此文:高一数学教案:集合与简易逻辑希望能为您的提供到帮助。
本文题目:高一数学教案:集合与简易逻辑教材:逻辑联结词(1)目的:要求学生了解复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联结词,并能由简单命题构成含有逻辑联结词的复合命题。
过程:一、提出课题:简单逻辑、逻辑联结词二、命题的概念:例:125 ① 3是12的约数② 0.5是整数③定义:可以判断真假的语句叫命题。
正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题反例:3是12的约数吗? x5 都不是命题不涉及真假(问题) 无法判断真假上述①②③是简单命题。
这种含有变量的语句叫开语句(条件命题)。
三、复合命题:1.定义:由简单命题再加上一些逻辑联结词构成的命题叫复合命题。
2.例:(1)10可以被2或5整除④ 10可以被2整除或10可以被5整除(2)菱形的对角线互相菱形的对角线互相垂直且菱形的垂直且平分⑤对角线互相平分(3)0.5非整数⑥非0.5是整数观察:形成概念:简单命题在加上或且非这些逻辑联结词成复合命题。
3.其实,有些概念前面已遇到过如:或:不等式x2x60的解集{ x | x2或x3 }且:不等式x2x60的解集{ x | 23 } 即{ x | x2且x3 }四、复合命题的构成形式如果用p, q, r, s表示命题,则复合命题的形式接触过的有以下三种:即:p或q (如④) 记作pqp且q (如⑤) 记作pq非p (命题的否定) (如⑥) 记作p小结:1.命题2.复合命题 3.复合命题的构成形式教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
高一数学《集合与简易逻辑》教案
高一数学《会合与简略逻辑》教学设计教材:逻辑联络词(1)目的:要修业生认识复合命题的意义,并能指出一个复合命题是有哪些简单命题与逻辑联络词,并能由简单命题组成含有逻辑联络词的复合命题。
过程:一、提出课题:简单逻辑、逻辑联络词二、命题的观点:例: 12 ① 3是12的约数② 0.5是整数③定义:能够判断真假的语句叫命题。
正确的叫真命题,错误的叫假命题。
如:①②是真命题,③是假命题反例: 3 是 12 的约数吗? 5 都不是命题不波及真假 ( 问题 ) 没法判断真假上述①②③是简单命题。
这类含有变量的语句叫开语句(条件命题)。
三、复合命题:1.定义:由简单命题再加上一些逻辑联络词组成的命题叫复合命题。
2.例: (1)10 能够被 2 或 5 整除④ 10 能够被 2 整除或 10能够被 5 整除(2) 菱形的对角线相互菱形的对角线相互垂直且菱形的第 1页垂直且均分⑤角相互均分(3)0.5非整数⑥非“ 0.5是整数”察:形成观点:命在加上“或”“且”“非” 些成复合命。
3.其,有些观点前方已碰到如:或:不等式x2x60 的解集 { x | x2或x3 }且:不等式x2x60 的解集 { x | 23 }即{ x | x2且x3 }四、复合命的组成形式假如用 p, q, r, s ⋯⋯表示命,复合命的形式接触的有以下三种:即: p 或 q ( 如④) 作 pqp 且 q ( 如⑤) 作 pq非 p ( 命的否认 ) ( 如⑥) 作 p小: 1.命 2 .复合命 3 .复合命的组成形式第 2页。
高中数学 《集合与简易逻辑》教案(高考回归课本系列)新人教A版
高中数学 《集合与简易逻辑》教案(高考回归课本系列)新人教A 版第一章 集合与简易逻辑一、基础知识定义1 一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素x 在集合A 中,称x 属于A ,记为A x ∈,否则称x 不属于A ,记作A x ∉。
例如,通常用N ,Z ,Q ,B ,Q +分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用∅来表示。
集合分有限集和无限集两种。
集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。
例如{有理数},}0{>x x 分别表示有理数集和正实数集。
定义2 子集:对于两个集合A 与B ,如果集合A 中的任何一个元素都是集合B 中的元素,则A 叫做B 的子集,记为B A ⊆,例如Z N ⊆。
规定空集是任何集合的子集,如果A 是B 的子集,B 也是A 的子集,则称A 与B 相等。
如果A 是B 的子集,而且B 中存在元素不属于A ,则A 叫B 的真子集。
定义3 交集,}.{B x A x x B A ∈∈=且定义4 并集,}.{B x A x x B A ∈∈=或定义5 补集,若},{,1A x I x x A C I A ∉∈=⊆且则称为A 在I 中的补集。
定义6 差集,},{\B x A x x B A ∉∈=且。
定义7 集合},,{b a R x b x a x <∈<<记作开区间),(b a ,集合},,{b a R x b x a x <∈≤≤记作闭区间],[b a ,R 记作).,(+∞-∞定理1 集合的性质:对任意集合A ,B ,C ,有:(1));()()(C A B A C B A = (2))()()(C A B A C B A =;(3));(111B A C B C A C = (4)).(111B A C B C A C =【证明】这里仅证(1)、(3),其余由读者自己完成。
新人教版高中数学必修一第一章集合与常用逻辑用语全套教学设计课件及课时作业(287页)
2 题型探究
PART TWO
一、列举法表示集合
反思 感悟
由集合中元素的特性求解字母取值(范围)的步骤
跟踪训练2 已知集合A中含有两个元素a和a2,若1∈A,则实数a=_-__1__.
解析 若1∈A,则a=1或a2=1,即a=±1. 当a=1时,a=a2,集合A中有一个元素, ∴a≠1. 当a=-1时, 集合A中含有两个元素1,-1,符合互异性. ∴a=-1.
跟踪训练2 下列三个集合: ①A={x|y=x2+1}; ②B={y|y=x2+1}; ③C={(x,y)|y=x2+1}. (1)它们是不是相同的集合?
解 不相同.
(2)它们各自的含义分别是什么?
解 集合A={x|y=x2+1}的代表元素是x,且x∈R, 所以{x|y=x2+1}=R,即A=R; 集合B={y|y=x2+1}的代表元素是y,满足条件y=x2+1的y的取值范围是y≥1, 所以{y|y=x2+1}={y|y≥1}. 集合C={(x,y)|y=x2+1}的代表元素是(x,y),是满足y=x2+1的数对. 可以认为集合C是由坐标平面内满足y=x2+1的点(x,y)构成的.
A.1
√B.2
C.3
D.4
解析 ①∵ 2是无理数,∴ 2∉Q,故①错误;
②-1∉N,②正确; ③∵π是实数,∴π∈R,故③错误; ④∵|-4|=4是整数,∴|-4|∈Z,故④正确.
反思
感悟 判断元素和集合关系的两种方法 (1)直接法:集合中的元素是直接给出的. (2)推理法:对于某些不便直接表示的集合,只要判断该元素是否满足集 合中元素所具有的特征即可.
第一章 集合与简易逻辑教案 新课标 人教版 教案
第一章 集合与简易逻辑教案一.集合的有关概念 1.集合①定义:某些指定的对象集在一起就成为一个集合,每个对象叫做集合的元素。
②表示方法列举法:将集合中的元素一一列举出来,用大括号括起来,如{a,b,c} 描述法:将集合中的元素的共同属性表示出来,形式为:P={x ∣P(x)}.如:}1),({},1{},1{-=-=-=x y y x x y y x y x图示法:用文氏图表示题中不同的集合。
③分类:有限集、无限集、空集。
④性质 确定性:A a A a ∉∈或必居其一,互异性:不写{1,1,2,3}而是{1,2,3},集合中元素互不相同, 无序性:{1,2,3}={3,2,1}2.常用数集复数集C 实数集R 整数集Z 自然数集N 正整数集*N (或N +) 有理数集Q 3.元素与集合的关系:A a A a ∈∉或 4.集合与集合的关系:①子集:若对任意A x ∈都有B x ∈[或对任意B x ∉都有A x ∉] 则A 是B 的子集。
记作:A B B A ⊇⊆或 C A C B B A ⊆⇒⊆⊆,②真子集:若B A ⊆,且存在A x B x ∉∈00,但,则A 是B 的真子集。
记作:AB[或“B A B A ≠⊆且”] A B ,B CA C③B A A B B A =⇔⊆⊆且④空集:不含任何元素的集合,用φ表示,对任何集合A 有A ⊆φ,若φ≠A 则φ A注:}{}0{}{φφφ≠≠≠a a 5.子集的个数若},,{21n a a a A =,则A 的子集个数、真子集的个数、非空真子集的个数分别为2n个,2n-1个和2n-2个。
二.集合的运算 1.有关概念①交集:}{B x A x x B A ∈∈=且 ②并集:}{B x A x x B A ∈∈=⋃或③全集:如果集合S 含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,通常用U 表示。
④补集:}{A x U x x A C U ∉∈=且A BA BA BA B ABA BAU C U A2.常用运算性质及一些重要结论 ①A B B A A A A A ===φφ ②A B B A AA AA A ===φ③C B A C B A C B A ==)()( C B A C B A C B A ==)()( ④)()()(C A B A C B A = )()()(C A B A C B A = ⑤U A C A A C A U U == φ⑥B A B B A BA AB A ⊆⇔=⊆⇔=⑦)()()()()()(B C A C B A C B C A C B A C U U U U U U ==⑧)()()()(B A Card B Card A Card B A Card -+=三.含有绝对值不等式1、绝对值的意义:(其几何意义是数轴的点A (a )离开原点的距离a OA =)()()()⎪⎩⎪⎨⎧<-=>=0,0,00,a a a a a a2、含有绝对值不等式的解法:(解绝对值不等式的关键在于去掉绝对值的符号) (1)定义法;(2)零点分段法:通常适用于含有两个及两个以上的绝对值符号的不等式; (3)平方法:通常适用于两端均为非负实数时(比如()()x g x f <); (4)图象法或数形结合法;(如讨论a x x =--122的解有个数) (5)不等式同解变形原理:即()a x a a a x <<-⇔><0 ()a x a x a a x -<>⇔>>或0()c b ax c c c b ax <+<-⇔><+0 ()c b ax c b ax c c b ax -<+>+⇔>>+或0()()()()()x g x f x g x g x f <<-⇔< ()()()()()()x g x f x g x f x g x f <>⇔>或 ()()()()a x f b b x f a a b b x f a -<<-<<⇔>><<或03、不等式的解集都要用集合形式表示,不要使用不等式的形式。
第一章集合与简易逻辑教案
高中数学第一册(上)第一章集合与简易逻辑◇教材分析【知识结构】本章知识主要分为集合、简单不等式的解法(可瞧做集合的化简)、简易逻辑三部分:【知识点与学习目标】【高考评析】集合知识作为整个数学知识的基础,在高考中重点考察的就是集合的化简,以及利用集合与简易逻辑的知识来指导我们思维,寻求解决其她问题的方法.◇学习指导【学法指导】本章的基本概念较多,要力求在理解的基础上进行记忆.【数学思想】1.等价转化的数学思想; 2.求补集的思想;3.分类思想;4.数形结合思想.【解题规律】1. 如何解决与集合的运算有关的问题?1) 对所给的集合进行尽可能的化简;2) 有意识应用维恩图来寻找各集合之间的关系;3) 有意识运用数轴或其它方法来直观显示各集合的元素.2. 如何解决与简易逻辑有关的问题?1) 力求寻找构成此复合命题的简单命题;2) 利用子集与推出关系的联系将问题转化为集合问题.引言通过一个实际问题,目的就是为了引出本章的内容。
1、分析这个问题,要用数学语言描述它,就就是把它数学化,这就需要集合与逻辑的知识;2、要解决问题,也需要集合与逻辑的知识.在教学时,主要就是把这个问题本身讲清楚,点出为什么“回答有20名同学参赛”不一定对.而要进一步认识、讨论这个问题,就需要运用本章所学的有关集合与逻辑的知识了.§1、1集合〖教学目的〗通过本小节的学习,使学生达到以下要求:(1)初步理解集合的概念,知道常用数集及其记法; (2)初步了解“属于”关系的意义;(3)初步了解有限集、无限集、空集的意义.〖教学重点与难点〗本小节的重点就是集合的基本概念与表示方法;难点就是运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合.〖教学过程〗☆本小节首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明.然后,介绍了集合的常用表示方法,包括列举法、描述法,还给出了画图表示集合的例子.1、集合的概念:在初中代数里学习数的分类时,就用到“正数的集合”,“负数的集合”等此外,对于一元一次不等式2x一1>3,所有大于2的实数都就是它的解.我们也可以说,这些数组成这个不等式的解的集合,简称为这个不等式的解集.在初中几何里学习圆时,说圆就是到定点的距离等于定长的点的集合.几何图形都可以瞧成点的集合.一般地,某些指定的对象集在一起就成为一个集合,也简称集.这句话,只就是对集合概念的描述性说明.集合则就是集合论中原始的、不定义的概念.在开始接触集合的概念时,主要还就是通过实例,对概念有一个初步认识. 例如, “我校篮球队的队员”组成一个集合; “太平洋、大西洋、印度洋、北冰洋”也组成一个集合.我们一般用大括号表示集合,上面的两个集合就可以分别表示成4我校篮球队的队员)与4太平洋。
人教版高中数学 教案+学案综合汇编 第1章:集合与简易逻辑 课时12
人教版高中数学教案+学案综合汇编第1章集合第二十六教时教材:“简易逻辑”习题课目的:通过习题的讲解与练习,努力达到熟练技巧。
过程:一、分别写出由下列各种命题构成的“p或q”“p且q”“非p”形式的复合命题:1.p:李明是高中一年级学生q:李明是共青团员解:p或q:李明是高中一年级学生或是共青团员p且q:李明是高中一年级学生且是共青团员非p:李明不是高中一年级学生5>q:5是无理数2.p:2解:p或q:5是大于2或是无理数p且q:5是大于2且是无理数非p:5不大于23.p:平行四边形对角线相等q:平行四边形对角线互相平分解:p或q:平行四边形对角线相等或互相平分p且q:平行四边形对角线相等且互相平分非p:平行四边形对角线不一定相等4.p:10是自然数q:10是偶数解:p或q:10是自然数或是偶数p且q:10是自然数且是偶数非p:10不是自然数二、分别指出下列复合命题的构成形式及构成它的简单命题:1.x=2或x=3是方程x2-5x+6=0的根解:p:x=2是方程x2-5x+6=0的根q:x=3是方程x2-5x+6=0的根是p或q的形式2.π既大于3又是无理数解:p:π大于3 q:π是无理数是p且q的形式3.直角不等于90︒解: p :直角等于90︒ 是非p 形式4.x +1≥x -3解: p :x +1>x -3 q :x +1=x -3 是p 或q 的形式5.垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧。
解: p :垂直于弦的直径平分这条弦q :垂直于弦的直径平分这条弦所对的两条弧 是p 且q 的形式三、分别写出由下列各种命题构成的“p 或q ”“p 且q ”“非p ”形式的复合命题,并判断它们的真假:1.p :末位数字是0的自然数能被5整除 q :5∈{x |x 2+3x -10=0}解:p 或q :末位数字是0的自然数能被5整除或5∈{x |x 2+3x -10=0}p 且q :末位数字是0的自然数能被5整除且5∈{x |x 2+3x -10=0}非p :末位数字是0的自然数不能被5整除∵p 真q 假 ∴“p 或q ” 为真,“ p 且q ”为假,“非p ”为假。
高一数学上册第一章集合与简易逻辑精品教案
课 题:1.1集合-集合的概念(1)教学过程:一、复习引入:1.集合论的创始人——康托尔(德国数学家)(见附录);2.“物以类聚”,“人以群分”;二、讲解新课:阅读教材第一部分,问题如下:(1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的?(3)集合中元素的特性是什么?(一)集合的有关概念由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的.我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集.集合中的每个对象叫做这个集合的元素.定义:一般地,某些指定的对象集在一起就成为一个集合.1、集合的概念(1)集合:某些指定的对象集在一起就形成一个集合(简称集)。
(2)元素:集合中每个对象叫做这个集合的元素。
2、常用数集及记法(1)非负整数集(自然数集):全体非负整数的集合。
记作N ,{} ,2,1,0=N(2)正整数集:非负整数集内排除0的集N *或N +{} ,3,2,1*=N(3)整数集:全体整数的集合。
记作Z , {} ,,,210±±=Z (4)有理数集:全体有理数的集合记作Q ,{}整数与分数=Q(5)实数集:全体实数的集合。
记作R{}数轴上的点所对应的数=R 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0(2)非负整数集内排除0的集,记作N *或N +Q 、Z 、R 等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z *3、元素对于集合的隶属关系(1)属于:如果a 是集合A 的元素,就说a 属于A ,记作a ∈A(2)不属于:如果a 不是集合A 的元素,就说a 不属于A ,记作A a ∉4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
(2)互异性:集合中的元素没有重复。
(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、⑴集合通常用大写的拉丁字母表示,如A 、B 、C 、P 、Q ……元素通常用小写的拉丁字母表示,如a 、b 、c 、p 、q ……⑵“∈”的开口方向,不能把a ∈A 颠倒过来写。
高一数学集合与简单逻辑 人教版 教案
高一数学集合与简单逻辑第一节集合·课程难点与解析·1.集合(1)集合概念.和几何中的点、线、面一样,集合是数学中最原始的概念之一,不能用其他基本概念来定义,它们也叫做不定义的概念或原始概念.课本通过几个具体例子对集合进行描述性的说明,这也表明集合概念和其他数学概念一样,是从现实世界中由具体事物抽象出来的,而不是数学家凭空臆造出来的.(2)集合中元素的特性.确定性,对于一个给定的集合,集合中的元素必须是确定的,也就说,对于任何一个作为具体研究对象的元素,都能确定这个元素是这个集合的元素或不是这个集合的元素,两种情况必有且只有一种为真.因此,诸如“高一(1)班个子高的同学”,“比较大的角”,就不能构成集合,因为“个子高”和“比较大”没有一个确定的标准.互异性,对于给定集合中的任意两个元素,它们必定不相同,即集合中的元素是没有重复现象的,因此,一个元素在同一集合中只能出现一次.这个特性在解某些问题时非常重要.无序性,由于集体是指一组对象的全体,而不论这些对象的先后顺序,因此在表示集合时,元素排列的先后顺序不影响集合的表示.(3)集合的表示法表示一个集合常用下列两种方法:列举法:把集合中的元素一一列举出来,并写在大括号内表示集合的方法叫列举法.当元素个数较多,或集合有无限多个元素,在用列举法表集合时,可以采用省略号,但应很容易按常规看出该集合中元素的规律.如:“小于100的正奇数”集合可以表示为{1,3,5,7,9,…,99};“负整数”集合可以表示为{-1,-2,-3,-4,…}.描述法:把集合中元素的公共属性描述出来,用确定的条件表示某些对象是否属于这个集合的方法叫描述法.描述法中,竖线前面是这个集合的“代表元素”的一般形式,竖线后面是这个集合元素的公共属性.如:{x|x+3=3x-1}表示元素x是方程x+3=3x-1的解,即x=2,亦即{x|x+3=3x-1}={x|x=2}={2}。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版高中数学 教案+学案 综合汇编
第1章 集合
第八教时
教材:交集与并集(3)
目的:复习交集与并集,并处理“教学与测试”内容,使学生逐步达到熟练技巧。
过程:
一、复习:交集、并集
二、1.如图(1) U 是全集,A ,B 是U 的两个子集,图中有四个用数字标出的区域,试填下表:
图(1)
图(2)
2.如图(2) U 是全集,A ,B ,C 是U 的三个子集,图中有8个用数字标
出的区域,试填下表: (见右半版)
3.已知:A={(x,y)|y=x 2+1,x ∈R} B={(x,y)| y=x+1,x ∈R }求A ∩B 。
解:
区域号 相应的集合 1 C U A ∩C U B 2 A ∩C U B 3 A ∩B 4
C U A ∩B
集合 相应的区域号 A 2,3 B 3,4 U 1,2,3,4 A ∩B
3
A
2
3 B
4
1
U
8
C
6 7 B 4 5
3 2
A 1 U
∴A∩B= {(0,1),(1,2)}
区域号相应的集合
1 C U A∩C U B∩C U C
2 A∩C U B∩C U C
3 A∩B∩C U C
4 C U A∩B∩C U C
5 A∩C U B∩C
6 A∩B∩C
7 C U A∩B∩C
8 C U A∩C U B∩C
三、《教学与测试》P7-P8 (第四课)
P9-P10 (第五课)中例题
如有时间多余,则处理练习题中选择
题
四、作业:上述两课练习题中余下部分集合相应的区域号
A 2,3,5,6
B 3,4,6,7
C 5,6,7,8
∪1,2,3,4,5,6,7,8 A∪B 2,3,4,5,6,7 A∪C 2,3,5,6,7,8 B∪C 3,4,5,6,7,8。