立体几何中平行与垂直的证明
立体几何平行垂直的证明方法
立体几何平行垂直的证明方法在立体几何中,平行和垂直是两个重要的概念。
平行指的是两条直线或两个平面在平面内没有交点,而垂直则表示两条直线或两个平面之间存在90度的夹角。
在解决立体几何问题时,我们常常需要证明两条线段或两个平面是否平行或垂直。
本文将介绍几种常用的证明方法,帮助读者更好地理解立体几何中平行和垂直的性质。
一、平行线的证明方法1. 共面法:若两条直线在同一个平面内且没有交点,则它们是平行线。
要证明两条直线平行,我们可以找到一个共同的平面,使得这两条直线在该平面内且没有交点。
通过构建图形或使用法向量等方法,可以证明两条直线共面且没有交点,从而得出它们是平行线的结论。
2. 平行线定理:若两条直线与第三条直线分别平行,则这两条直线也是平行线。
这一方法常用于证明平行线的性质,通过构建平行线与其他直线的交点关系,可以得出所求结论。
3. 平行线的性质:在平面几何中,平行线具有很多性质。
常见的平行线定理包括等角定理、同位角定理、内错角定理等。
通过运用这些性质,可以证明两条直线平行。
二、垂直关系的证明方法1. 垂直定理:若两条直线互相垂直,则构成的四个角中有两个互为相应角。
根据这一定理,我们可以通过证明两个角互为相应角,从而得出两条直线互相垂直的结论。
2. 垂线定理:若两条直线互相垂直,则它们的斜率之积等于-1。
这一方法常用于证明两条直线垂直的情况。
通过计算两条直线的斜率,如果它们的斜率之积等于-1,则可以得出它们垂直的结论。
3. 垂直角的性质:在平面几何中,垂直角的性质是我们常用的性质之一。
两条直线垂直时,其错角是互相垂直的。
通过构建直线的错角,可以证明所求的两条直线垂直关系。
三、平面的平行和垂直关系的证明方法1. 共面定理:在空间几何中,三条或三条以上的直线如果在同一个平面内,则它们是共面的。
通过在空间中构建直线和平面的关系,可以证明所求直线是否共面。
2. 平行平面定理:若两个平面各与第三个平面平行,则这两个平面也是平行的。
立体几何平行垂直的证明
一、平行问题的证明方法
平行问题证明的基本思路:平面平行 线面平行 线线平行.
1.线线平行的证明方法:
①利用平面几何中的定理:三角形(或梯形)的中位线与底边平行;
平行四边形的对边平行;
利用比例、……;
②三线平行公理:平行于同一条直线的两条直线互相平行;
③线面平行的性质定理:如果一条直线平行于一个平面,经过这条直线的平面和这个平面相交,则这条直线和
垂直问题证明的基本思路:面面垂直 线面垂直 线线垂直.
1.线线垂直的证明方法:
①利用平面几何中的定理:勾股定理、等腰三角形,三线合一、菱形对角线、直径所对的圆周角是直角、点在
线上的射影。
②线面垂直的定义:如果一条直线和一个平面垂直,那么这条直线就和这个平面内任意的直线都垂直;
③三垂线定理或三垂线逆定理:如果平面内的一条直线和斜线的射影垂直,则它和斜线垂直;反之亦成立。
交线行;
④面面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么它们的交线平行;
⑤线面垂直的性质定理:垂直于同一个平面的两条直线平行。
2.线面平行的证明方法:
①线面平行的定义:直线与平面没有公共点;
②线面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行;
④如果两条平行线中的一条垂直于一条直线,则另一条也垂直于这条直线。
2.线面垂直的证明方法:
①线面垂直的定义:直线与平面内任意直线都垂直;
②线面垂直的判定定理:如果一条直线和一个平面内的两条相交直线垂直,那么这条直线垂直于这个平面;
③线面垂直的性质定理:两条平行直线中的一条垂直于平面,则另一条也垂直于这个平面;
1.如图,四棱锥 中,四边形 为矩形, 为等腰三角形, ,平面 平面 ,且 . 分别为 和 的中点.
方法技巧专题05立体几何中平行与垂直证明
方法技巧专题05立体几何中平行与垂直证明平行与垂直证明是立体几何中的重要内容之一,本文将介绍一些方法和技巧用于解决平行与垂直的证明问题。
一、平行性的证明方法:1.公共光线法:如果两条直线分别与第三条直线相交,在相交点处的两个对应的内角相等,则这两条直线是平行的。
例如,如果直线AB和CD都与直线EF相交,在交点F处的∠AFC=∠DFB,则AB,CD。
2.反证法:假设AB和CD不平行,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不平行,则可以证明存在一条直线EF与这两条直线分别相交于F和G,且所形成的内角∠FAG=π/2-∠DAF≠π/2,则与直线EF平行,这是与已知条件矛盾的,所以AB,CD。
3.平行线性质法:利用平行线的性质来证明其他线段平行。
例如,根据平行线的交角性质可证明,如果一条直线与一对平行线之一形成等于直角的角,则与另一条平行线也形成等于直角的角。
二、垂直性的证明方法:1.垂直线性质法:利用垂直线的性质来证明其他线段垂直。
例如,如果直线AB与直线CD相交于点E,且∠AED=∠BEC=π/2,则直线AB垂直于直线CD。
2.垂直线段法:如果两条线段的斜率之积为-1,则这两条线段垂直。
例如,如果直线AB和直线CD的斜率之积为-1,则AB⊥CD。
3.反证法:假设AB和CD不垂直,然后通过构造形式,证明得到矛盾。
例如,如果直线AB和CD不垂直,则可以证明存在一条直线EF与这两条直线相交于点G,且所形成的两个内角∠GAC和∠GDB之和小于π/2,这与直线EF垂直的性质矛盾,所以AB⊥CD。
综上所述,平行与垂直证明可以通过公共光线法、反证法、平行线性质法、垂直线性质法、垂直线段法等方法和技巧来解决。
在实际问题中,可以根据已知条件选择合适的方法和技巧,灵活运用来解决平行与垂直的证明问题。
完整版)立体几何中平行与垂直证明方法归纳
完整版)立体几何中平行与垂直证明方法归纳本文系统总结了立体几何中平行与垂直证明方法,适合高三总复时学生构建知识网络、探求解题思路、归纳梳理解题方法。
以下是常见证明方法:一、“平行关系”常见证明方法一)直线与直线平行的证明1.利用平行四边形的对边互相平行的特性;2.利用三角形中位线性质;3.利用空间平行线的传递性(即公理4);4.利用直线与平面平行的性质定理;5.利用平面与平面平行的性质定理;6.利用直线与平面垂直的性质定理;7.利用平面内直线与直线垂直的性质;8.利用定义:在同一个平面内且两条直线没有公共点。
二)直线与平面平行的证明1.利用直线与平面平行的判定定理;2.利用平面与平面平行的性质推论;3.利用定义:直线在平面外,且直线与平面没有公共点。
三)平面与平面平行的证明1.利用平面与平面平行的判定定理;2.利用某些空间几何体的特性;3.利用定义:两个平面没有公共点。
二、“垂直关系”常见证明方法一)直线与直线垂直的证明1.利用直角三角形的两条直角边互相垂直的特性;2.看夹角:两条共(异)面直线的夹角为90°,则两直线互相垂直;3.利用直线与平面垂直的性质:如果一条直线与一个平面垂直,则这条直线垂直于此平面内的所有直线。
1.利用空间几何体的特性:例如长方体侧棱垂直于底面。
2.观察直线与平面所成角度:若直线与平面所成角为90度,则该直线垂直于平面。
3.利用直线与平面垂直的判定定理:若一条直线与一个平面内的两条相交直线垂直,则该直线垂直于此平面。
4.利用平面与平面垂直的性质定理:若两个平面互相垂直,则在这两个平面内分别作垂直于交线的直线,则这两条直线互相垂直。
5.利用常用结论:例如若一条直线平行于一个平面的垂线,则该直线也垂直于此平面。
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量的确定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数x ,y ,使v =x v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1 ∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)直线的方向向量是唯一确定的.( )(2)平面的单位法向量是唯一确定的.( )(3)若两平面的法向量平行,则两平面平行.( )(4)若两直线的方向向量不平行,则两直线不平行.( )(5)若a ∥b ,则a 所在直线与b 所在直线平行.( )(6)若空间向量a 平行于平面α,则a 所在直线与平面α平行.( )1.下列各组向量中不平行的是( )A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.已知平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则下列点P 中,在平面α的是( )A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.已知AB →=(1,5,-2),BC →=(3,1,z ),若AB →⊥BC →,BP →=(x -1,y ,-3),且BP ⊥平面ABC ,则实数x ,y ,z 分别为______________.4.若A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(x ,y ,z ),则x ∶y ∶z =________.题型一 证明平行问题例1 (2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F,M,N分别是棱AB,AD,A1B1,A1D1的中点,点P,Q分别在棱DD1,BB1上移动,且DP=BQ=λ(0<λ<2).(1)当λ=1时,证明:直线BC1∥平面EFPQ;(2)是否存在λ,使平面EFPQ与平面PQMN所成的二面角为直二面角?若存在,求出λ的值;若不存在,说明理由.题型二证明垂直问题例2如图所示,正三棱柱(底面为正三角形的直三棱柱)ABC—A1B1C1的所有棱长都为2,D为CC1的中点.求证:AB1⊥平面A1BD.如图所示,在四棱锥P-ABCD中,PC⊥平面ABCD,PC =2,在四边形ABCD中,∠B=∠C=90°,AB=4,CD=1,点M在PB上,PB=4PM,PB与平面ABCD成30°角.(1)求证:CM∥平面PAD;(2)求证:平面PAB⊥平面PAD.题型三解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,若存在,求出点P的位置,若不存在,请说明理由.如图所示,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)若SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A 组 专项基础训练1.若直线l 的方向向量为a =(1,0,2),平面α的法向量为n =(-2,0,-4),则( )A .l ∥αB .l ⊥αC .l ⊂αD .l 与α相交2.若AB →=λCD →+μCE →,则直线AB 与平面CDE 的位置关系是( )A .相交B .平行C .在平面D .平行或在平面3.已知A (4,1,3),B (2,-5,1),C (3,7,-5),则平行四边形ABCD 的顶点D 的坐标是( )A .(2,4,-1)B .(2,3,1)C .(-3,1,5)D .(5,13,-3)4.已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三向量共面,则实数λ等于( )A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为( )A .60°B .45°C .90°D .以上都不正确6.已知平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12PD .证明:平面PQC ⊥平面DCQ .10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为( )A .(1,1,1)B .(23,23,1)C .(22,22,1) D .(24,24,1) 12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,若α⊥β,则t 等于( )A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN →的实数λ有________个.14.如图所示,已知直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P—ABCD中,PD⊥底面ABCD,底面ABCD为正方形,PD=DC,E、F分别是AB、PB的中点.(1)求证:EF⊥CD;(2)在平面PAD求一点G,使GF⊥平面PCB,并证明你的结论.。
立体几何位置关系-平行与垂直证明方法汇总
立体几何位置关系-平行与垂直证明方法汇总(一)立体几何中平行问题证明直线和平面平行的方法有:①利用定义采用反证法;②平行判定定理;③利用面面平行,证线面平行。
主要方法是②、③两法在使用判定定理时关键是确定出面内的与面外直线平行的直线.常用具体方法:中位线和相似例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点.求证:PC∥面BDQ.证明:如图,连结AC交BD于点O.∵ABCD是平行四边形,∴A O=O C.连结O Q,则O Q在平面BDQ内,且O Q是△APC的中位线,∴PC∥O Q.∵PC在平面BDQ外,∴PC∥平面BDQ.例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证:(1)E、F、B、D四点共面;(2)面AMN∥面EFBD.证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥21B 1D 1.∴EF ∥21BD. ∴E 、F 、B 、D 对共面.(2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ⊂面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O ,∴四边形PA O Q 为平行四边形. ∴PA ∥O Q.而O Q ⊂平面EFBD ,∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ⊂面AMN , ∴平面AMN ∥平面EFBD.例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=46,A 是P 1D 的中点,沿AB 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PEC ;证明:如图,设PC 中点为G ,连结FG ,则FG//CD//AE ,且FG=21CD=AE , ∴四边形AEGF 是平行四边形 ∴AF//EG ,又∵AF ⊄平面PEC ,EG ⊂平面PEC , ∴AF//平面PEC例4、 正方形ABCD 与正方形ABEF 所在平面相交于AB ,在AE 、BD 上各有一点P 、Q ,且AP=DQ.求证:PQ ∥面BCE.证法一:如图(1),作PM ∥AB 交BE 于M ,作QN ∥AB 交BC 于N,连接MN, 因为面ABCD ∩面ABEF=AB,则AE=DB. 又∵AP=DQ, ∴PE=QB.又∵PM ∥AB ∥QN, ∴AE PE AB PM =,BD BQDC QN =. ∴DCQNAB PM =. ∴PM ∥QN.四边形PMNQ 为平行四边形. ∴PQ ∥MN.又∵MN ⊂面BCE ,PQ ⊄面BCE , ∴PQ ∥面BCE.证法二:如图(2),连结AQ 并延长交BC 或BC 的延长线于点K ,连结EK. ∵AD ∥BC, ∴QKAQQB DQ =. 又∵正方形ABCD 与正方形ABEF 有公共边AB ,且AP=DQ ,∴PEAPQK AQ =.则PQ ∥EK. ∴EK ⊂面BCE ,PQ ⊄面BCE. ∴PQ ∥面BCE.例5、正方形ABCD 交正方形ABEF 于AB (如图所示)M 、N 在对角线AC 、FB 上且AM= FN 。
立体几何平行垂直的判定定理与性质定理总结
1线面平行的判定定理:
如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行.
2线面平行的性质定理:
一条直线与一个平面平行,如果过该直线的平面与此平面相交,那么该直线与交线平行.
3面面平行的判定定理:
如果一个平面内的两条相交直线与另一个平面平行,那么这两个平面平行.
4面面平行的性质定理:
两个平面平行,如果另一个平面与这两个平面相交,那么两条交线平行
. 5线面垂直的判定定理:
如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直.
6线面垂直的性质定理:
垂直于同一个平面的两条直线平行.
7面面垂直的判定定理:
如果一个平面过另一个平面的垂线,那么这两个平面垂直.
8面面垂直的性质定理:
两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直.。
立体几何中平行、垂直的证明
三角形的中位线平行且相等于底边的一半。
(三b β⎪=⎭如果两个平行平面同时和第三个平面相交,那⎪=⇒⎬⎪=⎭a b γγ垂直于同一个平面的两条直线平行。
(线面平面外一条直线与此平面内的一条直线平行,线中的一条平行于这个平面,则另一条也与这个平一个平面内的两条相交直线与另一个平面平////b P a b αα⎪⇒=⎬⎪⎪⎪⎭一、证明线线垂直说明:证明线线垂直的方法有很多,要善于抓住题意中的“垂直信息”. 常用的垂直信息有:①若两条直线所成的角为90︒,则这两条直线垂直。
(线线垂直的定义,包括相交垂直和异面垂直)②一条直线和一个平面垂直,则这条直线垂直于该平面内的任一直线。
(线面垂直的性质)符号:⊥⎫⇒⊥⎬⊂⎭ll a aαα③若题意中出现线段的长度,则验证三角形的三边是否满足勾股定理,若满足,则两短边互相垂直。
④若题意中出现类似“AB是圆O的直径,点C是圆周上不同于A、B的任意一点”的情况,则必有AC BC⊥。
⑤若题意中出现“直棱柱”、“正方体”、“长方体”,则其侧棱垂直于底面,再结合②。
⑥若题意中出现“等腰三角形”、“等边三角形”、“正三角形”,则底边的中线垂直于底边。
⑦若题意中出现“菱形”、“正方形”,则其对角线互相垂直。
二、证明线面垂直①一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
(线面垂直的判定定理)符号:mnam n Pa ma nααα⊂⎫⎪⊂⎪⎪⇒⊥=⎬⎪⊥⎪⊥⎪⎭②两条直线平行,其中一条与一个平面垂直,则另一条也与这个平面垂直。
符号://a bbaαα⎫⇒⊥⎬⊥⎭③两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
(面面垂直的性质定理)符号:⊥⎫⎪=⎪⇒⊥⎬⊂⎪⎪⊥⎭laaa lαβαβαβ④一条直线与两个平行平面中的一个垂直,则该直线也与另一个平面垂直。
三、证明面面垂直①一个平面过另一个平面的垂线,则这两个平面垂直。
(面面垂直的判定定理)符号:aaααββ⊥⎫⇒⊥⎬⊂⎭②两个平面相交,如果它们所成的二面角是直二面角,则这两个平面垂直。
立体几何证明8条定理
立体几何证明8条定理立体几何是几何学的一个分支,研究的是在三维空间中的图形和体的性质。
在立体几何中有许多定理,其中一些重要的定理包括平行线定理、垂直线定理、欧拉定理、等角定理、切线定理、割线定理、同位角定理和三角形内角和定理等。
下面将详细讨论这些定理:1.平行线定理:如果两条平行线被一组平行线截断,那么它们的对应线段成比例。
这个定理可以用于证明两条线平行。
2.垂直线定理:如果两条直线相交,且其中一条直线垂直于另一条直线,那么相交处的四个角都是直角。
这个定理可以用于证明两条线垂直。
3.欧拉定理:在任意一个凸多面体中,顶点数、棱数和面数之间存在一个关系:顶点数加上面数等于棱数加上2、这个定理被应用于立体几何中的多面体的计算。
4.等角定理:如果两条线分别与一条平行线相交,且其中一对内错角(相对于平行线的两条线之间的两个角)或一个内错角和一个外错角(与平行线的两条线相交形成的一对内角和一对外角)相等,那么这两条线是平行线。
这个定理可以用于证明平行线。
5.切线定理:给定一个圆和一个与圆相切且通过切点的直线,那么切线的切点与切线所跨越的弦的两个端点之间的角是直角。
这个定理可以用于证明圆的性质。
6.割线定理:给定一个圆和一个与圆相交的直线,那么直线与圆的切线所跨越的弦的两个端点之间的角相等。
这个定理也可以用于证明圆的性质。
7.同位角定理:如果两条平行线被一条截线截断,那么同位角(相对于平行线的两条线的每一对内角)相等。
这个定理可以用于证明平行线。
8.三角形内角和定理:三角形的三个内角的度数之和等于180度。
这个定理是三角形的基本性质,可以用于证明其他三角形的性质。
这些定理是立体几何中的一些基本定理,通过运用它们可以推导出其他一些更复杂的定理。
这些定理不仅在几何学中有重要的应用,而且在物理学、工程学等其他学科中也有广泛的应用。
立体几何中的平行与垂直判定
立体几何中的平行与垂直判定立体几何是研究三维空间中的几何关系和性质的一门学科,平行与垂直判定是其中重要的一部分。
在解题过程中,准确判定两个线、面或空间立体之间的平行与垂直关系至关重要。
本文将介绍几种常用的判定方法,并通过具体例子进行说明。
一、平面与平面的判定在立体几何中,平面与平面间的平行与垂直关系是经常需要判断的。
下面将介绍两种常用的判定方法。
1. 垂直判定两个平面互相垂直的条件是它们的法向量垂直。
设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2垂直的条件可以表示为:n1·n2 = 0(向量的点积为0)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。
我们可以计算两个法向量的点积:n1·n2 = (2, -1, 3)·(1, 2, -1) = 2×1 + (-1)×2 + 3×(-1) = 0因此,平面1和平面2是垂直的。
2. 平行判定两个平面互相平行的条件是它们的法向量平行。
设平面1的法向量为n1(x1, y1, z1),平面2的法向量为n2(x2, y2, z2),则平面1和平面2平行的条件可以表示为:n1 = k·n2(k为非零实数)例如,假设平面1过点A(1, 2, 3),其法向量为n1(2, -1, 3);平面2过点B(4, -1, 2),其法向量为n2(1, 2, -1)。
我们可以通过判断两个法向量的比例关系来确定其是否平行。
在本例中,两个法向量的各个分量之间的比例并不相等,因此平面1和平面2不是平行的。
二、直线与直线的判定在立体几何中,直线与直线的平行与垂直关系也经常需要判断。
下面将介绍两种常用的判定方法。
1. 垂直判定两条直线互相垂直的条件是它们的方向向量垂直。
立体几何中平行与垂直的证明 3
一: 点、直线、平面之间的关系 1、线线平行的判断:(1)、平行于同一直线的两直线平行。
(2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。
(3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。
(4)、垂直于同一平面的两直线平行。
2、线线垂直的判断:(1)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。
(2)、一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。
3、线面平行的判断:(1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。
(2)、两个平面平行,其中一个平面内的直线必平行于另一个平面。
4、线面垂直的判断:(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。
(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。
(3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
(4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。
5、面面平行的判断:(1)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。
(2)垂直于同一条直线的两个平面平行。
6、面面垂直的判断:一个平面经过另一个平面的垂线,这两个平面互相垂直。
二:例题1、设l 是直线,βα,是两个不同的平面( )A 、若βα//,//l l ,则βα//B 、若βα⊥l l ,//,则βα⊥ C.若αβα⊥⊥l ,,则β⊥l D.若αβα//,l ⊥,则β⊥l 2、下列命题正确的是( )A.若两条直线和同一个平面所成的角相等,则这两条直线平行。
B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行。
C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行。
D.若两个平面都垂直于第三个平面,则这两个平面平行。
3、设平面α与平面β相交于直线m ,直线a 在平面α内,直线b 在平面β内,且,m b ⊥则“βα⊥”是b a ⊥的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要4、若l 为一条直线,γβα,,为三个互不重合的平面,给出下面三个命题:①;,βαγβγα⊥⇒⊥⊥② βαγβγα⊥⇒⊥//, ③βαβα⊥⇒⊥l l ,// 其中正确的有( )A.① B ①② C.②③ D.①②③5、设m l ,是两条不同的直线,α是一个平面,则下列命题正确的是( ) A.若,,α⊂⊥m m l 则α⊥l B.若m l l //,α⊥,则α⊥m C.若,,//αα⊂m l 则m l // D.若αα//,//m l ,则m l //6、设m l ,是两条不同的直线,βα,是两个不同的平面,给出下列四个命题: ①若,,m l m ⊥⊥α则α//l ②若m l l m //,,βα⊂⊥,则βα⊥ ③若,//,,//βαβαm l ⊥则m l ⊥ ④若,,//,//βαβα⊂m l 则m l //其中正确的个数是( ) A.1 B.2 C.3 D.4 7、设l 为直线,βα,是两个不同的平面,下列命题中正确的是( ) A 、若βα//,//l l ,则βα// B 、若βα⊥⊥l l ,,则βα// C 、若βα//,l l ⊥,则βα// D 、若βαα⊥,//l ,则β⊥l 8、设n m ,是两条不同的直线,βα,是两个不同的平面( ) A 、若αα//,//n m ,则n m // B 、若βα//,//m m ,则βα// C 、若α⊥m n m ,//,则α⊥n D 、若βαα⊥,//m ,则β⊥m 9、设n m ,是两条不同的直线,βα,是两个不同的平面( ) A 、若m l =βαα ,//,则m l // B 、若α⊂m m l ,//,则α//l C 、若βαβα//,//,//m l ,则m l // D 、若βαβα⊥⊥⊥,,m l ,则m l ⊥D 1B 1D AB CE1A 1C 10、下列命题错误的是( )A 、若平面βα⊥,那么α内一定存在直线平行于βB 、若平面α不垂直于β,那么平面α内一定不存在直线垂直于平面βC 、若平面α⊥平面γ,平面⊥β平面γ,l =βα ,那么⊥l 平面γD 、若平面⊥α平面β,那么平面α内所有直线都垂直于平面β立体几何中平行与垂直的证明例1.已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点. 求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1.【变式一】如图,在长方体1111D C B A ABCD -中,1,11>==AB AA AD ,点E 在棱AB 上移动。
立体几何中的向量方法——证明平行及垂直
立体几何中的向量方法(一)——证明平行与垂直1.直线的方向向量与平面的法向量确实定(1)直线的方向向量:在直线上任取一非零向量作为它的方向向量.(2)平面的法向量可利用方程组求出:设a ,b 是平面α两不共线向量,n 为平面α的法向量,则求法向量的方程组为⎩⎨⎧n ·a =0,n ·b =0.2.用向量证明空间中的平行关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1∥l 2(或l 1与l 2重合)⇔v 1∥v 2.(2)设直线l 的方向向量为v ,与平面α共面的两个不共线向量v 1和v 2,则l ∥α或l ⊂α⇔存在两个实数*,y ,使v =*v 1+y v 2.(3)设直线l 的方向向量为v ,平面α的法向量为u ,则l ∥α或l ⊂α⇔v ⊥u .(4)设平面α和β的法向量分别为u 1,u 2,则α∥β⇔u 1∥u 2.3.用向量证明空间中的垂直关系(1)设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.(2)设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v ∥u .(3)设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0.【思考辨析】判断下面结论是否正确(请在括号中打"√〞或"×〞)(1)直线的方向向量是唯一确定的.()(2)平面的单位法向量是唯一确定的.()(3)假设两平面的法向量平行,则两平面平行.()(4)假设两直线的方向向量不平行,则两直线不平行.()(5)假设a ∥b ,则a 所在直线与b 所在直线平行.()(6)假设空间向量a 平行于平面α,则a 所在直线与平面α平行.()1.以下各组向量中不平行的是()A .a =(1,2,-2),b =(-2,-4,4)B .c =(1,0,0),d =(-3,0,0)C .e =(2,3,0),f =(0,0,0)D .g =(-2,3,5),h =(16,24,40)2.平面α有一点M (1,-1,2),平面α的一个法向量为n =(6,-3,6),则以下点P 中,在平面α的是()A .P (2,3,3)B .P (-2,0,1)C .P (-4,4,0)D .P (3,-3,4)3.AB →=(1,5,-2),BC →=(3,1,z ),假设AB →⊥BC →,BP →=(*-1,y ,-3),且BP ⊥平面ABC ,则实数*,y ,z 分别为______________.4.假设A (0,2,198),B (1,-1,58),C (-2,1,58)是平面α的三点,设平面α的法向量n =(*,y ,z ),则*∶y ∶z =________.题型一 证明平行问题例1(2013·改编)如图,在四面体A -BCD 中,AD ⊥平面BCD ,BC ⊥CD ,AD =2,BD =22,M 是AD 的中点,P 是BM 的中点,点Q 在线段AC 上,且AQ =3QC .证明:PQ ∥平面BCD .如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,E ,F ,M ,N 分别是棱AB ,AD ,A 1B 1,A 1D 1的中点,点P ,Q 分别在棱DD 1,BB 1上移动,且DP =BQ =λ(0<λ<2).(1)当λ=1时,证明:直线BC 1∥平面EFPQ ;(2)是否存在λ,使平面EFPQ 与平面PQMN 所成的二面角为直二面角?假设存在,求出λ的值;假设不存在,说明理由.题型二 证明垂直问题例2 如下图,正三棱柱(底面为正三角形的直三棱柱)ABC —A 1B 1C 1的所有棱长都为2,D 为CC 1的中点.求证:AB 1⊥平面A 1BD .如下图,在四棱锥P -ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°角.(1)求证:CM ∥平面PAD ;(2)求证:平面PAB ⊥平面PAD .题型三 解决探索性问题例3 如图,棱柱ABCD-A1B1C1D1的所有棱长都等于2,∠ABC和∠A1AC均为60°,平面AA1C1C⊥平面ABCD.(1)求证:BD⊥AA1;(2)求二面角D-A1A-C的余弦值;(3)在直线CC1上是否存在点P,使BP∥平面DA1C1,假设存在,求出点P的位置,假设不存在,请说明理由.如下图,四棱锥S—ABCD的底面是正方形,每条侧棱的长都是底面边长的2倍,P为侧棱SD上的点.(1)求证:AC⊥SD.(2)假设SD⊥平面PAC,则侧棱SC上是否存在一点E,使得BE∥平面PAC.假设存在,求SE∶EC的值;假设不存在,试说明理由.利用向量法解决立体几何问题典例:如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.(1)证明:PB∥平面AEC;(2)设二面角D-AE-C为60°,AP=1,AD=3,求三棱锥E-ACD的体积.A组专项根底训练1.假设直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则()A.l∥αB.l⊥αC.l⊂αD.l与α相交2.假设AB→=λCD→+μCE→,则直线AB与平面CDE的位置关系是()A.相交B.平行C.在平面D.平行或在平面3.A(4,1,3),B(2,-5,1),C(3,7,-5),则平行四边形ABCD的顶点D的坐标是() A.(2,4,-1) B.(2,3,1)C.(-3,1,5) D.(5,13,-3)4.a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),假设a,b,c三向量共面,则实数λ等于()A.627B.637C.607D.6575.如图,在长方体ABCD —A 1B 1C 1D 1中,AB =2,AA 1=3,AD =22,P 为C 1D 1的中点,M 为BC 的中点.则AM 与PM 所成的角为()A .60°B .45°C .90°D .以上都不正确6.平面α的三点A (0,0,1),B (0,1,0),C (1,0,0),平面β的一个法向量n =(-1,-1,-1),则不重合的两个平面α与β的位置关系是________.7.设点C (2a +1,a +1,2)在点P (2,0,0)、A (1,-3,2)、B (8,-1,4)确定的平面上,则a =________.8.如图,在正方体ABCD —A 1B 1C 1D 1中,棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =2a 3,则MN 与平面BB 1C 1C 的位置关系是________. 9.如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB=12PD .证明:平面PQC ⊥平面DCQ . 10.如图,在底面是矩形的四棱锥P -ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面PAD ⊥平面PDC .B 组 专项能力提升11.如图,正方形ABCD 与矩形ACEF 所在平面互相垂直,AB =2,AF =1,M 在EF 上,且AM ∥平面BDE ,则M 点的坐标为()A .(1,1,1)B .(23,23,1) C .(22,22,1) D .(24,24,1)12.设u =(-2,2,t ),v =(6,-4,4)分别是平面α,β的法向量,假设α⊥β,则t 等于()A .3B .4C .5D .613.在正方体ABCD —A 1B 1C 1D 1中,P 为正方形A 1B 1C 1D 1四边上的动点,O 为底面正方形ABCD 的中心,M ,N 分别为AB ,BC 的中点,点Q 为平面ABCD 一点,线段D 1Q 与OP 互相平分,则满足MQ →=λMN→的实数λ有________个.14.如下图,直三棱柱ABC —A 1B 1C 1中,△ABC 为等腰直角三角形,∠BAC =90°,且AB =AA 1,D 、E 、F 分别为B 1A 、C 1C 、BC 的中点.求证:(1)DE ∥平面ABC ;(2)B 1F ⊥平面AEF .15.在四棱锥P —ABCD 中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD =DC ,E 、F 分别是AB 、PB 的中点.(1)求证:EF ⊥CD ;(2)在平面PAD 求一点G ,使GF ⊥平面PCB ,并证明你的结论.。
立体几何中平行与垂直的证明(5篇模版)
立体几何中平行与垂直的证明(5篇模版)第一篇:立体几何中平行与垂直的证明立体几何中平行与垂直的证明姓名2.掌握正确的判定和证明平行与垂直的方法.D1【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;例1.已知正方体ABCD—A1B1C1D1,O是底ABCD对角线的交点.求证:(1)C1O//平面AB1D1;(2)A1C⊥平面AB1D1.【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:ADC1BC【变式一】如图,在长方体ABCD-A1B1C1D1中,AD=AA1=1,AB>1,点E在棱AB上移动。
求证:D1E⊥A1D;【反思与小结】1.证明线线垂直的方法:1.谈谈对“点E在棱AB上移动”转化的动态思考 2.比较正方体、正四棱柱、长方体【变式二A】如图平面ABCD⊥平面ABEF,ABCD是正方形,ABEF是矩形,且AF=D1AEBCCAD=2,G是EF的中点,2(1)求证平面AGC⊥平面BGC;(2)求空间四边形AGBC的体积。
反思与小结1.证明面面垂直的方法:2.如果把【变式二A】的图复原有什么新的认识?【变式二B】.如图,在直三棱柱(侧棱与底面垂直的三棱柱)ABC-A1B1C1中,AB=8,AC=6,BC(Ⅰ)求证:=10,D是BC边的中点.AB⊥A1C;(Ⅱ)求证:AC1∥ 面AB1D;【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识?【变式三】如图组合体中,三棱柱ABC-A1B1C1的侧面ABB1A1 是圆柱的轴截面,C是圆柱底面圆周上不与A、B重合一个点.(Ⅰ)求证:无论点C如何运动,平面A1BC⊥平面A1AC;(Ⅱ)当点C是弧AB的中点时,求四棱锥A1-BCC1B1与圆柱的体积比.【反思与小结】1.观察两个图之间的变化联系,写出感受。
2.和【变式一】进行比较,谈谈你把握动态问题的新体会【变式四】如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,F 为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥BE;(2)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同?_P【变式五】如图5所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上。
立体几何平行垂直的证明方法课件
垂直于这条直线。
4
五、线面垂直的证明方法:
1.定义法:直线与平面内任意直线都垂直。 2.点在面内的射影。 3.如果一条直线和一个平面内的两条相交直线垂直,那么
这条直线垂直于这个平面。(线面垂直的判定定理) 4.如果两个平面互相垂直,那么在一个平面内垂直于它们
那么这两个平面平行。(面面平行的判定定理) 3.平行于同一平面的两个平面平行。 4.垂直于同一直线的两个平面平行。 5.面面平行的判定定理的推论。
3
四、线线垂直的证明方法:
1.勾股定理。 2.等腰三角形,三线合一 3.菱形对角线,等几何图形 4.直径所对的圆周角是直角。 5.点在线上的射影。 6.如果一条直线和一个平面垂直,那么这条直线就和这个
交线的直线垂直于另一个平面。(面面垂直的性质定理) 5.两条平行直线中的一条垂直于平面,则另一条也垂直于
这个平面。 6.一条直线垂直于两平行平面中的一个平面,则必垂直于
另一个平面。 7、两相交平面同时垂直于第三个平面, 那么两平面交线垂
直于第三个平面。(小题用) 8、过一点, 有且只有一条直线与已知平面垂直。(小题用) 9、过一点, 有且只有一个平面与已知直线垂直。(小题用)
9
(3)解 ∵EF⊥FB,∠BFC=90° ∴BF⊥平面 CDEF. ∴BF 为四面体 B-DEF 的高. 又 BC=AB=2,∴BF=FC= 2. VB-DEF=13×12×1× 2× 2=31.
10
8
+ (2)证明 由四边形ABCD为正方形, + 得AB⊥BC. + 又EF∥AB,∴EF⊥BC. + 而EF⊥FB,∴EF⊥平面BFC. + ∴EF⊥FH. ∴AB⊥FH. + 又BF=FC,H为BC的中点,∴FH⊥BC. + ∴FH⊥平面ABCD. ∴FH⊥AC. + 又FH∥EG,∴AC⊥EG. + 又AC⊥BD,EG∩BD=G, + ∴AC⊥平面EDB.
空间立体几何中的平行、垂直证明
∴DE∥平面 PAB.
精选ppt
H
构造平行四边行法
23
(2)证明 在直角梯形中,CB⊥AB, 又∵平面 PAB⊥平面 ABCD, 且平面 PAB∩平面 ABCD=AB, ∴CB⊥平面 PAB. ∵CB⊂平面 PBC, ∴平面 PBC⊥平面 PAB.
精选ppt
看到中点找中点
D1 A1
DE A
C1
B1
F
C B
精选ppt
7
定理应用
空间中的平行
方法一):构造平行四边形
D1 A1
DE A
M
C1
B1
F
C
N
B
精选ppt
8
定理应用
空间中的平行
方法二):构造平行平面
D1 A1
DE A
C1
B1
F
HC B
精选ppt
9
定理应用
空间中的平行
例 2.如图所示, P在 AB四 C 中D 棱 ,锥 已知 A四 BC 是 边 D 形 平行四M 边 ,N分 形别 ,是PA点 ,, BC的中 证明:MND //面PPC
精选ppt
25
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
感 谢
感 谢
阅阅
读读
分析: (1)证明线面平行只需在平面内找一条和 该直线平行的直线即可,也可转化为经过这条直线 的平面和已知平面平行;(2)证明面面垂直,只需在 一个平面内找到另一个平面的垂线.
精选ppt
21
立体几何中平行与垂直证明方法归纳
a ∥
a∥
α
a a
β
3) 利用定义:直线在平面外,且直线与平面没有公共点
(三)平面与平面平行的证明
常见证明方法:
1) 利用平面与平面平行的判定定理: 一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。
3
a ⊂ b ⊂
a ∩b P
a // b //
⇒ /性:如正方体的上下底面互相平行等
一条直线与一个平面内的两条相交直线都垂直,则该直线垂直于此平面。
a
b
ab
A
l
l a l b
l
b
Aa
4) 利用平面与平面垂直的性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
5
l
a
a
a l
l
5) 利用常用结论:
① 一条直线平行于一个平面的一条垂线,则该直线也垂直于此平面。
在同一个平面内,垂直于同一条直线的两条直线互相平行。
8) 利用定义:在同一个平面内且两条直线没有公共点
(二)直线与平面平行的证明
1) 利用直线与平面平行的判定定理:
平面外的一条直线与此平面内的一条直线平行,则该直线与此平面平行。
a
a
b a∥
a∥b
b
2) 利用平面与平面平行的性质推论:
两个平面互相平行,则其中一个平面内的任一直线平行于另一个平面。
a b ba
b a
α
4) 利用平面与平面垂直的性质推论:
如果两个平面互相垂直,在这两个平面内分别作垂直于交线的直线,则这
两条直线互相垂直。
4
l a b al
bl
ab
β b
立体几何中平行和垂直问题的证明
摇生"攵浬化知识篇科学备考新指向高考数学2021年2月立"#何%&行直问题的证明■江苏省华罗庚中学李普红平行与垂直关系的证明是高考考查立体几何的高频考点,大部分问题都可以用传统的几何方法解决,有一部分问题需要建立空间直角坐标系利用空间向量解决。
用传统法解题时,应注重线线平行、线线垂直、线面平行、线面垂直、面面平行、面面垂直等问题的性质定理和判定定理的灵活应用。
用向量法解题时,应建立恰当的空间直角坐标系,准确表示各点与相关向量的坐标。
考向一:证明线面平行!!如图1,已知空间几何体BACDE中,&BCD与&CDE均是边长为2的等边三角形,&ABC是腰长为3,底边为BC的等腰三角形,平面CDE丄平面BCD,平面ABC丄平面BCD"(1)试在平面BCD内作一条直线,使得直线上任意一点F与E的连线EF均与平面ABC平行,并给出证明;(2)求三棱锥E-ABC的体积。
解析:(1)如图2所示,取DC的中点为N,BD的中点为/,连接MN,则MN即为所求。
连接EM,EN,取BC的中点4,连接AH"因为&ABC是腰长为3的等腰三角形,H为BC的中点,所以AH丄BC。
又平面ABC丄平面BCD,平面ABC'平面BCD$BC,AH U平面ABC,所以AH 丄平面BCD"同理可证EN丄平面BCD"所以EN/AH"因为EN1平面ABC,AH U平面ABC,所以EN/平面ABC"又M,N分别为BD,DC的中点,所以MN/BC"因为MN1平面ABC,BC U平面ABC,所以MN/平面ABC"又MN'EN$N,MN U平面EMN,EN U平面EMN,所以平面EMN/平面ABC"又EF U平面EMN,所以EF/平面ABC,即直线MN上任意一点F与E的连线EF均与平面ABC平行°(2)连接DH,取CH的中点为G,连接NG,则NG/DH"由(1)可知EN/平面ABC,所以点E到平面ABC的距离与点N到平面ABC的距离相等°又&BCD是边长为2的等边三角形,所以DH丄BC。
立体几何证明平行和垂直
立体几何证明平行和垂直
在立体几何中,我们可以通过以下定理和性质来证明线段、平面、直线的平行和垂直关系:
1. 平行线定理:若两条直线与第三条直线交叉时,两个内角和等于180度,则这两条直线是平行的。
2. 垂直线定理:若两条直线相交时,相邻的内角是直角,则这两条直线是垂直的。
3. 垂直平分线定理:若一个直线通过一个线段的中点并与该线段垂直,则这条直线垂直于该线段。
4. 同位角定理:当一条直线与两条平行直线相交时,对应的同位角是相等的。
5. 垂直平分线性质:当一条直线垂直平分一条线段时,它同时垂直于该线段的两个中垂线。
6. 垂直平分线交角性质:当两条直线都垂直平分了同一条线段时,这两条直线是平行的。
根据以上定理和性质,我们可以利用构造图形、辅助线、角度计算等方法进行立体几何证明的平行和垂直关系。
这些证明通常涉及到直线与平面的交点、线段的中点、角度的大小等问题,需要根据给定的条件进行分析和推导。
需要注意的是,在立体几何证明中,除了以上的定理和性质,还可以利用立体几何中的其他相关定理和公式来辅助证明,具体证明方法也要根据具体情况灵活运用。
总之,立体几何的平行和垂直关系证明是一个比较重要的内容,需要熟悉相关定理和性质,并能够熟练运用各种证明方法来解决问题。
空间立体几何中的平行垂直证明课件
平行与垂直的关系
CATALOGUE
平行与垂直的证明方法
利用公理、定理证明平行与垂直
01
02
03
公理
定理
应用
利用向量证明平行与垂直
向量平行的定义
两个向量平行当且仅当它们的方直线 平行或垂直。
向量垂直的定义
两个向量垂直当且仅当它们的点积为 零。
利用坐标系证明平行与垂直
坐标系定义
坐标表示
应用
CATALOGUE
平行与垂直的应用
平行与垂直在几何问题中的应用
平行与垂直在解决几何问题中具有广泛的应用,如证明线段平行、垂直、角相等、 面积相等等。
通过平行和垂直的性质,可以推导出许多重要的几何定理,如勾股定理、余弦定理等。
平行与垂直在几何问题中的应用有助于培养学生的逻辑推理能力和空间想象能力。
空间立体几何中的 平行垂直证明课件
• 空间立体几何的基本概念 • 平行与垂直的定义与性质 • 平行与垂直的证明方法 • 平行与垂直的应用 • 习题与解析
CATALOGUE
空间立体几何的基本概念
空间几何体的定义与分类
定义 分类
空间几何体的性质与关系
性质
关系
空间几何体之间存在平行、垂直、相 交等位置关系,这些关系可以通过证 明来确定。
平行与垂直在空间解析几何中的应用
空间解析几何是研究空间中点、 线、面、体及其相互关系的数学 分支,平行与垂直是其中的重要
概念。
通过平行与垂直的性质,可以确 定点、线、面的位置关系,以及 计算它们的长度、面积和体积等。
平行与垂直在空间解析几何中的 应用有助于培养学生的数学思维
能力和解决实际问题的能力。
平行与垂直在物理学中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
D 1
B 1
D A
B
C
E
1
A 1
C
立体几何中平行与垂直的证明
姓名
【学习目标】1.通过学习更进一步掌握空间中线面的位置关系;
2.掌握正确的判定和证明平行与垂直的方法.
例1.已知正方体ABCD —A 1B 1C 1D 1, O 是底ABCD 对角线的交点.
求证:(1)C 1O//平面AB 1D 1; (2)A 1C ⊥平面AB 1D 1. 【反思与小结】1.证明线面平行的方法:2.证明线面垂直的方法:
【变式一】如图,在长方体1
111D C B A ABCD -中,1,11>==AB AA AD ,点E 在棱AB 上移动。
求证:E D 1⊥D A 1;
【反思与小结】1.证明线线垂直的方法: 1. 谈谈对“点E 在棱AB 上移动”转化的动态思考 2. 比较正方体、正四棱柱、长方体
【变式二A 】如图平面ABCD ⊥平面ABEF , ABCD 是正方形,ABEF 是矩
形,且,22
1==
AD AF G 是EF 的中点, (1)求证平面AGC ⊥平面BGC ; (2)求空间四边形AGBC 的体积。
反思与小结1.证明面面垂直的方法:2.如果把【变式二A 】的图复原有什么新的认识?
D
1
O
D
B
A C 1
B
1
A 1
C
B C
A D E
F
M 【变式二B 】. 如图,在直三棱柱(侧棱与底面垂直的三棱柱)111
A B C A B C -中,8A B =,
6A C =,10B
C =,
D 是B C 边的中点.
(Ⅰ)求证:
1A B AC ⊥; (Ⅱ)求证:1A C
∥ 面1AB D ;
【反思与小结】和前面证明线线垂直、线面平行比较有什么新的认识?
【变式三】如图组合体中,三棱柱111A B C A B C -的侧面11A B B A 是圆柱的轴截面,C 是圆柱底面圆周上不与A 、B 重合一个点. (Ⅰ)求证:无论点C 如何运动,平面1A BC ⊥平面1A AC ;
(Ⅱ)当点C 是弧AB 的中点时,求四棱锥111
A B C C B -与圆柱的体积比. 【反思与小结】
1.观察两个图之间的变化联系,写出感受。
2.和【变式一】进行比较,谈谈你把握动态问题的新体会
【变式四】如图,四边形ABCD 为矩形,AD ⊥平面ABE ,AE =EB =BC =2,F 为CE 上的点,且BF ⊥平面ACE . (1)求证:AE ⊥BE ;
(2)设M 在线段AB 上,且满足AM =2MB ,试在线段CE 上确定一点N ,使得MN ∥平面DAE. 【反思与小结】1.和前面两个动态问题比较,解答本题的思路和方法有什么不同?
D C
1
B
1
A
1
C
B
A
【变式五】如图5所示,在三棱锥P A B C
-中,P A ⊥平面ABC , 3A B B C C A ===,M 为AB 的中点,四点P 、A 、M 、C 都在球O 的球面上。
(1)证明:平面P A B ⊥平面P C M ;(2)证明:线段P C 的中点为球O 的球心; 【反思与小结】1.探讨球与正方体、长方体等与球体之间的关系。
2.结合前面几组图形的分割变化规律,说明正方体、正四棱 柱、长方体、直三棱柱、四棱锥、三棱锥的变化联系。
3.总结立几中证明“平行与垂直”的思路和方法
课后练习
1.如图所示,在直三棱柱ABC —A 1B 1C 1中,AB=BB 1,AC 1⊥平面A 1BD ,D 为AC 的中点。
(I )求证:B 1C//平面A 1BD ; (II )求证:B 1C 1⊥平面ABB 1A
(III )设E 是CC 1上一点,试确定E 的位置,使平面A 1BD ⊥平面BDE ,并说明理由。
2.如图,已知A B ⊥平面ACD ,D E ⊥平面ACD ,三角形ACD 为等边三角形,2A D D EA B ==,F 为C D 的中点 (1)求证://AF 平面BCE ; (2)求证:平面B C E ⊥平面CDE ;
_ M
_ P
_ C _ B _ A
1.
如图,四棱锥ABC
P -中,⊥PA 底面ABCD , AD
AB ⊥,CD AC ⊥,︒=∠60ABC ,BC AB PA ==, E 是PC 的中点. (1)求证:AE CD ⊥; (2)求证:⊥PD 面ABE .
2. 如图,四棱锥P —ABCD 中,PA ⊥平面ABCD ,PA =AB ,底面ABCD 为直角梯形,∠ABC =∠
BAD =90°,PA =BC =
.2
1
AD (I )求证:平面PAC ⊥平面PCD ;
(II )在棱PD 上是否存在一点E ,使CE ∥平面PAB ?若 存在,请确定E 点的位置;若不存在,请说明理由.
5.如图, 在四棱锥S A B C D -中,2S A A B ==,22S B S D ==,底面A B C D 是菱形,且60A B C ∠=︒,
E 为C D 的中点.
(1)证明:C D ⊥平面SAE ;
(2)侧棱S B 上是否存在点F ,使得//C F 平面SAE ?并证明你的结论.
E D C
B A P
S
A
B
C
D
E。