风机喘振分析和防止风机喘振保护原理

合集下载

动叶可调式轴流风机喘振机理及预防策略探究

动叶可调式轴流风机喘振机理及预防策略探究

动叶可调式轴流风机喘振机理及预防策略探究动叶可调轴流风机担负着气体循环输送的任务,轴流风机在运行过程中,由于某些原因,易造成机组的振动,严重时会造成机组的损坏,影响生产。

如何能快速准确的找到喘振故障成为大家关注的课题,本文通过介绍喘振的发生原因,对振动进行危害分析,通过有效的方法进行综合分析预防喘振的措施。

另外,喘振发生进行预警分析,更能保证机组的稳定运行。

引言轴流风机具有尺寸小、引风量大及性能调节稳定的优势,逐渐在锅炉引风领域得到广泛的应用。

在某种程度上,其运行的全压相对较低,如果设备选型的问题使得阻力增加,就会出现轴流式风机的负荷过高最终导致喘振的出现,对设备的寿命和使用情况均会造成比较严重的危害。

对轴流式风机进行喘振发生机理和预防措施研究,能够在很大程度上对动叶可调风机的选型和改造起到较大的意义。

动叶可调式轴流风机喘振机理和危害分析由于工况变化导致轴流风机入口处的空气流量减少,轴流风机会随之出现旋转脱离效应,此时,虽然叶片也在不停的旋转,但是由于流量不足,导致出口处的压力出现偏离,不能达到正常的设计要求指标。

由于轴流风机出口输送管道内气体压力变化灵敏度较低,不能及时出现变换,此时管道内压力并不能迅速下降,因此造成了轴流风机出口管道内的压力大于风机出口处压力,出现压力的逆偏差,会出现”倒灌”现象,即管道内的气体就向风机倒流,直至出口管道内压力下降至等于风机出口压力为止。

待倒灌停止后,轴流风机会正常工作,气体在叶片的作用下加压,继续向管道提供压力,管道内的压力不断回升。

等到管道内的气体压力回升到最初压力时,轴流风机的加压排气就又会受到影响,又满足倒灌发生的条件,如此周而复始,整个轴流风机系统就会出现周期性的轴向低频大振幅的气流振荡现象,即喘振现象结合图1对喘振发生的具体情况进行分析介绍。

图1是轴流风机特性曲线与通风管网性能数据图,其中A/B点是轴流风机运行曲线与管网性能曲线的交叉点,即喘振点。

喘振的原因及解决方法有哪些

喘振的原因及解决方法有哪些

喘振的原因及解决方法有哪些喘振是一种常见的故障,那么喘振是什么原因造成的呢?下面是店铺精心为你整理的喘振的原因及解决方法,一起来看看。

喘振的原因烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。

(我们有碰到过但不多);两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差);风机长期在低出力下运转。

喘振的解决方法风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。

故风机产生喘振应具备下述条件:a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。

旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。

旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。

旋转对风机的正常运转影响不如喘振这样严重。

风机在运行时发生喘振,情况就不相同。

喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。

喘振时的振动有时是很剧烈的,损坏风机与管道系统。

所以喘振发生时,风机无法运行。

防止喘振的措施1)使泵或风机的流量恒大于QK。

如果系统中所需要的流量小于QK时,可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK. ;2)如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得到稳定的运行工况。

通过风机各种转速下性能曲线中最高压力点的抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并无效果,因此时各转速下的工作点均是相似工况点。

轴流风机喘振的原因分析及应对措施

轴流风机喘振的原因分析及应对措施


要: 轴流风 机由于其转子结构 复杂且转动部件较 多 , 引起 喘振 的风险较大 , 造成 的危害 也相对较 大。根据 现场 的实
际情 况 , 分析 了风机喘振 的原 因 , 采取应对措施后 , 风机 喘振 的几率明显降低 。
关键 词 : 轴流风 机 ; 喘振 ; 门涡街 ; 卡 激振力 中图分类号 : K2 3 2 T 2 .7 文献标志码 : B 文章编号 :6 4—1 5 (0 10 0 0 0 17 9 1 2 1 )5— 0 8— 2
第 5期
张 广 东 : 流风机 喘振 的原 因分析 及应 对措 施 轴
・ 9・
其 工作 环境 恶劣 , 构 复杂 , 易 积粉 积 油 , 别 是 结 容 特 在 调试运 行 期 间 , 机组 启 、 停频 繁 , 可燃 物 累积较 多 , 极 易产生 再燃 烧 , 气 预 热 器 产 生 变 形 , 成 动 、 空 造 静 间隙增 大 , 风 系数增 加 。 由于漏 风系 数增 大 , 风 漏 送
次风机 电 源开 关 B相 油 位低 于下 限 值 ,8:6 B一 1 2,
次风机停运 。1 :8 B一次风机电源开关更换工作 84 , 结束。此时, 热一次 风压为 5 3/ .6 P , .5 5 1 a A一次 k
风 机动 叶 开度 8 .% 。1 :8 启 动 B一次 风 机 , 67 84 , 在 B一 次 风机 出 口挡 板 联 开 的过 程 中 , 一 次 风 压 快 热 速 下降 至 2 8/ .3 P 。同时 , .92 6 a k A一 次 风机 在 动 叶 开度 不 变 的情 况 下 电流 由 6 .7 1O 降 至 5 .8 A下 84 A, 出 口风 压 由 59 P .6k a降至 36 P 。值 班人 员判 断 .4k a 为 A一次 风机 喘振 , 即手 动减 A 一次 风 机 动 叶至 立 6 .% , 打 开 A一 次 风 机 冷 风 再 循 环 门 , 次 风 55 并 一 压继 续 降至 10 / .6k a 85 停 B一 次 风 机 .0 0 6 P 。1 :0, 并加 开 A 一 次 风 机 动 叶 开 度 , 压 开 始 上 升 。 风

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常表现为风机整体或部分结构的不稳定振动,会导致设备损坏甚至危及人身安全。

喘振的出现往往会给生产和运行带来严重的影响,因此对于喘振现象的原因和处理方法,我们有必要进行深入的了解和研究。

一、原因分析。

1. 气动力失稳。

风机在运行时,由于叶片的设计不合理或叶片表面的腐蚀、磨损等因素,会导致风机叶片受到气动力的不稳定作用,从而引起振动。

2. 结构失稳。

风机的结构设计不合理、材料疲劳、连接螺栓松动等因素都会导致风机结构的失稳,从而引起喘振现象。

3. 惯性失稳。

风机在运行过程中,由于叶轮的不平衡或转子的不对称等因素,会导致风机的惯性失稳,从而引起振动现象。

二、现象表现。

1. 频率跳变。

风机在运行中,频率突然发生跳变,表现为振动频率明显变化,这是喘振现象的典型表现。

2. 声音异常。

风机在喘振时,会发出异常的噪音,通常是低频、深沉的嗡嗡声,这是喘振现象的另一种表现形式。

3. 振动幅值增大。

喘振时,风机的振动幅值会明显增大,甚至超出正常范围,这是喘振现象的直观表现。

三、处理方法。

1. 优化设计。

针对风机叶片和结构的设计不合理问题,可以通过优化设计来解决。

采用流场仿真、结构分析等技术手段,对风机进行全面的设计优化,提高风机的稳定性和抗振能力。

2. 定期检测。

针对风机结构的材料疲劳、连接螺栓松动等问题,需要定期进行检测和维护。

通过振动监测系统、结构健康监测技术等手段,及时发现并处理风机结构的失稳问题。

3. 动平衡调整。

针对风机惯性失稳问题,可以通过动平衡调整来解决。

对风机叶轮、转子等部件进行动平衡校正,提高风机的运行平稳性。

4. 加强管理。

在风机运行过程中,加强对风机的管理和维护,做好日常巡检和保养工作,及时发现并处理风机的异常现象,防止喘振现象的发生。

综上所述,风机喘振是一种常见的振动现象,其产生的原因复杂多样,需要我们对风机的设计、运行和维护进行全面的考虑和处理。

关于处理风机喘振现象的原因和避免方法

关于处理风机喘振现象的原因和避免方法
关于风机喘振现象的原因和避免方法
1喘振现象及原因
具有驼峰型特性的风机在运行过程中,当负荷减小,负载流量下降到某一定
值时,出现工作不稳定现象。这时流量忽多忽少,一会儿向负载排气,一会儿又
从负载吸气,发出如同哮喘病人“喘气”的噪声,同时伴随着强烈振动,这种现
象特性。图一给出了具驼峰型特性的离心风机的工作特性曲线。
图中,曲线1是离心风机在某一转速下的特性曲线,代表出口绝压
P2和入口绝压P1之比与风机流量之间的关系,是一个驼峰曲线,驼峰点
M处的流量为Qm。曲线2是管路特性曲线,正常工作点为A。可以看出,在驼峰点右侧,工作是稳定的。因为任何偶然因素造成的工作点波动(例如流量增加)
,对于风机特性曲线1而言,压力会减小,而对于管路特性曲线2而言,压力会增加,这两个相互矛盾的结果最终会使工作点返回到原来的位置,在驼峰点M
的左侧,这种情况正好相反,任何偶然因素造成的工作点波动将使沿风机特性曲线1上的压力变化趋势与沿管路特性曲线2上的压力变化趋势具有完全的一性,
其结果加剧了工作点的偏移,使之不能返回到原来的工作点上,风机的工作出现不稳定情况。因此,驼峰点M右侧的区域为稳定工作区域,驼峰点M左侧的区域为不稳定工作区域。负荷下降使处于驼峰右侧的工作点向驼峰点靠近,工作点越靠近驼峰点M,越会出现工作不稳定的可能性,驼峰型特性是发生喘振现象的主要原因。
2防喘振控制思路
图二给出了风机在不同转速下的特性曲线,可以看出。转速不同,相应的驼峰
点和驼峰流量也不同。转速越低,驼峰点越向左移,驼峰流量越小。把不同转速下的驼峰点连接起来,就构成了一条曲线,曲线右侧为稳定工作区,曲线左侧为喘振区。我们称驼峰流量为极限流量,相应的驼峰点连接曲线被称为喘振极限线。
显然,只要在任何转速下,控制风机的流量,使其大于极限流量,则风机便不会发生喘振问题。这就是防喘振控制的基本思想。考虑到吸入气体的状态如压力、

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在风机运行过程中出现的振动现象,这种振动不仅会影响设备的正常运行,还会对设备的安全性和稳定性造成威胁。

因此,了解风机喘振的原因、现象及处理方法对于确保设备的正常运行至关重要。

一、风机喘振的原因。

1. 气动因素,风机在运行时,由于叶片和机壳之间的气流动态压力不稳定,会导致振动增大,从而引发喘振现象。

2. 结构因素,风机的结构设计不合理,或者叶片、轴承等零部件的制造质量不达标,都可能成为喘振的根本原因。

3. 运行条件,风机在运行过程中,如果受到外界环境因素的影响,如风速、气压等的变化,也会导致风机喘振的发生。

二、风机喘振的现象。

1. 声音异常,风机在运行时会发出异常的噪音,这种噪音往往是由于喘振引起的。

2. 振动加剧,风机在运行时振动加剧,甚至会引起设备的共振现象,严重影响设备的稳定性。

3. 能效降低,喘振会导致风机的运行效率降低,能耗增加,严重影响设备的经济性和可靠性。

三、风机喘振的处理方法。

1. 结构优化,对于风机的结构设计和零部件制造,应该严格按照相关标准和要求进行,确保结构合理、零部件质量可靠。

2. 运行监测,对于风机的运行条件进行实时监测,及时发现异常情况并进行调整,避免外界环境因素对风机运行的影响。

3. 振动控制,采用振动控制技术,对于风机的振动进行有效的控制,减小振动幅值,降低振动对设备的影响。

4. 气动优化,通过对风机的气动性能进行优化设计,降低气动因素对风机运行的影响,减小喘振的发生概率。

综上所述,风机喘振是风机运行过程中常见的问题,其原因主要包括气动因素、结构因素和运行条件等方面。

针对风机喘振的处理方法主要包括结构优化、运行监测、振动控制和气动优化等方面。

只有通过对风机喘振的原因和现象进行深入分析,并采取有效的处理方法,才能确保风机的正常运行和设备的安全稳定。

风机喘振现象原因和防治方法

风机喘振现象原因和防治方法

风机喘振现象原因和防治方法工厂的风机发生喘振,结果因为不了解喘振是什么,错过了最佳的维修时间,导致了设备和轴承损坏,造成了事故,直接影响到了设备得安全运行。

行业里有很多新人不懂得自行诊断设备病症,设备出了问题也不懂得怎么处理,结果导致了一连续的问题,从而酿成大祸。

1、叶片上积灰或者是叶片局部出现剥落层引起的转动不平衡导致的振动值增大;2、叶轮磨损引起的不平衡;3、轴承游隙太大或者是轴承磨损及失效而造成的振动;4、联轴器左右张口、上下张口超过允许偏差值;5、风机基础地脚松动或者是地基下沉造成水平度超过允许值;6、风机转动机械部分产生摩擦(动静部分)引起的振动;7、风机内部支撑部件出现断裂或是连接部件松动造成刚性不足引起振动。

8、动叶片开关不同步引起的振动。

9、运行中引风机入口前设备严重堵塞或者是并列风机调整偏差大也将引起风机喘振。

说明:叶片开度倾角误差大而引起振动,在风机运行过程中部分滑块会发生摩擦逐渐磨损,滑块在调节盘内有较大的活动空间;调节装置部分曲柄弯曲;叶柄轴承发生锈蚀,使得叶片调节困难,部分叶片因卡滞出现角度不一致;叶片受到外力撞击而使叶片变形,使得部分叶片在运行过程中角度不协调。

在其它条件相同的情况下,每个叶片倾角每增加1°,风机振幅增加近1丝。

#1 轴流风机的失速与喘振现象轴流式风机当调节叶片(动叶调节风机为动叶片,静叶调节风机为入口调节叶片)角度固定在某一位置时,在正常工作区域内,风机的压力随风机流量的减小而增加,当流量减小到某一值时压力达到最大、当流量进一步减小时,风机压力和运行电流突然降低,振动和噪音增大这一现象被称为风机失速。

风机失速后有两种不同表现,一是风机仍能稳定运行,即压力、风量、电流保持相对稳定,但噪音增加;风机及其进、出口气流压力承周期性脉动;风机振动常常比正常运行高。

这种现象称之为旋转失速。

另一是风机即压力、风量、电流大幅度波动,噪音异常之大,风机不能稳定运行,风机可能很快遭受灭性损坏,这种现象称之为喘振。

关于风机喘振原因与处理

关于风机喘振原因与处理

关于风机喘振原因与处理喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏,出现喘振的风机大致现象如下:1 电流减小且频繁摆动、出口风压下降摆动。

2 风机声音异常噪声大、振动大、机壳温度升高、引送风机喘振动使炉膛负压波动燃烧不稳。

常见的原因:1 烟风道积灰堵塞或烟风道挡板开度不足引起系统阻力过大。

(我们有碰到过但不多)2 两风机并列运行时导叶开度偏差过大使开度小的风机落入喘振区运行(我们常碰到的情况是风机导叶执行机构连杆在升降负荷时脱出,使两风机导叶调节不同步引起大的偏差)4 风机长期在低出力下运转。

一般的处理原则是调整负荷、关小高出力风机的导叶开度使风机出力相近,再根据上面所说的可能原因进行查找再作相应处理。

所谓喘振,就是当具有“驼峰”形Q-H性能曲线的风机在曲线临界点以左工作时,即在不稳定区工作时,风机的流量和能头在瞬间内发生不稳定的周期性反复变化的现象。

风机产生的最大能头将小于管路中的阻耗,流体开始反方向倒流,由管路倒流入风机中(出现负流量),由于风机在继续运行,所以当管路中压力降低时,风机又重新开始输出流量,只要外界需要的流量保持小于临界点流量时,上述过程又重复出现,即发生喘振。

轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。

实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。

这两种工况是不同的,但是它们又有一定的关系。

象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。

当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在运行过程中,风机叶片或整机出现振动,产生噪音,严重时甚至会引起设备损坏。

喘振现象给设备运行和生产带来了严重的隐患,因此对于风机喘振的原因和处理方法需要引起重视。

一、原因分析。

1.风机设计问题,风机叶片设计不合理或者风机结构设计存在缺陷,会导致风机在运行时产生振动。

2.风机安装问题,风机在安装过程中,如果安装不牢固或者安装位置选择不当,都会引起风机振动。

3.风机叶片损坏,风机叶片受到外部冲击或者长时间运行磨损,会导致叶片不平衡,产生振动。

4.风机运行环境,风机运行环境不稳定,比如风速突变或者风向改变,都会引起风机振动。

二、喘振现象。

1.噪音,风机在运行时会产生异常的噪音,这是喘振现象的一个主要表现。

2.振动,风机在运行时会出现明显的振动,可以通过观察风机叶片或者机体的晃动来判断。

3.设备损坏,严重的喘振现象会导致风机设备的损坏,严重影响设备的使用寿命和安全性。

三、处理方法。

1.优化设计,对于新购的风机设备,可以通过优化设计,改善叶片结构和整机结构,减少振动产生的可能。

2.加固安装,在风机安装过程中,需要加强对风机的固定,确保风机安装牢固,减少振动产生的可能。

3.定期检查,定期对风机设备进行检查和维护,及时发现叶片损坏或者设备松动等问题,做好维修和更换工作。

4.环境控制,对于风机运行环境,可以通过控制风速,改善风向等方式,减少风机振动产生的可能。

5.安全监控,在风机运行过程中,需要加强对设备的监控,及时发现异常振动,做好安全防护措施。

综上所述,风机喘振是一种常见的设备运行问题,对于喘振现象的原因分析和处理方法,需要我们引起重视。

通过优化设计、加固安装、定期检查、环境控制和安全监控等方式,可以有效减少风机喘振现象的发生,保障设备的安全运行和稳定生产。

希望本文对风机喘振问题有所帮助,谢谢阅读。

引风机喘振分析及处理

引风机喘振分析及处理

风机喘振分析及处理一.风机喘振的形成轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。

实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。

这两种工况是不同的,但是它们又有一定的关系。

如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。

当风机的流量Q < QK 时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。

但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。

由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D跳至相应工况点F。

只要外界所需的流量保持小于QK,上述过程又重复出现。

如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。

风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。

故风机产生喘振应具备下述条件:a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关的,但是旋转脱流与喘振有着本质的区别。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的振动现象,通常伴随着噪音和机械损伤,严重影响设备的安全运行和使用寿命。

风机喘振的原因多种多样,主要包括风机结构设计不合理、叶片磨损、叶片不平衡、风机安装不稳定等因素。

本文将就风机喘振的原因现象及处理方法进行详细介绍。

一、原因分析。

1. 风机结构设计不合理,风机在设计过程中,如果叶轮、轴承座、叶片等部件的结构设计不合理,可能会导致风机在运行时产生共振现象,从而引发喘振。

2. 叶片磨损,风机叶片在长时间运行后会出现磨损,导致叶片的重量分布不均匀,叶片与风速之间的匹配不合理,从而引发喘振现象。

3. 叶片不平衡,叶片的不平衡也是风机喘振的常见原因之一,叶片在制造过程中存在偏差或者在使用过程中出现变形、损坏等情况,都会导致叶片的不平衡,从而引发喘振。

4. 风机安装不稳定,风机在安装过程中,如果安装不稳定或者基础不牢固,都会导致风机在运行时产生晃动,从而引发喘振现象。

二、处理方法。

1. 结构设计优化,在风机的设计过程中,应该优化叶轮、轴承座、叶片等部件的结构设计,确保结构合理、均衡,减少共振的产生。

2. 定期维护,定期对风机叶片进行检查,及时更换磨损严重的叶片,保证叶片的重量分布均匀,减少喘振的发生。

3. 动平衡校正,定期对风机叶片进行动平衡校正,确保叶片的平衡性,减少叶片不平衡带来的喘振现象。

4. 加固安装基础,在风机安装过程中,应该加固安装基础,确保安装稳定牢固,减少风机在运行时的晃动,降低喘振的发生。

5. 实时监测,安装实时监测设备,对风机的振动进行实时监测,一旦发现异常振动,立即停机检修,避免喘振带来的损失。

总之,风机喘振是一种常见的振动现象,对设备的安全运行和使用寿命造成严重影响。

通过对风机结构设计的优化、定期维护、动平衡校正、加固安装基础和实时监测等措施,可以有效减少风机喘振的发生,保证设备的安全稳定运行。

风机如何“防喘振”

风机如何“防喘振”

风机如何“防喘振”一、喘振定义喘振,顾名思义就象人哮喘一样,风机出现周期性的出风与倒流,相对来讲轴流式风机更容易发生喘振,严重的喘振会导致风机叶片疲劳损坏。

流体机械及其管道中介质的周期性振荡,是介质受到周期性吸入和排出的激励作用而发生的机械振动。

例如,泵或压缩机运转中可能出现的喘振过程是:流量减小到最小值时出口压力会突然下降,管道内压力反而高于出口压力,于是被输送介质倒流回机内,直到出口压力升高重新向管道输送介质为止;当管道中的压力恢复到原来的压力时,流量再次减少,管道中介质又产生倒流,如此周而复始。

喘振的产生与流体机械和管道的特性有关,管道系统的容量越大,则喘振越强,频率越低。

一旦喘振引起管道、机器及其基础共振时,还会造成严重后果。

为防止喘振,必须使流体机械在喘振区之外运转。

在压缩机中,通常采用最小流量式、流量-转速控制式或流量-压力差控制式防喘振调节系统。

当多台机器串联或并联工作时,应有各自的防喘振调节装置。

二、风机喘振的现象1、风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动。

2、风机的电动机电流波动很大,最大波动值有50A左右。

3、风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动。

4、风机发出“呼噜、呼噜”的声音,使噪声剧增。

5、风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s左右。

三、喘振的原因根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p-Q性能曲线是一组带有驼峰形状的曲线(这是风机的固有特性,只是轴流式通风机相对比较敏感),如左图所示。

当工况点处于B点(临界点)左侧B、C之间工作时,将会发生喘振,将这个区域划为非稳定区域。

发生喘振,说明其工况已落到B、C之间。

离心压缩机发生喘振,根本原因就是进气量减少并达到压缩机允许的最小值。

理论和实践证明:能够使离心压缩机工况点落入喘振区的各种因素,都是发生喘振的原因。

风机喘振知识介绍

风机喘振知识介绍

等设备运行参数采集进来,实现集中监控和连锁保护,提高了设备的自动化水平,提
高了设备的运行可靠性,该控制器采用触摸屏人机界面,彩色画面直观清晰,操作方 便。
Harvest
风机喘振知识介绍
八、风机防喘振控制方案研究分析
1、目前,国内外炼化企业来看,防喘振控制通常用两种方法:
一是早期 专用的防喘振控制器,如WORDWARD公司的505C控制器、 ELLIOT公司的ASCC控制器等;

Harvest
3、影响喘振的其他因素
(1)压缩机的参数结构:入口导叶开度、叶轮结构、扩压机的结构 (2)压缩机的进气状态:进气温度、压力、气体组成。
风机喘振知识介绍
Harvest
六、防止喘振的具体措施
1、针对轴流式风机喘振采取的措施
风机喘振知识介绍
使泵或风机的流量恒大于QK。如果系统中所需要的流量小于QK时, 可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK 。 如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得 到稳定的运行工况。通过风机各种转速下性能曲线中最高压力点的 抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左 边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并 无效果,因此时各转速下的工作点均是相似工况点。 对轴流式风机采用可调叶片调节。当系统需要的流量减小时,则减
在压力闭环控制的同时,自动检测鼓风机流量,按照安全操作线规定的流量值自动 调整旁路回流调节阀的开口度,保证在速度下鼓风机的流量均大于等于安全操作
流量,不发生喘振现象。
Harvest
风机喘振知识介绍
给出了两条典型的安全操作线。安全操作线1 为一条直线,其流量固定,在转 速较低时,安全操作流量远大于极限流量,会引起较多的气体从旁路回流阀回流,造 成能源浪费。因此,按固定流量安全操作控制,系统的节能效果较差,一般只在简单 的控制器中采用。安全操作线2 为一条曲线,与喘振极限线相似,一般其安全操作 流量比喘振极限流量大5 %~15 % ,解决了转速较低时安全操作线1 存在的耗能

风机的喘振的名词解释

风机的喘振的名词解释

风机的喘振的名词解释风机是一种能将空气或气体进行输送或增压的机械装置。

它在多个领域中发挥重要的作用,如工业生产、建筑通风、环境治理等。

然而,当风机运行过程中出现的问题之一就是喘振。

喘振是指风机在工作时发生的振动现象,通常伴随着噪音和不稳定的运行状态。

这种振动可能导致风机损坏,甚至引发事故。

为了更好地理解喘振的性质和原因,并采取相应的措施进行预防和解决,我们需要对喘振进行详细的名词解释。

一、喘振的定义喘振是指风机在运行过程中发生的不规律振动,其频率接近于风机的共振频率。

喘振的频率可以是固定的,也可以是随机变化的。

喘振会在风机内产生不稳定的气流和压力,导致风机的运行状态失衡,甚至损坏风机结构。

二、喘振的原因喘振的产生原因可能是多方面的。

下面分别就风机结构、气体特性和操作条件等方面进行解释。

1. 风机结构:风机的设计和制造质量是喘振发生的关键因素之一。

结构不合理或工艺缺陷可能导致风机发生共振现象,从而引发喘振。

此外,风机的材料选择和组装方式也对喘振现象有一定的影响。

2. 气体特性:气体的流体力学特性对风机喘振有显著影响。

例如,气体的密度、粘度和压缩性等参数都会影响风机的振动频率和振幅。

不同工作条件下的气体特性变化可能导致风机产生喘振。

3. 操作条件:风机的运行工况和操作条件也是喘振发生的重要因素。

当工况变化较大或操作条件不当时,例如过载运行、频繁启停、不合理的进出口流道设计等都可能引发喘振。

三、喘振的预防和解决方法为了避免风机喘振带来的安全隐患和经济损失,我们需要采取适当的措施进行预防和解决。

1. 结构设计和制造优化:应根据实际工况需求,对风机的结构进行优化设计,确保结构强度和刚度满足工作要求。

制造过程中要遵循相关的规范,并进行质量检测,以确保风机的制造质量。

2. 动平衡和静平衡:动平衡是指在风机组装完成后进行的动态平衡调整,以减小振动。

静平衡则是指在风机轴的制造过程中进行的静态平衡调整。

通过合理的平衡措施,可以减小或排除喘振的可能性。

风机喘振及处理

风机喘振及处理

风机喘振及处理
喘振,顾名思义就象人哮喘一样,轴流风机出现周期性的出风与倒流,严重的喘振会导致轴流风机叶片与轴承的疲劳损坏,造成事故,直接影响锅炉的安全运行。

一般喘振发生时必然伴随着电流频繁摆动、出口风压下降并摆动,噪声大、振动大、机壳温度升高、炉膛负压波动,燃烧不稳等现象。

然而,发生喘振的原因多半是因为轴流风机在不稳定工作区域运行,或是烟风道积灰堵塞,烟风道挡板开度不足,误关等引起系统阻力过大引起的。

当轴流风机工作点在K点(分界点)右侧时,风机工作是稳定的。

当轴流风机负荷降到低于Qk时,进入不稳定区工作(即轴流风机性能曲线左半部的马鞍形的区域)。

当轴流风机的流量Q<QK时,这时轴流风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为PK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。

但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点变为E点,由于轴流风机在继续运转,轴流风机流量QF>QE,风机又开始输出流量。

随着压力的上升,为了与风道中压力相平衡,工况点又从F跳至相应工况点D,此时又出现QD>QC风又开始倒流。

所以只要外界所需的流量小于QK,上述过程又重复出现。

只要运行中工作点不进入上述不稳定区,就可避免风机喘振。

当喘振出现时,我们一般可通过迅速开大喘振风机的动叶或提高频率,提高风机的出力。

即让Q>QK,来避过喘振点K。

或是全开进,出口挡板,加强空预器吹灰等方法来减小风道阻力,避开喘振。

浅析轴流风机及其防喘振技术

浅析轴流风机及其防喘振技术

浅析轴流风机及其防喘振技术摘要:轴流风机适用范围非常普遍,生活中随处可见,为人们的生活提供了极大的便利,其虽然结构简单,但是对于数据要求非常高,因此,本文介绍了轴流风机的结构,尤其是防喘振装置,可有效地对风机的喘振进行消除,提高风机的性能。

关键词:轴流风机、防喘振、轮毂、风叶轴流风机通常用在流量要求较高而压力要求较低的场合,可用于冶金、化工、轻工、食品、医药设备、机械设备及民用建筑等场所通风换气或加强散热之用。

1、轴流风机工作原理当叶轮旋转时,气体从进风口轴向进入叶轮,受到叶轮上叶片的推挤而使气体的能量升高,然后流入导叶。

导叶将偏转气流变为轴向流动,同时将气体导入扩压管,进一步将气体动能转换为压力能,最后引入工作管路。

2、轴流风机结构轴流风机主要由叶轮、机壳、电动机等零部件组成,叶轮包括若干风叶和轮毂。

2.1机壳机壳采用圆形,由风筒、机架板和支架组成,其具有直角弯曲形状,使电机可以放在管道外部。

2.2轮毂轮毂包括相互固连的二个轮毂盘,轮毂盘的轴心上设有轴套安装孔,轮毂盘靠近外周端设有一圈固定面,装配时,把二个轮毂盘的固定面相向而固定。

固定面之间设有若干个叶柄抱箍,固定面上设有以轮毂盘轴心为圆心的环状法向定位槽,叶柄抱箍与固定面的连接面对应位置上设有法向定位棱,法向定位槽与法向定位棱相匹配。

叶柄抱箍包括上叶柄抱箍和下叶柄抱箍,上叶柄抱箍和下叶柄抱箍的结合面上分别设有半圆状的叶柄安装面。

为了使叶柄抱箍与沿轮毂盘之间在径向方向上的定位,固定面上还设有若干个径向定位槽,径向定位槽的延长线相交于轮毂盘的轴心,叶柄抱箍与固定面的连接面对应位置上设有径向定位棱,径向定位槽与径向定位棱相匹配,设风叶的数量为N,N≥2,径向定位槽包括一个基准径向定位槽和M个分径向定位槽,M=N-1,径向定位槽沿轮毂盘的固定面呈圆周均匀分布。

这样,分径向定位槽与基准径向定位槽之间具有一个角度β=306度÷N或其2至M的整数倍。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指风机在运行过程中出现的一种振动现象,通常会伴随着噪音和机械损坏。

喘振不仅会影响风机的正常运行,还可能对设备和人员造成安全隐患。

因此,及时有效地处理风机喘振问题至关重要。

一、原因分析。

1.风机设计问题,风机设计不合理或者制造工艺不当可能导致风机出现喘振现象。

例如,叶片的结构设计不合理、叶片强度不足、叶片与轴的连接方式不稳固等。

2.风机叶片问题,叶片表面积灰、积尘或者叶片损坏等问题都可能导致风机喘振。

这些问题会影响叶片的气动性能,导致风机振动加剧。

3.风机叶轮问题,叶轮不平衡或者叶轮叶片损坏等问题也是导致风机喘振的常见原因之一。

4.风机安装问题,风机的安装不稳固或者安装位置不合理也会导致风机振动加剧,从而出现喘振现象。

二、现象表现。

1.噪音,风机运行时出现异常噪音,尤其是高频噪音。

2.振动,风机运行时出现较大的振动,可以通过手感或者振动仪进行检测。

3.温度升高,风机运行时叶片或者叶轮温度异常升高。

4.机械损坏,风机运行一段时间后出现机械损坏,例如叶片断裂、叶轮变形等。

三、处理方法。

1.风机设计改进,针对风机设计问题,可以通过改进设计和优化制造工艺来解决。

例如,加强叶片结构设计、提高叶片强度、改进叶片与轴的连接方式等。

2.叶片清洁和维护,定期对叶片进行清洁和维护,保持叶片表面清洁,避免积灰和积尘,及时修复叶片损坏。

3.叶轮平衡和更换,定期对叶轮进行平衡校正,避免叶轮不平衡导致的振动问题。

另外,对于损坏严重的叶轮,需要及时更换。

4.风机安装调整,对于安装不稳固或者安装位置不合理的风机,需要进行调整和改进,保证风机运行时稳定性。

5.定期检测和维护,定期对风机进行振动、噪音和温度的检测,及时发现问题并进行维护。

结语。

风机喘振是一种常见的问题,但是通过合理的处理方法和定期的维护,可以有效地避免和解决这一问题。

对于风机制造商和使用者来说,需要重视风机喘振问题,加强对风机的设计、制造、安装和维护,保证风机的安全稳定运行。

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法

风机喘振的原因现象及处理方法风机喘振是指在风机运行时出现的振动现象,这种振动会对风机的正常运行造成影响,甚至会对风机设备造成损坏。

因此,对于风机喘振的原因、现象及处理方法,我们需要深入了解并采取有效的措施进行处理。

首先,我们来了解一下风机喘振的原因。

风机喘振的原因主要包括以下几个方面:1. 风机叶片设计不合理,风机叶片设计不合理会导致叶片在运行时受到不均匀的气流作用,从而引起振动现象。

2. 风机叶轮不平衡,风机叶轮不平衡会导致风机在运行时产生不稳定的振动,从而引起喘振现象。

3. 风机轴承故障,风机轴承故障会导致风机在运行时产生异常振动,进而引起喘振现象。

4. 风机基础不稳固,风机基础不稳固会导致风机在运行时产生不稳定的振动,从而引起喘振现象。

其次,我们来了解一下风机喘振的现象。

风机喘振的现象主要包括以下几个方面:1. 风机振动幅度增大,风机在运行时振动幅度明显增大,甚至超出正常范围。

2. 风机噪音增大,风机在运行时噪音明显增大,这是喘振现象的一个明显表现。

3. 风机运行不稳定,风机在运行时出现不稳定的现象,运行状态不平稳。

最后,我们来了解一下风机喘振的处理方法。

针对风机喘振的处理方法主要包括以下几个方面:1. 优化风机叶片设计,对风机叶片进行优化设计,减少叶片在运行时受到的不均匀气流作用,降低振动风险。

2. 动平衡风机叶轮,对风机叶轮进行动平衡处理,保证叶轮在运行时平衡稳定,减少振动现象。

3. 定期检查风机轴承,定期对风机轴承进行检查和维护,及时发现并处理轴承故障,减少振动风险。

4. 加固风机基础,对风机基础进行加固处理,保证风机在运行时基础稳固,减少振动风险。

总结而言,风机喘振是一种常见的振动现象,对风机设备的正常运行造成不利影响。

了解风机喘振的原因、现象及处理方法,对于保障风机设备的正常运行具有重要意义。

在实际操作中,我们应该根据具体情况采取相应的措施,及时处理风机喘振问题,确保风机设备的安全稳定运行。

轴流通风机喘振现象分析及预防措施

轴流通风机喘振现象分析及预防措施

1.风机性能曲线2.管网性能曲线 图1 风机特性 图2 荣山煤矿两翼通风形式图 轴流通风机喘振现象分析及预防措施摘要:就矿井轴流和离心两种风机并用发生的喘振现象,对喘振产生的原因进行了分析,指出了如何对喘振进行判断,并给出了几种消除喘振的解决方案。

关键词:轴流式通风机;喘振;工况;措施0 引言广元荣山煤矿炭厂坡井主通风机使用的是我院生产的FBCDZ №18/2×132kW 煤矿地面用防爆抽出式对旋轴流通风机,在使用过程中出现了风量、风压和电流大幅度波动,风机的振动增大,噪声增高的喘振现象,风机已经无法正常工作。

为了减小对生产的影响,采取了一些临时性措施(如降低二级电机运行频率,或者分别调大一级、调小二级叶片安装角度),消除了喘振现象,但却降低了通风系统效率。

1 风机喘振现象及原因分析风机发生喘振的现象及特点:(1)风机抽出的风量时大时小,产生的风压时高时低,系统内气体的压力和流量也发生很大的波动;(2)风机二级电动机电流波动很大,最大波动值有50A 左右;(3)风机机体产生强烈的振动,风机房地面、墙壁以及房内空气都有明显的抖动;(4)风机发出“呼噜、呼噜”的声音,使噪声剧增;(5)风量、风压、电流、振动、噪声均发生周期性的明显变化,持续一个周期时间在8s 左右。

根据对轴流式通风机做的大量性能试验来看,轴流式通风机的p -Q 性能曲线是一组带有驼峰形状的曲线[1](这是风机的固有特性,只是轴流式通风机相对比较敏感),如图1 所示。

当工况点处于B点(临界点) 左侧B 、C 之间工作时,将会发生喘振,将这个区域划为非稳定区域。

炭厂坡井主通风机发生喘振,说明其工况已落到B 、C 之间。

通过对荣山煤矿实地调查分析得知:该矿矿井的通风方式采用的是两翼对角式抽风,如图2所示,该矿有一个进风口,两个回风口。

两个回风口分别负责东、西两个大的采区工作面的通风,东面(二重岩)采用离心式抽风机抽风,西面(炭厂坡)采用我院生产的轴流式通风机抽风。

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法

浅析离心鼓风机喘振现象及处理方法李保川光大水务(德州)有限公司摘要:以光大水务(德州)有限公司南运河污水处理厂鼓风机为研究对象,结合其实际运行情况,对鼓风机运行过程中产生喘振的原因进行分析研究并制定出应对对策以及验证其可行性。

关键词:污水处理厂;离心式鼓风机;喘振;光大水务(德州)有限公司南运河污水处理厂处理规模15万m³/d,一期工程处理规模为7.5万m³/d,二期工程处理规模为7.5万m³/d,采用的污水处理工艺为A/A/O工艺。

生物池为一座两池,设计流量:Q=0.868m³/s,平面尺寸:109.90m×60.30m,分厌氧区、缺氧区、好氧区。

曝气方式采用盘式微孔曝气,鼓风机采用上海华鼓鼓风机有限公司生产的多级低速离心式鼓风机,三用一备。

配套驱动电机为西门子电机(中国)有限公司贝德牌电机。

多级低速离心式鼓风机型号为C110-1.7,进口压力101kpa,进口流量110m³/min,出口压力0.07Mpa,额定功率200Kw,转速2970r/min。

配套驱动电机型号为BM315L2-2,功率200KW,转速2975r/min。

曝气系统是整个污水处理工艺流程最为核心的部分之一,而鼓风机又是曝气系统的核心设备,所以,鼓风机运行质量的好坏对污水处理后是否符合标准起着决定性的作用。

因此,鼓风机一旦出现故障,对污水处理厂将会是致命的打击。

多级离心式鼓风机常见的故障以喘振为代表现象。

1.什么是喘振以及危害“喘振”是离心鼓风机性能反常的一种不稳定的运行状态,在运行过程中,当负荷减小,负载流量下降到某一定值时出现工作不稳定,管道中的气体压力大于出口的气体压力,这时管道中的气体就会倒流回鼓风机,直到管道中的压力下降至低于出口处的压力才会停止,鼓风机会产生剧烈震动,同时会伴有如喘息一般“呼啦”“呼啦”的强烈噪音。

喘振现象出现时,鼓风机的强烈震动会使机壳、轴承也出现强烈振动,并发出强烈、周期性的气流声。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴流式吸风机喘振分析轴流式吸风机在大型发电厂中应用比较普遍。

轴流式风机在运行中调节不当会出现喘振现象。

因此就大唐盘山电厂吸风机出现的喘振进行分析,得出结论:及早发现,正确处理。

主题词:轴流吸风机喘振现象处理轴流式吸风机由于其本身的特性决定了它在运行中存在着发生喘振的可能性,这一点从理论和实践中都可以得到证明。

大唐盘山电厂应用两台轴流式吸风机并联运行的方式。

运行实际中轴流风机喘振发生在增加出力的过程中,并联运行的轴流风机只是发生在单台风机喘振,未发生过两台风机同时喘振。

下面就大唐盘山电厂发生的风机喘振现象加以叙述和分析:第一次喘振现象:当时AGC投入,负荷500MW升至550MW。

A、B、C、D、E磨运行。

炉膛压力异常报警。

处理:运行人员切换画面到吸风机时,#1吸风机跳闸(原因:液压油压力低),联跳#1送风机。

RB保护动作,E磨跳闸,10秒后,D磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火. 经过现场检查发现液压油管断开,造成油位下降,油泵不打油。

液压油压力低,#1吸风机跳闸。

通过追忆,确认风机跳闸前两台风机动叶全开,#1吸风机流量"0",发生喘振。

第二次喘振现象:当时AGC投入,负荷500MW升至530MW。

A、B、C、D、E磨运行。

炉膛压力异常报警,运行人员切换画面到吸风机时,#1吸风机流量"0",电流83A,#2吸风机电流480A。

(风机额定电流260A)两台风机动叶全开。

确认#1吸风机喘振。

处理:关小#2吸风机动叶。

处理过程中,#1吸风机跳闸(原因液压油压力低),当时#1吸风机#1运行中液压油站跳闸,#2字自启后跳闸。

联跳#1送风机。

RB保护动作,E磨跳闸,10秒后,D 磨跳闸,炉膛压力低保护动作,MFT动作,锅炉灭火。

第三次现象:当时AGC投入,负荷500MW升至520MW。

A、B、C、D、E磨运行。

炉膛压力异常报警,运行人员切换画面到吸风机时,炉膛负压正400pa,#1吸风机流量"0",电流141A,#2吸风机电流285A。

两台风机动叶开度75%。

确认#1吸风机喘振。

处理:两台吸风机解自动,手动关#1吸风机动叶至50%时,#1吸风机开始打风,炉膛负压至负700 pa,开始关#2吸风机动叶至65%,同时,开#1吸风机动叶至55%。

当两台风机动叶开度62%/58%时,电流为160A/160A,负压稳定后,两台吸风机头自动。

分析:1. 三次吸风机喘振均发生在升负荷过程中,且处于80%负荷以上。

由于在高负荷时,烟气量较大,烟气侧阻力较大。

#1吸风机在两台风机并联运行中流量偏小,且由于调节系统的原因,#1吸风机动叶先动作,造成#1吸风机进入喘振区,发生喘振。

针对这种现象,要求运行人员在负荷高于450MW,升负荷过程中,专人注意吸风机画面,一旦发现吸风机电流偏差大于10A,立即解除自动,手动调节。

建议增加吸风机电流偏差大报警,便于运行人员及时发现异常工况。

2. 吸风机发生喘振的原因是通风系统阻力增加造成的。

如:回转式空预器堵灰,风道系统档板误动等。

针对这种现象采取一定的措施:提高风道系统档板的可靠性。

加强空预器吹灰。

加强空预器差压的监视和分析,差压超过1.1Kpa,检查空预器换热元件,及时进行高压水冲洗或碱洗。

3. 吸风机发生喘振后,必须正确处理。

应及时关小喘振风机动叶,直至消除喘振,也要及时关小另一台风机动叶,防止超电流运行,导致事故掉闸或损坏设备。

一旦发现风机振动或轴承温度达到紧急停运条件,必须马上停止运行。

确认两台风机运行正常后,方可投入自动调节。

结论:运行人员应加强对运行参数的监视和分析,对烟风系统的参数心中有数,对不同的负荷下,风机的电流,动叶的开度,烟气侧的流量,风机入口的压力,空预器烟气侧的差压进行分析,发现问题,及时正确处理。

在事故处理过程中,应同时注意其它画面设备的监视和调整,防止负压摆动造成锅炉灭火。

防止风机喘振保护原理轴流风机性能曲线的左半部具有一个马鞍形的区域,在此区段运行有时会出现风机的流量、压头和功率的大幅度脉动,风机及管道会产生强烈的振动,噪声显著增高等不正常工况,一般称为“喘振”,这一不稳定工况区称为喘振区。

实际上,喘振仅仅是不稳定工况区内可能遇到的现象,而在该区域内必然要出现的则是旋转脱流或称旋转失速现象。

这两种工况是不同的,但是它们又有一定的关系。

象17如下图图所示:轴流风机Q-H性能曲线,若用节流调节方法减少风机的流量,如风机工作点在K点右侧,则风机工作是稳定的。

当风机的流量Q < QK时,这时风机所产生的最大压头将随之下降,并小于管路中的压力,因为风道系统容量较大,在这一瞬间风道中的压力仍为HK,因此风道中的压力大于风机所产生的压头使气流开始反方向倒流,由风道倒入风机中,工作点由K点迅速移至C点。

但是气流倒流使风道系统中的风量减小,因而风道中压力迅速下降,工作点沿着CD线迅速下降至流量Q=0时的D点,此时风机供给的风量为零。

由于风机在继续运转,所以当风道中的压力降低倒相应的D点时,风机又开始输出流量,为了与风道中压力相平衡,工况点又从D跳至相应工况点F。

只要外界所需的流量保持小于QK,上述过程又重复出现。

如果风机的工作状态按F-K-C-D-F周而复始地进行,这种循环的频率如与风机系统的振荡频率合拍时,就会引起共振,风机发生了喘振。

风机在喘振区工作时,流量急剧波动,产生气流的撞击,使风机发生强烈的振动,噪声增大,而且风压不断晃动,风机的容量与压头越大,则喘振的危害性越大。

故风机产生喘振应具备下述条件:a)风机的工作点落在具有驼峰形Q-H性能曲线的不稳定区域内;b)风道系统具有足够大的容积,它与风机组成一个弹性的空气动力系统;c)整个循环的频率与系统的气流振荡频率合拍时,产生共振。

旋转脱流与喘振的发生都是在Q-H性能曲线左侧的不稳定区域,所以它们是密切相关轴流风机的Q-H性能曲线的,但是旋转脱流与喘振有着本质的区别。

旋转脱流发生在图5-18所示的风机Q-H性能曲线峰值以左的整个不稳定区域;而喘振只发生在Q-H性能曲线向右上方倾斜部分。

旋转脱流的发生只决定叶轮本身叶片结构性能、气流情况等因素,与风道系统的容量、形状等无关。

旋转对风机的正常运转影响不如喘振这样严重。

风机在运行时发生喘振,情况就不相同。

喘振时,风机的流量、全压和功率产生脉动或大幅度的脉动,同时伴有明显的噪声,有时甚至是高分贝的噪声。

喘振时的振动有时是很剧烈的,损坏风机与管道系统。

所以喘振发生时,风机无法运行。

轴流风机在叶轮进口处装置喘振报警装置,该装置是由一根皮托管布置在叶轮的前方,皮托管的开口对着叶轮的旋转方向,如图5-19示。

皮托管是将一根直管的端部弯成90°(将皮托管的开口对着气流方向),用一U形管与皮托管相连,则U形管(压力表)的读数应该为气流的动能(动压)与静压之和(全压)。

在正常情况下,皮托管所测到的气流压力为负值,因为它测到的是叶轮前的压力。

但是当风机进入喘振区工作时,由于气流压力产生大幅度波动,所以皮托管测到的压力亦是一个波动的值。

为了使皮托管发送的脉冲压力能通过压力开关发出报警信号,皮托管的报警值是这样规定的:当动叶片处于小角度位置(-30°)用一U形管测得风机叶轮前的压力再加上2000Pa压力,作为喘振报警装置的报警整定值。

当运行工况超过喘振极限时,通过皮托管与差压开关,利用声光向控制台发出报警信号,要求运行人员及时处理,使风机返回正常工况运行。

为防止轴流风机在运行时工作点落在旋转脱流、喘振区内,在选择轴流风机时应仔细核实风机的经常工作点是否落在稳定区内,同时在选择调节方法时,需注意工作点的变化情况,动叶可调轴流风机由于改变动叶的安装角进行调节,所以当风机减少流量时,小风量使轴向速度降低而造成的气流冲角的改变,恰好由动叶安装角的改变得以补偿,使气流的冲角不至于增大,于是风机不会产生旋转脱流,更不会产生喘振。

动叶安装角减小时,风机不稳定区越来越小,这对风机的稳定运行是非常有利的。

防止喘振的具体措施:1)使泵或风机的流量恒大于QK。

如果系统中所需要的流量小于QK 时,可装设再循环管或自动排出阀门,使风机的排出流量恒大于QK. 喘振报警装置2)如果管路性能曲线不经过坐标原点时,改变风机的转速,也可能得到稳定的运行工况。

通过风机各种转速下性能曲线中最高压力点的抛物线,将风机的性能曲线分割为两部分,右边为稳定工作区,左边为不稳定工作区,当管路性能曲线经过坐标原点时,改变转速并无效果,因此时各转速下的工作点均是相似工况点。

3)对轴流式风机采用可调叶片调节。

当系统需要的流量减小时,则减小其安装角,性能曲线下移,临界点向左下方移动,输出流量也相应减小。

4)最根本的措施是尽量避免采用具有驼峰形性能曲线的风机,而采用性能曲线平直向下倾斜的风机。

失速和喘振是两种不同的概念,失速是叶片结构特性造成的一种流体动力现象,它的一些基本特性,例如:失速区的旋转速度、脱流的起始点、消失点等,都有它自己的规律,不受风机系统的容积和形状的影响。

喘振是风机性能与管道装置耦合后振荡特性的一种表现形式,它的振幅、频率等基本特性受风机管道系统容积的支配,其流量、压力功率的波动是由不稳定工况区造成的,但是试验研究表明,喘振现象的出现总是与叶道内气流的脱流密切相关,而冲角的增大也与流量的减小有关。

所以,在出现喘振的不稳定工况区内必定会出现旋转脱流。

相关文档
最新文档