2020年6月山东师范大学数字信号处理期末考试复习题

合集下载

(完整word版)数字信号处理期末试卷(含答案)

(完整word版)数字信号处理期末试卷(含答案)

(完整word版)数字信号处理期末试卷(含答案)(word版可编辑修改) (完整word版)数字信号处理期末试
卷(含答案)(word版可编辑修改)
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我
和我的同事精心编辑整理后发布的,发布之前
我们对文中内容进行仔细校对,但是难免会有
疏漏的地方,但是任然希望((完整word版)
数字信号处理期末试卷(含答案)(word版可编
辑修改))的内容能够给您的工作和学习带来
便利。

同时也真诚的希望收到您的建议和反
馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收
藏以便随时查阅,最后祝您生活愉快业绩进
步,以下为(完整word版)数字信号处理期末
试卷(含答案)(word版可编辑修改)的全部内
容。

高通滤波器
(3)理想低通滤波器加窗后的影响有3点:
1)幅频特性的陡直的边沿被加宽,形成一个过渡
带,过渡带的带宽取决于窗函数频响的主瓣宽度。

2)渡带的两侧附近产生起伏的肩峰和纹波,它是
由窗函数频响的旁瓣引起的,旁瓣相对值越大起伏
就越强.
3)截取长度N,将缩小窗函数的主瓣宽度,但却
不能减小旁瓣相对值。

只能减小过渡带带宽,而不
能改善滤波器通带内的平稳性和阻带中的衰减。

为了改善滤波器的性能,尽可能要求窗函数满足:
1)主瓣宽度窄,以获得较陡的过渡带
2)值尽可能小,以改善通带的平稳度和增大阻带中的衰减.。

(完整word版)《数字信号处理》期末试题库完整

(完整word版)《数字信号处理》期末试题库完整

一、单项选择题(10小题,每小题2分,共20分)在每小题列出的三个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

1. 下面说法中正确的是。

A.连续非周期信号的频谱为周期连续函数B.连续周期信号的频谱为周期连续函数C.离散非周期信号的频谱为周期连续函数D.离散周期信号的频谱为周期连续函数2. 要处理一个连续时间信号,对其进行采样的频率为3kHz,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为。

A.6kHz B.1.5kHz C.3kHz D.2kHz3.已知某序列Z变换的收敛域为5>|z|>3,则该序列为。

A.有限长序列B.右边序列C.左边序列D.双边序列4. 下列对离散傅里叶变换(DFT)的性质论述中错误的是。

A.DFT是一种线性变换B. DFT可以看作是序列z变换在单位圆上的抽样C. DFT具有隐含周期性D.利用DFT可以对连续信号频谱进行精确分析5. 下列关于因果稳定系统说法错误的是。

A.极点可以在单位圆外B.系统函数的z变换收敛区间包括单位圆C.因果稳定系统的单位抽样响应为因果序列D.系统函数的z变换收敛区间包括z=∞6. 设系统的单位抽样响应为h(n),则系统因果的充要条件为。

A.当n>0时,h(n)=0 B.当n>0时,h(n)≠0C.当n<0时,h(n)=0 D.当n<0时,h(n)≠07. 要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条?答。

(I)原信号为带限II)抽样频率大于两倍信号谱的最高频率(III)抽样信号通过理想低通滤波器A.I、IIB.II、IIIC.I、IIID.I、II、III8. 在窗函数设计法,当选择矩形窗时,最大相对肩峰值为8.95%,N增加时,2π/N减小,起伏振荡变密,最大相对肩峰值则总是8.95%,这种现象称为。

A.吉布斯效应B.栅栏效应C.泄漏效应D.奈奎斯特效应9. 下面关于IIR滤波器设计说法正确的是。

《数字信号处理》期末考试A卷答案

《数字信号处理》期末考试A卷答案

《数字信号处理》期末考试卷答案考试形式:闭卷考试考试时间:分钟班号学号姓名得分一、单项选择题(本大题共小题,每小题分,共分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。

错选、多选或未选均无分。

.δ()的变换是。

. .δ() . πδ() . π.下列系统(其中()是输出序列,()是输入序列)中属于线性系统。

( )()() ()()()() ()().在应用截止频率为Ω的归一化模拟滤波器的表格时,当实际Ω≠时,代替表中的复变量的应为().Ω.Ω.Ω.cΩ.用窗函数法设计数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时,阻带衰减比加三角窗时。

(). 窄,小. 宽,小 . 宽,大. 窄,大.用双线性变法进行数字滤波器的设计,从平面向平面转换的关系为( ) 。

.1111zzz--+=-.1111zzz---=+.1111zz cz---=+.1111zz cz--+=-.若序列的长度为,要能够由频域抽样信号()恢复原序列,而不发生时域混叠现象,则频域抽样点数需满足的条件是( )。

≥ ≤≤2M ≥2M.序列()(),其点记为(),,…则()为( )。

.下面描述中最适合的是( ) .时域为离散序列,频域也为离散序列.时域为离散有限长序列,频域也为离散有限长序列 .时域为离散无限长序列,频域为连续周期信号 .时域为离散周期序列,频域也为离散周期序列.利用矩形窗函数法设计滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( )。

.窗函数幅度函数的主瓣宽度 .窗函数幅度函数的主瓣宽度的一半 .窗函数幅度函数的第一个旁瓣宽度 .窗函数幅度函数的第一个旁瓣宽度的一半 .下列系统哪个属于全通系统( )。

. 1113()3z H z z ---=- . 11113()3z H z z ---=- . 都是 . 都不是二、填空题(本大题共小题,每题分,共分).已知一离散系统的输入输出关系为2()(1)y n n x n =-,(其中()为输出,()为输入),试判断该系统的特性(线性、时不变和因果) 线性 , 时变 , 因果 。

数字信号处理复习题含答案

数字信号处理复习题含答案

数字信号处理复习题含答案数字信号处理复习题含答案数字信号处理是一门研究如何对数字信号进行处理和分析的学科。

在现代科技的发展中,数字信号处理已经广泛应用于音频、视频、通信等领域。

为了帮助大家复习数字信号处理的知识,本文将提供一些复习题,并附上答案。

希望这些题目能够帮助大家巩固对数字信号处理的理解。

1. 什么是离散时间信号?答案:离散时间信号是在离散时间点上取值的信号。

离散时间信号可以用数学序列表示,例如x(n),其中n为整数。

2. 什么是离散时间系统?答案:离散时间系统是对离散时间信号进行处理和变换的系统。

离散时间系统可以用差分方程表示。

3. 什么是离散傅里叶变换(DFT)?答案:离散傅里叶变换是将离散时间域信号转换到离散频率域的一种变换。

DFT可以用来分析信号的频谱特性。

4. 什么是快速傅里叶变换(FFT)?答案:快速傅里叶变换是一种高效计算离散傅里叶变换的算法。

FFT算法可以降低计算复杂度,提高计算速度。

5. 什么是数字滤波器?答案:数字滤波器是对数字信号进行滤波的系统。

数字滤波器可以通过差分方程或差分方程的系数来描述。

6. 什么是有限冲激响应(FIR)滤波器?答案:有限冲激响应滤波器是一种滤波器,其冲激响应具有有限长度。

FIR滤波器可以通过线性组合的方式实现。

7. 什么是无限冲激响应(IIR)滤波器?答案:无限冲激响应滤波器是一种滤波器,其冲激响应具有无限长度。

IIR滤波器可以通过递归的方式实现。

8. 什么是数字信号的抽样和保持?答案:抽样是指将连续时间信号在一定时间间隔内取样得到离散时间信号。

保持是指在抽样的同时,将采样值保持不变。

9. 什么是量化?答案:量化是将连续时间信号的幅值转换为离散的幅值级别的过程。

量化过程中,需要确定量化级别和量化误差。

10. 什么是编码?答案:编码是将量化后的离散信号用一组二进制码表示的过程。

编码可以通过不同的编码方式实现,例如脉冲编码调制(PCM)。

以上是一些关于数字信号处理的复习题及其答案。

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)全

数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。

1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。

A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。

A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。

A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。

A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。

A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。

A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。

数字信号处理复习题及参考答案(DOC)

数字信号处理复习题及参考答案(DOC)

数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。

(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。

①Ωs ②.Ωc③.Ωc/2 ④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。

①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。

①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。

①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。

①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。

①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。

①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案

数字信号处理期末考试试题以及参考答案1. 说明数字信号处理的基本概念和应用领域。

数字信号处理(Digital Signal Processing,简称DSP)是利用计算机和数字技术对信号进行处理的一种方法。

与传统的模拟信号处理相比,数字信号处理具有精度高、灵活度大以及易于集成等优势。

它广泛应用于通信、音频处理、图像处理、雷达信号处理等领域。

2. 解释采样定理的原理,并举例说明其应用。

采样定理是数字信号处理的基础理论,它规定了采样频率必须满足一定条件,以保证从连续信号中恢复出完整的原始信息。

根据采样定理,采样频率必须大于信号最高频率的两倍,即Nyquist采样频率。

例如,对于音频信号处理,人耳可以接受的最高频率为20kHz,因此需要以至少40kHz的采样频率进行采样,才能保证恢复出高质量的音频信号。

3. 描述离散时间信号和离散序列的特点,并给出示例。

离散时间信号是在离散时间点上获取的信号,相邻时间点之间存在离散性。

离散时间信号可以用离散序列来表示,离散序列是按照离散时间点取样的数字信号。

例如,某地区每天的气温是一个离散时间信号,每天不同的时间点测量一次气温,将其离散化后可以得到一个离散序列,表示该地区每天的气温变化。

4. 详述时域和频域分析在数字信号处理中的作用。

时域分析是对信号在时间上进行分析,通过观察信号的波形和幅度变化,可以了解信号的时序特性、周期性以及脉冲等特征。

频域分析是将信号变换到频率域进行分析,通过观察信号的频谱和频率特征,可以了解信号的频率分布、频率成分以及谐波情况等。

在数字信号处理中,时域分析和频域分析是互补的工具。

通过时域分析可以了解信号的时间特性,而频域分析则更适合对信号的频率特性进行研究,两者结合可以全面分析信号的性质和特点。

5. 介绍常见的数字滤波器类型,并分别阐述其特点和应用场景。

常见的数字滤波器类型有低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

- 低通滤波器:可以通过滤除高频噪声、保留低频信号来平滑信号。

数字信号处理期末试题及答案

数字信号处理期末试题及答案

数字信号处理期末试卷(A )一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。

2.线性时不变系统的性质有 律、 律、 律。

3.对4()()x n R n =的Z 变换为 ,其收敛域为 。

4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。

5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。

6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。

7.因果序列x(n),在Z →∞时,X(Z)= 。

二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1B.δ(ω)C.2πδ(ω)D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是( )A. 3B. 4C. 6D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2)B. y(n)= cos(n+1)x (n)C. y(n)=x (2n)D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列B.无限长序列C.反因果序列D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。

数字信号处理期末试卷含答案

数字信号处理期末试卷含答案

数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。

答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。

答案:两倍3.傅里叶变换可以将信号从时域变换到________。

答案:频域4.信号的频率和________有关。

答案:周期5.数字信号处理系统的输出信号一般是________信号。

答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。

2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。

答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。

3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。

答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。

四、简答题1.请简要介绍数字信号处理的基本原理。

答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。

(完整word版)《数字信号处理》期末试题库

(完整word版)《数字信号处理》期末试题库

一选择题1、δ(n)的z变换是 A 。

A。

1 B.δ(w) C. 2πδ(w) D. 2π2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax关系为: A 。

A。

fs ≥ 2fmaxB。

fs≤2 fmaxC. fs≥ fmaxD. fs≤fmax3、用双线性变法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s= C .A。

1111zzz--+=-B。

S=1111zzz---=+C。

11211zzT z---=+D.11211zzT z--+=-4、序列x1(n)的长度为4,序列x2(n)的长度为3,则它们线性卷积的长度是,5点圆周卷积的长度是。

A。

5, 5 B。

6, 5 C. 6, 6 D. 7, 55、无限长单位冲激响应(IIR)滤波器的结构是 C 型的.A. 非递归B. 反馈 C。

递归 D. 不确定6、若数字滤波器的单位脉冲响应h(n)是对称的,长度为N,则它的对称中心是 B 。

A. N/2B. (N—1)/2 C。

(N/2)-1 D。

不确定7、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= D 。

A. 2π B。

4π C. 2 D。

88、一LTI系统,输入为 x(n)时,输出为y(n) ;则输入为2x(n)时,输出为 A ;输入为xn—3)时,输出为 A 。

A. 2y(n),y(n-3)B. 2y(n),y(n+3) C。

y(n),y(n-3) D。

y(n),y(n+3)9、用窗函数法设计FIR数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时B ,阻带衰减比加三角窗时 B 。

A。

窄,小 B。

宽,小 C。

宽,大 D。

窄,大10、在N=32的基2时间抽取法FFT运算流图中,从x(n)到X(k)需 B级蝶形运算过程。

A。

4 B。

5 C. 6 D. 311.X(n)=u(n)的偶对称部分为 A 。

数字信号处理期末考试试卷(1)及答案

数字信号处理期末考试试卷(1)及答案

一、选择题(10小题,共14分)1、关于线性系统的描述正确的是______ A 、遵从叠加原理 B 、非时变 C 、因果 答案:A2、稳定系统的收敛域应当______。

A 、包含单位圆,B 、不包含单位圆,C 、可以包含单位圆。

答案: A 3、)17/cos()(16ππn e n x j=这个周期信号的周期为多少( )。

A 、32 B 、∞ C 、34D 、544 答案:C4、在频率域,系统用信号的( )表示。

A 、线性变换B 、逆z 变换C 、傅里叶变换或Z 变换D 、拉普拉斯变换 答案:C5、 已知序列的傅里叶变换为(1)/2sin(/2)cos(/2)j N N e ωωω--,其傅里叶反变换为( )。

A 、()N R nB 、()u nC 、()n δD 、()n a u n ||1a <答案:A6、设()j X e ω和()j Y e ω分别是()x n 和()y n 的傅里叶变换,序列()()x n y n 的傅里叶变换为( )。

A 、()()j j X e Y e ωω-- B 、()()j j X e Y e ωω-C 、()()j j X e Y e ωωD 、()()j j X e Y e ωω-答案:C7、 信号和系统的分析方法是( )。

A 、频域分析方法和傅里叶分析方法B 、时域分析方法和频域分析方法C 、时域分析方法和拉普拉斯变换方法D 、傅里叶分析方法和拉普拉斯变换方法 答案:B8、序列()x n 的傅里叶变换为()j X e ω,序列Im[()]j x n 的傅里叶变换为( )。

A 、*1()()2j j X e X e ωω--⎡⎤-⎣⎦ B 、*1()()2j j X e X e ωω⎡⎤-⎣⎦ C 、*1()()2j j X e X e ωω-⎡⎤-⎣⎦ D 、*1()()2j j X e X e ωω-⎡⎤-⎣⎦ 答案:C9、序列()nu n 的z 变换为 ,收敛域为 。

《数字信号处理》期末考试复习

《数字信号处理》期末考试复习
A. 6kHz
B. 1.5kHz
C. 3kHz
D. 2kHz
12.下列序列中______为共轭对称序列。( A )
A.x(n)=x*(-n)
B.x(n)=x*(n)
C.x(n)=-x*(-n)
D.x(n)=-x*(n)
13.序列x(n)=sin ??
n 3π11的周期为( B ) A.3 B.6 C.11
A. 5, 5
B. 6, 5
C. 6, 6
D. 7, 5
43、无限长单位冲激响应(IIR)滤波器的结构是( C )型的。
A. 非递归
B. 反馈
C. 递归
D. 不确定
44、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N=( D )。
A. 2π
B. 4π
C. 2
D. 8
45.下面描述中最适合离散傅立叶变换DFT的是( B )
C. 当n<0时, h(n)=0
D. 当n<0时, h(n)≠0
8. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率fm 关系为( A )。
A. fs ≥2fm
B. fs ≤2fm
C. fs ≥fm
D. fs ≤fm
9. 序列x (n )的长度为4,序列h (n )的长度为3,则它们线性卷积的长度和5 点圆周卷积的长度分别是( B ) 。
C.带通滤波器
D.带阻滤波器
30. 下列各种滤波器的结构中哪种不是IIR滤波器的基本结构?( C )
A.直接型
B.级联型
C.频率抽样型
D.并联型
31. 若信号频带宽度有限,要想对该信号抽样后能够不失真地还原出原信号,则抽样频率Ωs和信号谱的最高频率Ωc必须满足( D )

数字信号处理期末试卷(共七套)

数字信号处理期末试卷(共七套)

第一套试卷学号 姓名 成绩一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。

A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。

A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R 3(n),则当输入为u(n)-u(n -2)时输出为 。

A.R 3(n)B.R 2(n)C.R 3(n)+R 3(n -1)D.R 2(n)+R 2(n -1) 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。

A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。

A.有限长序列 B.右边序列 C.左边序列 D.双边序列 二、填空题(每题3分,共5题)1、离散时间信号,其时间为 的信号,幅度是 。

2、线性移不变系统的性质有__ ____、___ ___和分配律。

3、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。

4、序列R 4(n)的Z 变换为_____ _,其收敛域为____ __。

5、对两序列x(n)和y(n),其线性相关定义为 。

三、10)(-≤≥⎩⎨⎧-=n n ba n x nn求该序列的Z 变换、收敛域、零点和极点。

(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。

(8分)五、已知两个有限长序列如下图所示,要求用作图法求。

(10分)六、已知有限序列的长度为8,试画出按频率抽选的基-2 FFT算法的蝶形运算流图,输入为顺序。

(10分)七、问答题:数字滤波器的功能是什么?它需要那几种基本的运算单元?写出数字滤波器的设计步骤。

数字信号处理期末试题及答案(1)

数字信号处理期末试题及答案(1)

《数字信号处理》课程期末考试试卷一一、选择题1、)125.0cos()(n n x π=的基本周期是(D )。

(A )0.125 (B )0.25 (C )8 (D )16。

2、一个序列)(n x 的离散傅里叶变换的变换定义为 (B ) 。

(A )∑∞-∞=-=n jn j en x e X ωω)()( (B )∑-=-=1/2)()(N n Nnk j e n x k X π (C )∑∞-∞=-=n nzn x z X )()( (D )∑-=-=1)()(N n kn nk W An x z X 。

3、对于M 点的有限长序列,频域采样不失真恢复时域序列的条件是频域采样点数N (A ) 。

(A )不小于M (B )必须大于M (C )只能等于M (D )必须小于M 。

4、有界输入一有界输出的系统称之为 (B ) 。

(A )因果系统 (B )稳定系统 (C )可逆系统 (D )线性系统。

二、判断题(本大题8分,每小题2分。

正确打√,错误打×)1、如果有一个实值序列,对于所有n 满足式:)()(n x n x -=,则称其为奇序列。

( × )2、稳定的序列都有离散时间傅里叶变换。

( √ )3、n j nM j e e00)2(ωπω=+ , M =0,±1,±2,…。

( √ )4、时域的卷积对应于频域的乘积。

( √ )三、填空题(本大题10分,每小题2分)1、在对连续信号进行频谱分析时,频谱分析范围受 采样 速率的限制。

2、⎰∞∞-=ωωδd ( 1 。

3、对于一个系统而言,如果对于任意时刻0n ,系统在该时刻的响应仅取决于在时刻及其以前的输入,则称该系统为 因果 系统。

4、对一个LSI 系统而言,系统的输出等于输入信号与系统单位采样响应的线性 卷积 。

5、假设时域采样频率为32kHz ,现对输入序列的32个点进行DFT 运算。

此时,DFT 输出的各点频率间隔为 1000 Hz 。

《数字信号处理》期末试题库有答案

《数字信号处理》期末试题库有答案

一.填空题1、一线性时不变系统,输入为 xn时,输出为yn ;则输入为2xn时,输出为 2yn ;输入为xn-3时,输出为 yn-3 ;2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为: fs>=2f max ;3、已知一个长度为N的序列xn,它的离散时间傅立叶变换为Xe jw,它的N点离散傅立叶变换XK是关于Xe jw的 N 点等间隔采样 ;4、有限长序列xn的8点DFT为XK,则XK= ;5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象;6.若数字滤波器的单位脉冲响应hn是奇对称的,长度为N,则它的对称中心是 N-1/2 ;7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄 ,阻带衰减比较小 ;8、无限长单位冲激响应IIR滤波器的结构上有反馈环路,因此是递归型结构;9、若正弦序列xn=sin30nπ/120是周期的,则周期是N= 8 ;10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断 ,而周期序列可以看成有限长序列的周期延拓 ;12.对长度为N的序列xn圆周移位m位得到的序列用xmn表示,其数学表达式为xmn= xn-mNRNn;13.对按时间抽取的基2-FFT 流图进行转置,并 将输入变输出,输出变输入 即可得到按频率抽取的基2-FFT 流图;14.线性移不变系统的性质有 交换率 、 结合率 和分配律;15.用DFT 近似分析模拟信号的频谱时,可能出现的问题有混叠失真、 泄漏 、 栅栏效应 和频率分辨率;16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型, 串联型 和 并联型 四种;17.如果通用计算机的速度为平均每次复数乘需要5μs,每次复数加需要1μs,则在此计算机上计算210点的基2 FFT 需要 10 级蝶形运算,总的运算时间是______μs;二.选择填空题1、δn 的z 变换是 A ;A. 1B.δwC. 2πδwD. 2π2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f s 与信号最高频率f max 关系为: A ;A. f s ≥ 2f maxB. f s ≤2 f maxC. f s ≥ f maxD. f s ≤f max3、用双线性变法进行IIR 数字滤波器的设计,从s 平面向z 平面转换的关系为s= C ; A. 1111z z z --+=- B . 1111z z z---=+s C. 11211z z T z ---=+ D. 11211z z T z --+=- 4、序列x 1n 的长度为4,序列x 2n 的长度为3,则它们线性卷积的长度是B ,5点圆周卷积的长度是 ;A. 5, 5 B . 6, 5 C. 6, 6 D. 7, 55、无限长单位冲激响应IIR 滤波器的结构是 C 型的;A. 非递归B. 反馈C.递归D. 不确定6、若数字滤波器的单位脉冲响应hn是对称的,长度为N,则它的对称中心是 B ;A. N/2B. N-1/2C. N/2-1D. 不确定7、若正弦序列xn=sin30nπ/120是周期的,则周期是N= D ;A. 2πB. 4πC. 2D. 88、一LTI系统,输入为 xn时,输出为yn ;则输入为2xn时,输出为A ;输入为xn-3时,输出为 ;A. 2yn,yn-3B. 2yn,yn+3C. yn,yn-3D. yn,yn+39、用窗函数法设计FIR数字滤波器时,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时 A ,阻带衰减比加三角窗时 ;A.窄,小B. 宽,小C. 宽,大D. 窄,大10、在N=32的基2时间抽取法FFT运算流图中,从xn到Xk需 B 级蝶形运算过程;A. 4 B. 5 C. 6 D. 311.Xn=un的偶对称部分为 A ;A. 1/2+δn/2 B. 1+δn C. 2δn D. un- δn12. 下列关系正确的为 B ;A.∑=-=nkk nnu) ()(δ B.∑∞=-=) ()(kk nnuδC.∑-∞=-=nkk nnu)()(δ D. ∑∞-∞=-=kk nnu)()(δ13.下面描述中最适合离散傅立叶变换DFT的是 B A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列14.脉冲响应不变法 BA.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系15.双线性变换法 CA.无混频,线性频率关系B.有混频,线性频率关系C.无混频,非线性频率关系D.有混频,非线性频率关系16.对于序列的傅立叶变换而言,其信号的特点是 DA.时域连续非周期,频域连续非周期B.时域离散周期,频域连续非周期C.时域离散非周期,频域连续非周期D.时域离散非周期,频域连续周期17.设系统的单位抽样响应为hn,则系统因果的充要条件为 CA.当n>0时,hn=0 B.当n>0时,hn≠0C.当n<0时,hn=0 D.当n<0时,hn≠018.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过 A 即可完全不失真恢复原信号;A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器19.若一线性移不变系统当输入为xn=δn时输出为yn=R3n,则当输入为un-un-2时输出为 C ;A.R3nB.R2nC.R3n+R3n-1D.R2n+R2n-120.下列哪一个单位抽样响应所表示的系统不是因果系统 DA.hn=δnB.hn=unC.hn=un-un-1D.hn=un-un+121.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括 A ;A.单位圆B.原点C.实轴D.虚轴22.已知序列Z变换的收敛域为|z|<1,则该序列为 C ;A.有限长序列B. 无限长右边序列C.无限长左边序列D. 无限长双边序列23.实序列的傅里叶变换必是 A ;A.共轭对称函数B.共轭反对称函数C.奇函数D.偶函数24.若序列的长度为M,要能够由频域抽样信号Xk恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是 A ;A.N≥MB.N≤MC.N≤2MD.N≥2M25.用按时间抽取FFT计算N点DFT所需的复数乘法次数与 D 成正比;A.NB.N2C.N3D.Nlog2N26.以下对双线性变换的描述中不正确的是 D ;A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对27.以下对FIR和IIR滤波器特性的论述中不正确的是 A ;A.FIR滤波器主要采用递归结构B.IIR滤波器不易做到线性相位C.FIR滤波器总是稳定的D.IIR滤波器主要用来设计规格化的频率特性为分段常数的标准滤波器28、设系统的单位抽样响应为hn=δn-1+δn+1,其频率响应为 A A.He jω=2cosω B. He jω=2sinω C. He jω=cosω D. He jω=sinω29. 若xn为实序列,Xe jω是其离散时间傅立叶变换,则 CA.Xe jω的幅度合幅角都是ω的偶函数B.Xe jω的幅度是ω的奇函数,幅角是ω的偶函数C.Xe jω的幅度是ω的偶函数,幅角是ω的奇函数D.Xe jω的幅度合幅角都是ω的奇函数30. 计算两个N1点和N2点序列的线性卷积,其中N1>N2,至少要做 B 点的DFT;A. N1B. N1+N2-1C. N1+N2+1D. N231. yn+0.3yn-1 = xn与 yn = -0.2xn + xn-1是 C ;A. 均为IIRB. 均为FIRC. 前者IIR,后者FIRD. 前者FIR, 后者IIR三.判断题1、在IIR数字滤波器的设计中,用脉冲响应不变法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的; √2.在时域对连续信号进行抽样,在频域中,所得频谱是原信号频谱的周期延拓; √3、xn=cosw0n所代表的序列一定是周期的; ×4、yn=x2n+3所代表的系统是时不变系统; √5、用窗函数法设计FIR数字滤波器时,改变窗函数的类型可以改变过渡带的宽度; √6、有限长序列的N点DFT相当于该序列的z变换在单位圆上的N点等间隔取样; √7、一个线性时不变离散系统是因果系统的充分必要条件是:系统函数HZ的极点在单位圆内; ×8、有限长序列的数字滤波器都具有严格的线性相位特性; ×9、xn ,yn的线性卷积的长度是xn ,yn的各自长度之和; ×10、用窗函数法进行FIR数字滤波器设计时,加窗会造成吉布斯效应; √12、在IIR数字滤波器的设计中,用双线性变换法设计时,从模拟角频率向数字角频率转换时,转换关系是线性的; ×13.在频域中对频谱进行抽样,在时域中,所得抽样频谱所对应的序列是原序列的周期延拓; √14、有限长序列hn满足奇、偶对称条件时,则滤波器具有严格的线性相位特性; √15、yn=cosxn所代表的系统是线性系统; ×16、xn ,yn的循环卷积的长度与xn ,yn的长度有关;xn ,yn的线性卷积的长度与xn ,yn的长度无关; ×17、在N=8的时间抽取法FFT运算流图中,从xn到xk需3级蝶形运算过程; √18、用频率抽样法设计FIR数字滤波器时,基本思想是对理想数字滤波器的频谱作抽样,以此获得实际设计出的滤波器频谱的离散值; √19、用窗函数法设计FIR数字滤波器和用频率抽样法设计FIR数字滤波器的不同之处在于前者在时域中进行,后者在频域中进行; √20、用窗函数法设计FIR数字滤波器时,加大窗函数的长度可以减少过渡带的宽度,改变窗函数的种类可以改变阻带衰减; √21、一个线性时不变的离散系统,它是因果系统的充分必要条件是:系统函数HZ 的极点在单位圆外; ×22、一个线性时不变的离散系统,它是稳定系统的充分必要条件是:系统函数HZ 的极点在单位圆内; √23.对正弦信号进行采样得到的正弦序列必定是周期序列; ×24.常系数差分方程表示的系统必为线性移不变系统; ×25.序列的傅里叶变换是周期函数; √26.因果稳定系统的系统函数的极点可能在单位圆外; ×27.FIR 滤波器较之IIR 滤波器的最大优点是可以方便地实现线性相位;√28. 用矩形窗设计FIR 滤波器,增加长度N 可改善通带波动和阻带衰减; ×29. 采样频率fs=5000Hz,DFT 的长度为2000,其谱线间隔为2.5Hz; √三、计算题一、设序列xn={4,3,2,1} , 另一序列hn ={1,1,1,1},n=0,1,2,3 1试求线性卷积 yn=xnhn2试求6点循环卷积;3试求8点循环卷积;二.数字序列 xn 如图所示. 画出下列每个序列时域序列: 1 xn-2; 2x3-n; 3xn-16,0≤n ≤5; 4x-n-16,0≤n ≤5; x[((n-1))6]n54321043210.5n 12340.5543210x[((-n-1))6]n 12340.5x(3-n)三.已知一稳定的LTI 系统的Hz 为)21)(5.01()1(2)(111------=z z z z H 试确定该系统Hz 的收敛域和脉冲响应hn; 解:系统有两个极点,其收敛域可能有三种形式,|z|<0.5, 0.5<|z|<2, |z|>2因为稳定,收敛域应包含单位圆,则系统收敛域为:0.5<|z|<2 11111213/25.013/4)21)(5.01()1(2)(--------=---=z z z z z z H)1(232)()5.0(34)(--+=n u n u n h nn四.设xn 是一个10点的有限序列xn={ 2,3,1,4,-3,-1,1,1,0,6},不计算DFT,试确定下列表达式的值; 1 X0, 2 X5, 3 ∑=90)(k k X ,4∑=-905/2)(k k j k X e π解:1 234五. xn 和hn 是如下给定的有限序列xn={5, 2, 4, -1, 2}, hn={-3, 2, -1 }1 计算xn 和hn 的线性卷积yn= xn hn ;2 计算xn 和hn 的6 点循环卷积y 1n= xn ⑥hn ;3 计算xn 和hn 的8 点循环卷积y 2n= xn ⑧hn ;比较以上结果,有何结论 14][]0[1900===∑=n N n x X W 12][][]5[119180510-=-===⎩⎨⎧-=∑∑====奇偶奇数偶数n n n n n n x n x X n n W 20]0[*10][][101]0[9090===∑∑==x k X k X x k k 0]8[*10][][101]))210[((][]))[((2)10/2(902)10/2(9010)/2(===-⇔--=-=-∑∑x k X e k X e x k X e m n x k j k k j k m N k j N πππ解:1yn= xn hn={-15,4,-3,13,-4,3,2}5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22y 1n= xn ⑥hn= {-13,4,-3,13,-4,3} 3因为8>5+3-1,所以y 3n= xn ⑧hn ={-15,4,-3,13,-4,3,2,0} y 3n 与yn 非零部分相同;六.用窗函数设计FIR 滤波器时,滤波器频谱波动由什么决定 _____________,滤波器频谱过渡带由什么决定_______________; 解:窗函数旁瓣的波动大小,窗函数主瓣的宽度七.一个因果线性时不变离散系统,其输入为xn 、输出为yn,系统的差分方程如下:yn-0.16yn-2= 0.25xn-2+xn (1)求系统的系统函数 Hz=Yz/Xz;系统稳定吗 画出系统直接型II 的信号流图; (2)画出系统幅频特性;解:1方程两边同求Z 变换:Yz-0.16z -2Yz= 0.25z -2Xz +Xz2216.0125.01)()()(---+==z z z X z Y z H2系统的极点为:0.4和-0.4,在单位圆内,故系统稳定;5 2 4 -1 2-3 2 15 2 4 -1 210 4 8 -2 4-15 -6 -12 3 -6-15 4 -3 13 -4 3 22-13 4 -3 13 -4 3 23422八.如果需要设计FIR 低通数字滤波器,其性能要求如下: 1阻带的衰减大于35dB, 2过渡带宽度小于π/6.请选择满足上述条件的窗函数,并确定滤波器hn 最小长度N解:根据上表,我们应该选择汉宁窗函数,十.已知 FIR DF 的系统函数为Hz=3-2z -1+0.5z -2-0.5z -4+2z -5-3z -6,试分别画出直接型、线性相位结构量化误差模型;4868≥≤N N ππ()()x n y n123456十一.两个有限长的复序列xn 和hn ,其长度分别为N 和M,设两序列的线性卷积为yn =xnhn ,回答下列问题:. 1 序列yn 的有效长度为多长2 如果我们直接利用卷积公式计算yn ,那么计算全部有效yn 的需要多少次复数乘法3 现用FFT 来计算yn ,说明实现的原理,并给出实现时所需满足的条件,画出实现的方框图,计算该方法实现时所需要的复数乘法计算量; 解:1 序列yn 的有效长度为:N+M-1;2 直接利用卷积公式计算yn, 需要MN 次复数乘法3 需要L L 2log 3次复数乘法;十二.用倒序输入顺序输出的基2 DIT-FFT 算法分析一长度为N 点的复序列xn 的DFT,回答下列问题:1 说明N 所需满足的条件,并说明如果N 不满足的话,如何处理补零补零L点-DFTL点-DFTL点-IDFTy(n)1e 2(n)3(2) 如果N=8, 那么在蝶形流图中,共有几级蝶形 每级有几个蝶形 确定第2级中蝶形的蝶距d m 和第2级中不同的权系数W N r ;(3) 如果有两个长度为N 点的实序列y 1n 和y 2 n,能否只用一次N 点的上述FFT 运算来计算出y 1n 和y 2 n 的DFT,如果可以的话,写出实现的原理及步骤,并计算实现时所需的复数乘法次数;如果不行,说明理由; 解1N 应为2的幂,即N =2m ,m 为整数;如果N 不满足条件,可以补零;23级,4个,蝶距为2,W N 0 ,W N 2 3 yn=y 1n+jy 2n十三.考虑下面4个8点序列,其中 0≤n ≤7,判断哪些序列的8点DFT 是实数,那些序列的8点DFT 是虚数,说明理由; 1 x 1n ={-1, -1, -1, 0, 0, 0, -1, -1},]}))[((]))[(({21][][]}))[((]))[(({21][][][][*2*110N N op N N ep N n knNk Y k Y k Y k Y k Y k Y k Y k Y W n y k Y --==-+===∑-=2 x 2n ={-1, -1, 0, 0, 0, 0, 1, 1},3 x 3n ={0, -1, -1, 0, 0, 0, 1, 1},4 x 4n ={0, -1, -1, 0, 0, 0, -1, -1},解:DFTx e n=ReXkDFTx 0n=jImXkx 4n 的DFT 是实数 , 因为它们具有周期性共轭对称性;x 3n 的DFT 是虚数 ,因为它具有周期性共轭反对称性 十四. 已知系统函数2113.025.0125.02)(---+-+=z z z z H ,求其差分方程;解:2113.025.0125.02)(---+-+=z z z z H2113.025.0125.02)()(---+-+=z z z z X z Y)25.02)(()3.025.01)((121---+=+-z z X z z z Y)1(25.0)(2)2(3.0)1(25.0)(-+=-+--n x n x n y n y n y)()()(*n N X n N x n x e e e -=-=)()()(*n N X n N x n x o o o --=--=十五.已知)1)(()81431)((121---+=+-z z X z z z Y ,画系统结构图;解:)1)(()81431)((121---+=+-z z X z z z Y1111121125.0155.016)25.01)(5.01(1125.075.011)()()(-----------=--+=+-+==z z z z z z z z z X z Y z H直接型I : 直接型II :级联型:并联型:x [ny [n ]x [n ]y [n ]x [n y [n ]n ]。

数字信号处理期末试卷(含答案)

数字信号处理期末试卷(含答案)

一、填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。

2、 2、)()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。

3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。

4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。

5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ 。

6、FFT 利用 来减少运算量。

7、数字信号处理的三种基本运算是: 。

8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。

9、数字滤波网络系统函数为∑=--=NK kk z a z H 111)(,该网络中共有 条反馈支路。

10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=)。

二、选择题(每题3分,共6题)1、 1、)63()(π-=n j en x ,该序列是 。

A.非周期序列B.周期6π=NC.周期π6=ND. 周期π2=N2、 2、 序列)1()(---=n u a n x n,则)(Z X 的收敛域为。

A.aZ < B.aZ ≤ C.aZ >D.aZ ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。

(完整版)数字信号处理复习题-答案

(完整版)数字信号处理复习题-答案
5.所谓采样,就是利用采样脉冲序列p(t)从连续时间信号x a (t)中抽取一系列的离散样值。( √ ) 6.数字信号处理只有硬件 方式实现。( × )
7.对正弦信号进行采样得到的正弦序列一定是周期序列。 ( × ) 8.数字信号处理仅仅指的是数字处理器。 ( × )
9.信号处理的两种基本方法:一是放大信号,二是变换信号。 ( × ) 10.在时域对连续信号进行抽样,在频域中,所得频 谱是原信号频谱的周期延拓。( × ) 四、简答题
1.用DFT 对连续信号进行谱分析的误差问题有哪些?
答:混叠失真;截断效应(频谱泄漏);栅栏效应
2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。 答
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工; 第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
4.设线性时不变系统的单位脉冲响应h(n)和输入序列x(n),如下图所示,要求分别用图解法和列表法求输出y(n),并画出波形 一、填空题: 1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: f ≥2fs 。 3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 N 点等间隔 抽样 。 4、3()5cos()78x n n π π=-的周期为 14 。 5、2()5cos()78 xnnπ π=-的周期为 7 。 6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 。 7、序列()8 ()n jxne π-=是否为周期序列 否 。 8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ 型,直接Ⅱ 型,_级联型_和_并联型_四种。 9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的___主值序列__,而周期序列可以看成有限长序列的_周期 序列 __。 10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__ x((n+m))N R N (n)___。 二、选择填空题 1、δ(n)的z 变换是( A ) A. 1 B.δ(w) C. 2πδ(w) D. 2π 2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是(), 5点圆周卷积的长度是( B )。 A. 5, 5 B. 6, 5 C. 6, 6 D. 7, 5 3、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需( B )级蝶形运算
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年6月山东师范大学数字信号处理期
末考试复习题
一、单项选择题
答题要求:
下列各题,只有一个符合题意的正确答案,多选、错选、不选均不得分。

1(2.0分)
下列关于FIR和IIR滤波器特性的论述中不正确的是()
A)FIR滤波器的单位脉冲响应是有限长的
B)IIR滤波器的单位脉冲响应是无限长的
C)IIR滤波器总是稳定的
D)IIR滤波器的结构中带有反馈回路
参考答案: C
2(2.0分)
下列关于DTFT变换的描述不正确的是()
A)DTFT变换具有线性性质
B)DTFT变换得到的频谱是离散的
C)DTFT变换是对离散时间序列进行的变换
D)DTFT变换得到的频谱具有周期性
参考答案: B
3(2.0分)
下列关于DFS变换的描述不正确的是()
A)DFS变换不具有线性性质
B)周期为N的周期序列在用DFS展开后,其所有谐波成分中只有N个是相互独立的
C)DFS变换是对时域下离散周期序列进行的变换
D)DFS变换后得到的频域序列也是周期序列
参考答案: A
4(2.0分)
参考答案: D
5(2.0分)
参考答案: B
6(2.0分)
参考答案: C
7(2.0分)
下列关于DFT变换的描述不正确的是()
A)DFT变换具有线性性质
B)DFT变换具有隐含的周期性
C)DFT变换是对时域下离散时间序列进行的变换
D)DFT变换的时域序列和频域序列是不等长的有限长序列
参考答案: D
8(2.0分)
对较长的离散序列做截短处理后再进行DFT变换会引起以下哪种现象?()
A)频谱泄露
B)吉布斯(Gibbs)效应
C)栅栏效应
D)时域混叠
参考答案: A
9(2.0分)
两个序列的长度分别为2和6,则两者的线性卷积的长度为()
A)7
B)6
C)2。

相关文档
最新文档