偏振光技术及其应用-大学物理
大学物理光的偏振与反射
大学物理光的偏振与反射光是一种波动现象,具有振动方向的特性,称为偏振。
光的偏振与反射是大学物理中一个重要的概念。
本文将就光的偏振与反射的原理和应用进行探讨。
一、光的偏振原理1.1 光波的横波性质光是一种电磁波,具有横波性质。
横波的振动方向垂直于波的传播方向。
这使得光具有受到偏振的可能性。
1.2 光的振动方向光波的振动方向可以在任意平面内。
我们可以将光波的振动方向与平面垂直的方向定义为s方向,与平面平行的方向定义为p方向。
在光的偏振中,通常关注s和p方向的振动。
1.3 偏振器偏振器是一种能够选择性地传递或阻挡某个方向偏振光的器件。
常见的偏振器有偏振片和偏振板。
二、光的反射与偏振2.1 反射光的偏振当光在介质表面发生反射时,反射光的振动方向将与入射光发生改变。
反射光中的振动方向决定了光的偏振状态。
2.2 垂直入射光的偏振当光垂直入射时,反射光在平面上产生偏振。
这种偏振状态称为s 偏振,它的振动方向与入射光垂直。
2.3 斜入射光的偏振当光斜入射时,反射光在平面上产生两种偏振:s偏振和p偏振。
s 偏振的振动方向与入射光垂直,p偏振的振动方向与入射光平行。
三、光的偏振应用3.1 偏振片的应用偏振片广泛应用于光学仪器和光电子设备中,如液晶显示器和偏振镜等。
通过调节偏振片的角度,可以改变光的偏振状态,实现液晶显示器的图像显示和光强的控制。
3.2 光的偏振与3D技术光的偏振在3D技术中也起到重要作用。
通过使用偏振器将左右眼所看到的图像分别偏振处理,然后戴上对应的偏振眼镜,左右眼只接收到对应偏振方向的图像,从而产生立体感。
3.3 光的偏振与天文观测光的偏振在天文观测中有着广泛的应用。
通过检测天体的偏振光,可以获取关于恒星、行星和星系等天体的重要信息,如它们的物质构成、磁场性质等,有助于天文学家深入研究宇宙的奥秘。
总结:光的偏振与反射是大学物理光学中的重要概念。
光的偏振是由光波的横波性质和振动方向决定的,可以通过偏振器选择性地传递或阻挡某个方向的偏振光。
大学物理——光的偏振
二、起偏和检偏 1、偏振片的起偏和检偏 起偏:使自然光(或部分偏振光)变成线偏振光的过程。 起偏:使自然光(或部分偏振光)变成线偏振光的过程。 检偏:检查入射光的偏振性。 检偏:检查入射光的偏振性。 偏振片 将待检查的入射光垂直入 自然光 射偏振片, 射偏振片,缓慢转动偏振 观察光强的变化, 片,观察光强的变化,确 定光的偏振性。 定光的偏振性。
3. 尼科耳棱镜 将两块根据特殊要求加工的方解石棱镜用折射率 将两块根据特殊要求加工的方解石棱镜用折射率 方解石棱镜 的加拿大树胶粘合成一长方柱形棱镜。 为n=1.55的加拿大树胶粘合成一长方柱形棱镜。 的加拿大树胶粘合成一长方柱形棱镜 方解石的折射率n 方解石的折射率 0=1.658, ne = 1.486 光轴在ABCD平面内方向与AB成480,入射面取ABCD面 光轴在ABCD平面内方向与AB成 入射面取ABCD面 ABCD平面内方向与AB ABCD
Ex = Ecosα Ey = Esinα
Ey
E
α
Ex
x
线偏振光的表示法: 线偏振光的表示法:
x
光振动平行板面
• • • • • •
x
光振动垂直板面
部分偏振光
某个方向的光振动占有优势。 某个方向的光振动占有优势。 有优势
自然光与线偏 自然光与 线偏 振光的混合 的混合。 振光的混合。 部分偏振光 部分偏振光的分解 部分偏振光可分解为两束振动方向相互垂直的 相互垂直的、 部分偏振光可分解为两束振动方向 相互垂直的 、 不等幅的线偏振光 线偏振光。 不等幅的线偏振光。 部分偏振光的表示法: 部分偏振光的表示法:
2 、光轴与主平面 当光在晶体内沿某个特殊方向传播时不发生双 当光在晶体内沿某个特殊方向传播时 不发生双 折射,该方向称为晶体的光轴。 折射,该方向称为晶体的光轴。 晶体的光轴 “光轴”是一特殊的“方向”,不是指一条直线。 光轴” 特殊的“ 光轴 是一特殊的 方向” 不是指一条直线。 凡平行于此方向的直线均为光轴。 凡平行于此方向的直线均为光轴。 单轴晶体: 单轴晶体:只有一个光轴的晶体 光轴 方解石、石英、红宝石、冰等。 方解石、石英、红宝石、冰等。
《大学物理》光的偏振
符号表示
v
2. 线偏振光 (光振动只沿某一固定方向的光)
符号表示
v
v
光的振动方向与传播方向组成的平面称为振动面。
v
此线偏振光振动面为板面
3. 部分偏振光 :某一方向的光振动比与之垂直方向 上的光振动占优势的光为部分偏振光 .
符号表示
13.12.2 偏振片 马吕斯定律
某些物质能吸收某一方向的光振动 , 而只让与这 个方向垂直的光振动通过, 这种性质称二向色性 .
量糖计就是根据这个原理制成的。
13.12 光的偏振
光的波动性 光波是横波
光的干涉、衍射 . 光的偏振 .
横波与纵波的区别
机械横波穿过狭缝
机械纵波穿过狭缝
13.12.1 自然光 偏振光
1. 自然光 :各个方向的光矢量(无固 定的相位关系),在所有可能的方向 上的振幅都相等(轴对称)。
v
E
常把各个光矢量分解成任意两个相互垂直
的两个光矢量分量。
1. 偏振片 : 涂有二向色性材料的透明薄片 . 偏振化方向 : 只让某一特定方向的光通过,这个方
向叫此偏振片的偏振化方向 . 自然光通过偏振片强度减少一半。
I0
起偏器
1 2
I0
偏振化方向
起偏器:将自然光变为线偏光的光学器件 检偏器:检验光偏振态的光学器件
3. 起偏和检偏
2.马吕斯定律(1880 年)
I = I0 cos2a
I 入射偏振光的强度
I 0 出射光的强度
a 是入射的偏振光的光振
动方向与偏振片的偏振 化方向之间的夹角 Nhomakorabea马吕斯定律的证明
N
I0
M
E0
N M
E a E0
大学物理实验报告 偏振光
大学物理实验报告偏振光大学物理实验报告:偏振光引言在物理学中,光是一种电磁波,它的振动方向可以是任意的。
然而,当光通过特定的材料或经过特定的处理后,它的振动方向会被限制在一个特定的方向上,这种光称为偏振光。
偏振光在现代科技中有着广泛的应用,例如液晶显示屏、偏振墨镜等。
本次实验旨在通过实际操作和测量,深入了解偏振光的特性和相关原理。
实验一:偏振片的特性实验一旨在研究偏振片的特性。
我们使用了一束白光,通过一系列偏振片,观察光的强度变化。
首先,我们将一片偏振片放在光源前方,并调整偏振片的方向。
我们观察到,当偏振片的方向与光的振动方向垂直时,光的强度最小;而当偏振片的方向与光的振动方向平行时,光的强度最大。
这表明偏振片可以选择性地通过特定方向的光,而阻挡其他方向的光。
接下来,我们在光源后方再放置一片偏振片,并将其方向与前一片偏振片的方向垂直。
我们发现,光的强度几乎为零,无法通过第二片偏振片。
这是因为第一片偏振片已经选择性地通过了特定方向的光,而第二片偏振片的方向与通过的光垂直,导致光无法通过。
实验二:马吕斯定律的验证实验二旨在验证马吕斯定律,即光的振动方向在经过偏振片后会发生旋转。
我们使用了一束偏振光,并在光路中加入了一片旋转的偏振片。
通过调整旋转偏振片的角度,我们观察到光的强度发生了周期性的变化。
这说明光的振动方向在经过旋转偏振片后发生了旋转。
进一步实验表明,当旋转偏振片的角度为90°时,光的强度最小;而当旋转偏振片的角度为0°或180°时,光的强度最大。
这与马吕斯定律的预期结果一致。
实验三:马吕斯定律的应用实验三旨在利用马吕斯定律,实现光的偏振和解偏振。
我们使用了一束偏振光,并在光路中加入了一片旋转的偏振片。
通过调整旋转偏振片的角度,我们可以改变光的偏振方向。
然后,我们加入一片固定方向的偏振片,将光通过。
我们观察到,当旋转偏振片的角度与固定偏振片的方向垂直时,光无法通过;而当旋转偏振片的角度与固定偏振片的方向平行时,光可以通过。
实验19 偏振光的观察和应用_2
大学物理实验预习报告姓名实验班号实验号
实验十九偏振光的观察和应用
实验目的:
实验原理及仪器介绍:
1.光有那几种偏振态?
2.什么是起偏、检偏,常用起偏器和检偏器有哪些?
3.什么是波片? %波片和%波片有何不同?
4.如何产生和检验线偏振光?何谓消光?
5.如何产生圆偏振光和椭圆偏振光?
实验内容:
1.如何区分圆偏振光和自然光?
2.如何区分椭圆偏振光和部分偏振光?
3.预习旋光仪的使用,解释三分视场现象是如何形成的?并指出如何寻找三分视场?
4.预习旋光仪的使用,说明调焦手轮的功能是什么?
数据表格:
1.记录所用测量仪器的仪器误差:
2.列出数据记录表格:
教师签字:。
大学物理实验报告系列之偏振光的分析
大学物理实验报告
3. 鉴别各种偏振光的方法和步骤
【实验内容】
1. 测定玻璃对激光波长的折射率 2. 产生并检验圆偏振光 3.产生并检验椭圆偏振光
【数据表格与数据记录】
58308250211=-=-=ϕϕp i 57307250212=-=-=ϕϕp i
57307250213=-
=-=ϕϕp i 56306250214=-=-=ϕϕp i 58308250215=-=-=ϕϕp i 57307250216=-=-=ϕϕp i
56306250217=-=-=ϕϕp i
577
7
1=+⋅⋅⋅⋅+=
p p p i i i
5399.157tan tan === n i p
波长为632.8nm 时玻璃对于空气的相对折射率为1.5399。
现象:两次最亮,两次消光。
结论:圆偏振光
如果使检偏器的透振方向与暗方向平行,1/4波片与检偏器透振方向垂直或平行。
现象:两次亮光,两次消光 结论:椭圆偏振光
【小结与讨论】
1. 实验测的了63
2.8nm 时玻璃对空气的折射率为1.5399。
2. 单色自然光经过起偏器和检偏器,旋转检偏器一周,发现光电流相应出现两次消
光现象,是分析其原因。
答:当检偏器的偏振化的方向和检偏器的偏振化的方向为
2π和3
π
时,根据马吕斯定律θ2
0cos I I =可知,出现两次光强为零的情况,即光电流出现了2次消光现象。
3.自己设计实验进行了几种偏振光的检验的工作,搞清了几种偏振光的区别,以及怎样得到他们。
Welcome !!! 欢迎您的下载,资料仅供参考!。
大学物理偏振光实验报告
大学物理偏振光实验报告大学物理偏振光实验报告引言:偏振光是光波在传播过程中振动方向固定的光波,其振动方向与传播方向垂直。
在本次实验中,我们将通过一系列实验来研究偏振光的性质和应用。
通过实验,我们将探索偏振光在介质中的传播规律、偏振片的工作原理以及偏振光的应用。
实验一:偏振片的特性研究在这个实验中,我们将使用偏振片来研究偏振光的特性。
首先,我们将光源调整到最亮的状态,然后将一个偏振片放在光源前方。
随着我们旋转偏振片,我们会观察到光的强度发生变化。
这是因为偏振片只允许特定方向的光通过,其他方向的光被滤除掉。
通过旋转偏振片,我们可以改变通过偏振片的光的振动方向,从而改变光的强度。
实验二:马吕斯定律的验证在这个实验中,我们将验证马吕斯定律,即入射光的偏振方向与透射光的偏振方向之间的关系。
我们将使用一个偏振片作为偏振器,一个偏振片作为分析器。
我们将调整偏振器的角度,观察透射光的强度变化。
根据马吕斯定律,当偏振器和分析器的偏振方向相同时,透射光的强度最大;当两者的偏振方向垂直时,透射光的强度最小。
通过实验,我们可以验证这一定律。
实验三:双折射现象的观察在这个实验中,我们将研究双折射现象。
我们将使用一块具有双折射性质的晶体,如石英晶体。
当将光线通过这块晶体时,我们会观察到光线分裂成两束,这是因为晶体中存在两个不同的折射率。
我们可以调整入射光的角度和晶体的厚度,观察到不同的双折射现象,如双折射光线的偏振状态和双折射光线的干涉等。
实验四:偏振光的应用在这个实验中,我们将研究偏振光的应用。
首先,我们将使用偏振片来解析光源中的偏振光,从而得到纯净的偏振光。
然后,我们将使用偏振光来研究材料的光学性质,如透射率和反射率。
通过调整偏振光的偏振方向和入射角度,我们可以得到不同的光学性质数据,从而深入了解材料的光学特性。
结论:通过这一系列的实验,我们深入研究了偏振光的性质和应用。
我们通过验证马吕斯定律,了解了入射光和透射光的偏振方向之间的关系。
《大学物理》光的偏振现象的研究实验
图2 二向色性起偏《大学物理》光的偏振现象的研究实验姓 名学 号 班 级桌 号 教 室实验日期 20 年 月 日 时段 指导教师一. 实验目的1. 观察光的偏振现象,加深对光偏振基本规律的认识;2. 了解产生和检验偏振光的基本方法;3. 验证马吕斯定律;4.1/2波片,1/4波片的研究; 5.利用旋光现象测定蔗糖溶液浓度. 二. 实验仪器导轨和机座, 带布儒斯特窗的氦氖激光器, 激光器架, 偏振片、波片架, 滑动座(4个), 光传感器(光电探头),光功率测试仪,偏振片(2个),1/2波片(波长632.8nm ),1/4波片(波三. 实验原理1. 偏振光的基本概念光波是一种电磁波,它的电矢量 和磁矢量 相互垂直,并垂直于光的传播方向。
通常人们用电矢量 代表光的振动方向,并将电矢量和光的传播方向所构成的平面称为光的振动面。
在传播过程中,电矢量的振动方向始终在某一确定方向的光称为平面偏振光或线偏振光,如图1(a)所示。
振动面的取向和光波电矢量的大小随时间作有规律的变化,光波电矢量末端在垂直于传播方向的平面上的轨迹呈椭圆或圆时,称为椭圆偏振光或圆偏振光,评 分教师签字图1 平面偏振光、自然光和部分偏振光图3 双折射起偏原理图人眼逆光来看,若电矢量末端按照顺时针方向旋转,则称为右旋椭圆或右旋圆偏振光,反之为左旋。
通常光源发出的光波有与光波传播方向相垂直的一切可能的振动方向,没有一个方向的振动比其它方向更占优势。
这种光源发射的光对外不显现偏振的性质,称为自然光,如图1(b)所示;如果光波电矢量的振动在传播过程中只是在某一确定方向上占优势,则此偏振光称为部分偏振光,如图1(c)所示。
将自然光变成偏振光的器件称为起偏器,用来检验偏振光的器件称为检偏器。
实际上,起偏器和检偏器是互为通用的。
下面介绍几种常用的起偏和检偏方法。
2. 二向色性起偏、马呂斯定律、双折射起偏二向色性起偏:物质对不同方向的光振动具有选择吸收的性质,称为二向色性。
大学物理实验偏振光实验报告
大学物理实验偏振光实验报告大学物理实验偏振光实验报告引言:偏振光是一种特殊的光,它的电场振动方向只在一个平面上,与普通光的电场振动方向不同。
在大学物理实验中,我们进行了偏振光实验,通过观察光的偏振现象,深入了解了光的性质和行为。
本报告将详细介绍实验的目的、原理、实验步骤、实验结果和分析。
实验目的:1.了解光的偏振现象和特性;2.学习使用偏振片和偏振片组成的光学器件;3.观察偏振光的现象,验证马吕斯定律。
实验原理:偏振光的产生可以通过偏振片实现,偏振片是一种能够选择性地通过特定方向振动的光的光学器件。
当普通光通过偏振片时,只有与偏振片振动方向平行的光能够通过,垂直于振动方向的光则被阻止通过。
这样,就可以将普通光转换为偏振光。
实验步骤:1.准备实验所需材料:偏振片、光源、光屏、旋转台等;2.将光源放置在旋转台上,使其射出的光通过偏振片;3.调整旋转台,观察光通过偏振片后的变化;4.在光屏上观察光的强度分布;5.旋转偏振片,观察光的强度变化。
实验结果:通过实验观察,我们得到了以下结果:1.当偏振片与光源之间的角度为0°或180°时,光通过偏振片的强度最大;2.当偏振片与光源之间的角度为90°或270°时,光无法通过偏振片;3.在其他角度下,光通过偏振片的强度介于最大值和最小值之间;4.旋转偏振片,光的强度会随之变化。
实验分析:根据实验结果,我们可以得出以下结论:1.偏振片具有选择性地通过特定方向振动的能力,只有与振动方向平行的光能够通过;2.当光通过偏振片时,光的强度会随着偏振片与光源之间的角度变化而变化;3.马吕斯定律指出,通过两个偏振片的光强度与两个偏振片之间的角度有关,光强度最大时,两个偏振片的角度相同或相差180°,光强度最小时,两个偏振片的角度相差90°或270°。
结论:通过本次偏振光实验,我们深入了解了偏振光的性质和行为。
大学物理中的光的偏振光的振动方向与偏振现象
大学物理中的光的偏振光的振动方向与偏振现象在大学物理中,光是一个重要的研究对象。
它的性质和现象被广泛研究和应用。
其中,光的偏振现象是一个引人注目的课题,它与光的振动方向密切相关。
本文将对大学物理中的光的偏振光的振动方向与偏振现象展开论述。
一、光的偏振光的振动方向光是一种电磁波,具有电场和磁场的振动。
在传播过程中,光的电场和磁场垂直于传播方向,在空间中形成一个电矢量和磁矢量的交叉振动。
这种交叉振动的方向就是光的偏振方向,也称为光的振动方向。
光的振动方向可以在不同平面上进行,我们称之为线偏振光。
常见的线偏振光有水平偏振光、垂直偏振光、左旋偏振光和右旋偏振光。
水平偏振光和垂直偏振光的振动方向分别沿着水平和垂直的方向,左旋偏振光和右旋偏振光的振动方向则绕着传播方向旋转。
二、光的偏振现象光的偏振现象指的是光在与物体接触或经过物质介质时,会发生振动方向的改变。
这一现象主要与介质的性质以及光的入射角度有关。
1. 介质的探测性质介质对光的振动方向的选择性吸收作用称为偏振。
不同的介质对不同方向的振动光有不同的吸收度,导致振动方向被选择性地吸收和消除。
光通过经过介质后,原本包含各个方向振动的非偏振光变成了具有特定振动方向的偏振光。
2. 偏振器为了研究和应用偏振光,人们设计了偏振器来选择或产生具有特定振动方向的光。
偏振器是一种能够透过特定方向光的光学装置。
通过偏振器,我们可以选择性地得到特定方向的偏振光。
3. 双折射某些物质在光的传播过程中会改变其折射率,导致光的传播速度和波长的变化。
这种现象被称为双折射。
双折射现象使得经过此类物质的光出现了两个不同的折射光线,其振动方向也会发生变化。
三、光的偏振现象的应用光的偏振现象在生活和科学研究中有着广泛的应用。
1. 偏振光在偏振镜中的应用偏振镜是一种光学器件,能够透过或者阻挡特定方向的偏振光。
偏振镜应用于太阳镜、摄影镜头等领域,能够有效减少光的反射和折射,提高图像的清晰度。
2. 光的偏振在液晶显示技术中的应用液晶显示屏的原理就是利用光的偏振和双折射现象。
大学物理实验报告系列之偏振光的分析.
大学物理实验报告系列之偏振光的分析.实验目的:学习偏振光的性质及其检测方法,掌握偏振片的使用,了解偏振光在通过偏振片后的偏振状态的变化。
实验原理:偏振光是在振动方向相同的电磁波的超波前中传播的,是一种只有在一个特定方向上的电磁波。
偏振光有多种产生方式,包括任意光的通过线性偏振器、光通过双折射材料时的一个偏振状态和产生由有机物质引起的有旋性光。
偏振片是实现普通光的偏振的一种光学器件。
在偏振器中,通常使用的是线性偏振器,它具有将只有振动方向平行于传播方向的光通过,同时阻止振动方向垂直于传播方向的光通过的性质。
当光经过一次完美的偏振器时,它只剩下一个特定的偏振状态。
当然,如果光通过多个偏振器,那么可以改变光的偏振状态。
实验步骤:1. 将激光打开,调整方向,让激光通过第一个偏振片。
2. 观察光的强度随着偏振片的旋转而变化。
3. 将通过第一个偏振片的激光再通过一个偏振片。
5. 将第二个偏振片旋转到90度的角度,与第一个偏振片垂直,观察激光的强度。
实验结果:通过实验可以得到以下结果:1. 当激光通过第一个偏振片时,随着偏振片的旋转,光的强度先减小,再增大,再减小。
讨论和分析:通过实验可以看出,当光经过偏振片时,光的偏振状态会改变,这种偏振状态的变化可以通过第二个偏振片的旋转来检测到。
当第二个偏振片旋转到90度的角度时,两个偏振片的振动方向垂直,此时光的强度为最弱,这是因为只有在一个特定方向上的电磁波(也就是偏振光)通过第一个偏振片,然后经过第二个偏振片的特定方向。
如果第二个偏振片的振动方向不是垂直于第一个偏振片光的振动方向,那么光的强度不会完全变为零。
结论:光是一种电磁波,偏振光只有在一个特定方向才存在。
偏振片可以将普通光转化为偏振光,并且可以通过两个偏振片的组合改变光的偏振状态。
实验可以让我们更深入理解电磁波的性质,也为我们在日常生活中应用到偏光器材料提供了一种直观的方法。
大学物理光的偏振
(A)
玻璃门表面的 反光很强
(B)
用偏光镜减弱 反射偏振光
(C)
用偏光镜消除 反射偏振光, 使玻璃门内的 人物清晰可见
例1:一束自然光从空气射向一块平板玻璃,设入射角等于布 儒斯特角,则在界面2的反射光为( B )
A)自然光 B) 线偏振光且光矢量的振动方向垂直于入射面 C)线偏振光且光矢量的振动方向平行于入射面 D) 部分偏振光
z
y x
左旋光 . 分 右旋光 .
实际为相差为 /2 两垂 直方向线偏振光的合成
部分偏振光 partial polarized light
光矢量振动方 向的角分布不均匀
部分偏振光示意图
=
+
光矢量投影
部分偏振光可视 为自然光与线偏振光 的叠加。
自然光经反射或折射后得到的光多为部分偏振光。见§24-3
光的偏振
的电场光强实度质E上 称是为电光磁矢波,量电。磁波都是横波。通常把光波中
对确定的传播方向,光矢量可能 的方向并不唯一。
所谓偏振是指:光矢量总是与光
的传播方向垂直的特性。 事实上就是电磁波的横波性
光矢量
传播方向
光矢量 振动方向
光的偏振
本章主要内容
§24-1 光的偏振状态 §24-2 线偏振光的获得与检验 §24-3 反射和折射时光的偏振
§24-1 光的偏振状态
偏振态——光矢量的振动状态。(振动方向及其角分布)
非偏振光 通常光有三类不同的偏振态: 完全偏振光
部分偏振光
非偏振光——自然光
光矢量角分布均匀
在垂直于传播方向的平面上,沿各方向振动光矢量都 有,分布均匀,具有轴对称性,而且振幅相等、没有固定 的相位关系。
大学物理实验报告系列之偏振光的分析完整版
大学物理实验报告系列之偏振光的分析HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】【实验名称】偏振光的分析【实验目的】1.观察光的偏振现象,巩固理论知识,加深对光的偏振现象的认识。
2.学习直线偏振光的产生与检验方法,了解圆偏振光和正椭圆偏振光的产生和定性检验方法。
【实验仪器】He-Ne激光器、光具座、偏振片(两块)、632.8nm的1/4波片(两块)、玻璃平板及刻度盘、白屏等。
【实验原理】1.光的偏振状态偏振是指振动方向相对于波的传播方向的一种空间取向作用。
它是横波的重要特性。
光在传播过程中,若电矢量的振动只局限在某一确定平面内,这种光称为直线偏振光,又叫平面偏振光(因其电矢量的振动在同一平面内);若光波电矢量的振动随时间作有规律的改变,即电矢量的末端在垂直于光传播方向的平面上的轨迹是圆或椭圆,这样的光称为圆偏振光和椭圆偏振光;若光波电矢量的振动只在某一确定的方向上占优势,而在和它正交的方向上最弱,各方向的振动无固定的位相关系,这种光称为部分偏振光。
2.直线光,圆偏光,椭圆偏振光的产生。
直线偏振光垂直通过波片的偏振状态3. 鉴别各种偏振光的方法和步骤1.测定玻璃对激光波长的折射率2.产生并检验圆偏振光3.产生并检验椭圆偏振光【数据表格与数据记录】波长为632.8nm时玻璃对于空气的相对折射率为1.5399。
现象:两次最亮,两次消光。
结论:圆偏振光如果使检偏器的透振方向与暗方向平行,1/4波片与检偏器透振方向垂直或平行。
现象:两次亮光,两次消光结论:椭圆偏振光现象:两最亮,两次消光 结论:线偏振光【小结与讨论】1. 实验测的了632.8nm 时玻璃对空气的折射率为1.5399。
2. 单色自然光经过起偏器和检偏器,旋转检偏器一周,发现光电流相应出现两次消光现象,是分析其原因。
答:当检偏器的偏振化的方向和检偏器的偏振化的方向为2π和3π时,根据马吕斯定律θ20cos I I =可知,出现两次光强为零的情况,即光电流出现了2次消光现象。
大学物理光的偏振
大学物理光的偏振光在传播过程中,电矢量在垂直于传播方向上的两个相互垂直的分量分别称为水平分量H和垂直分量V,偏离这两个垂直分量的光波称为偏振光。
光波的偏振现象在光学中具有重要的应用价值。
自然光:具有垂直于传播方向的上、下两个偏振分量,两分量均在垂直于传播方向的平面内振动。
椭圆偏振光:在垂直于传播方向的平面内,除有一个与传播方向垂直的振动分量外,尚有与传播方向成一定夹角的振动分量。
圆偏振光:在垂直于传播方向的平面内,两个相互垂直的振动分量都与传播方向成一定夹角,且相位差为π/2。
尼科耳棱镜:其作用是将入射光从其他偏振状态转变成透过偏振片后的直线偏振光。
渥拉斯顿棱镜:其作用是将入射的非偏振光分成两束相干光波,其中一束光的振动方向与入射光的振动方向垂直,以透射光的形式出现;另一束光的振动方向与入射光的振动方向平行,以反射光的形式出现。
当两束偏振方向平行的线偏振光经过一个偏振片后,透射光为线偏振光,其偏振方向与入射光的偏振方向一致;当两束偏振方向垂直的线偏振光经过一个偏振片后,透射光为暗条纹。
当两束线偏振光的偏振方向既不平行也不垂直时,透射光将出现明暗相间的条纹,这种条纹称为椭圆偏振光的干涉条纹。
当两束椭圆偏振光的旋转方向相反时,透射光仍将出现明暗相间的条纹,且旋转方向相反。
当两束椭圆偏振光的旋转方向相透射光将出现圆偏振光的干涉条纹。
在物理学中,光的干涉是一个非常重要的概念,它描述了两个或多个光波叠加时产生的明暗条纹和相消干涉的现象。
这个概念最早由英国物理学家托马斯·杨在19世纪初提出,后来被广泛应用到光学、波动力学和其他领域。
光的干涉现象可以被分为两类:时间域干涉和空间域干涉。
时间域干涉指的是两个或多个光波在时间上同步抵达某一点,而空间域干涉则指的是两个或多个光波在空间中不同位置的叠加。
干涉现象的原理在于,当两个或多个光波的波峰或波谷完全重叠时,它们会相互增强,产生明亮的干涉条纹。
而当波峰与波谷相遇时,它们会相互抵消,产生暗的干涉条纹。
大学物理偏振光实验报告
大学物理偏振光实验报告大学物理偏振光实验报告引言:光是一种电磁波,它在空间中传播时具有振动方向。
而偏振光则是指光波中的电场矢量在特定方向上振动的光。
物理学家发现,光的偏振性质对于理解光的本质以及应用于各个领域都具有重要意义。
本实验旨在通过观察偏振光的特性,深入了解光的偏振现象。
实验一:偏振片的特性实验中,我们使用了一块偏振片和一束自然光源。
将偏振片放在光路中,我们观察到光线的亮度明显降低,这是因为偏振片只允许某个特定方向的光通过,其他方向的光被吸收或者散射。
通过旋转偏振片,我们发现光的亮度随着角度的变化而改变,这表明偏振片只允许特定方向的光通过。
实验二:马吕斯定律的验证马吕斯定律是描述偏振光传播的重要定律。
为了验证该定律,我们使用了两块偏振片。
将第一块偏振片称为偏振器,将第二块偏振片称为偏振分析器。
我们发现,当偏振器和偏振分析器的振动方向相同时,透过偏振分析器的光亮度最大。
而当两者的振动方向垂直时,透过偏振分析器的光亮度最小。
这验证了马吕斯定律,即光的偏振方向与偏振分析器的振动方向垂直时,光的强度最小。
实验三:双折射现象双折射是指某些晶体在光传播过程中会发生折射现象,光线被分为两束,并且沿不同方向传播。
为了观察双折射现象,我们使用了一块双折射晶体和一束线偏振光。
当线偏振光通过双折射晶体时,我们观察到光线被分为两束,并且沿不同方向传播,这是由于晶体内部的结构导致光的振动方向发生了变化。
通过旋转双折射晶体,我们发现两束光的强度随着角度的变化而改变,这进一步验证了双折射现象的存在。
实验四:偏振光的应用偏振光在实际生活中有着广泛的应用。
例如,在太阳镜和墨镜中,通过使用偏振片来过滤掉反射光和散射光,减少眩光的影响。
此外,偏振光还在光学仪器、显示器和通信技术等领域中有着重要的应用。
通过研究偏振光的特性,我们可以更好地理解和应用光学原理。
结论:通过本次实验,我们深入了解了偏振光的特性。
我们通过观察偏振片的特性、验证马吕斯定律、观察双折射现象以及了解偏振光的应用,加深了对光的偏振性质的理解。
大学物理实验-偏振光的研究
实验32 偏振光的研究1808年,马吕斯(E. L. Malus,1775~1812)发现了光的偏振现象,通过对偏振现象的深入研究,人们充分地认识了光的本质--光波是横波.为了更好地认识和利用光的偏振性,各种偏振光元件、偏振光仪器应运而生.偏振光的应用技术也日益发展,在各个领域都得到广泛应用.【实验内容】1.观察光的偏振现象,掌握利用偏振器来调节光强度的方法.2.了解产生和检验偏振光的原理与方法,鉴别光的不同偏振状态.3.设计实验来测量玻璃堆的玻璃折射率,利用反射起偏测出布儒斯特角.4.了解和观察偏振光的干涉现象【可供选择的仪器】计算机与操作控制软件,格兰傅科棱镜,λ/2波片,λ/4波片,玻璃堆,由步进电机控制的调节架,光电接收系统,H e-N e激光器.【实验原理】光的干涉和衍射现象揭示了光的波动性,光的偏振特性进一步证明了光是横波.光的偏振现象在工业和生活中的应用广泛,因此同学们需要理解光的偏振性质,掌握偏振光检测方法。
1.光的偏振态从垂直于光传播方向的平面上观察,光矢量变化遵从不同的规律,根据这些规律,可以把光分成偏振光、自然光和部分偏振光三种.在垂直于光传播方向的平面上,光矢量的端点随时间变化如果是有规律的,则称其为完全偏振光.完全偏振光包含线偏振光、椭圆偏振光和圆偏振光.光矢量端点的轨迹是一直线的,称为线偏振光;光矢量端点的轨迹是椭圆的称为椭圆偏振光;光矢量端点的轨迹是圆的称为圆偏振光.根据振动的合成原理,线偏振光、椭圆偏振光和圆偏振光均可以等效为振动方向相互垂直、相互关联的两个线偏振光,并且这两个线偏振光需要具有相同的传播方向和频率,两者有确定的相位差.普通光源直接发出的光是自然光.由于原子(或分子)发光具有随机性和间断性,不同原子(或分子)在同一时刻和同一原子(或分子)在不同时刻的发光都是不相干的.普通光源包含大量原子(或分子),这些原子(或分子)发出光的偏振方向、初相位都是随机的,因此发出的光波是不相干的. 值得注意的是对于自然光,由于自然光沿着不同方向振动的各光矢量的振幅和相位都是随机的,所以自然光可以等效成振幅相等,振动方向相互垂直,互不相关的两个线偏振光.部分偏振光可以看作是自然光和偏振光的叠加.2.双折射晶体一束光入射到晶体界面时会发生折射. 在某些晶体中,折射光会分成两束,这就是晶体的双折射现象.这两束折射光中,一束光遵守折射定律称为寻常光,简称o 光.另一束光则不遵守折射定律称为非常光,简称e 光. o 光的传播速率各向同性,e 光的传播速率与传播方向有关,o 光和e 光都是线偏振光.在双折射晶体内部,存在某个特殊的方向,当光沿着该方向传播的时侯,不发生双折射,这个方向被称为该晶体的光轴.沿着光轴方向,o 光和e 光传播速度相同;垂直于光轴方向,o 光和e 光传播速度差异最大.按照光轴的数目不同,可以把双折射晶体分为单轴晶体和双轴晶体.单轴晶体如方解石、冰洲石、石英;双轴晶体如云母、黄玉. 本实验中采用的是单轴晶体.必须注意,只有在晶体内部才有o 光、e 光之分,光线射出晶体之后都称为线偏振光.3. 偏振器获得偏振光的途径很多. 当光在介质的界面上发生反射时,可以获得部分偏振光;满足特定条件时,可以获得线偏振光.如地球大气中的微粒、水分子等对阳光的散射,会形成线偏振光和部分偏振光.在实际工作中,常采用专门的偏振器来获得线偏振光.偏振片是一种可以使入射光通过后变成线偏振光的光学薄膜,它能够吸收某一振动方向的光而透过与此垂直方向振动的光.偏振片允许光矢量透过的方向,称为偏振化方向或者透光方向.按实际应用时所起作用的不同,可以把偏振片分为起偏器和检偏器.用来产生偏振光的叫做起偏器,用来检验偏振光的则叫做检偏器.图32-1给出了线偏振光的产生与检测原理示意图.双折射晶体可以把一束光分解成o 光和e 光,o 光和e 光都是线偏振光.利用这一特性,也可以利用双折射晶体制作偏振器.格兰棱镜,全称为格兰·泰勒棱镜,就是由两块冰洲石单轴晶体的直角棱镜组成偏振器.两块冰洲石的中间斜面为空气隙.光轴与入射端界面平行.自然光垂直入射的时候,在第一个直角棱镜内,o 光和e 光传播方向相同但速度不同,在两个直角棱镜斜面处,e 光传播方向不变,o 光将发生全反射.若将棱镜侧面出射的o 光吸收掉,则仅留下沿原入射方向传播的e 光,则此格兰棱镜可以作为起偏器,当然也可以用作检偏器.图32-2给出了格兰棱镜的光路图. 32-2 格兰棱镜I 0 I 1 I 2图32-1 线偏振光的产生与检测 起偏器 检偏器 偏振化方向4. 波片波片,也称作相位延迟片,是由双折射晶体做成,是从单轴晶体中切割下来的平面平行板,其表面平行于光轴.如图32-3所示.当一束单色平行自然光正入射(垂直于晶体光轴)到波片上时,光在晶体内部便分解为o 光和e 光.由于入射光垂直于光轴入射,o 光和e 光传播方向相同,但是传播速度不同,它们通过厚度确定的波片时的光程也就不同. 设波晶片的厚度为d ,则两束光通过晶片后,有相位差2)o e n n d πδλ=-( (32-1) 式中λ为光波在真空中的波长.单色线偏振光垂直入射到波片内,分解为o 光和e 光,o 光和e 光在入射界面相位差为0,经过厚度确定的波片后两者产生一附加相位差δ.离开波片时两者又合二为一,合成光的性质取决于δ及入射光的性质.(1) 当δ= 2k π时 , 则光程差 ( n o - n e ) d = k λ,即这样的晶片厚度可使o 光和e 光的光程差等于k λ,称为全波片(λ波片).其o 光和e 光的合振动为线偏振光,其光矢量的方向与入射光光矢量的方向相同.(2) 当δ= (2k +1)π时,则光程差( n o - n e ) d = (2k +1) λ/2,此时晶片的厚度可使o 光和e 光的光程差等于(2k +1) λ/2,称为半波片 (λ/2 波片).其合振动仍为线偏振光,但光矢量的方向相对于入射光的光矢量方向转过2θ 角 (θ是入射光振动面与波片光轴间的夹角,如图32-3所示).(3) 当δ= (2k +1)π/2 时,则光程差( n o - n e ) d = (2k +1) λ/4,晶片的厚度可使o 光和e 光的光程差等于(2k +1) λ/4,称为四分之一波片(λ/4波片).其合振动一般为椭圆偏振光.应当注意两种特殊情况:当入射光矢量与波片光轴平行或垂直时,出射光为线偏振光;当入射光矢量与波片光轴夹角为π/4时,出射光为圆偏振光.从以上可知λ/4波片可将线偏振光变成椭圆偏振光或圆偏振光;根据光路的可逆性,它也可将椭圆偏振光或圆偏振光变成线偏振光。
大学物理中的光的偏振问题
大学物理中的光的偏振问题光的偏振问题是大学物理中一个重要且深奥的话题。
光的偏振现象在自然界和科技应用中都有着广泛的应用。
本文将从光的偏振现象的基本概念开始介绍,然后探讨光的偏振原理和相关实验,最后讨论光的偏振在生活和科技中的应用。
一、光的偏振概述光是一种电磁波,具有波动性和颗粒性。
光的偏振是指光波传播过程中电场矢量振动方向的固定性。
光波不同于机械波,其电场矢量在垂直于传播方向的平面内振动,我们把这个平面称为偏振方向。
光的偏振可以通过偏振片进行实验观察,常见的偏振片有线性偏振片和圆偏振片。
二、光的偏振原理光的偏振原理可以通过振动模型和波动理论来解释。
在振动模型中,光被认为是垂直于传播方向的电场和磁场的振动。
假设光是垂直于传播方向的电场振动的话,我们可以把光的偏振方向定义为电场矢量的振动方向。
而在波动理论中,光波被认为是由电场和磁场相互作用产生的。
三、光的偏振实验为了观察和测量光的偏振,科学家们开展了一系列实验。
其中最经典的实验是马吕斯实验。
马吕斯实验利用了偏振片和光的干涉现象。
通过调整偏振片与光光路之间的相对角度,可以观察到不同偏振方向的亮度变化。
通过这种实验可以研究光的偏振现象和性质。
四、光的偏振应用光的偏振在生活和科技中有许多应用。
其中应用最广泛的就是偏振光的显示技术。
液晶显示器、3D电影和太阳镜等都是利用了偏振光的特性来实现对光的控制。
此外,在光通信、光纤传感等领域,光的偏振也起着重要的作用。
光的偏振还可以应用于显微镜、天文学和生命科学等领域,为科学研究和技术发展带来了诸多便利。
综上所述,光的偏振是一个涉及物理学基础理论和实验应用的重要课题。
通过理论和实验的研究,我们可以更好地理解光的偏振现象以及其在生活和科技中的应用。
光的偏振问题的深入研究将为我们揭示光传播和相互作用的更多奥秘,并为光学科学的发展提供更多的可能性。
大学物理光的偏振与反射定律
大学物理光的偏振与反射定律光是一种电磁波,具有波动和粒子性质。
在传播过程中,光的偏振和反射定律是重要的现象和规律。
本文将详细探讨光的偏振和反射定律,以及相关的实验和应用。
一、光的偏振1. 偏振现象的发现19世纪初,法国物理学家马拉斯发现了光的偏振现象。
他通过将光通过偏振片进行实验观察,发现光只有在特定方向上通过,其他方向上被屏蔽。
这一实验揭示了光既具有波动性,也具有粒子性。
2. 光的偏振方向光的偏振是指光波中电场矢量振动的方向。
光可以沿任意方向振动,但在实际观察中,我们常常将光的振动方向分为两类:线偏振光和圆偏振光。
线偏振光的电场矢量沿着一条直线振动,而圆偏振光的电场矢量在平面内呈圆周运动。
3. 产生偏振光的方法产生偏振光的方法有很多,其中包括:- 自然光通过偏振片:自然光通过偏振片时,只有与偏振片的偏振方向一致的光能够透过,其他方向的光会被吸收或反射。
- 偏振器:偏振器是一种特殊的光学元件,可以自行分离光波中的不同偏振分量,使得只有特定偏振方向的光通过。
二、反射定律1. 反射现象的描述当光从一种介质(如空气)射向另一种介质(如玻璃)时,光波会发生反射。
反射是光线从介质界面上被弹回的现象。
2. 反射定律的表达反射定律是描述入射角、反射角和界面法线之间关系的规律。
根据反射定律,入射角和反射角的平面与界面的法线在同一平面内,并且入射角等于反射角。
3. 折射定律与反射定律的关系折射定律也是光在界面上的另一个重要规律。
根据折射定律,光线从一种介质射向另一种介质时,入射角和折射角的比值等于两种介质的折射率比值。
反射定律和折射定律是光在界面上的基本规律,它们共同决定了光的传播。
三、光的偏振与反射定律的应用1. 偏振光的应用偏振光在科学研究和工程技术中具有广泛的应用,如:- 光学显微镜:偏振光可以增强显微镜的分辨率,提高观察样品的效果。
- 液晶显示器:液晶显示器利用偏振光的旋转和吸收特性来显示图像。
- 偏振滤镜:偏振滤镜可以调节光的强度和偏振方向,常用于摄影和光学实验中。
大学物理-光的偏振
无关。
7 首页 上页 下页退出
3、自然光的表示 由于自然光的波振幅在垂直于传播方向的平面内,在各个方
向上的分布平均相等,因此将波振幅在该平面内向任意的两个正 交方向进行分解,都可以得到两个振动方向互相垂直且振幅相等 的振动,故此自然光常用下图表示:
...
u
S
y
x
u
S
S
• 表示该光的振动方向垂直于纸平面; 表示该光的振动面就在纸平面内。
折射率为:
n sin i0 1.73
sin 0
或者,由
tan i0
n2 n1
n2
将i0=600代入,得 n=1.73
26 首页 上页 下页退出
§14-4 光的双折射现象
一、光的双折射
当一束光投射到两种媒质的交界处,一般只能看到一束折射 光,折射定律为:
sin i / sin 常数
且入射线、法线、折射线在同一平面内,这是光在各向同性均 匀媒质中的折射现象。
21 首页 上页 下页退出
三、应用
①用玻璃片堆获取偏振光
i0
接近完全偏振光
② 在激光器的谐振腔中开有布儒斯特窗,故激光是偏振光。
③ 也可用玻璃片作检偏器。 ④ 在强光下摄影时,反光强烈,为使成像后光线谐调、柔和,
可在摄影机前头加偏振片,旋转偏振片可减少入射的反射
光光强。在雪地,海洋上反射光很强,为保护视力可带装
8 首页 上页 下页退出
三、部分偏振光,线(面,全)偏振光
①若沿某一方向的光振动优于其他方向,则谓之部分偏振光, 表示为
②若只有沿某一方向的光振动,则谓之线(面、全)偏振光, 表示为
例:晴朗蔚蓝色的天空中所散射的日光多是部分偏振光,散射 光与入射光的方向越接近垂直,散射光的偏振度越高。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
偏振光技术及其应用作者:席晨霞学号:100104303 班级:10级机械三班摘要:1809年,马吕斯在试验中发现了光的偏振现象。
1811 年,布儒斯特在研究光的偏振现象时发现了光的偏振现象的经验定律。
在1863~1873年间,麦克斯韦在建立了光的电磁学理论,从本质上说明了光的偏振象。
光的偏振性使人们对光的传播 ( 反射、折射、吸收和散射 ) 的规律有了新的认识,偏振光在国防、科研和日常生活中有着广泛的应用:海防前线用于观望的偏光望远镜、立体电影中的偏光眼镜、光纤通信系统都与偏振光有关,液晶光开关是根据其偏振特性来完成光交换的技术,偏振镜则是数码影像的基础。
随着新概念的飞速发展,偏振光成为研究光学晶体、表面物理的重要手段,偏振光的应用与我们的生活息息相关。
关键词:偏振光、应用和原理、摄影技术、科学技术Polarized light technology and itsapplicationsName: Xi Chen XiaStudent ID: 100104303 Class: 10 machine three shifts Abstract:In 1809, Marius found in the experiments of light polarization.1811, Brewster in the study of polarization phenomena found in the experience of the phenomenon of lightpolarization laws. In 1863 ~ 1873, the establishment of a Maxwell's electromagnetic theoryof light, essentially shows the polarization of light like. Polarization of the transmitted lightso that people (reflection, refraction, absorption and scattering) a new understanding ofthe law, polarized light in the defense, research and daily life of a wide range ofapplications: coastal line of polarized light for watching telescope, three-dimensionalmovies of polarized glasses, polarized light optical fiber communication systems andrelated liquid crystal optical switch is done according to its polarization properties ofoptical switching technology, polarization microscopy is the basis of digital imaging. Withthe rapid development of new concepts, a study of polarized optical crystal, an important means of surface physics, the application of polarized light with our lives. Keywords : polarization, application and theory, science and technology引言随着当代科技的快速发展,偏振光技术应用已经在现在的科学技术中起到重要作用,从本质上讲,当自然光穿过或投射到某些物体表面后,其投射光或反射光、散射光可能被限制在某一垂直平面内振动,而其他方向上的振动则被大大削弱乃至完全消除,这种只在某一平面内振动的光波被称为偏振光。
在现代生活中,偏振光应用已经完全融入我们的生活,我们时刻都和光学应用有着密不可分的关系,这就更加体现了偏振光应用对我们的生活的重要意义。
正文1 偏振光的介绍光的干涉和衍射现象揭示了光的波动性,光的偏振现象则表明了光及所有电磁波是横波。
因为光波是横波,所以光波中光矢量的振动方向总是和光的传播方向相垂直。
在垂直于光传播方向的平面内,光矢量可能有各种不同的振动状态。
偏振光是指光矢量的振动方向不变,或具有某种规则地变化的光波。
按照其性质,偏振光又可分为平面偏振光(线偏光)、圆偏振光和椭圆偏振光、部分偏振光几种。
如果光波电矢量的振动方向只局限在一确定的平面内,则这种偏振光称为平面偏振光,若轨迹在传播过程中为一直线,故又称线偏振光。
如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直轨迹在传播过程中为一直线,故又称线偏振光。
如果光波电矢量随时间作有规则地改变,即电矢量末端轨迹在垂直于传播方向的平面上呈圆形或椭圆形,则称为圆偏振光或椭圆偏振光。
如果光波电矢量的振动在传播过程中只是在某一确定的方向上占有相对优势,这种偏振光就称为部分偏振光。
2 光的偏振现象在生活中的应用2.1立体电影中的应用现在立体电影是很受大家欢迎的。
观看时,观众要戴上一副特制的眼镜,而这副眼镜就是一对透振方向互相垂直的偏振片。
立体电影是用两个镜头如人眼那样从两个不同方向同时拍摄下景物的像,制成电影胶片.在放映时,通过两台放映机,把用两台摄影机拍下的两组胶片同步放映,使这略有差别的两幅图像重叠在银幕上.这时如果用眼睛直接观看,看到的画面是模糊不清的.要看到立体电影,要在每架电影机前装一块偏振片,它的作用相当于起偏器.从两架放映机射出的光,通过偏振片后,就成了偏振光.左右两架放映机前的偏振片的透振方向互相垂直,因而产生的两束偏振光的偏振方向也互相垂直.这两束偏振光投射到银幕上再反射到观众处,偏振方向不改变.观众用上述的偏振眼镜观看,每只眼睛只看到相应的偏振光图像,即左眼只能看到左机映出的画面,右眼只能看到右机映出的画面,这样就会像直接观看物体那样产生立体感觉.这就是立体电影的原理.2.2 偏光太阳镜上的应用夏天的阳光一定给你留下了深刻的影响,那么出门的时候太阳眼镜就不得不带着了。
偏光太阳镜能阻挡令人不舒服的强光,同时还可以保护眼睛免受紫外线的伤害。
另一个重要的保护机理就涉及到光的偏振现象。
柏油路的反射光是部分偏振光。
偏光镜片在阻挡反射光时特别有效,这种镜片只让朝一定方向震动的偏振波通过。
对于道路反光问题,使用偏光太阳镜能减少光的透射,因为它不让与道路平行震动的光波通过。
事实上,过滤层的长分子被导向水平方向,可以吸收水平偏振光线。
这样,大部分的反射光就被消除掉了,而周围环境的整个照明度并未减少。
2.3 摄影技术里的应用2.3.1 利用偏振镜调节非金属表面的亮斑光束投射到平滑的非金属表面(如光滑的油漆面或绸缎面)时,一般会形成明亮的单向反射光,这种单向反射光往往是画面的最高亮度,丰富了画面的影调,增加了画面的感染力。
但是,当画面中的亮度过大或者位置不当,将妨碍正确地再现物体表面质感或有损整个画面影调时,应对亮斑进行处理。
然后在照相物镜前加上偏振镜,并将偏振镜旋转到合适的角度拍摄,这样可以去掉亮斑,再现物体的质感,使整个画面的影调和色彩符合拍摄者的拍照意图。
2.3.2 利用偏振镜消除、减淡透明物表面的亮斑当光束投射到玻璃表面或水面时,一般容易出现两种情况:一是表面的单向反射亮斑,使拍摄时影像清晰度降低,反差减小。
二是表面单向反射亮斑妨碍拍摄玻璃覆盖下或水面以下的物体。
使用偏振镜拍摄时,可以既消除或减弱表面单向反射光斑,又可以保留玻璃表面覆盖下或水面下物体的影像,提高画面的清晰度和影像的质量。
如在公园清澈的水塘中飘荡着漂亮的水草,用相机拍照的最大问题是水表面反射的光线使人看不清水下的水草。
根据布儒斯特定律,自然光经水面反射后是部分偏振光,而在布儒斯特角时是平面偏振光,水的折射率为1.33,相应的布儒斯特角为i0=53°。
在相机的镜头前加上偏光镜,摄影者在岸上将相机以53°左右(估计)对准水面,旋转镜头前的偏光镜,使其偏振化方向与反射光的偏振面垂直拍照(此时,在取景器中看到水中的物体最清楚),则可大大减小反射光的影响,拍到清晰的水草照片。
2.3.3 利用偏振镜增强彩色影像的色彩饱和度物体表面的单向反射所形成的亮斑,在一定程度上能使画面产生较为生动的效果,但这种亮斑同时也能使该物表面局部失去质感,明显的降低彩色影像的饱和度。
形成这种亮斑的单向反射光,多具有偏振性质,运用偏振镜来减弱或消除这些亮斑,可以不同程度的甚至明显的改善影像的色彩饱和度。
2.3.4 利用偏振光控制天空亮度在现场白昼光的光照条件下进行彩色照相,可选择南北方向、顺光方向或与太阳光投射方向成90°的蓝色天空为背景,在照相物镜前套用偏振镜,转动偏振镜的轴线方向并观察影像,直到把天空亮度控制到合适的明亮程度之后再拍照。
这样,既可降低天空反射光使天空的影调更蓝、色调更饱和,可以获得较好的效果。
2.4 在医学领域的应用人体组织的偏振性质人体组织,多数也不是各向同向性的物质,在一些透明的组织,这种各向异向的特点表现得更为明显。
角膜的双折射几乎是线性的,对偏振光相位的延迟量在中心处近似为常数,沿半径方向向边缘逐渐增大,左右眼的延迟性对称。
角膜基本上不会对入射的完全偏振光去偏。
晶状体的延迟非常小,并且从晶状体的中心到边缘逐渐减小。
晶状体的双折射是线性的,但是具有沿半径向外减小的空间相关性。
对于视网膜的偏振特性是研究最多的,视网膜的双折射主要来自于视网膜神经纤维层(RNFL),平行和垂直于RNFL偏振反射光由于RNFL的双折射特性而具有相位差,也就是偏振光相位的延迟量,这一延迟量与RNFL的厚度成正比。
房水作为一种生物体内的溶液,也具有旋光性,旋光率与溶液的浓度成正比。
对于房水,主要的可变溶质是葡萄糖,所以房水的延迟量是与葡萄糖浓度相关的。
眼科方面:在眼科中的应用偏振光的各种性质最早被应用于眼科,其中最常用的是利用视网膜神经纤维层的双折射性质来测量其厚度。
视网膜的双折射主要来自于视网膜神经纤维层(RNFL),平行和垂直于RNFL偏振反射光由于RNFL的双折射特性而具有相位差,也就是偏振光相位的延迟量,这一延迟量与RNFL的厚度成正比。
Weinreb等人改进了扫描激光偏振检眼镜,测量了猴眼的眼底,并其视网膜神经纤维层做了组织学切片,对照其厚度与偏振延迟度,Weinreb发现1度的延迟对应于约7.4μm的RNFL厚度,并且有很好的线性相关性。