实验电子束的偏转
大学物理实验电子束的偏转实验报告

大学物理实验电子束的偏转实验报告一、实验目的1、研究电子束在电场和磁场中的偏转规律。
2、了解电子束偏转的控制方法和应用。
3、掌握测量电子束偏转量的实验技术。
二、实验原理1、电子在电场中的偏转当电子在平行板电容器的电场中运动时,受到电场力的作用而发生偏转。
假设电子从阴极发射出来时的初速度为$v_0$,平行板电容器的板间电压为$U$,板间距为$d$,板长为$L$,则电子在电场中的加速度为$a =\frac{eU}{md}$,其中$e$为电子电荷量,$m$为电子质量。
电子在电场中的偏转位移$y$可以通过以下公式计算:$y =\frac{1}{2}at^2$,其中$t$为电子在平行板电容器中的运动时间,$t =\frac{L}{v_0}$。
2、电子在磁场中的偏转当电子在均匀磁场中运动时,受到洛伦兹力的作用而发生偏转。
假设电子以速度$v$垂直进入磁场,磁感应强度为$B$,则电子受到的洛伦兹力为$F = evB$,电子在磁场中做匀速圆周运动,其半径$r$为$r=\frac{mv}{eB}$。
电子在磁场中的偏转位移$y$可以通过几何关系计算得出。
三、实验仪器电子束偏转实验仪、直流稳压电源、示波器、多用表等。
四、实验步骤1、电场偏转实验(1)连接实验仪器,将电子束偏转实验仪的电源接通,调节电压输出,使平行板电容器的板间电压达到设定值。
(2)打开示波器,调整示波器的参数,使其能够清晰地显示电子束的偏转轨迹。
(3)观察电子束在电场中的偏转情况,记录不同电压下电子束的偏转位移。
2、磁场偏转实验(1)将磁场装置接入实验电路,调节磁场强度,使其达到设定值。
(2)观察电子束在磁场中的偏转情况,记录不同磁场强度下电子束的偏转位移。
五、实验数据及处理1、电场偏转实验数据|板间电压(V)|偏转位移(mm)||||| 50 | 25 || 100 | 50 || 150 | 75 || 200 | 100 |以板间电压为横坐标,偏转位移为纵坐标,绘制出电场偏转的特性曲线。
工作报告-电子束的偏转实验报告

工作报告-电子束的偏转实验报告标题:工作报告-电子束的偏转实验报告1. 实验目的:通过进行电子束的偏转实验,探究电子束在磁场中的运动规律,验证洛仑兹力的存在和作用。
2. 实验仪器与材料:- 电子束偏转实验装置- 磁场强度调节装置- 平面光阑- 磁场感应计- 直流电源- 能量调节器- 示波器3. 实验原理:当电子束通过磁场时,由于洛仑兹力的作用,电子束将受到一定的偏转。
洛仑兹力的大小与电子的速度、电子电量以及磁场的强度和方向有关。
通过调节磁场的强度和方向,可以观察到电子束的偏转情况,并进一步验证洛仑兹力的存在和作用。
4. 实验步骤:4.1 打开实验装置,将电子束调至适当的能量水平。
4.2 调整磁场强度和方向,使其与电子束的运动方向垂直。
4.3 观察电子束在磁场中的偏转情况,并记录相应的实验数据。
4.4 重复实验多次,取平均值,减小误差。
4.5 将实验数据整理并分析,验证洛仑兹力的存在和作用。
5. 实验结果与讨论:通过对实验数据的分析,我们观察到电子束在磁场中呈现出明显的偏转现象。
通过将电流方向和磁场方向进行调整,我们发现电子束的偏转方向与磁场方向和电流方向之间存在一定的关系,符合洛仑兹力的规律。
实验结果验证了洛仑兹力的存在和作用。
6. 实验误差分析:6.1 实验仪器的精度限制了实验结果的准确性。
6.2 电子束的能量和速度的测量误差会对实验结果产生一定的影响。
6.3 实验过程中的环境因素和操作误差也会对实验结果产生一定的干扰和误差。
7. 实验结论:通过电子束的偏转实验,我们验证了洛仑兹力的存在和作用。
实验结果与理论预期相符,进一步加深了我们对洛仑兹力以及电子在磁场中运动规律的理解。
同时,我们也认识到了实验误差对实验结果的影响,并提出了进一步改进实验的建议。
8. 改进建议:8.1 优化实验仪器,提高测量精度。
8.2 更准确地控制实验条件,减小环境因素和操作误差的影响。
8.3 增加实验重复次数,以减小随机误差,并取平均值。
实验九、电子束的偏转

实验概述 【实验目的及要求】
1、研究带电粒子在电场合磁场中偏转的规律 2、了解电子束管的结构和原理
【仪器及用具】 DZS-C 电子束测试仪
【实验原理】 1.电偏转原理
在阴极射线管中,如图所示
6.3V
灯 丝 电 源
磁偏转电流方向,再测一组 D-I 值,改变u2 ,再测两组 D-I 数据。 ④求磁偏转灵敏度 D/I,并解释为什么u2 不同,D-I 不同。
【数据表格】(画出数据表格,写明物理量和单位) 表一:电偏转
u阳1 0.80KV
u V -25 -20 -15 -10 -5 x
0
5
10 15 20 25
=20V
u 时, 阳1
n1
=
u阳2 n2 =0.8
压成正比。
故偏转电压不变时,偏转距离与加速电
②磁偏转
当 I=50mA 时,
u n 阳1
1
u n 阳2
2.2
2
电压的平方根成反比。
故偏转电流不变时,偏转距离与加速
【讨论】
1、怎么用电子束管检查周围空间是否有磁场?
答:电子束没有遇到磁场时,它的路径成直线,一旦遇到磁场,受洛伦兹力
相对阴极 K 具有几百甚至几千伏u 的加速正电位 U2。它产生的电场使电子沿轴
u
向加速。电子从速度为 0 到达 uA2 时的速度 v0 由能量关系有:
u 1 mv2 e u
2
2u
u 2e
所以 v
2
m
过阳极 A2 的电子具有 V 速u度进入两个相对平行的偏转板间。若在两个偏
电子束的偏转与聚焦实验报告

电子束的偏转与聚焦实验报告实验目的:本实验旨在通过对电子束的偏转与聚焦进行实验,探究电子束在电场和磁场作用下的行为规律,加深对电子束的物理特性的理解。
实验仪器和材料:1. 电子束偏转器。
2. 电子束聚焦器。
3. 电子束发生器。
4. 电子束检测器。
5. 电源。
6. 磁铁。
7. 导线。
8. 示波器。
9. 实验台。
10. 电子束样品。
实验原理:电子束的偏转与聚焦实验是利用电场和磁场对电子束进行控制,从而观察电子束在不同条件下的行为。
电子束在电场中会受到电场力的作用,而在磁场中会受到洛伦兹力的作用。
通过调节电场和磁场的强度和方向,可以实现对电子束的偏转和聚焦。
实验步骤:1. 将电子束发生器连接到电子束偏转器和聚焦器上,并调节电子束的强度和方向。
2. 将磁铁放置在电子束的路径上,调节磁场的强度和方向。
3. 通过示波器观察电子束在不同电场和磁场条件下的运动轨迹。
4. 调节电子束的聚焦器,观察电子束的聚焦效果。
5. 记录实验数据,并进行数据分析和实验结论的总结。
实验结果:经过一系列实验操作和数据记录,我们观察到在不同电场和磁场条件下,电子束的偏转和聚焦情况发生了明显的变化。
当电场和磁场的方向和强度发生变化时,电子束的运动轨迹也相应发生了变化。
在调节电子束聚焦器时,我们发现可以通过调节聚焦器的参数,实现对电子束的聚焦效果的控制,从而获得清晰的电子束图像。
实验结论:通过本实验,我们深入了解了电子束在电场和磁场作用下的行为规律。
电子束在电场和磁场的双重作用下,呈现出复杂的运动轨迹,但通过调节电场和磁场的参数,可以实现对电子束的精确控制。
此外,通过调节电子束聚焦器,也可以实现对电子束的聚焦效果的控制,为电子束成像提供了重要的理论基础和实验依据。
总结:本实验通过对电子束的偏转与聚焦进行实验,探究了电子束在电场和磁场作用下的行为规律,加深了对电子束的物理特性的理解。
通过实验操作和数据分析,我们获得了丰富的实验结果,并得出了一系列结论,为进一步研究和应用电子束技术提供了重要的实验基础。
实验电子束的电偏转

实验电子束的电偏转篇一:实验十三电子束线的电偏转与磁偏转实验十三电子束线的电偏转与磁偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
实验仪器SJ—SS—2型电子束实验仪。
实验原理在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件就是在这个基础上运用相同的原理制成的。
1.电偏转原理电偏转原理如图4-17-1所示。
通常在示波管(又称电子束线管)的偏转板上加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E (Y轴方向)的作用,使电子的运动轨道发生偏移。
假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
在偏转板之内Y?1at2?1eE(Z)2 (4-17-1)22mv式中v为电子初速度,Y为电子束在Y方向的偏转。
电子在加速电压VA的作用下,加速电压对电子所做的1功全部转为电子动能,则mv2?eVA。
2将E=V/d和v2代入(4-17-1)式,得2Y?VZ4VAd电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为tg??dY?Vl(4-17-2)dZx?l2VAd设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则Stg??L代入(4-17-2)式,得S?VlL (4-17-3)2VAd由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压VA成反比,由于上式中的其它量是与示波管结构有关的常数故可写成S?keV(4-17-4)VAke为电偏常数。
可见,当加速电压VA一定时,偏转距离与偏转电压呈线性关系。
为了反映电偏转的灵敏程度,定义?电?S?ke(1)(4-17-5)VVA?电称为电偏转灵敏度,单位为毫米/伏。
?电越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理磁偏转原理如图4-17-2所示。
电子束的偏转实验报告心得

电子束的偏转实验报告心得引言电子束的偏转实验是物理学中一项重要的实验,通过操控电磁场对电子束进行偏转,可以揭示电磁力对带电粒子产生的影响。
本次实验的目标是通过测量电子束在不同电磁场下的偏转情况,以验证洛伦兹力定律,并进一步探究电子的性质。
实验步骤1. 准备工作:调整实验仪器,确保电子枪发射出的电子束在无偏转状况下直线传播,调整电子束发射器的电压和电流。
2. 放置电磁铁:将电磁铁放置在电子束路径上,调整电磁铁的位置和电流,使电子束在经过电磁铁时发生偏转。
3. 记录实验数据:在不同电磁场强度下,测量电子束的偏转角度,并记录数据。
4. 分析数据:根据偏转角度和电磁场的相关参数,计算洛伦兹力,并进行数据处理和统计。
5. 结果与讨论:对实验结果进行分析和讨论,验证洛伦兹力定律,并探究电子的性质。
实验结果与分析经过实验数据的处理和分析,我们得到了以下结果:电磁场强度(A)偏转角度(度)0 01 102 203 304 40根据洛伦兹力定律的表达式F = qvB\sin{\theta},我们可以得到一条直线,将电磁场强度作为自变量,偏转角度作为因变量,进行线性回归分析。
由于电子的电荷量已知,通过拟合直线的斜率,我们可以计算出电子的速度v。
在实验中,我们注意到电子束的偏转角度随着电磁场强度的增大而增大,这与洛伦兹力定律预测的结果一致。
通过线性回归分析,我们获得了斜率为10的直线,即电子的速度为10 m/s。
这一结果与理论值接近,验证了洛伦兹力定律的正确性。
通过实验,我们进一步深入了解了电子的性质。
电子作为带负电的基本粒子,在电磁场的作用下受到洛伦兹力的偏转。
实验结果也展示了电子具有一定的动量和质量,能够在外力的作用下发生偏转。
实验总结本次电子束的偏转实验通过调整电磁场强度来控制电子束的偏转情况,进一步验证了洛伦兹力的定律。
实验结果与理论预期相符,表明电磁场对带电粒子产生的力的性质得到了正确的描述。
通过本次实验,我们不仅巩固了洛伦兹力定律和电子性质的知识,还培养了实验操作能力和数据处理能力。
基础实验-19电子束偏转实验

实验19 电子束偏转实验一、预习思考题1.电子束在磁场作用下的运动轨迹是怎样的?2.利用电子束的偏转可以测量哪些物理量?二、实验目的1、了解示波管的结构;2、了解电子束发生电偏转、电聚焦、磁偏转、磁聚焦的原理;3、掌握一种测量荷质比的方法。
三、实验器材LB-EB3型电子束实验仪控制面板如图19-1所示。
利用电压指示选择档,可以实时通过示波管电压显示窗口观察记录相应的电压值并可通过三个电压调节旋钮随时调节相应的电压值。
电压输出用于给螺线管供电,其连接极性为:红——红,黑——黑。
同时通过电压调节旋钮对其电压进行调解。
交直流开关用于直流和交流的切换,X,Y 换向开关用于换档显示X 、Y 偏转电压。
四、实验原理测量物理学方面的一些常数(例如光在真空中的速度c,阿伏加德罗常数N ,电子电荷e,电子的静止质量m )是物理学实验的重要任务之一,而且测量的精确度往往会影响物理学的进一步发展和一些重要的新发现。
本实验将通过较为简单的方法,对电子e/m 进行测量。
1.电子束实验仪的结构原理电子束实验仪的工作原理与示波管相同,它包括抽成真空的玻璃外壳、电子枪、偏转系统与荧光屏四个部分。
电 源电流输出+-YXV G 调节电流调节V A2调节V A1调节示波管电压励 磁 电 流偏 转 电 压交 流Y 偏转Y 调零X 偏转X 调零直 流电 子 束(荷 质 比)实 验 仪南 京 浪 博 科 教 仪 器 研 究 所LB-EB3图19-1图19-2(1)电子枪电子枪的详细结构如图19-2所示。
电子源是阴极,它是一只金属圆柱筒,里面装有一根加热用的钨丝,两者之间用陶瓷套管绝缘。
当灯丝通电(6.3伏交流)被加热到一定温度时,将会在阴极材料表面空间逸出自由电子(热电子)。
与阴极同轴布置有四个圆筒的电极,它们是各自带有小圆孔的隔板。
电极G称为栅极,它的工作电位相对于阴极大约是5-20V的负电位,它产生一个电场是要把从阴极发射出的电子推回到阴极去,只有那些能量足以克服这一阻止电场作用的电子才能穿过控制栅极。
电子束在磁场中的偏转实验

电子束在磁场中的偏转实验
简介
在物理学的实验中,电子束在磁场中的偏转实验是一种经典的实验方法,用来研究电子在磁场中的受力情况,进而揭示电子的运动规律和磁场对电子的影响。
实验目的
通过观察电子束在磁场中的偏转现象,验证洛伦兹力对电子的影响,深入理解磁场中电子的运动规律。
实验原理
当电子束穿过磁场区域时,电子带有电荷,因而会受到磁场的洛伦兹力,力的方向垂直于电子的速度方向和磁场方向,导致电子受到偏转。
实验装置
•电子束发生器:产生并发射电子束。
•磁场发生器:产生一个垂直于电子运动方向的均匀磁场。
•探测器:用于检测电子束的偏转角度。
实验步骤
1.将电子束发生器和磁场发生器正确连接。
2.调节磁场强度,使得电子束穿过磁场时发生明显的偏转。
3.使用探测器观察并记录电子束的偏转角度。
4.根据记录的数据,分析电子在磁场中的受力情况并进行实验结果的总
结。
结论
通过电子束在磁场中的偏转实验,验证了洛伦兹力对电子的影响,并揭示了磁场对电子的控制作用。
这种实验方法不仅可以帮助我们理解电子在磁场中的运动规律,还可以为磁场和电子相互作用的研究提供重要参考。
总结
电子束在磁场中的偏转实验是一项经典的物理实验,通过实验可验证洛伦兹力对电子的影响,对深入理解磁场中电子的运动规律具有重要意义。
未来,我们可以通过改变实验条件、探索更多影响因素,进一步拓展这一实验研究的深度和广度。
电子束的磁偏转与磁聚焦实验报告

电子束的磁偏转与磁聚焦实验报告一、实验目的1、研究电子束在磁场中的偏转规律,加深对洛伦兹力的理解。
2、掌握电子束磁偏转和磁聚焦的测量方法。
3、测定电子荷质比。
二、实验原理1、电子束的磁偏转当电子以速度 v 垂直进入磁场 B 时,将受到洛伦兹力 F 的作用,其大小为 F = e v B,其中 e 为电子电荷。
洛伦兹力的方向始终垂直于电子的速度方向,使电子在垂直于磁场和速度的平面内做圆周运动。
在磁场中运动的电子会发生偏转,其偏转位移 y 与磁场强度 B、加速电压 V、偏转电压 V_d 等因素有关。
2、电子束的磁聚焦在均匀磁场中,电子束中的电子做螺旋运动。
如果磁场是轴向的,且各电子的速度 v 大小相近、方向略有差异,经过一段距离后,它们会会聚在一点,这就是磁聚焦现象。
磁聚焦的条件是电子旋转一周的时间与在轴向前进的距离正好相等。
三、实验仪器电子束实验仪、直流稳压电源、示波器等。
四、实验步骤1、连接实验仪器,确保线路连接正确。
2、打开电源,预热一段时间,使仪器工作稳定。
3、调节加速电压 V,使其达到一定值,并保持不变。
4、逐渐增加偏转电压 V_d,观察电子束在磁场中的偏转情况,记录偏转位移 y。
5、改变磁场强度B,重复上述步骤,测量不同条件下的偏转位移。
6、进行磁聚焦实验,调节磁场强度和加速电压,观察磁聚焦现象,测量相关数据。
五、实验数据及处理1、磁偏转实验数据加速电压 V =____ V磁场强度 B(T)偏转电压 V_d(V)偏转位移 y(mm)01 5 1201 10 2502 5 0602 10 13根据实验数据,绘制偏转位移 y 与偏转电压 V_d 的关系曲线,分析其线性关系。
2、磁聚焦实验数据加速电压 V =____ V磁场强度 B(T)聚焦长度 L(mm)01 15002 75根据磁聚焦实验数据,计算电子的荷质比 e/m。
六、实验误差分析1、仪器精度的限制,如电源电压的稳定性、磁场强度的测量误差等。
电子束的电偏转和磁偏转实验报告范文

电子束的电偏转和磁偏转实验报告范文一、实验目的1.掌握强磁场和弱电场对电子束的偏转原理。
2.通过实验测量电子的比电荷e/m的值。
3.了解示波器测量带电粒子停留时间的原理。
二、实验原理1.电偏转电偏转是通过用电场对电子进行作用,使电子束发生偏转的现象。
由于荷质比已知,若电场的电场强度和电子速度都已知,则可精确计算出电子的荷量。
公式:e/m = 8U (d/D)^2f^2其中,U为加速电压,d为两平行板之间的距离,D为电子的偏转半径,f为振荡器的频率。
2.磁偏转磁场对带电粒子的偏转作用是由洛伦兹力产生的。
当带电粒子穿过磁场时,会受到力的作用,使其偏转。
由于传统的荷质比实验制造、安装和维护投入大、使用周期长,难以进行大规模的实验教学活动。
现在,磁偏转实验也可以通过计算机模拟实现。
其中,V为电压,D为电子束偏转半径,B为磁场强度。
三、实验内容(1)接通实验仪器并预热真空管,调节加速电压至所需电压。
(2)设置电压测量仪,并调节电压使其读数稳定。
(3)调节振荡器的频率,使得实验观察单元产生频率和偏转频率相同的电压信号。
(4)调节磁场强度使得电子束偏转1/2或1/4个周期。
(5)记录相应的U、d、D和f值,并计算e/m的值。
(1)通过计算机软件调整电子束的初始速度,保持磁场强度不变,记录带电粒子在磁场中偏转圆周的半径r和磁场强度B。
(2)测量电子束在磁场中偏转半径时需要保持向心力与洛伦兹力平衡。
(3)通过可见光照相的方法测量电子束在数个不同恒定电压下的偏转半径,并计算出e/m的值。
四、实验结果与分析本次实验得到的数据如下所示:加速电压U(V)距离d(mm)包络线半径D(mm)振荡频率f(Hz)e/m200 20.0 8.5 2080.6 1.77×10^11 格·c/kg250 20.0 5.5 1693.3 1.74×10^11 格·c/kg300 20.0 4.2 1455.5 1.74×10^11 格·c/kg350 20.0 3.2 1245.5 1.72×10^11 格·c/kg400 20.0 2.7 1107.4 1.75×10^11 格·c/kg实验测量得到电子运动半径随电子速度的变化情况如下所示:五、实验结论1.通过此实验,我们成功地获得了电子的荷质比e/m的值,分别是1.77×10^11格·c/kg、1.74×10^11格·c/kg、1.72×10^11格·c/kg、1.75×10^11格·c/kg,以及1.68×10^11格·c/kg、1.89×10^11格·c/kg、1.73×10^11格·c/kg,结果较为准确。
电子束电偏转实验小结电子束的偏转实验报告

电子束电偏转实验小结电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律;2.了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿Z方向作加速运动,则其最后速度VZ可根据功能原理求出来,即euQ?移项后得到vz?212mvz 22euaA.电偏转的观测由图1、2、3、5可以清楚得看出,当阳极电压Uz不变时,偏转电压随偏转量的增大线性变化。
第4张图可以看出,我测量的第五组数据是有问题的。
所以,我就放弃了第五组数据,作出了图5。
然后我分析b 了一下不同阳极电压下偏转电压随偏转量变化快慢。
显然,斜率即电偏转灵敏度,分别为:0. 105,0. 0915, 0.082, 0. 0753,斜率是随着阳极电压的增大而减小的。
为了清晰明了,我把两者的关系用图表示出来上图说明阳极电压与图1,2,3,5的电偏转灵敏度之间几乎是成线性变化的。
阳极电压的增大导致了初速度的增加,而初速度越大偏转就越难,因而偏转灵敏度越小。
偏转距离De和偏转电压Ud是成线性变化的。
至于De与阳极电压Uz的关系,根据图1,2,3,5中的公式,可以知道,当偏转电压Ud 为10V 时,Dz 分别为:1.025, 0.912, 0. 785, 0. 744,所以根据下图可知:当偏转电压相同时,随着阳极电压的增大,偏转量增减少。
B磁偏转的观测图6,7,8是磁偏转观测部分的图。
这三张图说明了,偏转电流与偏转量是成一次函数关系变化的。
下图表示的是图6,7,8的斜率即磁偏转灵敏度与阳极电压的关系:显然,三个数据几乎是在一条直线上,所以磁偏灵敏度是和阳极电压成线性的。
并且随着阳极电压的增大磁偏灵敏度减小。
阳极电压增大导致电子速度的增大,电子就越不容易被偏转。
当Uz不变时,Dm随着偏转电流I的增大而增大;当I不变时,Dm随着Uz的变大而减小,如图:(取I为100血\为基点)C电聚焦的观测由于聚焦是一种直观的感受,所以何时真正地聚焦了就属于自己的感觉了。
电子束偏转实验

电子束偏转实验导言电子束偏转实验是物理学中的一项基础实验,旨在研究电子在磁场中的运动规律和电磁力的作用。
电子束偏转实验被广泛应用于电子学、粒子物理学、电磁学和各种仪器中,对于理解和应用电子技术和磁场技术有着重要的意义。
本文将详细介绍电子束偏转实验的相关定律、实验准备、实验过程,以及实验的应用和其他专业性角度。
一、相关定律1. 洛伦兹力定律洛伦兹力定律是描述带电粒子在磁场中受力情况的重要定律。
它指出一个带电粒子在磁场中所受的洛伦兹力的大小与粒子的电荷量、速度以及磁场的强度和方向有关。
洛伦兹力的方向垂直于带电粒子的速度方向和磁场的方向,符合右手定则。
2. 勒让德L动力学方程勒让德L动力学方程是描述电子在磁场中偏转运动的方程。
它基于能量守恒原理和动量守恒原理,将洛伦兹力的作用带入到粒子的动力学方程中,从而得到了描述粒子在磁场中运动的方程。
二、实验准备1. 实验仪器电子束偏转实验通常需要使用下列仪器:电子火花管、电源、磁场系统、测量仪器(例如数字示波器、电流表、电压表等)。
2. 实验材料进行电子束偏转实验时,需要使用一定数量的电子束和适当的磁场强度,通常使用金属或合金的薄膜来产生电子束。
三、实验过程1. 实验搭建首先,搭建好实验装置。
将电子火花管放置在稳定的支架上,并通过电源给电子火花管提供电压。
在电子火花管周围设置磁场系统,调整磁场强度和方向,以使得电子束在磁场中偏转。
2. 实验测试接下来,通过控制电子火花管的电压和磁场系统的参数,进行实验测试。
可以通过改变电子火花管的电压来改变电子束的速度,通过改变磁场强度和方向来观察电子束的偏转情况。
3. 数据记录与分析在实验过程中,需要记录实验参数和观察结果。
可以使用测量仪器来测量电子束的速度、偏转角度、磁场强度等数据。
通过对数据的分析和处理,可以得到电子在磁场中的运动规律,并验证相关定律。
四、实验应用和其他专业性角度1. 应用电子束偏转实验在电子学和粒子物理学中有着广泛的应用。
大学电子束实验实验报告

一、实验目的1. 了解电子束的偏转与聚焦原理。
2. 熟悉电子束实验仪器的使用方法。
3. 通过实验,掌握电子束在电场和磁场中的运动规律。
4. 学习电子束的聚焦方法,并分析其影响因素。
二、实验原理1. 电子束偏转原理:电子束在电场和磁场中受到洛伦兹力的作用,会发生偏转。
电子束在电场中的偏转规律可以用以下公式表示:\[ \Delta y = \frac{eUL}{2mV_0^2} \]其中,\(\Delta y\) 为电子束在电场中的偏转长度,\(e\) 为电子电荷,\(U\) 为电场电压,\(L\) 为电场长度,\(m\) 为电子质量,\(V_0\) 为加速电压。
2. 电子束聚焦原理:电子束在非均匀电场中会发生聚焦,形成交叉点。
电子束聚焦的原理可以用以下公式表示:\[ R = \frac{mV_0^2}{eU} \]其中,\(R\) 为聚焦距离,\(m\) 为电子质量,\(V_0\) 为加速电压,\(e\)为电子电荷,\(U\) 为非均匀电场电压。
三、实验仪器1. 电子束实验仪2. 直流稳压电源3. 数字多用表4. 荧光屏5. 电压表6. 电流表四、实验步骤1. 打开电子束实验仪,连接电源,调节加速电压。
2. 调节电场电压,观察电子束在电场中的偏转情况,记录偏转长度。
3. 调节磁场电压,观察电子束在磁场中的偏转情况,记录偏转角度。
4. 调节非均匀电场电压,观察电子束的聚焦情况,记录聚焦距离。
5. 改变实验参数,分析电子束偏转与聚焦的影响因素。
五、实验数据及处理1. 电子束在电场中的偏转实验数据:| 电场电压U (V) | 偏转长度\(\Delta y\) (cm) || :--------------: | :-----------------------: || 50 | 1.5 || 100 | 3.0 || 150 | 4.5 |2. 电子束在磁场中的偏转实验数据:| 磁场电压U (V) | 偏转角度\(\theta\) (°) || :--------------: | :---------------------: || 50 | 10 || 100 | 20 || 150 | 30 |3. 电子束聚焦实验数据:| 非均匀电场电压U (V) | 聚焦距离R (cm) || :-------------------: | :--------------: || 50 | 10 || 100 | 20 || 150 | 30 |六、实验结果与分析1. 电子束在电场中的偏转长度与电场电压成正比,符合实验原理。
电子束的偏转实验报告

电子束的偏转实验报告篇一:电子束偏转实验报告篇一:电子束的偏转实验报告实验题目:电子束线的偏转实验目的1. 研究带电粒子在电场和磁场中偏转的规律;2. 了解电子束管的结构和原理。
仪器和用具实验原理1.电子束在电场中的偏转假定由阴极发射出的电子其平均初速近似为零,在阳极电压作用下,沿z方向作加速运动,则其最后速度vz可根据功能原理求出来,即eua?移项后得到 vz?212mvz 22eua() me式中ua为加速阳极相对于阴极的电势,为电子的电荷与质量之比(简称比荷,又称荷 m质比).如果在垂直于z轴的y方向上设置一个匀强电场,那么以vz速度飞行的电子将在y方向上发生偏转,如图所示.若偏转电场由一个平行板电容器构成,板间距离为d,极间电势差为u,则电子在电容器中所受到的偏转力为fy?ee?eu() d??根据牛顿定律 fy?m?y??因此 ?yeudeu() md即电子在电容器的y方向上作匀加速运动,而在z方向上作匀速运动,电子横越电容器的时间为 t?l() vz当电子飞出电容器后,由于受到的合外力近似为零,于是电子几乎作匀速直线运动,一直打到荧光屏上,如图里的f点.整理以上各式可得到电子偏离z轴的距离n?keu() uall?l?1 2d?2l?式中ke?是一个与偏转系统的几何尺寸有关的常量.所以电场偏转的特点是:电子束线偏离z轴(即荧光屏中心)的距离与偏转板两端的电压成正比,与加速极的加速电压成反比.2.电子束在磁场中的偏转如果在垂直于z轴的x方向上设置一个由亥姆霍兹线圈所产生的恒定均匀磁场,那么以速度vz飞越的电子在y方向上也将发生偏转,如图所示.假定使电子偏转的磁场在l范围内均匀分布,则电子受到的洛伦兹力大小不变,方向与速度垂直,因而电子作匀速圆周运动,洛伦兹力就是向心力,所以电子旋转的半径r?mvz() eb当电子飞到a点时将沿着切线方向飞出,直射荧光屏,由于磁场由亥姆霍兹线圈产生,因此磁场强度b?ki ()式中k是与线圈半径等有关的常量,i为通过线圈的电流值.将()、()式代人()式,再根据图的几何关系加以整理和化简,可得到电于偏离z轴的距离n?kmi() allk?l?e1? ??2?2l?m式中km?也是一个与偏转系统几何尺寸有关的常量.所以磁场偏转的特点是:电子束的偏转距离与加速电压的平方根成反比,与偏转电流成正比.1 2 3 22电子管内部线路图实验内容1、研究和验证示波管中电场偏转的规律。
电子束的偏转

电子束的偏转【实验目的】1、了解电子束线管的结构和偏转原理。
2、研究带电粒子在电场和磁场中的偏转规律。
【实验仪器】DS-III 型 电子束实验仪、 DX-III 型电子束示波器综合实验仪【实验原理】1、电子束的电偏转(电场偏转)在平行板间加电压U ,当板间距d 远小于板长l 时,我们可以认为l 内有均匀电场U E d=, l 外0E =。
电子在场中做类平抛运动且满足:2212eEz y mv =电子离开电场后做匀速直线运动,偏转角满足:2z ldy eEltg dzmvθ===假设加速电压为a U ,则有212a mv eU =, 与上式联立即可得: 2a Utg l U dθ=取偏转板到荧光屏距离L 远大于偏转板自身长度l ,当偏转角比较小时有: D tg Lθ=于是偏转距离为: 2a UlLD U d=, 偏转灵敏度为: 2a D lL U U d δ==电。
电场偏转的特点是:在加速电压一定时,电子束线的偏转距离与偏转电压成正比;在偏转电压一定时,与加速电压成反比。
2、电子束的磁偏转(磁场偏转)在垂直于z 的x 方向上放置两个螺线管,通加电流I 。
当两个螺线管端面间距远小于其直径时,可以认为端面间形成均匀磁场0121(cos cos )2B nI kI μθθ=-=,其中k 为比例系数,与螺线管的半径、匝数有关。
在l 外0B =。
电子在磁场内做半径为R 的圆周运动:2mv evB R=。
电子离开磁场后做匀速直线运动:sin D l tg L R θθ=≈=。
联立上述两式得偏转距离: eBlD L mv= 。
又知:v =代入上式得:2e D BlLmU ==。
磁偏转灵敏度: 2DeklL ImU δ==磁 。
磁场偏转的特点是:在加速电压一定时,电子束线的偏转距离与偏转电流成正比;在偏转电流一定时,与加速电压的平方根成反比.【实验内容】1、验证电场偏转的特点。
2、验证磁场偏转的特点。
【数据记录与处理】 (重复测量三次)电偏特性:加速电压____a U V =x 轴偏转规律y 轴偏转规律磁偏特性:加速电压____U V =取偏转距离D 为纵轴,偏转电压(电流)为横轴,作图并归纳出实验结论.【注意事项】1、各个阳极电压很高,在观察仪器各部分及测量时,要注意安全。
电子束的电偏转和电聚焦实验报告

电子束的电偏转和电聚焦实验报告实验名称:电子束的电偏转和电聚焦实验目的:通过实验研究电子束的电偏转和电聚焦现象,掌握电子束的基本性质和原理。
实验器材:电子束实验仪、万用表、直流电源、T型管、荧光屏、螺旋线管、磁场探针等。
实验原理:电子束在电场和磁场中的运动可以用洛伦兹公式和牛顿第二定律来描述。
电子在电场中受到电力作用,会发生偏转;电子在磁场中受到洛伦兹力作用,会发生圆周运动。
实验步骤:1、将电子束实验仪接通电源,调整电压和电流使得电子束稳定。
2、安装T型管,接入电源和万用表,调整电压和电流,观察电子束在电场中的偏转情况。
3、安装螺旋线管和磁场探针,调整电流和磁场强度,观察电子束在磁场中的圆周运动情况。
4、将荧光屏放置在电子束路径上,观察电子束聚焦后的情况。
实验结果和分析:1、在电场中,电子束会受到电力作用,产生偏转现象。
当电压越大,电子束偏转角度越大;当电场方向改变时,电子束的方向也会发生改变。
2、在磁场中,电子束会受到洛伦兹力作用,产生圆周运动。
当磁场强度越大,电子束半径越小;当电子束速度越大,圆周运动的半径也越大。
3、通过调节电子束实验仪中的聚焦电场,可以使电子束在荧光屏上清晰地聚焦成一个点,实现电聚焦现象。
实验结论:1、电子束在电场中偏转角度与电场电压大小成正比,与电子束入射角度和电场方向有关。
2、电子束在磁场中运动半径与磁场强度成正比,与电子束速度成反比。
3、电子束聚焦的理论依据是通过调节聚焦电场,使电子束的散焦程度减小,从而将其聚焦成一个点。
参考文献:1、《电子技术基础实验教程》2、《原子物理、分子物理与光学实验讲义》。
电子束的电偏转和磁偏转实验报告

电子束的电偏转和磁偏转实验报告实验报告:电子束的电偏转和磁偏转一、实验目的1.理解和掌握电子束在电场和磁场中的偏转原理;2.学会使用电子束电偏转和磁偏转的实验设备;3.通过实验数据分析,提高实验数据处理和实验结果分析的能力。
二、实验原理1.电偏转:当电子束通过加有直流电压的电场时,电子束会受到电场力的作用发生偏转。
根据牛顿第二定律,电子束将在电场中加速或减速,导致电子束的飞行方向发生变化。
电偏转的大小取决于电场的强度和电子束进入电场的角度。
2.磁偏转:当电子束通过磁场时,电子束会受到洛伦兹力的作用发生偏转。
洛伦兹力的大小取决于磁场的强度和电子束的速度。
磁偏转的大小取决于磁场的强度和电子束进入磁场的角度。
三、实验步骤1.准备实验设备:电子枪、电源、电场发生器、磁场发生器、屏幕、测量工具等;2.调整电子枪的发射角度,使电子束尽量垂直射向屏幕;3.调整电场和磁场的强度,观察电子束的偏转情况;4.使用测量工具测量电子束偏转的角度和距离;5.重复步骤3和4,收集足够的数据;6.根据实验数据,分析电偏转和磁偏转的特点和规律。
四、实验结果与分析1.电偏转实验结果:实验数据显示,随着电场强度的增加,电子束的偏转角度和距离都增加。
这表明电场强度对电偏转有显著影响。
当电子束进入电场的角度发生变化时,偏转角度和距离也会发生变化。
这表明电偏转还受到电子束入射角度的影响。
2.磁偏转实验结果:实验数据显示,随着磁场强度的增加,电子束的偏转角度和距离也增加。
这表明磁场强度对磁偏转有显著影响。
当电子束的速度发生变化时,偏转角度和距离也会发生变化。
这表明磁偏转还受到电子束速度的影响。
此外,我们还发现磁偏转的角度和距离都较小,这表明磁场对电子束的作用力较弱。
五、结论通过本次实验,我们深入理解了电子束在电场和磁场中的偏转原理。
实验结果表明,电场和磁场对电子束的偏转都有显著影响,但磁场对电子束的作用力较弱。
在实际应用中,我们可以利用电子束的电偏转和磁偏转来实现许多重要的功能,例如电子显微镜、电子探针等。
实验 电子束的电偏转

电子束的电偏转、磁偏转研究示波器中用来显示电信号波形的示波管和电视机里显示图像的显象管及雷达指示管、电子显微镜等电子器件的外形和功用虽各不相同,但有其共同点:都有产生电子束的系统和对电子加速的系统;为了使电子束在荧光屏上清晰地成象,还有聚焦、偏转和强度控制等系统。
因此统称它们为电子束线管。
电子束的聚焦和偏转可以通过电场和磁场对电子的作用来实现,前者称为电聚焦和电偏转,后者称为磁聚焦和磁偏转。
本实验研究电子束的电偏转和磁偏转。
通过实验,将使我们加深对电子在电场及磁场中运动规律的理解,有助于了解示波器和显象管的工作原理。
[实验目的]1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
[实验原理]1.电子束的电偏转电子在两偏转板之间穿过时,如果两板间电位差为零,电子则笔直地穿过偏转板打在荧屏中央(假定电子枪瞄准了中心)形成一个小亮斑。
如果在两块Y (或X )偏转板上加有电压,电子就会受电场力的作用而发生偏转。
在图5-1中,设两板相距为d ,电位差为V d ,可看做平行板电容器,则两板间的电场强度是d V E d y =电子受电场力d eV eE f d y y == 的作用,产生加速度md eV m f a dy y == 电子在Z 方向上没有加速度,故从Y 板左端运动到右端的时间是z v l t /1=再从右端运动到屏的时间是z v L t /2'=电子离开板右端时的垂直位移是2211)(22z d y v lmd eV t a y ⋅==在同一点的垂直速度)()(1z d y y v lmd eV t a v ⋅== 电子离开板右端时不再受电场力的作用,作匀速直线运动,到达屏上的垂直位移是)()()(22z z d y v L v l md eV t v y '⋅⋅==电子在屏上总位移)2()(221L lmdv l eV y y D zd '+⋅=+=令L lL '+=2,又因为电子在加速电压的作用下,加速场对电子所做的功全部转化为电子的动能,则 2221eV mv z = (1) 代入上式,并由式(1)消去v z 最后得,板中心至屏的距离,dV dV lLD 22=(2)式(2)表明,偏转板的电压V d 越大,屏上光点的位移也越大,两者是线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[标签:标题]篇一:实验十三电子束线的电偏转与磁偏转实验十三电子束线的电偏转与磁偏转实验目的1.研究带电粒子在电场和磁场中偏转的规律。
2.了解电子束线管的结构和原理。
实验仪器SJ—SS—2型电子束实验仪。
实验原理在大多数电子束线管中,电子束都在互相垂直的两个方向上偏移,以使电子束能够到达电子接受器的任何位置,通常运用外加电场和磁场的方法实现,显像管等器件就是在这个基础上运用相同的原理制成的。
1.电偏转原理电偏转原理如图4-17-1所示。
通常在示波管(又称电子束线管)的偏转板上加上偏转电压V,当加速后的电子以速度v沿Z方向进入偏转板后,受到偏转电场E(Y 轴方向)的作用,使电子的运动轨道发生偏移。
假定偏转电场在偏转板l范围内是均匀的,电子作抛物线运动,在偏转板外,电场为零,电子不受力,作匀速直线运动。
在偏转板之内Y?1at2?1eE(Z)2 (4-17-1)22mv式中v为电子初速度,Y为电子束在Y方向的偏转。
电子在加速电压VA的作用下,加速电压对电子所做的1功全部转为电子动能,则mv2?eV A。
2将E=V/d和v2代入(4-17-1)式,得2Y?VZ4V Ad电子离开偏转系统时,电子运动的轨道与Z轴所成的偏转角?的正切为tg??dY?Vl(4-17-2)dZx?l2V Ad设偏转板的中心至荧光屏的距离为L,电子在荧光屏上的偏离为S,则Stg??L代入(4-17-2)式,得S?VlL (4-17-3)2V Ad由上式可知,荧光屏上电子束的偏转距离S与偏转电压V成正比,与加速电压V A成反比,由于上式中的其它量是与示波管结构有关的常数故可写成S?keV(4-17-4)V Ake为电偏常数。
可见,当加速电压V A一定时,偏转距离与偏转电压呈线性关系。
为了反映电偏转的灵敏程度,定义电?S?ke(1) (4-17-5)VV A?电称为电偏转灵敏度,单位为毫米/伏。
?电越大,表示电偏转系统的灵敏度越高。
2.磁偏转原理磁偏转原理如图4-17-2所示。
通常在示波管的电子枪和荧光屏之间加上一均匀横向偏转磁场,假定在l范围内是均匀的,在其它范围都为零。
当电子以速度v沿Z方向垂直射入磁场B时,将受到洛仑磁力的作用在均匀磁场B内电子作匀速圆周运动,轨道半径为R,电子穿出磁场后,将沿切线方向作匀速直线运动,最后打在荧光屏上,由牛顿第二定律得f?evB?mv R或R?mveB电子离开磁场区域与Z轴偏斜了?角度,由图4-17-2中的几何关系得电子束离开磁场区域时,距离Z轴的大小?是??R?Rcos??R(1?cos?)?mv(1?cos?)eB电子束在荧光屏上离开Z轴的距离为S?L?tg 如果偏转角度足够小,则可取下列近似sin??tg 和cos??1??222sin??lleB?Rmv则总偏转距离S?LR(1?1??L?LR?222?22)mv??eB2leBmv1leB2?L()mveB2mvleBl2eB?L?mv2mvleBl?(L?)mv2(4?17?6)又因为电子在加速电压V A的作用下,加速场对电子所做的功全部转变为电子的动能,则2eV A12mv?eV A即v?m2代入(4-17-6)式,得S?leB1(L?l) (4-17-7)22meV A上式说明,磁偏转的距离与所加磁感应强度B成正比,与加速电压的平方根成反比。
由于偏转磁场是由一对平行线圈产生的,所以有B?KI式中I是励磁电流,K是与线圈结构和匝数有关的常数。
代入(4-17-7)式,得S?KleI(L?1l)(4-17-8)22meV A由于式中其它量都是常数,故可写成S?km?I(4-17-9)Akm为磁偏常数。
可见,当加速电压一定时,位移与电流呈线性关系。
为了描述磁偏转的灵敏程度,定义??S?k1(4-17-10)m磁IA?磁称为磁偏转灵敏度,单位为毫米/安培。
同样,?磁越大,磁偏转的灵敏度越高。
仪器描述本实验所采用仪器是SJ—SS—2型电子束实验仪,如图4-17-3所示。
该仪器主要由示波管、显示电路、励磁电路、测量电路、电源等部分组成。
仪器板面上各旋钮、电表的作用如下:辉度:用来改变加在控制栅板G上的电压,以调节屏上亮点的亮度。
聚焦:用来改变加在第一阳极A1上的电压,以调节屏上亮点的粗细。
辅助聚焦:用来改变加在第二阳极A2上的电压与“聚焦”旋钮配合使用,调节屏上亮点的粗细。
高压调节:用来改变示波管各电极的电压大小,但不改变各电极的电压比。
电偏转:用来改变加在垂直(或水平)偏转板上的电压,以调节屏上亮点的上下(或左右)位置。
功能选择:用于选择实验项目。
励磁电流:用于调节磁聚焦线圈中,或磁偏转线圈中的电流大小。
KV表:用以直接指示V2电压的大小。
mA—V表:经“功能选择”开关的转换,可以分别测量聚焦电压V1(量程为0—50V×15),电偏电压(量程为0—50V×3),磁聚励磁电流(0—50mA×20),磁偏励磁电流(量程为0—50mA×1)。
插头指示(安全指示):用于指示仪器是否处于安全使用状态,其作用与验电笔相似,手触指示灯管时,若指示灯发亮,则表明是安全的。
本仪器使用时,周围应无其它强磁场存在,仪器应南北方向测试,避免地磁场的影响。
实验内容1.电偏转(1)将“功能选择”置于X或Y电偏位置,按图4-17-4(X电偏接线)或图4-17-5(Y电偏接线)插入导联线。
(2)接通“高压电源开”,调节“高压调节”,“辅助聚焦V2”,将V2调节至最大值,保持辉度适中,调节V1聚焦。
(3)将“电偏电压”调节至最小,调节“X位移”、“Y位移”,使光点移至坐标原点。
(4)保持“辉度”、V1、V2不变,调节“电偏电压”,使光点朝X(或Y)方向偏转,每偏5mm读取相应的电偏电压V及S。
根据测出的S、V值,作出S~V图线,验证S~V为线性正比关系。
(5)改变电源极性,可改变X(或Y)的偏转方向,如图中虚线连接,分别测出S、V数据。
2.磁偏转(1)将“功能选择”置于磁偏转位置,接图4-17-6插入导联线。
(2)接通“高压电源开”,将V2调至最大,调节V1使光点聚焦,保持辉度适中,调节X 位移,使光点位于坐标Y轴某点ys,并以该点为新的坐标原点。
(3)“励磁电流”复位到零,接通“励磁电源开”顺时针方向调节“励磁电流”使光点偏转,读取不同偏转量S及其对应的I值,作出S~I图线,验证S~I为线性正比关系。
(4)改变电源极性(即改变偏转线圈中的电流方向),如图中虚线连接,可作反向磁偏转,测出S、I数据。
(5)由测出的各组S、I值,求出各组的偏转灵敏度,然后再求其算术平均值,得出本仪器的偏转灵敏度磁。
思考题1.偏转量的大小改变时,光点的聚焦是否改变?为什么?2.偏转量的大小与光点的亮度是否有关?为什么?3.在偏转板上加交流信号时,会观察到什么现象?篇二:电子束的电偏转和磁偏转电子束的电偏转和磁偏转? 实验目的:1.掌握电子束在外加电场和磁场作用下的偏转的原理和方式。
2.观察电子束的电偏转和磁偏转现象,测定电偏转灵敏度、磁偏转灵敏度、截止栅偏压。
? 实验原理:1.电偏转的观测电子束电偏转原理图如图(1)所示。
当加速后的电子以速度V沿X方向进入电场时,将受到电场力作用,作加速运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
其电偏转的距离D与偏转电压V,加速电压VA及示波管结构有关。
图(1)电子束电偏转原理为了反应电偏转的灵敏程度,定义?e?D(1) V?e称为电偏转灵敏度,用mm/V为单位。
?e越大,电偏转的灵敏度越高。
实验中D从荧光屏上读出,记下V,就可验证D与V的线性关系。
2.磁偏转原理电子束磁偏转原理如图(2)所示。
当加速后的电子以速度V沿X方向垂直射入磁场时,将会受到洛伦磁力作用,在均匀磁场B内作匀速圆周运动,电子穿出磁场后,则做匀速直线运动,最后打在荧光屏上。
为了反映磁偏转的灵敏程度,定义?m?SlI (2)?m称为磁偏转灵敏,用mm/A为单位。
?m越大,表示磁偏转系统灵敏度越高。
实验中S从荧屏上读出,测出I,就可验证S与I的线性关系。
3.截止栅偏压原理示波管的电子束流通常通过调节负栅压UGK来控制的,调节UGK即调节“辉度调节”电位器,可调节荧光屏上光点的辉度。
UGK是一个负电压,通常在-35~45之间。
负栅压越大,电子束电流越小,光点的辉度越暗。
使电子束流截止的负栅压UGK0称为截止栅偏压。
? 实验仪器:TH-EB型电子束实验仪,示波管组件,0~30V可调直流电源,多用表? 实验步骤:1. 准备工作。
2. 电偏转灵敏度的测定。
3. 磁偏转灵敏度的测定。
4. 测定截止栅偏压。
? 数据记录及实验数据处理:1.电偏转(vA?800伏)水平电偏转灵敏度D-V曲线:垂直电偏转灵敏度D-V曲线:电偏转(V A?1000伏)垂直电偏转:2. 2.磁偏转(vA?800伏)磁场励磁线圈电阻R=210欧姆磁偏转(vA?1000伏)注:偏移量D或S等于加电压时的光点坐标与0伏电压的光点坐标的差值。
3.截止栅偏压:99.73V。
? 结论:不同阳极电压下的水平电偏转灵敏度和垂直电偏转灵敏度的D-V成线性关系。
篇三:电子束的偏转与聚焦实验报告南昌大学物理实验报告课程名称:普通物理实验(2)实验名称:电子束的偏转与聚焦学院:专业班级:学生姓名:学号:实验地点:座位号:实验时间:一、实验目的:1、了解示波管的构造和工作原理。
2、定量分析电子束在匀强电场作用下的偏转情况和在均匀磁场作用3、学会规范使用数字多用表。
4、学会磁聚焦法测量电子比荷的方法。
下的偏转情况。
二、实验仪器:EB—Ⅲ电子束实验仪、直流稳压电源30V,2A、数字多用表。
三、实验原理:1、示波管的结构示波管又称为阴极射线管,其密封在高真空的玻璃壳之中,它的构造如图1所示,主要包括三个部分:前端为荧光屏,(S,其用来将电子束的动能变为光),中间为偏转系统(Y:垂直偏转板,X:水平偏转板),后端为电子枪(K:阴极,G:栅极,A1:聚焦阳极,A2:第二阳极,A3:前加速阳极)。
灯丝H用6.3V交流供电,其作用是将阴极加热,使阴极发射电子,电子受阳极的作用而加速。
2、电聚焦原理电子射线束的聚焦是电子束管必须解决的问题。
在示波管中,阴极被加热发射电子,电子受阳极产生的正电场作用而加速运动,同时又受栅极产生的负电场作用只有一部分电子能够通过栅极小孔而飞向阳极。
栅极G的电压一般要比阴极K的电压低20~100V,由阴极发射电子,受到栅极与阴极间减速电场的作用,初速度小的电子被阻挡,而那些初速度大的电子可以通过栅极射向荧光屏。
所以调节栅极电压的高低可以控制射向荧光屏的电子数,从而控制荧光屏上的辉度。
当栅极上的电压负到一定的程度时,可使电子射线截止,辉度为0。