幂函数教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.3 幂函数
教学分析
一、教学目标:
1、掌握幂函数的概念;熟悉α=1,2,3,½,
-1时的1幂函数的图象和性质;能利用幂函数的性质
解决实际问题。
2、通过学生对情境的观察、思考、归纳、总结形成结论,
培养学生的发现问题,解决问题的力。
二、教学重难点:
重点:幂函数的定义,图象与性质。
难点:幂函数的图象与性质。
三、教学准备:
教师:将幂函数
1
231
2
,,,,
y x y x y x y x y x-
=====图象提前画
在小黑板上。
四、教学导图:
教学设计
一、教学过程:
(一)教学内容:幂函数概念的引入。
设计意图:从学生熟悉的背景出发,为抽象出幂函数的概念做准备。这样,既可以让学生体会到幂函数来自于生活,又可以通过对这些案例的观察、归纳、概括、总结出幂函数的一般概念,培养学生发现问题、解决问题的能力。
师生活动:
教师:前面我们学习了指数函数与对数函数,这两类描述客观世界变化规律的数学模型。但是同学们知道,不是所有的客观世界变化规律都能用这两种数学模型来描述。今天,我们将学习新的一类描述客观世界变换规律的数学模型,也就是本书二点三节的幂函数。首先我们来看这样几个实际问题。第一个问题,如果老师现在准备购买单价为每千克1元的蔬菜W 千克,老师总共需要花的钱P是多少?
教师:非常好,老师总共需要花的钱P=W。第二个问题,如果正方形的边长为a,那么正方形的面积S等于多少?
教师:回答的非常正确。面积S=2
a. 下面的问题都很简单,请同学们跟上老师的思路。第三个问题,如果正方体的边长为a,那么他的体积V等于多少了?
教师:对。正方体的体积V=
3
a。第四个问题,
如果已知一个正方形面积等于S,那么这个正方形边长a等于多
少了?
教师:非常正确。通过前面对指数幂的学习,根式与分数指数幂是可以相互转换的,所以根号下S就等于S 的二分之一次方。那么我们的边长a=12S。最后一个问题,认真
听,某人s t内骑自行车行进了1KM,那他的平均速度v等于多少?
教师:回答非常正确。因为我们知道v×t=s 所以v=1
=1t 。好,现在我们一起来观察黑板上这五个具体表达
t
式,我们可以看出第一个表达式中P是W的函数,那第二个表达式了?
教师:非常好,第三个表达式了?
教师:第四个表达式了?
教师:第五个了?
教师:大家回答得非常正确。如果将上面的函数自变量全用x代替,函数值全用y来代替,那么我们可以得到第一个表达式为。。。。。。
教师:第二个表达式?
教师:第三个表达式?
教师:第四个表达式?
教师: 第五个表达式?
教师:回答的非常好。那现在请同学们仔细观察老师用x,y写成的这五个函数它们有哪些共同特征。等一下请
同点?哪些不同点?
教师:不同了?
教师:回答非常正确哈。所以同学们一定不要
混淆了这两类函数,记清楚那个函数的自变量在底数,那个函数的自变量在指数。我们已经明确给出了幂函数的定义,并且却别了幂函数与指数函数。现在我们来做一个练习。
(三)教学内容:课堂练习
设计意图:进一步巩固幂函数概念的理解.
师生活动:
教师: 练习,判断下列函数是否为幂函数
1232
214,,,2,2x y y x y y x y x x =====+。请同学么能严格按照定义,自己动手做一下这几个题目。好。。。第一个是幂函数吗? 教师:为什么了?
教师:非常正确,第二个?
教师:很好,第三个了?
教师:到底是还不是?好好根据定义判断,也
不要忘了形式间的等价转换。
教师:对的,它是一个幂函数,因为我们知道
221y x x
-==,所以根据定义就是一个幂函数。第四个了? 教师:因为我们知道幂前面的系数必须是1,而
本题为2,所以不是。第五个了?
教师:对。定义中没常数项。所以同学没要牢记定义,只要和定义有一点区别都都不是幂函数。
(四)教学内容:幂函数图象与性质的探究
设计意图:通过前面研究指数函数与对数函数的性质的思路方法及步骤,让学生自主探究幂函数的性质,培养学生的自主探究意识及发现问题、解决问题的能力。
师生活动:
教师:通过前面指数函数与对数函数的学习,同学们还记得我们当时是如何来研究函数的性质的吗?
教师:回答的非常正确,根据具体一些函数的图象来研究函数的性质。我们的幂函数也是采取同样的方法。那下面请同学们拿出你们的铅笔、橡皮、直尺和本子,运用列表、描点、连线的方法在同一坐标系下画出黑板上老师给出的这五个例子的图象。这五个例子其实有几个大家并不陌生,在初中的时候就知道它的图象,比如y=x是通过一三象限的一条直线;
2
是开口向上,在x轴上方的抛物线。下面给大家五分钟y x
的时间画出这五个函数的图象。(教师巡视指导,五分钟后。。。。)
教师:同学们都画完了吗?
教师:好的。老师把我们这五个图带到了教室。现在请同学们看着黑板,看一下你画的和老师画的一样吗?
教师:非常好哈。那现在我们根据函数的图象来完成78页的表格。首先我们来填写第一行---定义域。同学们通
过前面的的学习知道定义域对于函数十分重要,研究函数首先就得看定义域。所以同学们在以后做题中要牢记。其实定义域就是x 的取值范围,所以只需左右观察函数的图象。那y x =得定义域是多少了?
教师:非常正确。通过图象就一眼看出y x =的
X 是没有任何限制,可以取遍整个实数R 。同理2y x =的定义域?
教师:3y x = 教师:12y x = 教师:回答正确。通过图象看出12
y x =的图象
只取到零到正无穷,所以定义域为零到正无穷。1y x -=了?
教师:非常好。同学们要注意一点就是定义域,
值域都要写成集合或者区间形式,不要忘记了!下面我们一起来填写第二行—值域。值域就是y 的取值范围,所以只需要上下看。y x =的值域为多少了?
教师:2y x =? 教师:因为图象只取到零到正无穷。3y x =? 教师:12y x
=? 教师:1y x -=?
教师:回答非常正确哈。下面我们来填写第三行
—奇偶性。我们知道奇函数的图象关于原点对称,偶函数的图象关于y 轴对称。那根据这个道理y x =是什么函数?