动力电池热管理系统组成及设计流程
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
动力电池热管理系统组成及设计流程
动力电池是电动汽车的能量来源,在充放电过程中电池本身会伴随产生一定热量,从而导致温度上升,而温度升高会影响电池的很多工作特性参数,如内阻、电压、SOC、可用容量、充放电效率和电池寿命。
电池热效应问题也会影响到整车的性能和循环寿命,因此,做好热管理对电池的性能、寿命至整车行驶里程都十分重要。接下来,就从电池热管理系统及设计流程、零部件类型及选型、热管理系统性能及验证等几个方面来和大家聊一聊:
动力电池热管理必要性
1、电池热量的产生
由于电池阻抗的存在,在电池充放电过程中,电流通过电池导致电池内部产生热量。另外,由于电池内部的电化学反应也会造成一定的生热量。
2、温度升高对电池寿命的影响
温度的升高对电池的日历寿命和循环寿命都有影响。
从上面两个图可以看出,温度对电池的日历寿命有很大的影响。同样的电芯,在环境温度23℃,6238天后电池的剩余容量为80%,但是电池在55℃的环境下,272天后电池的剩余容量已经达到80%。温度升高32℃,电芯的日历寿命下降了95%以上。因此,温度对日历寿命的影响极大,温度越高日历寿命衰退越严重。
从上面两个图可以看出,温度对电池的循环寿命也有很大的影响。同一款电芯,当剩余容量为90%,25℃温度下输出容量为300kWh,而35℃温度下的输出容量仅为163kWh。温度上升10℃,电芯的循环寿命下降了近50%。由此可见,温度对电池的循环寿命有很大的影响。
因此,为了电池包性能的最优化,需要设计热管理系统确保各电芯工作在一个合理的温度范围内。
02
热管理系统的分类及介绍
不同的热管理系统,零部件类型的结构不同、重量不同以及系统的成本不同和控制方式不同,使得系统所达到的性能也不相同。主要有如下五大类:
1、直冷系统
直冷系统具有系统紧凑、重量轻以及性能好的优点。但是此系统是一个双蒸发器系统、系统没有电池制热、没有冷凝水保护、制冷剂温度不易控制且制冷剂系统寿命短。
2、低温散热器冷却系统
低温散热器冷却系统是电池的一个单独系统,由散热器、水泵和加热器组成。该冷却系统具有系统简单、成本低、低温环境下经济节能等优点。但是此系统有着冷却性能低、夏天水温高、应用受天气限制等缺点。
3、直接冷却水冷却系统
直接冷却水冷却系统具有系统紧凑、冷却性能好以及工业应用范围广等优点。但是此系统零部件比直冷多、系统复杂、燃料经济性差且压缩机负荷高。此类型的冷却系统是目前最常用的电池热管理系统之一。
4、空冷/水冷混合冷却系统
空冷/水冷混合冷却系统中有两个关键零部件:
1)水冷电池冷却器;
2)空冷电池散热器。
空冷/水冷混合冷却系统具有系统紧凑、性能好且低温环境下经济节能等优点。但是此系统复杂、成本高、控制复杂且可靠性要求高。
5、直接空气冷却系统
此系统利用驾驶舱的低温空气对电池进行冷却。
直接空气冷却系统具有系统简单、空气温度可控以及成本低等优点。但是此系统并不是对所有类型的电芯都适合,浸湿后回复慢且电池内部会有污染的风险。
03
热管理系统设计流程
1、产品开发流程
电池热管理系统的开发流程应与电池包开发流程保持一致。热管理系统的设计贯穿于整个电池包的设计过程中,在整车开发经过A样件、B样件、C样件、D样件以及最后的产品5个阶段,电池热管理参与每个阶段的设计、更改、试制以及验证。
2、热管理开发流程
设计性能良好的电池组热管理系统,要采用系统化的设计方法。电池组热管理系统设计的过程包括如下7个步骤:
04
设计过程中的关键技术
1、确定电池工作最优工作温度范围
由于气候和车辆运行条件对电池影响很大,所以设计BTMS时需要确定电池组最优的工作温度范围。目前电动汽车用电池主要有铅酸电池、氢镍电池和锂离子电池。
1)铅酸电池
经研究发现,铅酸电池的寿命随温度增加线性减少,充电效率却线性增加,随着电池温度的降低充电接受能力下降,特别是0℃以下;模块间的温度梯度减少了整个电池组的容量,推荐保持电池组内温度的均匀分布和控制现有铅酸电池温度在35~
40℃之间。效率和最大运行功率在-26~65℃范围内增加。
2)氢镍电池
当温度超过50℃时,电池充电效率和电池寿命都会大大衰减,在低温状态下,电池的放电能力也比正常温度小得多。下图
是某80Ah氢镍电池不同温度下电池放电效率图,由图中可以看出,在温度高于40℃或者温度低于0℃时,电池的放电效率
显著降低。如果仅根据这一限制,此电池的工作运行范围应该在0~40℃之间。
3)锂离子电池
与氢镍电池、铅酸电池相比,能量密度更高,导致生热更多,所以对散热要求更高。锂离子电池最佳工作温度在-20~75℃
之间。
铅酸电池、氢镍电池、锂离子电池热管理的必要性取决于各自的生热率、能量效率和性能对温度的敏感性。氢镍电池在高温> 40℃)时生热最多、效率最低并且易于发生热失控事故。因此,氢镍电池很需要热管理,很多对氢镍电池进行液体冷却的努力也突出了这一点。
2、电池热场计算及温度预测
电池不是热的良导体,电池表面温度分布不能充分说明电池内部的热状态,通过数学模型计算电池内部的温度场,预测电池的热行为,对于设计电池组热管理系统是不可或缺的环节。通常使用如下公式进行计算:
式中:
a、T 是温度;
b、ρ 是平均密度;
c、Cp 是电池比热;
d、kx 、ky 、kz 分别是电池在x 、y 、z 方向上的热导率;
e、q 是单位体积生热速率。
3、电池生热率
电池充电过程中的反应生热可以分为两个阶段。
第1阶段:
没有发生过充电副反应之前,生热量主要来自: 电池化学反应生热、电池极化生热、内阻焦耳热。
第2阶段:
在发生过充电副反应之后,生热量主要来自: 电池化学反应生热、电池极化生热、过充电副反应生热、内阻焦耳热。其中大