等腰三角形(第2课时)

合集下载

沪教版八年级数学上册教学设计:153等腰三角形(2课时)

沪教版八年级数学上册教学设计:153等腰三角形(2课时)
3.结合生活实际,找一找身边的等腰三角形,并运用所学知识分析其性质和应用。可以拍照或画图,下节课与同学们分享。
4.针对本节课的学习内容,编写一道关于等腰三角形的综合应用题,要求题目具有一定的挑战性和趣味性。下节课与同学们交流讨论。
5.完成课后小结,总结自己在学习等腰三角形过程中的收获和困惑,为后续学习提供借鉴。
四、教学内容与过程
(一)导入新课,500字
1.利用多媒体展示生活中含有等腰三角形的建筑、艺术作品等,引导学生观察并思考:这些图形有什么共同特点?它们在生活中的应用有哪些?
2.学生分享观察结果,教师总结:这些图形都是等腰三角形,它们具有独特的性质,今天我们将进一步学习等腰三角形的相关知识。
3.提问:等腰三角形我们已经有所了解,那么同学们能回忆一下等腰三角形的定义和性质吗?
(五)总结归纳,500字
1.引导学生回顾本节课所学知识,总结等腰三角形的性质、判定方法以及在几何图形中的应用。
2.学生分享学习心得,教师点评并总结学生的发言。
3.强调等腰三角形在几何学习中的重要性,鼓励学生在日常生活中多观察、多思考。
4.布置作业,要求学生巩固所学知识,为下一节课的学习做好准备。
五、作业布置
二、学情分析
八年级学生在前期的数学学习中,已经掌握了三角形的基本概念、性质和判定方法,具备了一定的几何图形分析能力。在此基础上,学习等腰三角形的内容,对学生来说既是挑战,也是提升。大部分学生对几何图形充满好奇,有较强的探究欲望,但个体差异明显,部分学生对几何证明和解题技巧掌握不够熟练,需要教师耐心引导和辅导。
注意事项:
1.作业量适中,要求同学们在完成作业的过程中,注重方法和技巧的积累,提高解题效率。
2.鼓励同学们相互讨论、交流,共同解决作业中的问题,提高合作学习的能力。

初中数学第2课时等腰三角形的判定

初中数学第2课时等腰三角形的判定

第2课时等腰三角形的判定要点感知1 有个角相等的三角形是等腰三角形(简称“等角对等边”).预习练习1-1 △ABC中,∠A=65°,∠B=50°,则△ABC的形状是.要点感知2 三个角都是的三角形是等边三角形.预习练习2-1 有一个外角是120°,另两个外角相等的三角形是( )A.不等边三角形B.等腰三角形C.等边三角形D.不能确定要点感知3 有一个角是的等腰三角形是等边三角形.预习练习3-1 在△ABC中,∠A=60°,AB=AC=3,则△ABC的周长为.知识点1 等腰三角形的判定1.如图,PQ为Rt△MPN斜边上的高,∠M=45°,则图中等腰三角形的个数有( )A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=AC=3,∠ABC,∠ACB的平分线相交于点D,过点D作直线EF∥BC,交AB于E,交AC 于F,则△AEF的周长为.3.如图,∠A=36°,∠DBC=36°,∠C=72°,找出图中的一个等腰三角形,并给予证明.我找的等腰三角形是:.知识点2 等边三角形的判定4.已知△ABC,AB=AC,请添加一个条件,使△ABC成为等边三角形.5.如图,在△ABC中,点D是AB上的一点,且AD=DC=DB,∠B=30°.求证:△A DC是等边三角形.6.如图所示,在△A BC中,AB=AC,∠B=30°,D,E在BC上,且AD=BD,AE=EC.求证:△ADE是等边三角形.7.已知等腰三角形的一个外角是120°,则它是( )A.等腰直角三角形B.一般的等腰三角形C.等边三角形D.等腰钝角三角形8.在△ABC中,∠B=∠C=40°,D,E是BC上的两点,且∠ADE=∠AED=80°,则图中共有等腰三角形( )A.6个B.5个C.4个D.3个9.在下列命题中:①有一个角是60°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③一边上的高也是这边上的中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形.其中正确的是.(只需填写序号)10.聪明的亮亮,用含有30°的两个完全相同的三角板拼成如图的图案,并发现图中有等腰三角形,请你帮他找出所有的等腰三角形:.11.已知,如图所示,在△ABC中,AB=AC,D是AB上一点,过D作DE⊥BC于E,并与CA的延长线相交于F,试判断△ADF的形状,并说明理由.12.已知:等边三角形ABC中,点P,Q,R分别在AB,BC,AC上,且PQ⊥BC于点Q,QR⊥AC于点R,RP⊥AB于点P.求证:△PQR是等边三角形.挑战自我13.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD,DE,EC三者有什么关系?写出你的判断过程.。

人教版数学八年级上册13.等腰三角形的判定课件(第二课时21张)

人教版数学八年级上册13.等腰三角形的判定课件(第二课时21张)
出CD的长, 就可以算出要求的绳长.
M
C
D
B
E
N
(2)
练习2
已知:如图, ∠A=
∠DBC =360, ∠C=720。
计算∠1和∠2,并说明图
中有哪些等腰三角形?
A
∠1=720 ∠2=360
2
等腰三角形有:△ABC, B △ ABD, △ BCD
D 1
C
练习3
2.如图,把一张矩形的纸沿对 角线折叠.重合部分是一个等 腰三角形吗?为什么?
AD∥BC。
求证:AB=AC
E
分析:从求证看:要证AB=AC,可 先证明∠B=∠C,
A
1 2
D
因为∠1=∠2,所以可以设
法找出∠B,∠C与∠B,∠C
的关系。
B
C
课本P78
证明:∵AD∥BC,
∴∠1=∠B(两直线平 行, 同位角相等), ∠2=∠C(两直线平行, 内错角相等)。
又∵∠1=∠2,
∴∠B=∠C, ∴AB=AC(等边对 等角)。
在一般的三角形中,如果有两个角相等,那么它们所对的边有什么 关系?
OAB来自3已知:△ABC中,∠B=∠C
求证:AB=AC
证明:作∠BAC的平分线AD
A
在△ BAD和△ CAD中, 1 2
∠1=∠2, ∠B=∠C,
AD=AD
B
C
D
∴ △ BAD≌ △ CAD(AAS)
∴AB=AC(全等三角形的对应边 相等)
等腰三角形的判定方法
如果一个三角形有两个角相等,那么这两个 角所对的边也相等(简写成“等角对等边”)
应用格式:
在△ABC中
∵ ∠B=∠C ∴ AB=AC (等角对等边)

2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第2课时 等腰三角形的判定

2022八年级数学上册 第十三章 轴对称13.3 等腰三角形 1等腰三角形第2课时 等腰三角形的判定
第十三章 轴对称
13.3 等腰三角形
13.3.1 等腰三角形 第2课时 等腰三角形的判定
知识点一 等角对等边
1.如图,在△ABC中,∠B=∠C,AB=5,则AC的长为( D )
A.2
B.3
C.4
D.5
2.如图,已知OC平分∠AOB,CD∥OB,若OD=8 cm,则CD等于( A )
A.8 cm B.4 cm
C.15 cm
D.20 cm
3.(课本P79练习T1改编)如图,在△ABC中,AB=AC,∠A=36°,BD平 分∠ABC交AC于点D,则图中等腰三角形有___△__A_B_C_,__△__A_B_D_,__△__B_D_C___.
4.如图,在△ABC中,BD⊥AC,∠A=50°,∠CBD=25°,若AC=3 cm,则AB=___3_c_m___.
C.8个
D.9个
考查角度一 等腰三角形的判定 11.如图,在△ABC中,点D,E分别在边AC,AB上,BD与CE交于点O, 给出下列三个条件:①∠EBO=∠DCO;②BE=CD;③OB=OC. (1)上述三个条件中,由哪两个条件可以判定△ABC是等腰 三角形?(用序号写出所有成立的情形) (2)请选择(1)中的一种情形,写出证明过程.
9.在如图所示的三角形中,若AB=AC,则能被一条直线分成①②③
B.①②④
C.②③④
D.①③④
10.在如图所示的正方形网格中,网格线的交点称为格点.已知点A,B是两
格点,如果点C也是图中的格点,且使得△ABC为等腰三角形,那么这样
的点C有( C )
A.6个
B.7个
5.如图,在△ABC中,AB=AC,D是AB上一点,过点D作DE⊥BC于点E, 并与CA的延长线交于点F,试判断△ADF的形状,并说明理由. 解:△ADF是等腰三角形.理由如下:∵AB=AC, ∴∠B=∠C.∵DE⊥BC,∴∠DEB=∠DEC=90°, ∴∠BDE+∠B=90°,∠F+∠C=90°, ∴∠BDE=∠F.∵∠BDE=∠ADF, ∴∠ADF=∠F,∴AF=AD, ∴△ADF是等腰三角形.

八年级数学人教版(上册)第2课时等腰三角形的判定

八年级数学人教版(上册)第2课时等腰三角形的判定

讲授新课
方法总结:“等角对等边”是判定等腰三角形 的重要依据,是先有角相等再有边相等,只限 于在同一个三角形中,若在两个不同的三角形 中,此结论不一定成立.
侵权必究
讲授新课
如图,在△ABC中,AB=AC,∠ABC和∠ACB
的平分线交于点O.过O作EF∥BC交AB于E,交AC于F.
探究EF、BE、FC之间的关系.
∴ AC=AB. ( 等角对等边 ) B
C
即△ABC为等腰三角形. 侵权必究
讲授新课
辨一辨:如图,下列推理正确吗?
A 12
B
D
C
∵∠1=∠2 ,
∴ BD=DC
(等角对等边).
C D
1
A2
B
∵∠1=∠2, ∴ DC=BC (等角对等边).
错,因为都不是在同一个三角形中.
侵权必究
讲授新课
求证:如果三角形一个外角的平分线平行于 三角形的一边,那:1.作线段AB=a. 2.作线段AB的垂直平分线MN,交AB
于点D. 3.在MN上取一点C,使DC=h. 4.连接AC,BC,则△ABC即为所求.
C
M A DB
N
侵权必究
讲授新课
如图,在△ABC中,∠ACB=90°,CD是AB 边上的高,AE是∠BAC的平分线,AE与CD交于点F, 求证:△CEF是等腰三角形.
第十三章 轴对称
13.3 等腰三角形
第2课时 等腰三角形的判定
侵权必究
目录页
新课导入
讲授新课
当堂练习
课堂小结
侵权必究
新课导入
✓ 教学目标 ✓ 教学重点
侵权必究
学习目标
探索等腰三角形的判定定理及其应用

等腰三角形的性质定理2课时含答案

等腰三角形的性质定理2课时含答案

2.3 等腰三角形的性质定理(一)A组1.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为(C)A.36°B.60°C.72°D.108°(第1题)(第2题)2.如图,在△ABC中,AB=AC,∠A=30°,AB的垂直平分线l交AC于点D,则∠CBD的度数为(B)A.30°B.45°C.50°D.75°3.如图,在△ABC中,AB=AC,过点A作AD∥BC.若∠1=70°,则∠BAC的度数为(A)A.40°B.30°C.70°D.50°(第3题)(第4题)4.如图,在△ABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE交于点O,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①△BCD≌△CBE;②△BAD≌△BCD;③△BDA≌△CEA;④△BOE≌△COD;⑤△ACE≌△BCE.上述结论一定正确的是(D)A.①②③B.②③④C.①③⑤D.①③④(第5题)5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC=CD=BD=BE.若∠A=50°,则∠CDE的度数为(D)A.50°B.51°C.51.5°D.52.5°(第6题)6.如图,在△ABC中,AB=AC,BD⊥AC,∠ABC=72°,求∠ABD的度数.【解】∵AB=AC,∠ABC=72°,∴∠ACB=∠ABC=72°,∴∠A=36°.∵BD⊥AC,∴∠ABD=90°-36°=54°.(第7题)7.如图,将△ADE沿DE折叠,点A恰好落在BC边上的点A′处.若D为AB边的中点,∠B=50°,求∠BDA′的度数.【解】∵D是AB的中点,∴BD=AD.由折叠的性质,得A′D=AD,∴BD=A′D.∴∠BA′D=∠B=50°.∵∠B+∠BA′D+∠BDA′=180°,∴∠BDA′=180°-∠B-∠BA′D=80°.(第8题)8.如图,在△ABC中,已知AB=AC,AD=AE,∠BAD=28°,求∠EDC的度数.【解】∵AB=AC,∴∠B=∠C.同理,∠ADE=∠AED.设∠EDC=α,∠C=β,则∠ADE=∠AED=∠EDC+∠C=α+β,∠ADC=∠ADE+∠EDC=α+β+α=2α+β.∵∠ADC=∠BAD+∠B=28°+β,∴2α+β=28°+β,∴α=14°,即∠EDC=14°.B组(第9题)9.如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM =BK,BN=AK.若∠MKN=44°,则∠P的度数为(D)A.44°B.66°C.88°D.92°【解】∵PA=PB,∴∠A=∠B.在△AMK 和△BKN 中,∵⎩⎪⎨⎪⎧AM =BK ,∠A =∠B ,AK =BN ,∴△AMK ≌△BKN (SAS ).∴∠AMK =∠BKN . ∵∠MKB =∠MKN +∠BKN =∠A +∠AMK , ∴∠A =∠MKN =44°, ∴∠P =180°-∠A -∠B =92°.10.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为(C)(第10题)A . ⎝⎛⎭⎫702n °B . ⎝ ⎛⎭⎪⎫702n +1°C . ⎝ ⎛⎭⎪⎫702n -1°D . ⎝ ⎛⎭⎪⎫702n +2°【解】 在△ABA 1中,∵∠A =70°,AB =A 1B , ∴∠BA 1A =∠A =70°.∵A 1A 2=A 1B 1,∠BA 1A 是△A 1A 2B 1的外角, ∴∠B 1A 2A 1=∠BA 1A2=35°.同理,∠B 2A 3A 2=12∠B 1A 2A 1=∠BA 1A 22,∠B 3A 4A 3=12∠B 2A 3A 2=∠BA 1A 23,…, ∴∠B n -1A n A n -1=∠BA 1A 2n -1=⎝ ⎛⎭⎪⎫702n -1°.11.如图,在△ABC 中,分别以AC ,BC 为边作等边三角形ACD 和等边三角形BCE ,连结AE ,BD 交于点O ,求∠AOB 的度数.(第11题)【解】设AC与BD交于点H.∵△ACD,△BCE都是等边三角形,∴CD=CA,CB=CE,∠ACD=∠BCE=60°,∴∠DCB=∠ACE,∴△DCB≌△ACE(SAS),∴∠CDB=∠CAE.又∵∠DCH+∠DHC+∠CDB=180°,∠AOH+∠AHO+∠CAE=180°,∠DHC=∠AHO,∴∠AOH=∠DCH=60°.∴∠AOB=180°-∠AOH=120°.12.如图,在△ABC中,AB=AC,BD,CE是△ABC的两条高线,BD与CE相交于点O.(1)求证:OB=OC.(2)若∠ABC=70°,求∠BOC的度数.(第12题)【解】(1)∵AB=AC,∴∠ABC=∠ACB.∵BD,CE是△ABC的两条高线,∴∠BEC=∠CDB=90°.又∵BC=CB,∴△BEC≌△CDB(AAS),∴BE =CD .又∵∠BOE =∠COD ,∠BEO =∠CDO =90°, ∴△BOE ≌△COD (AAS ), ∴OB =OC . (2)连结DE .∵∠ABC =70°,AB =AC , ∴∠A =180°-2×70°=40°.∵∠A +∠AED +∠ADE =180°,∠OED +∠ODE +∠DOE =180°, ∴∠A +∠AEO +∠ADO +∠DOE =360°. 又∵∠AEO =∠ADO =90°, ∴∠A +∠DOE =180°,∴∠BOC =∠DOE =180°-40°=140°.(第13题)13.如图,在△ABC 中,已知BC =AC ,∠BAC 的外角平分线交BC 的延长线于点D .若∠ADC =12∠CAD ,求∠ABC 的度数.(第13题解)【解】 如解图,设∠ABC =x ,∠CAD =y , 则∠ACD =2x ,∠ADC =12∠CAD =12y ,∴⎩⎪⎨⎪⎧x +2y =180°,2x +32y =180°,解得⎩⎪⎨⎪⎧x =36°,y =72°.∴∠ABC =36°.数学乐园14.(1)已知在△ABC 中,∠A =90°,∠B =67.5°,请画一条直线,把这个三角形分割成两个等腰三角形(请你选用下面给出的备用图,把所有不同的分割方法都画出来.只需画图,不必说明理由,但要在图中标出相等两角的度数).(2)已知在△ABC 中,∠C 是其最小的内角,过顶点B 的一条直线把这个三角形分割成了两个等腰三角形,请探求∠ABC 与∠C 之间的关系.(第14题)导学号:91354010【解】 (1)如解图①②(共有2种不同的分割法).(第14题解)(第14题解③)(2)设∠ABC =y ,∠C =x ,过点B 的直线交边AC 于点D . 在△DBC 中,①若∠C 是顶角,如解图③,则∠CBD =∠CDB =90°-12x ,∠A =180°-x -y . 故∠ADB =180°-∠CDB =90°+12x >90°,此时只能有∠A =∠ABD ,即180°-x -y =y -⎝⎛⎭⎫90°-12x ,∴3x +4y =540°,∴∠ABC =135°-34∠C .②若∠C 是底角,第一种情况:如解图④,当DB =DC 时,∠DBC =x .在△ABD 中,∠ADB =2x ,∠ABD =y -x .若AB =AD ,则2x =y -x ,此时有y =3x ,∴∠ABC=3∠C.若AB=BD,则180°-x-y=2x,此时有3x+y=180°,∴∠ABC=180°-3∠C.若AD=BD,则180°-x-y=y-x,此时有y=90°,即∠ABC=90°,∠C为小于45°的任意锐角., ④), ⑤)(第14题解)第二种情况:如解图⑤,当BD=BC时,∠BDC=x,∠ADB=180°-x>90°,此时只能有AD=BD,∴∠A=∠ABD=12∠BDC=12∠C<∠C,这与题设∠C是最小角矛盾.∴当∠C是底角时,BD=BC不成立.综上所述,∠ABC与∠C之间的关系是∠ABC=135°-34∠C或∠ABC=3∠C或∠ABC=180°-3∠C或∠ABC=90°(∠C是小于45°的任意锐角).2.3 等腰三角形的性质定理(二)A组1.如图,在△ABC中,AB=AC,AD⊥BC,垂足为D.若∠BAC=64°,则∠BAD 的度数为__32°__.,(第1题)),(第2题))2.如图,在△ABC中,AB=AC,AD是△ABC的角平分线,已知BC=6,∠B =65°,则BD=__3__,∠ADB=__90°__,∠BAC=__50°__.3.如图,在△ABC中,AB=AC,D为BC的中点,∠BAD=35°,则∠C的度数为(C)A.35°B.45°C.55°D.60°,(第3题)),(第4题)) 4.如图,在△ABC中,AB=AC=6,AD⊥BC,垂足为D,CD=4,则△ABC的周长为(B)A.18 B.20C.22 D.24(第5题)5.如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC于点F,则DE=DF,请说明理由.【解】连结AD.∵AB=AC,D为BC的中点,∴∠BAD=∠CAD.∵DE⊥AB,DF⊥AC,∴DE=DF.(第6题)6.如图,在△ABC中,AB=AC,AD是BC边上的中线,作∠ABE=∠ABD,且BE=DC,连结AE.求证:AB平分∠EAD.【解】∵AB=AC,AD是BC边上的中线,∴BD=DC,AD⊥BC.又∵BE=DC,∴BD=BE.又∵∠ABD=∠ABE,AB=AB,∴△ABD≌△ABE(SAS),∴∠BAD=∠BAE,即AB平分∠EAD.(第7题)7.如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的平分线BG分别交AD,AC于点E,G,EF⊥AB,垂足为F.求证:EF=ED.【解】∵AB=AC,AD是BC边上的中线,∴AD⊥BC.又∵BG平分∠ABC,EF⊥AB,∴EF=ED.B组(第8题)8.如图,D,E分别是△ABC的边BC,AC上的点,若AB=AC,AD=AE,则(B)A.当∠B为定值时,∠CDE为定值B.当α为定值时,∠CDE为定值C.当β为定值时,∠CDE为定值D.当γ为定值时,∠CDE为定值【解】∵AB=AC,∴∠B=∠C.∵AD=AE,∴∠ADE=∠AED=γ.∵∠AED=∠C+∠CDE,∠ADC=∠B+α,即γ=∠C+∠CDE,γ+∠CDE=∠B+α,∴2∠CDE=α.9.如图,∠BOC=9°,点A在OB上,且OA=1,按以下要求画图:以点A为圆心,1为半径向右画弧交OC于点A1,得第一条线段AA1;再以点A1为圆心,1为半径向右画弧交OB于点A2,得第二条线段A1A2;再以点A2为圆心,1为半径向右画弧交OC于点A3,得第三条线段A2A3……这样一直画下去,最多能画__9__条线段.(第9题)【解】由题意可知:AO=A1A,A1A=A2A1,…,则∠AOA1=∠OA1A,∠A1AA2=∠A1A2A,….∵∠BOC=9°,∴∠A1AB=2∠BOC=18°.同理可得∠A 2A 1C =27°,∠A 3A 2B =36°,∠A 4A 3C =45°,∠A 5A 4B =54°,∠A 6A 5C =63°,∠A 7A 6B =72°,∠A 8A 7C =81°,∠A 9A 8B =90°,∴第10个三角形将有两个底角等于90°,不符合三角形的内角和定理,故最多能画9条线段.10.如图,在△ABC 中,AB =AC ,D 是BC 的中点,BF ⊥AC 于点F ,交AD 于点E ,∠BAC =45°.求证:△AEF ≌△BCF .(第10题)【解】 过点F 作FG ⊥AB 于点G .∵∠BAC =45°,BF ⊥AF ,∴∠ABF =45°.∵FG ⊥AB ,∴∠AGF =∠BGF =90°.在△AGF 和△BGF 中,∵⎩⎪⎨⎪⎧∠GAF =∠GBF =45°,∠AGF =∠BGF ,GF =GF ,∴△AGF ≌△BGF (AAS ),∴AF =BF .∵AB =AC ,D 是BC 的中点,∴AD ⊥BC ,∴∠EAF +∠C =90°.∵BF ⊥AC ,∴∠AFE =∠BFC =90°,∠CBF +∠C =90°,∴∠EAF =∠CBF .在△AEF 和△BCF 中,∵⎩⎪⎨⎪⎧∠EAF =∠CBF ,AF =BF ,∠AFE =∠BFC ,∴△AEF ≌△BCF (ASA ).(第11题)11.如图,在△ABC 中,AB =AC ,AD ⊥BC 于点D ,DE ⊥AB 于点E ,DF ⊥AC 于点F .(1)求证:DE =DF .(2)问:如果DE ,DF 分别是∠ADB ,∠ADC 的平分线,那么它们还相等吗?【解】 (1)∵AB =AC ,AD ⊥BC ,∴AD 平分∠BAC .∵DE ⊥AB ,DF ⊥AC ,∴DE =DF .(2)相等.理由如下:由(1)知AD ⊥BC ,∠DAE =∠DAF ,∴∠ADB =∠ADC =90°.∵DE ,DF 分别是∠ADB ,∠ADC 的平分线,∴∠ADE =12∠ADB ,∠ADF =12∠ADC ,∴∠ADE =∠ADF .在△ADE 和△ADF 中,∵⎩⎪⎨⎪⎧∠DAE =∠DAF ,AD =AD ,∠ADE =∠ADF ,∴△ADE ≌△ADF(ASA),∴DE =DF .数学乐园(第12题)12.如图,在等腰三角形ABC 中,AB =AC ,∠BAC =50°.∠BAC 的平分线与AB 的中垂线相交于点O ,点C 沿EF 折叠后与点O 重合,求∠CEF 的度数.【解】 连结BO .∵∠BAC =50°,∠BAC 的平分线与AB 的中垂线相交于点O ,∴∠OBA =∠OAB =12∠BAC =25°.∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB =65°.∴∠OBC =65°-25°=40°.根据等腰三角形的对称性,得∠OCB =∠OBC =40°.∵点C 沿EF 折叠后与点O 重合,∴EO =EC ,∠CEF =∠OEF ,∴∠EOC =∠ECO =40°,∴∠CEF =∠OEF =180°-2×40°2=50°.。

等腰三角形的判定(二)

等腰三角形的判定(二)

常见误区与注意事项
误区一
误区二
认为只要有两边相等就是等腰三角形,忽 略了“在同一个三角形中”的前提条件。
在使用“等角对等边”的判定方法时,忽 略了必须是同一个三角形中的两个角相等 才能推出对应的两边相等。
注意事项一
注意事项二
在证明等腰三角形时,要注意证明过程是 否符合逻辑,每一步的推理是否都有充分 的依据。
03

已知两边相等
01
若三角形中有两边相等,则这个 三角形是等腰三角形。
02
已知两边相等的情况下,可以通 过测量或计算确认第三边是否等 于其中一边,从而判定是否为等 腰三角形。
已知两角相等
若三角形中有两个角相等,则这个三 角形是等腰三角形。
已知两角相等的情况下,可以通过测 量或计算确认第三个角是否等于其中 一个角,从而判定是否为等腰三角形 。
在解决与等腰三角形相关的问题时,要善 于运用等腰三角形的性质和判定方法,简 化问题的解决过程。
思考与练习题
思考一
已知一个三角形的两个内角分别为30°和 70°,则这个三角形是等腰三角形吗?为
什么?
练习题一
在△ABC中,AB=AC,∠B=50°,则∠A的 度数为____。
思考二
已知一个三角形的两边长分别为3和5,且 这两边所对的内角分别为40°和70°,则这 个三角形是等腰三角形吗?为什么?
等腰三角形的拓展与
05
延伸
等边三角形的性质与判定
01
02
03
三边相等
等边三角形的三条边长度 相等。
三个内角相等
等边三角形的三个内角均 为60度。
判定方法
若一个三角形满足三边相 等或两个内角为60度,则 可判定为等边三角形。

北师大版八年级下册数学 1.1 等腰三角形 第2课时 等边三角形的性质 教案

北师大版八年级下册数学 1.1 等腰三角形    第2课时 等边三角形的性质  教案

第2课时 等边三角形的性质1.进一步学习等腰三角形的相关性质,了解等腰三角形两底角的角平分线(两腰上的高,中线)的性质;2.学习等边三角形的性质,并能够运用其解决问题.(重点、难点)一、情境导入我们欣赏下列两个建筑物(如图),图中的三角形是什么样的特殊三角形?这样的三角形我们是怎样定义的,有什么性质?二、合作探究 探究点一:等腰三角形两底角的平分线(两腰上的高、中线)的相关性质如图,在△ABC 中,AB =AC ,CD⊥AB 于点D ,BE ⊥AC 于点E ,求证:DE ∥BC .证明:因为AB =AC ,所以∠ABC =∠ACB .又因为CD ⊥AB 于点D ,BE ⊥AC 于点E ,所以∠AEB =∠ADC =90°,所以∠ABE =∠ACD ,所以∠ABC -∠ABE =∠ACB -∠ACD ,所以∠EBC =∠DCB .在△BEC 与△CDB 中,⎩⎪⎨⎪⎧∠BEC =∠CDB ,∠EBC =∠DCB ,BC =CB ,所以△BEC ≌△CDB ,所以BD =CE ,所以AB -BD =AC -CE ,即AD =AE ,所以∠ADE =∠AED .又因为∠A 是△ADE 和△ABC 的顶角,所以∠ADE =∠ABC ,所以DE ∥BC .方法总结:等腰三角形两底角的平分线相等,两腰上的中线相等,两腰上的高相等. 变式训练:见《学练优》本课时练习“课后巩固提升”第5题探究点二:等边三角形的相关性质【类型一】 利用等边三角形的性质求角度如图,△ABC 是等边三角形,E是AC 上一点,D 是BC 延长线上一点,连接BE ,DE .若∠ABE =40°,BE =DE ,求∠CED 的度数.解析:因为△ABC 三个内角为60°,∠ABE =40°,求出∠EBC 的度数,因为BE =DE ,所以得到∠EBC =∠D ,求出∠D 的度数,利用外角性质即可求出∠CED 的度数. 解:∵△ABC 是等边三角形,∴∠ABC=∠ACB =60°,∵∠ABE =40°,∴∠EBC =∠ABC -∠ABE =60°-40°=20°.∵BE =DE ,∴∠D =∠EBC =20°,∴∠CED =∠ACB -∠D =40°.方法总结:等边三角形是特殊的三角形,它的三个内角都是60°,这个性质常常应用在求三角形角度的问题上,所以必须熟练掌握.变式训练:见《学练优》本课时练习“课堂达标训练”第8题【类型二】 利用等边三角形的性质证明线段相等如图:已知等边△ABC 中,D 是AC 的中点,E 是BC 延长线上的一点,且CE =CD ,DM ⊥BC ,垂足为M ,求证:BM =EM .解析:要证BM =EM ,由题意证△BDM ≌△EDM 即可.证明:连接BD ,∵在等边△ABC 中,D 是AC 的中点,∴∠DBC =12∠ABC =12×60°=30°,∠ACB =60°.∵CE =CD ,∴∠CDE =∠E .∵∠ACB =∠CDE +∠E ,∴∠E =30°,∴∠DBC =∠E =30°.∵DM ⊥BC ,∴∠DMB =∠DME =90°,在△DMB 和△DME 中,⎩⎪⎨⎪⎧∠DMB =∠DME ,∠DBM =∠E ,DM =DM ,∴△DME ≌△DMB .∴BM =EM .方法总结:证明线段相等可利用三角形全等得到.还应明白等边三角形是特殊的等腰三角形,所以等腰三角形的性质完全适合等边三角形.变式训练:见《学练优》本课时练习“课堂达标训练”第9题【类型三】 等边三角形的性质与全等三角形的综合运用△ABC 为正三角形,点M 是边BC上任意一点,点N 是边CA 上任意一点,且BM =CN ,BN 与AM 相交于Q 点,求∠BQM 的度数.解析:先根据已知条件利用SAS 判定△ABM ≌△BCN ,再根据全等三角形的性质求得∠AQN =∠ABC =60°.解:∵△ABC 为正三角形,∴∠ABC =∠C =∠BAC =60°,AB =BC .在△AMB 和△BNC 中,∵⎩⎪⎨⎪⎧AB =BC ,∠ABC =∠C ,BM =CN ,∴△AMB ≌△BNC (SAS),∴∠BAM =∠CBN ,∴∠BQM =∠ABQ +∠BAM =∠ABQ +∠CBN =∠ABC =60°.方法总结:等边三角形与全等三角形的综合运用,一般是利用等边三角形的性质探究三角形全等.变式训练:见《学练优》本课时练习“课后巩固提升”第8题三、板书设计1.等腰三角形两底角的平分线(两腰上的高、中线)的相关性质等腰三角形两底角的平分线相等; 等腰三角形两腰上的高相等; 等腰三角形两腰上的中线相等. 2.等边三角形的性质等边三角形的三个内角都相等,并且每个角都等于60°.本节课让学生在认识等腰三角形的基础上,进一步认识等边三角形.学习等边三角形的定义、性质.让学生在探索图形特征以及相关结论的活动中,进一步培养空间观念,锻炼思维能力.让学生在学习活动中,进一步产生对数学的好奇心,增强动手能力和创新意识.。

北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)

北师大版八年级数学下册1.1等腰三角形课件(第2课时共32张)

A.1 cm
B.2 cm
C.3 cm
D.4 cm
课堂精练
7. 如图,在等边三角形ABC中,BD,CE是两条中 线,则∠1的度数为( C ) A.90° B.30° C.120° D.150°
课堂精练
8.【中考·南充】如图,等边三角形OAB的边长为 2,则点B的坐标为( D ) A.(1,1) B.( 3,1) C.( 3, 3) D.(1, 3)
北师版八年级数学下册
第1章 三角形的证明
1.1 等腰三角形 第2课时 等边三角形的性质
复习导入
等腰三角形有哪些性质? 1.等腰三角形的性质:等边对等角. 2.等腰三角形性质的推论:三线合一,
即等腰三角形顶角的平分线、底边上 的中线及底边上的高线互相重合.
新知探究
一. 等腰三角形中相等的线段
在等腰三角形中画出一些线段(如角平分 线、中线、高等),你能发现其 中一些相等 的线段吗?能证明你的结论吗?
A.BD,CE为AC,AB边上的高
B.BD,CE都为△ABC的角平分线
C.∠ABD=
1 3
∠ABC,
∠ACE= 1 ∠ACB 3
D.∠ABD=∠BCE
课堂精练
3. 求等边三角形两条中线相交所成锐角的度数. 解:如图,在等边三角形ABC中,CE,BF分别是AB,
AC边上的中线,且CE与BF相交于点O, 则CE垂直平分AB,BF垂直平分AC, 在Rt△ABF中,∵∠A=60°, ∴∠ABF=30°. 在Rt△BEO中,∵∠EBO=30°,∴∠EOB=60°, 即等边三角形两条中线相交所成锐角的度数为60°.
②点G与点H一定重合;③点I与点H一定重合;④点G,点I
与点H一定重合.其中正确的有( D )

度沪科版八年级数学上册课件1等腰三角形(第2课时)

度沪科版八年级数学上册课件1等腰三角形(第2课时)

B
C
D
定理:在直角三角形中,如果一个锐 角等于 30°,那么它所对的直角边等 于斜边的一半.
生活实例:一次数学实践活动的内容是测量河宽,如
图,即测量A, B之间的距离。小明想出了一个方法:从 点A出发,沿着与直线AB成60 °角的AC方向前进至C , 在C处测得∠ C= 30 °,量出AC的长,它就是河的宽度。 这个方法正确吗?请说明理由。
(等角对等边)
错,因为都不是在同一个三角形中。
练一练
1.在△ABC中, 已∠A=40°,∠B=70°,判断 △ABC是什么三角形,为什么?
A
2.已知:如图,∠A=∠DBC =360,∠C=720。计算∠1和∠2, 并说明图中有哪些等腰三角形?
D
1 2
B
C
• 推论1 三个角都相等的三角形是等 边三角形.
探索思考
任画线段BC,分别以点B和
点C为顶点,以BC为一边,
在BC的同侧画两个相等的角,
两角的终边相交A点.因此,
在△ABC中,∠B=∠C.量一
量, AB与AC相等吗?
A
B
C
思考:“等腰三角形两个底角相等” 逆命题是什么吗?是真命题吗?
如果一个三角形有两个角相等,那么这 两个角所对的边也相等.
已知:如图,在△ABC中,∠B=∠C.
• 推论2 有一个角是60°的等腰三角 形是等边三角形.
• 在△ABC中, ∠C=90°, ∠A=30°,
延长BC到点D,使CD=BC.连接AD,
A
则△ACD≌△ACB.
所以AD=AB, ∠BAC=∠DAC=30°, ∠BAD= 60°.
所以 △ABD是等边三角形,
所以BD=AB.则

13.3.1等腰三角形(第二课时) 教案 人教版数学八年级上册

13.3.1等腰三角形(第二课时) 教案 人教版数学八年级上册

13.3.1等腰三角形(第二课时) 教案人教版数学八年级上册一、教材分析本节课位于人教版第十三章轴对称的第二课时。

等腰三角形是一类特殊的三角形,因而它比一般的三角形在理论和实际中的应用更为广泛。

等腰三角形的判定是初中数学一个重要定理,也是本章的重点内容。

本节内容是在学生已有的平行线性质判定、全等三角形判定以及等腰三角形性质等知识的基础上进一步研究的问题。

该判定的特点之一是揭示了同一个三角形的边、角关系;特点之二是它与等腰三角形的性质定理互为逆定理;特点之三是它为我们提供了证明线段相等的新方法,为以后学习提供了证明和计算的依据,有助于培养学生思维的灵活性和广阔性。

二、教学目标1.会阐述、推证等腰三角形的判定定理。

2.通过学习等腰三角形的判定,进一步发展学生的抽象概括能力。

3.经历综合应用等腰三角形性质定理和判定定理的过程,体验数学的应用价值。

三、教学重、难点1.重点:等腰三角形的判定定理的探索。

2.难点:“等角对等边”的证明四、教学方法“实验——发现——归纳——论证”法五、教学过程1、知识回顾:等腰三角形的相关知识师生共同回顾:(1)定义:有两条边相等的三角形叫做等腰三角形。

注意:等腰三角的定义既是性质又是判定(2)等腰三角形性质1:等腰三角形的两个底角相等,简称“等边对等角”。

(3)等腰三角形性质2:等腰三角形顶角平分线、底边上的中线和底边上的高互相重合,简称“三线合一”设计意图:复习等腰三角形的定义及性质为判定作铺垫。

2、欣赏生活中美丽的图片:教师提出问题:(1)图中有哪些你熟悉的图形吗?(2)如何证明一个三角形是等腰三角形?设计意图:结合生活中的图片,目的是为了唤起学生的好奇,激发学生兴趣和探究欲,体会生活中处处都有数学,并能自然地过渡到本节课的课题。

3、探索新知、发现猜想:教师提出问题:假设一个三角形有两条边相等,那么它们所对的角相等。

反过去,假设一个三角形有两个角相等,那么它们所对的边有什么关系?师生活动:教师提出问题,学生自由交流,大胆猜想。

1.1等腰三角形(第2课时)等边三角形的性质课件19张北师大版八年级数学下册

1.1等腰三角形(第2课时)等边三角形的性质课件19张北师大版八年级数学下册
15°
解析:在等边△ABC中,
∵AD为BC边上的高,
A
∴∠ADC=90°,
∠CAD=30°,
∵AE=AD,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
B
D
E
C
2.如图,△ABC和△BDE都是等边三角形,求证:AE=CD.
证明:∵△ABC是等边三角形,
∴AB=CB,∠ABE=60°,
∵△BDE是等边三角形,
两腰上的中线相等,两腰上的高相等.
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
3
1
果∠ABD= ∠ABC,
4
么结论?
∠ACE
3
1
= ∠ACB呢?由此你能得到一个什
4
A
证明:∵AB=AC,∴∠ABC=∠ACB,


∵ ∠ABD=∠ABC,∠ACE =∠ACB,
E
D
∴∠ABD=∠ACE,∠DBC=∠ECB,
∵BC=CB,∴△EBC≌△DCB,
∴BD=CE.
B
C
探究新知
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上.
1
1
(1)如果∠ABD= ∠ABC,∠ACE = ∠ACB,那么BD=CE吗?如
三条对称轴
探究归纳
等边三角形的性质:
等边三角形的三个内角都相等,并且每一个角都
等于60°.
A
符号语言:


△ABC 是等边三角形,
∠A =∠B =∠C =60°.

13.3.1等腰三角形(第2课时)

13.3.1等腰三角形(第2课时)
谢谢观赏
You made my day!
我们,还在路上……
业 选做题
教材第81页习题13.3第5,6题.
?
• 1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月3日星期四下午12时3分5秒12:03:0522.3.3 • 2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,
检测反馈
1.如图所示,在△ABC中,AB=AC,点D,E在BC边 上,∠ABD=∠DAE=∠EAC=36°,则图中共有等
腰三角形的个数是 ( C ) A.4 B.5 C.6 D.7
解析: ∵AB=AC,∠ABC=36°,∴∠BAC=108°, ∴∠BAD=∠DAE=∠EAC=36°,∴等腰三角形有 △ABC,△ABD,△ADE,△ACE,△ACD,△ABE,共有6个.故
八年级数学·上 新课标 [人]
第十三章 轴对称
学习新知
检测反馈
生活思考
学习新知
如图所示,某地质专家为估测一条东西 流向河流的宽度,选择河流北岸上一棵树
(B点)为地标,然后在这棵树的正南方(南 岸A点)插一小旗作标志,沿南偏东60°方 向走一段距离到C处时,测得∠ACB为30°, 这时,地质专家测得AC的长度就可知河流
选C.
检测反馈
2.如图所示,一艘海轮位于灯塔P的南偏东70° 方向的M处,它以每小时40海里的速度向正北方
向航行,2小时后到达位于灯塔P的北偏东40°方
向的N处,则N处与灯塔P的距离为 ( D )
A.40海里 B.60海里 C.70海里 D.80海里
解析:MN=2×40=80 (海里),∵∠M=70°,∠N=40°, ∴∠NPM=180°-∠M-∠N=180°-70°40°=70°,∴∠NPM=∠M,∴NP=MN=80海里.故选D.

人教版八年级数学上册作业课件 第十三章 轴对称 等腰三角形 等腰三角形 第2课时 等腰三角形的判定

人教版八年级数学上册作业课件 第十三章 轴对称 等腰三角形 等腰三角形 第2课时 等腰三角形的判定
A.6 B.7 C.8 D.9
6.如图,∠A=40°,AD垂直平分线段BC于点D,∠ABC的平分线BE交AD于 点E,连接EC,则∠C的度数是___2_5_°___.
7.如图,在△ABC中,AB=AC,点E在CA延长线上,EP⊥BC于点P,交AB 于点F,若AF=2,BF=3,则CE的长为_7___.
10.如图,在下列三角形中,AB=AC,能被一条直线分成两个小等腰三角形 的是D( )
A.①②③ B.①②④ C.②③④ D.①③④
11.(2020·南充)如图,在等腰△ABC 中,BD 为∠ABC 的平分线,∠A=36
°,AB=AC=a,BC=b,则 CD=( C )
A.a+2 b
B.a-2 b
解:(2)∵△ABD≌△DCE,∴CD=AB=2 (3) 当 ∠ BDA = 110° 时 , △ ADE 是 等 腰 三 角 形 . 证 明 : ∵ ∠ BDA = 110° , ∴∠ADC=70°.∵AB=AC,∴∠C=∠B=40°.∴∠DAC=70°.在△ADE中, ∠ADE=40°,∠DAE=70°,∴∠AED=180°-40°-70°=70°.∴∠AED =∠DAE.∴DA=DE,即△ADE是等腰三角形
16 . ( 广 东 中 考 ) 如 图 , 在 △ ABC 中 , AB = AC , AD 是 高 , AM 是 △ ABC 的 外 角 ∠CAE的平分线.
(1)用尺规作∠ADC的平分线DN;(保留作图痕迹,不写作法和证明) (2)设DN与AM交于点F,判断△ADF的形状. 解:(1)作图略 (2)△ADF为等腰直角三角形,理由:∵AB=AC,AD⊥BC, ∴∠ADC=90°,∠BAD=∠CAD,∵AM平分∠EAC,∴∠EAM=∠CAM,又 ∠EAM+∠CAM+∠BAD+∠CAD=180°,∴∠DAC+∠CAM=∠DAM=90°, ∴∠ADC+∠DAM=180°,∴AM∥DC,∴∠AFD=∠FDC,又∵DN平分∠ADC, ∴∠ADF=∠FDC,∴∠ADF=∠AFD,∴AD=AF,∴△ADF是等腰直角三角形

《等腰三角形》第2课时示范公开课教案【八年级数学下册北师大版】

《等腰三角形》第2课时示范公开课教案【八年级数学下册北师大版】

《等腰三角形》教学设计第2课时一、教学目标1.能够正确的运用等腰三角形的性质及判定定理证明一些相等关系.2.掌握等腰三角形中常用的辅助线,并且运用到证明中.3.掌握等边三角形的性质,并熟悉其证明过程.4.要求学生在学习中运用发现法,体验几何发现的乐趣,在实际操作中感受几何应用美.二、教学重难点重点:能够正确的运用等腰三角形的性质及判定定理证明一些相等关系,了解等边三角形的性质.难点:掌握等腰三角形中常用的辅助线,并且运用到证明中.三、教学用具电脑、多媒体、课件等.四、教学过程设计【情境引入】教师活动:教师准备好纸张,带领同学深刻理解等腰三角形角平分线、高线、中线特点.试一试:自己动手用纸制作一个等腰三角形.提问:你能利用折叠的方法找出它两个底角的平分线、两条腰上的中线和高线吗三种折叠方法:①角平分线的折法②中线的折法③高线的折法学生展示自己折叠的方式,并指出它的底角平分线、腰上的中线和高线.教师活动:针对上方同学的回答,教师进行提问,根据同学的答案,做出最后答案,然后根据答案让同学进行进一步思考,引出证明.【问题】①等腰三角形的两底角的平分线、两条腰上的中线、两条腰上的高线有什么关系?答案:相等② 你能怎么证明?【探究】证明:等腰三角形两底角的平分线相等.已知:如图,在△ABC中,AB=AC,BD,CE是△ABC 的角平分线.求证:BD =CE .思路:证明线段相等可以考虑证明两个线段所在三角形全等,即:△BCD ≌△CBE三角形里的已知条件:BC =BC∠ABC =∠ACB补充条件:∠1=∠2(通过角平分线得到) 判定依据:ASA 证明:∵AB =AC ,∴∠ABC =∠ACB (等边对等角) ∵∠1=21∠ABC ,∠2=21∠ACB ,∴∠1=∠2 在△BDC 和△CEB 中,∵∠ACB =∠ABC ,BC =CB ,∠1=∠2. ∴△BDC ≌△CEB (ASA).∴BD =CE (全等三角形的对应边相等) 得出结论:等腰三角形两底角的平分线相等. 【思考】动动脑,想一想:等腰三角形两条腰上的中线相等吗?高呢? 【猜想】1、等腰三角形两条腰上的中线相等.2、等腰三角形两条腰上的高线相等. 【思考】证明猜想:等腰三角形两条腰上的中线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的中线.证明:CD =BE .思路:① 想证明CD =BE , 可以证明:△BCE ≌△CBD②两个三角形里的已知条件:BC =BC ;∠ABC =∠ACB ③需要补充的条件: BD =CE (通过中线得到) 证明:②BE 和CD 分别是AC 、AB 上的中线②CE =21AC ,BD =21AB②AB =AC②②ABC =②ACB ,CE =BD , 在②BCE 和②CBD 中②CE =BD ,②ABC =②ACB ,BC =BC ②②BCE ②②CBD (SAS ) ②CD =BE提示:还可以证明②ABD ②②ACE ,依据为:(SAS ) 得出结论:等腰三角形两条腰上的中线相等. 证明猜想:等腰三角形两条腰上的高线相等在②ABC 中,AB =AC ,BE 和CD 分别是AC 、AB 上的高线.证明:CD =BE .思路:想证明CD=BE①需要找到:②BCE ②②CBD②两个三角形里的已知条件:BC=BC;∠ABC=∠ACB③需要补充的条件:②CDB=②CEB=90°(通过高线得到)证明:②BE和CD分别是AC、AB上的高线②②CDB=②CEB=90°②AB=AC②②ABC=②ACB在②BCE和②CBD中②②CDB=②CEB,②ABC=②ACB,BC=BC②②BCE②②CBD(AAS)②CD=BE提示:还可以证明△ABD≌△ACE,依据为:(AAS)得出结论:等腰三角形两条腰上的高线相等.【议一议】如图,在△ABC中,AB=AC,点D,E分别在AC和AB上.(1)如果∠ABD=13∠ABC,∠ACE=13∠ACB,那么BD=CE吗?如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?由此你能得到一个什么结论?(2)如果AD=12AC,AE=12AB,那么BD=CE吗?如果AD=1 3AC,∠AE=13AB呢?由此你能得到一个什么结论?分析:(1)由∠ABD =13∠ABC,∠ACE =13∠ACB,易得∠1=∠2.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(ASA).∴BD=CE.追问:如果∠ABD=14∠ABC,∠ACE=14∠ACB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,∠ABD=∠ACE,那么BD=CE.分析:(2) AD=12AC,AE=12AB,易得AD=AE.又∵∠A是公共角,AB=AC,∴△ABD≌△ACE(SAS).∴BD=CE.追问:如果AD=13AC,∠AE=13AB呢?同样的方法,也能得到BD=CE.结论:如图,在△ABC中,如果AB=AC,AD=AE,那么BD=CE.【想一想】提出问题:等边三角形是特殊的等腰三角形,那么等腰三角形的内角有什么特征呢?预设:三个内角都相等、每个角都等于60°、……追问:你能试着证明一下吗?已知,如图,在△ABC中,AB=AC=BC.求证:∠A= ∠B= ∠C.证明:∵AB=AC,∴∠B=∠C(等边对等角).又∵AC=BC,∴∠A=∠B(等边对等角).∴∠A=∠B =∠C.在△ABC中,∠A+∠B+∠C =180°,∴∠A=∠B =∠C=60°.总结定理:等边三角形的三个内角都相等,并且每个角都等于60°.【典型例题】教师活动:教师通过提问的方式,先带领同学理解问题抽象,让同学们找到解决问题的思路,之后提问同学补充解答过程,最后由教师完善解题步骤.例:已知:如图.点D、E在ΔABC的边BC上,AB=AC,AD=AE.求证:BD=CE.思路:因为△ABC和△ADE是有公共顶点,并且底边在同一直线上的等腰三角形,所以作△ABC(或△ADE)的高AF,可同时平分BC,DE.证明:作AF⊥BC,垂足为点F,则AF⊥DE∵AB=AC∴BF=CF(等腰三角形底边上的中线、底边上的高互相重合)【随堂练习】教师活动:教师给出练习,随时观察学生完成情况并相应指导,最后给出答案,根据学生完成情况适当分析讲解.1、已知:如图,D是△ABC内的一点,BD平分∠ABC,CD平分∠ACB,且BD=CD.求证:AB=AC.提示:先由DB=DC,证明∠DBC=∠DCB,再证∠ABC=∠ACB.证明:∵DB=DC∴∠DBC=∠DCB∵BD平分∠ABC,CD平分∠ACB∴∠ABC=2∠DBC,∠ACB=2∠DCB∴∠ABC=∠ACB∴AB=AC(等角对等边)2、已知:如图,∠CAE是△ABC的外角,AD∥BC,且∠1=∠2求证:AB=AC.提示:由∠1=∠B,∠2=∠C,可得∠B=∠C 证明:∵AD∥BC∴∠1=∠B,∠2=∠C∵∠1=∠2∴∠B=∠C∴AB=AC(等角对等边)思维导图的形式呈现本节课的主要内容:教科书第7页习题1.2。

等腰三角形的判定PPT课件

  等腰三角形的判定PPT课件
4:1
13. (易错题)用粗细均匀的电热丝烧水,通电10 min可烧
开一壶水,若将电热丝对折起来接在原来的电路中,
知1-讲
1.判定定理:有两个角相等的三角形是等腰三角形(简称 “等角对 等边”). 几何语言:如图,在△ABC中, ∵∠B=∠C, ∴AB=AC.
2. 等腰三角形的性质与判定的异同: 相同点:使用的前提都是“在同一个三角形中”. 不同点:由三角形的两边相等,得到它们所对的角相等,是等腰 三角形的性质; 由三角形的两角相等,得到它是等腰三角形,是等腰三角形的判定. 即:等腰三角形的性质:两边相等→这两边所对的角相等. 等腰三角形的判定:两角相等→这两角所对的边相等.
知2-练
1
(中考·泰安)如图,AD是△ABC的角平分线,
DE⊥AC,垂足为E,BF∥AC交ED的延长线
于点F,若BC恰好平分∠ABF,AE=2BF.给
出下列结论:①DE=DF;②DB=DC;
③AD⊥BC;④AC=3BF,
其中正确的结论共有( )
A.4个 B.3个 C.2个 D.1个
知2-练
2
如图,在△ABC中,∠ABC和∠ACB
三角形是等腰三角形”来证明. (3)当线段垂直平分线上的点与线段两端点构成三角形
时,应用“线段垂直平分线上的点到线段两端的距离 相等”来证明.
1.必做: 完成教材P138 T2 2.补充: 请完成《点拨》剩余部分习题
第十五章 电能与电功率
15.4 探究焦耳定律
第1课时 认识焦耳定律
(1)图乙是等质量的水和煤油温度随加热时间变化的图象, 为了使图甲中温度计示数变化更明显,则烧瓶内的液体
电流大小
9.在如图所示的电路中,电阻丝R1=R3=10 Ω,R2=R4 =5 Ω,电源电压相等且不变。闭合开关S1、S2后, 电路都正常工作,则在相同时间内产生热量最少的 电阻丝是_____。若电阻丝R1、R2都由同种材料制成 且长度相同R,2 则电阻 丝_____比较细。

【青岛版八年级数学上册教案】2.6等腰三角形(第2课时)

【青岛版八年级数学上册教案】2.6等腰三角形(第2课时)

2.6 等腰三角形第 2课时学习目标1、研究等腰三角形的判判定理.2、经过研究等腰三角形的判判定理,进一步体验轴对称的特色,发展空间看法.3、经过同等腰三角形的判判定理的研究,让学生领悟研究学习的乐趣,并经过等腰三角形的判判定理的简单应用,加深对定理的理解.从而培育学生利用已有知识解决实质问题的能力.要点等腰三角形的判判定理的研究和应用.难点等腰三角形的判断与性质的差别.学习过程(一)实验研究你还记得已知两角及其夹边如何作三角形吗?假如已知∠1和线段 a,你能用尺规作出三角形 ABC,使∠ B=∠C=∠1, BC=a吗?作法:作出的三角形ABC中,比较AB 与 AC的长,你有什么发现?说出你的看法.结论:的三角形是等腰三角形.(二)例题研究如图,已知∠ A=36 度,∠ DBC=36度,∠ C=72 度,求∠ BDC和∠ ABD的度数,并指出图中有哪些等腰三角形?(三)课堂练习1、如图 1 所示,在△ ABC 中, AB=AC, BD, CE分别为∠ ABC,∠ACB的均分线,则图中等腰三角形共有个.图1图22、如图2,∠ BAC=100°,∠ B=40°,∠ D=20°,AB=3,则CD=3、如图,在△ABC中,∠ A=60°,∠ ABC和∠ ACB的均分线订交于点O,(1)∠ BOC等于多少度?(2)假如过点 O作 EF∥ BC,交 AB、 AC于 E、 F,那么图中有等腰三角形吗?假如有,请指出来,并说明原由参照答案:1 、 4 个,分别为△ABC、△ FBC、△A ED、△ FED2 、 33 、( 1 ) 120 °( 2 )有,△B EO、△ CFO,原由略(四)反思提升这节课的学习,你有哪些收获?把你的反思写下来.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2、完成练习册P页




等腰三角形(二)
:证明:。。证明:证明:
教学反思
1、学生“根据文字命题写出已知、求证”非常差,要想方法突破这一难点。
2、学生证明能力比较弱,证明一道题要用很多时间,做题比较慢。
如果 , 呢?由此你能得到一个什么结论,并说明理由
1、问题,学生动手画画,看得到什么相等的线段或角,再让学生验证结论,从而自然过渡到活动一、二中去。
注意事项:活动中,教师应注意给予适度的引导,如可以渐次提出问题:
(1)你可能得到哪些相等的线段?
(2)你能证明你的猜测吗?试作图,写出已知、求证和证明过程;
(2)等腰三角形的性质
2、课前小测:小测本
1、齐答
2、独立完成,然后交换批改,教师统计好学生完成的情况
二、




提出问题:
在等腰三角形中自主作出一些线段(如角平分线、中线、高等),观察其中有哪些相等的线段,并尝试给出证明。
得出结论:
等腰三角形两个底角的平分线相等;
等腰三角形腰上的高相等;
等腰三角形腰上的中线相等.
2、出示例2,让学生尝试证明
3、投影生答案,点评
四、




做学案纸A、B组。
1、独立做10分钟。
2、小组讨论
3、投影学生答案或对学生板书解答过程进行点评。
五、
小结

反馈
本节课你学到什么?
1、师生一起回顾等腰三角形中可以怎样作出相等的线段或角。
2、通过学习,收获了什么数学思想方法?
作业布置
1、完成学案纸
然后
(4)还可以有哪些证明方法?
2、对于活动一、二
学生对文字命题写“已知”、“求证”,经验尚显不足,应该引导学生完成,然后由学生自己独立完成“证明”过程,再继续独立做“活动二“
然然后请学生板书其中部分证明过程,或
借助课件展示活动三的解答过程;教学中教师应注意对证明规范提出一定的要求,
3、注意证明方法的多样性:引导学生除了用“全等“明外还可以利用“腰三角形是轴对称图形“知识解决。
数学教案(02)第1周第2课时主备人:李顺霞
课题
等腰三角形(第2课时)
课型
新授
教学目标
1、经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.发展学生的初步的演绎逻辑推理的能力;
2、在图形的观察中,揭示等腰三角形的本质:对称性,发展学生的几何直觉;
3、探索并证明等边三角形的性质定理.
4、于活动三:
时间有限,可以在引导学生提出上述这些问题的基础上,让学生明白证明思路,然后让一般性的结论写在书上。
注意:在解决问题的基础上,教师还应注意揭示蕴含其中的思想方法。
三、




例2:证明:等边三角形的三个内角都相等,并且每个角都等于60°
已知:如图,
求证:
证明:
1、让学生;回顾之前已掌握的等边三角形的相关性质有哪些?
活动一:
证明:等腰三角形两底角的平分线相等
已知:
求证:
证明:
活动二、证明:等腰三角形两腰上的中线相等
已知:
求证:
证明
活动三、变式训练
如图,在△ABC中,AB=AC,点D,E分别在边AC和AB上
①如果 , ,那么BD=CE吗?
如果 , 呢?由此你能得到一个什么结论,并说明理由
②如果 , ,那么BD=CE吗?
重点
经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.
难点
经历“探索——发现一一猜想——证明”的过程,能够用综合法证明有关三角形和等腰三角形的一些结论.发展学生的初步的演绎逻辑推理的能力;




师生活动
操作方法与策略
一、




1、回顾:
(1)全等三角形的判定方法与性质。
相关文档
最新文档