摆动尖顶从动件盘形凸轮设计
第4.3节(盘形凸轮廓线的设计)

第三节 盘形凸轮廓线的设计当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。
凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。
本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。
一、凸轮廓线设计的基本原理图4-13 反转法设计凸轮廓线基本原理图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。
当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。
从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。
若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。
而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。
由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。
设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。
由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。
对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。
二、图解法设计凸轮廓线1. 移动从动件盘形凸轮廓线的设计(1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。
设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。
从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。
图4-14 尖端从动件盘形凸轮廓线设计依据反转法原理,具体设计步骤如下。
机械设计教案:凸轮机构的认识与盘形凸轮轮廓的设计

授课教案No任务3.1 凸轮机构的认识一、复习10分钟复习上次课学习内容二、教师导课与课程学习:(1)学习提示,教师介绍本任务的学习内容。
15分钟本项目以直动从动件的盘形凸轮机构为例,在从动件等速运动、等加速等减速运动、余弦加速度运动(简谐运动)规律条件下,分析了凸轮机构中存在的柔性冲击与刚性冲击。
教师介绍本任务的学习内容:凸轮机构的分类;常用术语;从动件的运动规律;凸轮机构的结构形式;常用材料及热处理(2)分小组学习: 40分钟3.1.1常用设备中的凸轮机构1. 凸轮机构的组成如图所示的凸轮机构是由凸轮、从动件和机架等三个基本构件组成的机构。
2.凸轮机构应用实例自动钻床进给机构、冲床凸轮机构等。
3.1.2凸轮机构的分类凸轮机构的类型很多,按凸轮和从动件的形状及其运动形式的不同,凸轮机构的分类方法有以下几种:1.按凸轮形状分类(1)盘形凸轮(2)移动凸轮。
(3)圆柱凸轮2.按从动件形式分类(1)尖顶从动件(2)滚子从动件(3)平底从动件从动件的结构形式3.按从动件的运动形式分类学生发言汇报、记录学习笔记学生发言汇报并记录学习笔记阅读教材和PPT、分组讨论、撰写发言提纲、学生发言汇报,课,记录学习笔记No(1)直动从动件直动从动件指相对于机架作直线往复移动的从动件,如图3.1.1中所示。
直动从动件又分为对心直动从动件和偏置直动从动件。
(2)摆动从动件:绕某一固定转动中心摆动的从动件。
4.按凸轮与从动件的锁合方式分类 (1)力锁合利用从动件的重力、弹簧力或其他外力使从动件与凸轮轮廓保持接触,(2)形锁合利用从动件和凸轮特殊的几何形状来维持接触,例如圆柱凸轮机构是利用滚子与凸轮凹槽两侧面的配合来实现形锁合。
3.1.3凸轮机构的常用术语如下:1.凸轮基圆与基圆半径b r2.凸轮的转角δ凸轮相对于某一位置转过的角度,称为凸轮转角δ。
具体包括推程运动角0δ、远停程运动角S δ回程运动角0′δ和近停程运动角Sδ'。
MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用

MATLAB在摆动滚子从动件盘形凸轮机构设计中的应用摘要:凸轮机构可以使从动件准确的实现某种预期的运动规律,它广泛的应用于自动机械、自动控制装置和装配生产线中。
本文将从凸轮机构的压力角及其基本尺寸的设计、从动件的运动规律、凸轮廓线的设计等方面介绍matlab在摆动滚子从动件盘形凸轮机构设计中的应用。
关键词:摆动滚子从动件盘形凸轮机构 matlabthe application of matlab in the oscillating roller follower disc cam mechanism designli hailong, luo fengming(southwest jiaotong university emei, le shan si chuan province ,614202)abstract:cam mechanism can make the follower accurately realize some expected movement which is widely used in automatic machinery, automatic control equipment and assembly production line. the article will introduce the application of matlab in the oscillating roller follower disc cam mechanism design from the pressure angle of cam and its basic size design, the motion law of the follower and cam profile design etc.key words: disk cam mechanism with oscillating roller follower;matlab1.问题的描述设计一个摆动滚子凸轮机构,要求导杆机构的最大压力角应为最小值;凸轮机构的最大压力角应在许用值[α]之内,摆动从动件的升、回程运动规律均为等加速等减速运动。
凸轮机构基本参数的设计

凸轮机构基本参数的设计前节所先容的几何法和解析法设计凸轮轮廓曲线,其基圆半径r0、直动从动件的偏距e或摆动从动件与凸轮的中心距a、滚子半径rT等基本参数都是预先给定的。
本节将从凸轮机构的传动效率、运动是否失真、结构是否紧凑等方面讨论上述参数的确定方法。
1 凸轮机构的压力角和自锁图示为偏置尖底直动从动件盘形凸轮机构在推程的一个位置。
Q为从动件上作用的载荷(包括工作阻力、重力、弹簧力和惯性力)。
当不考虑摩擦时,凸轮作用于从动件的驱动力F是沿法线方向传递的。
此力可分解为沿从动件运动方向的有用分力F'和使从动件紧压导路的有害分力F''。
驱动力F与有用分力F'之间的夹角a(或接触点法线与从动件上力作用点速度方向所夹的锐角)称为凸轮机构在图示位置时的压力角。
显然,压力角是衡量有用分力F'与有害分力F''之比的重要参数。
压力角a愈大,有害分力F''愈大,由F''引起的导路中的摩擦阻力也愈大,故凸轮推动从动件所需的驱动力也就愈大。
当a增大到某一数值时,因F''而引起的摩擦阻力将会超过有用分力F',这时无论凸轮给从动件的驱动力多大,都不能推动从动件,这种现象称为机构出现自锁。
机构开始出现自锁的压力角alim称为极限压力角,它的数值与支承间的跨距l2、悬臂长度l1、接触面间的摩擦系数和润滑条件等有关。
实践说明,当a增大到接近alim时,即使尚未发生自锁,也会导致驱动力急剧增大,轮廓严重磨损、效率迅速降低。
因此,实际设计中规定了压力角的许用值[a]。
对摆动从动件,通常取[a]=40~50;对直动从动件通常取[a]=30~40。
滚子接触、润滑良好和支承有较好刚性时取数据的上限;否则取下限。
对于力锁合式凸轮机构,其从动件的回程是由弹簧等外力驱动的,而不是由凸轮驱动的,所以不会出现自锁。
因此,力锁合式凸轮机构的回程压力角可以很大,其许用值可取[a]=70~80。
摆动从动件盘形凸轮机构设计基本参数

摆动从动件盘形凸轮机构设计基本参数
1.凸轮基本参数:
基圆半径rb=80.000 mm
滚子半径rt=15.000 mm
中心距a=150.000 mm
摆杆长L=120.000 mm
凸轮转速n=50.000 rpm
刀具半径rc=0.080 mm
2.运动规律选择:
推程运动规律:正弦加速度
回程运动规律:余弦加速度
3.运动规律参数
最大摆角Ψ=10.000°
推程角Φ1=40.000°
远停角Φ2=0.000°
回程角Φ3=40.000°
近停角Φ4=280°
初始角Ψ0=32.089°
4.包络类型:内包络
5.设计方向:逆向
推程最大压力角: 033.707 回程最大压力角: 028.257
-----参数说明-----
Φ-凸轮转角(°)
Xa、Ya-实际廓线坐标(mm)
ρb-理论廓线曲率半径(mm)
ρa-实际廓线曲率半径(mm)
曲率半径:“-”曲线外凸,“+”曲线内凹Xc、Yc-刀具中心轨迹坐标(mm)。
机械设计基础——凸轮机构

适用场合:中速、轻载。
A
B
t
S
t
a
t t
c).简谐运动规律(余弦加速度运动规律)
简谐运动:当一点在圆周上等速
运动时,它在直径上 的投影的运动.
运动特性:这种运动 规律的加速度在起点和终 点时有有限数值的突变, 故也有柔性冲击。
适用场合:中速、中载。
d).正弦加速度运动规律
——摆线运动规律
凸轮和滚子的工作表面要求:硬度高 耐磨 有足够接触强度
经常受冲击的:凸轮芯部有较强的韧性 凸轮材料:40Cr钢(表面淬火,HRC40~45) 20Cr、20CrMnTi(表面淬火,HRC56~62) 滚子材料:①20Cr钢(渗碳淬火,HRC56~62) ②用滚子轴承作为滚子
5.2 常用从动件运动规律
r0↑, α↓, 凸轮机构传力性能越好, 但机构不紧凑。
∴可通过增大基圆半径r0来获得较小的压力角α 。 根据结构条件→基圆半径r0
凸轮轴:r0略 r轴 单独凸轮:r0 ( 1.6 2)r轴
5.4.3 滚子半径的确定
设:滚子半径为rT ,理论廓线的曲率半径为ρ,
实际廓线的曲率半径为ρ’。
已知:基圆半径为r0, ω逆时针,推杆的运动规律如图所示。 设计:对心直动尖顶从动件盘形凸轮机构的凸轮廓线。
2.对心直动滚子从动件盘形凸轮机构
已知: 基圆半径为r0,滚子半径rT, ω逆时针。 推杆的运动规律如图所示。 设计:对心直动滚子从动件盘形凸轮机构的凸轮廓线。
3.对心直动平底从动件盘形凸轮机构
◆使凸轮机构具有良好的动力特性;
◆使所设计的凸轮便于加工。 2.根据工作条件确定从动件运动规律 (1)对无一定运动要求,只需对从动件工作行程有要求。
图解法设计凸轮轮廓

已知凸轮的基圆半径rmin,角速度ω、
e
从动件的运动规律和偏心距e,设计该
凸轮轮廓曲线。
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
ωA
15’15 14’14
13’ 12’
13 12
11
10
kk9k1k0k1181kk21k73k14k6O1k55k4kk3k21
的距离d,摆杆角位移方程,设计该凸轮轮廓曲线。
4’ 3’ 2’ 1’
12 3 4
5’ 6’
7’
8’ 5 67 8
d A8
A7
A
l B’1 B B1
rminω1
A1-ω1
φ1
B’2 B’3φ2
A2
B2 B3
B’φ4 3
120°B4A3来自φ790 °B8 B7
60 B6
B’7
设计:潘存云
°B5
B’6
B’5
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
理论轮廓
ω
设计:潘存云
设计步骤:
实际轮廓
①选比例尺μl作基圆rmin。 ②反向等分各运动角。原则是:陡密缓疏。
③确定反转后从动件尖顶在各等份点的位置。
④将各尖顶点连接成一条光滑曲线。
⑤作各位置滚子圆的内(外)包络线。
ρa-工作轮廓的曲率半径,ρ-理论轮廓的曲率半径,
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’10’ 11’ 12’
13’ 14’
9 11 13 15
-ω ω
设计:潘存云
机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计(一)凸轮机构的应用和分类一、凸轮机构1.组成:凸轮,推杆,机架。
2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。
缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。
二、凸轮机构的分类1.按凸轮的形状分:盘形凸轮圆柱凸轮2.按推杆的形状分尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。
易遭磨损,只适用于作用力不大和速度较低的场合滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。
不能与凹槽的凸轮轮廓时时处处保持接触。
平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。
不能与凹槽的凸轮轮廓时时处处保持接触。
3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。
(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。
4.根据凸轮与推杆接触方法不同分:(1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。
①等宽凸轮机构②等径凸轮机构③共轭凸轮(二)推杆的运动规律一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。
推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。
推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。
回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。
休止:推杆处于静止不动的阶段。
推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角二、推杆常用的运动规律1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。
偏置、摆动、平底从动件盘形凸轮轮廓设计

等加等减速
2.0
五次多项式 余弦加速度
1.88 1.57
正弦加速度
改进正弦加速度
钟
2.0 1.76
amax (hω /δ 20)×
∞
4.0 5.77 4.93
6.28 5.53
冲击 推荐应用范围
刚性
柔性 无
柔性
无 无
低速轻载 作者:潘存云教授
中速轻载 高速中载 中速中载
高速轻载 高速重载100分
-ω
ω
1’ 2’ 1 23
3’ 4’
4 5’
5
15 6 作者:潘存云教授
6’
14’ 14 13’ 1312
87 设计:潘存云
7’
12’ 1110 9
8’
11’
8’ 9’
7’
11’
10’ 9’
5’ 3’
1’
12’
13’ 14’
1 3 5 7 8 9 11 13 15
3)对心直动平底推杆盘形凸轮
再过这一系列点画出一系列
12’
10
9
8’ 7’ 5’ 3’ 1’
1 3 5 78
9’ 11’ 12’
13’ 14’
9 11 13 15
11’
10’ 9’
设计:潘存云
4)偏置直动尖顶从动件盘形凸轮
e
首先,根据给定的从
-ω
动件运动规律,绘制出
ωA
从动件位移线图,并且 对位移线图的横坐标的 推程和回程分成若干等 份,得到等分点1, 2,、、、15,如图所
87 设计:潘存云
7’
12’ 1110 9
8’
11’ 10’ 9’
4)偏置直动尖顶从动件盘形凸轮
凸轮机构设计图文

凸轮机构设计1 概述凸轮机构由凸轮、从动件和机架三部分组成,结构简单,只要设计出适当的凸轮轮廓曲线,就可以使从动件实现任何预期的运动规律。
但另一方面,由于凸轮机构是高副机构,易于磨损,因此只适用于传递动力不大的场合。
1.1 凸轮机构的应用(工程应用案例)内燃机配气机构凸轮机构自动车床上的走刀机构分度转位机构靠模车削机构1.2 凸轮机构的分类凸轮机构的类型很多,常就凸轮和从动杆的端部形状及其运动形式的不同来分类。
(1) 按凸轮的形状分1)盘形凸轮(盘形凸轮是一个具有变化向径的盘形构件绕固定轴线回转)尖顶移动从动杆盘形凸轮机构尖顶摆动从动杆盘形凸轮机构滚子移动从动杆盘形凸轮机构滚子摆动从动杆盘形凸轮机构平底移动从动杆盘形凸轮机构平底摆动从动杆盘形凸轮机构2)移动凸轮(移动凸轮可看作是转轴在无穷远处的盘形凸轮的一部分,它作往复直线移动。
)移动从动杆移动凸轮机构摆动从动杆移动凸轮机构3)圆柱凸轮(圆柱凸轮是一个在圆柱面上开有曲线凹槽,或是在圆柱端面上作出曲线轮廓的构件,它可看作是将移动凸轮卷于圆柱体上形成的。
)圆柱凸轮自动送料机构4)曲面凸轮按锁合方式的不同凸轮可分为:力锁合凸轮,如靠重力、弹簧力锁合的凸轮等;形锁合凸轮,如沟槽凸轮、等径及等宽凸轮、共轭凸轮等。
沟槽凸轮槽凸轮机构 (2) 按从动杆的端部形状分1) 尖顶这种从动杆的构造最简单,但易磨损,只适用于作用力不大和速度较低的场合(如用于仪表等机构中)。
2) 滚子滚子从动杆由于滚子与凸轮轮廓之间为滚动摩擦,磨损较小,故可用来传递较大的动力,因而应用较广。
3) 平底平底从动杆的优点是凸轮与平底的接触面间易形成油膜,润滑较好,所以常用于高速传动中。
(3)按推杆的运动形式分1)移动往复直线运动。
在移动从动杆中,若其轴线通过凸轮的回转中心,则称其为对心移动从动杆,否则称为偏置移动从动杆。
2)摆动作往复摆动。
总结:凸轮机构的组成凸轮是一个具有曲线轮廓或凹槽的构件。
总结偏置直动尖顶从动件盘形凸轮设计详细步骤及注意事项

总结偏置直动尖顶从动件盘形凸轮设计详细步骤及注
意事项
偏置直动尖顶从动件盘形凸轮的设计步骤和注意事项如下:
设计步骤:
1. 确定从动件的工作要求和运动特点,包括运动速度、加速度、停留时间等。
2. 根据工作要求确定凸轮的基本形状和大小。
3. 根据所选凸轮的直径和工作要求,计算螺纹推进机构的传动比和螺纹高度。
4. 根据计算结果,设计螺纹推进机构的螺纹结构和传动装置。
5. 根据所选凸轮的直径和工作要求,计算凸轮的齿数和模数。
6. 根据计算结果,确定凸轮的齿轮参数,包括齿轮材料、齿轮齿条等。
7. 根据设计要求,绘制凸轮的图纸,并制造凸轮。
注意事项:
1. 在设计过程中需要考虑从动件的承载能力和耐磨性,选择适当的材料。
2. 凸轮的运动速度和加速度需要根据从动件的工作要求进行合理分配,防止超过从动件的承受能力范围。
3. 凸轮的结构设计应满足从动件的运动规律和力学要求,保证运动的平稳性和精度。
4. 在凸轮制造过程中要确保凸轮的尺寸精度和表面质量,以提高传动效率和使用寿命。
5. 设计时要考虑从动件的装配和调整方便性,确保凸轮的正确安装和调整。
6. 在使用过程中要定期检查凸轮和从动件的磨损情况,及时进行维护和更换。
综上所述,设计偏置直动尖顶从动件盘形凸轮需要确定工作要求,计算凸轮参数,设计螺纹推进机构和齿轮传动装置,并注意材料选取、运动规律、力学要求、尺寸精度和磨损维护等问题。
摆动从动件盘形凸轮机构

2.滚子从动件结构 滚子从动件的滚子可以是专门制造的圆柱体,也可采用滚
动轴承。滚子与从动件顶端可用螺栓联接,应保证滚子相对 从动件能灵活转动。
本章基本内容讲述结束
谢谢配合
①选比例尺μl作基圆rmin;
11’
②反向等分各运动角;
10’
9’
③确定反转后,从动件尖顶在各等份点的位置;
④将各尖顶点连接成一条光滑曲线。
-ω1
三、摆动从动件盘形凸轮机构
摆动从动件凸轮机构中,已知凸轮的基圆半径rmin,角速度ω1,
摆杆长度l以及摆杆回转中心与凸轮回转中心的距离d,摆杆角位 移方程,设计该凸轮轮廓曲线。
机械设计基础
单元二 凸轮机构
第一节 概述 第二节 从动件常用运动规律 第三节 图解法设计盘形凸轮轮廓 第四节 用解析法设计凸轮轮廓曲线 第五节 凸轮机构设计中的几个问题 第六节 凸轮常用材料和结构
第一节 概述
一、凸轮机构的应用和特点
结构:三个构件—凸轮、从动件、机架。 凸轮:具有控制从动件运动规律的曲线轮廓或凹槽的主动件。 作用:将连续回转 从动件直线移动或摆动。 优点:可精确实现任意运动规律,简单紧凑。 缺点:高副,线接触,易磨损,传力不大。 应用:内燃机 、缝纫机挑线机构、自动车床等。
5 6 s2
4
3
h
设计:潘存云
2 1
δ1
1 2 34 5 6
δt v2 Vmax=1.57hω/2δ0
回程:
δ1
s2=h[1+cos(πδ1/δh)]/2
v2=-πhω1sin(πδ1/δh)/2δh
a2
a2=-π2hω21 cos(πδ1/δh)/2δ2h
图解法设计盘形凸轮轮廓

压力角↑, 有效分力↓, 有害分力↑,
Ff↑, 当压力角α 大到一定程度时,
Ff Fr FN
t v
n
机构卡死。
平面机构的组成
3、许用压力角
Ff nα
直动从动件: 推程[α] ≤ 30°~ 40° 摆动从动件: 推程[α] ≤ 40°~ 50°
回程:[α] ≤ 70°~ 80°
F
Fr
t
v
Ft
凸轮机构运动中,压力角是变化。
③将基圆分成与位移相对应的若干 等分。
④量取各个位移段,沿径向确定位置点。
⑤将位置点连接为光滑的曲线。
δ
900
图解法设计盘形凸轮轮廓
三、压力角及许用值
1、压力角α:接触点作
用力与从动件速度方向所夹
Fr Ff
的锐角。
nα F
Fr F cos 有效分力
Ft
Ft F sin 有害分力 t
2、自锁
CONTENTS
目
2 图解法设计盘形凸轮轮廓
录
图解法设计盘形凸轮轮廓
1.尖顶对心直动盘形凸轮
s
已知:基圆半径rb=50mm,推杆运 动规律,凸轮逆时针方向转动。
h=50mm
设计:凸轮廓线 解:作图步骤:
0
120 600
900
①定比例尺 1=1:1000,作推杆的位
移线图 ,将其坐标分成若干等分。
②按比例尺 1定基圆及初始位置 。
凸轮机构
图解法设计盘形凸轮轮廓
1 盘形凸轮轮廓设计的基本原理
CONTENTS
目
2 图解法设计盘形凸轮轮廓
录
盘形凸轮轮廓设计的基本原理
1、“反转法”原理
-
专题二-凸轮机构作图

专题二-凸轮机构作图解:(1) 偏置直动滚子从动件盘形凸轮机构。
(2) ,,s如图所示。
(3) h及发生位置如图示。
2.试在图示凸轮机构中,(1)标出从动件与凸轮从接触点C到接触点D时,该凸轮转过的转角;2)标出从动件与凸轮在D点接触的压力角;(3)标出在D点接触时的从动件的位移s。
解:(1) 如图示。
(2) 如图示。
(3)s如图示。
3.图示偏置直动滚子从动件盘形凸轮机构中,凸轮以角速度逆时针方向转动。
试在图上:(1)画出理论轮廓曲线、基圆与偏距圆;(2)标出凸轮从图示位置转过时的压力角和位移s。
解:(1) 1)理论廓线如图示:2)基圆如图示;3)偏距圆如图示。
(2) 1)压力角如图示;2)位移s 如图示。
4.图示为一偏置直动滚子从动件盘形凸轮机构,凸轮以等角速度1逆时针方向转动。
试在图上:(1)画出该凸轮的基圆和理论廓线;(2)标出该位置时从动件的压力角;(3)标出该位置时从动件的位移s,并求出该位置时从动件的速度。
解:(1) 1)基圆如图示;2)理论廓线如图示。
(2) 压力角如图示。
(3) 1)位移s如图示。
2)v2=5.在图示凸轮机构中,凸轮为偏心圆盘,圆盘半径R=30mm,圆盘几何中心到回转中心的距离=15mm, 滚子半径=10mm。
当凸轮逆时针方向转动时, 试用图解法作出:(1)该凸轮的基圆;(2)该凸轮的理论廓线;(3)图示位置时凸轮机构的压力角;(4)凸轮由图示位置转过90 时从动件的实际位移s。
6.在图示的凸轮机构中,画出凸轮从图示位置转过时从动件的位置及从动件的位移s。
解:(1) 找出转过60 的位置。
(2) 标出位移s。
7.在图示凸轮机构中,画出凸轮从图示位置转过时凸轮机构的压力角。
解:(1) 画出转过90︒的位置。
(2) 标出压力角α。
8.用作图法求出图示两凸轮机构从图示位置转过时的压力角。
9.画出图示凸轮机构中A点和B点位置处从动件的压力角,若此偏心凸轮推程压力角过大,则应使凸轮中心向何方偏置才可使压力角减小?解:1) A点压力角如图示。
毕业设计盘形凸轮轮廓曲线的设计

目录摘要 (1)1. 绪论 (3)1.1凸轮机构概述 (3)凸轮机构课题研究背景及意义 (3)1.3凸轮机构国内外发展及研究状况 (5)2. 盘形凸轮轮廓曲线的设计 (8)2.1反转法概念 (8)2.2反转法的原理: (8)2.3对心直动尖顶从动件盘形凸轮机构轮廓曲线的设计 (8)2.4对心直动滚子从动件盘形凸轮机构轮廓曲线的设计 (10)2.6对心直动平底从动件盘形凸轮机构轮廓曲线的设计 (11)2.7偏置尖顶直动从动件盘形凸轮机构 (11)2.8摆动从动件盘形凸轮机构 (12)3. 盘形凸轮轮廓曲线的参数化设计 (13)3.1盘形凸轮基圆半径的确定 (13)3.2确定摆动从动件盘形凸轮基圆半径的方法 (13)3.3凸轮轮廓曲线的数学模型 (14)3.4盘形凸轮轮廓曲线的计算 (16)3.5轮廓面方程的建立 (16)平面盘形凸轮系统的开发 (17)总结与展望 (18)致谢 (19)参考文献 (20)盘形凸轮轮廓曲线的设计【摘要】本文分析了反转法的基本原理、图解法的方法和步骤,阐述了几种盘形凸轮轮廓曲线的设计方法,并配以图形来解析,在现实生活中我们经常可以见得到凸轮机构,在各种机械,特别是自动机和自动装置,广泛采用各种形式的凸轮机构.凸轮机构常用与内燃机的装配机构,自动机场的进刀机构以及各种自动装置中.凸轮机构的有点在于要适当的设计出凸轮轮廓曲线,就可以使推杆得到各种预期的运动规律,而其响应快速,机构简单紧凑。
这些优点使得它不能被数控,电控设备完全代替。
随着现代机械的发展和计算机辅助设计和制造获得了普遍应用,凸轮机构的设计和加工的速度和质量越来越高,凸轮运动速度也越来越高,这就为凸轮机构更广泛的应用创造了条件。
【关键词】反转法凸轮轮廓曲线Design of cam profile curve【Abstract】In real life we can often see cam, particularly automata and robotics, widely used in various forms of cam. Can is commonly Used for internal combustion engine valvetrain, automatic feed mechanism of machine tools ,as well as variety of robotic.Advantage is as long as the appropriate design of cam. Motion of the push rod can be expected, and its fast response , institutions simple and compact. These advantages make it cannot be NC, electrical control equipment and completely replaced .As modern machinery is increasingly informed the development and application of computer–aided design and manufacturing was general ,cam design and machining speed and quality become higher and higher ,cam movement speed is geeting higher and higher ,which created the conditions for a wider application of cam.This design is intended to complete the base circle radius r=500mm maximum lift and follower h=30mm Push way motion angle =120 Far angle of repose =60º, return angle =120ºand near of Angle of repose =60º, follower pushing motion law of Cheng Yi speed increase ,return to, sine acceleration motion law of Downward bias follower disc cam mechanism with roller follower of the designs.【Key Words】Reversal process Disc CAM Profile Curve1.绪论1.1 凸轮机构概述凸轮机构一般是由凸轮,从动件和机架三个构件组成的高副机构。
凸轮机构02

O Φ
O
Φ
D
E
第三节 图解法设计平面凸轮轮廓
一、直动从动件盘状凸轮机构 y
B1 S
-ω ω
B0
S ϕ
x
2π π
S
ω O e
K0 K1
S0
ϕ
C1
B1
ϕ
L = bmax+b’max+(4~10)mm
• 凸轮轮廓的向径不能变化太快 3 4 5 5’
4’
2
3’
1
2’ 1’
二 摆 动 从 动 件 盘 状 凸 轮 机 构
式中, 为凸轮的转角( 式中,ϕ为凸轮的转角(rad); c0,c1,c2,… ,为 ); n+1个待定系数。 个待定系数。 个待定系数 1、n=1的运动规律 、 的运动规律 h S = ϕ s = c0+c1ϕ Φ v = hω Φ v= c1 ω ϕ=0, s=0; ϕ =Φ, s=h Φ a=0 a=0
1)应满足机器的工作要求; )应满足机器的工作要求; 2)对于高速凸轮机构,应使凸轮机构具有良好的运 )对于高速凸轮机构, 动和动力性能。 动和动力性能。 3)设计从动件运动规律,应考虑到凸轮轮廓具有良 )设计从动件运动规律, 好的工艺性。 好的工艺性。
第四节 用解析法设计平面凸轮轮廓曲线
x θA A0 一、移动从动件盘形凸轮机构 1、尖顶从动件 、
由 ∆ OO 1' A 可求得向径 rA
-ω ω B1 B x
rA = l 2 + a 2 − 2al cos(ψ 0 + ψ )
ω O rb
l +a −r cos ψ 0 = 2 al A点的极角 θ A = δ 0 + ϕ − δ 点的极角
偏置移动尖顶从动件盘形凸轮轮廓线设计ppt课件

第四节 凸轮机构的压力角和基本尺寸
一、凸轮机构的压力角
1. 压力角 :
在不计摩擦力、重力、惯性力的条件下,机
构中驱使从动件运动的力的方向线与从动 件上受力点的速度方向线所夹的锐角。
2. 压力角与凸轮机构受力情况的关系
Q n
v2
F F1 A
F2
Q—作用在从动件上的载荷
F—凸轮对从动件的作用力
F1 F cos 推动从动件运动的有效分力 F2 F sin 阻碍从动件运动的有害分力
(3)自OC0沿ω的相反方向取角度 180 , s 60 , 120 并将它们各分成
与位移线图对应的若干等分,得 C1、C2、C3 … 等诸点。
(4)过C1、C2、C3 … 等诸点作偏距圆的切线,它们便是反转后从动件导路的各 个位置。 (5)沿以上各切线自基圆开始量取从动件相应的位移量,即取线段 B1C 1=11, ,B2C 2=22, … , 得 B1 、B2 … 等各点,这些点即为反转后尖底的 一系列位置。
q作用在从动件上的载荷f凸轮对从动件的作用力sincos压力角与凸轮机构受力情况的关系推动从动件运动的有效分力阻碍从动件运动的有害分力sincos推动从动件运动的有效分力阻碍从动件运动的有害分力当增大到某一数值时有害分力f引起的摩擦阻力大于有效分力f此时无论凸轮给从动件的作用力有多大都不能推动从动件运动这种现象称为机构的自锁
ds e tan d
s r02 e2
在偏距一定,从动件的运动规律已知的条件下,加大基圆半径r0, 可减小压力角α,从而改善机构的传力特性。但机构的尺寸会增大。
S + r20 - e2
(2)凸轮基圆半径的确定 凸轮基圆半径的确定的原则是:应在满足αmax≤[α]的条件下, 合理的确定凸轮的基圆半径,使凸轮机构的尺寸不至过大。即
摆动滚子从动件盘形凸轮机构设计的解析法

摆动滚子从动件盘形凸轮机构设计的解析法一、什么是摆动滚子从动件盘形凸轮机构?你是不是觉得这个名字听起来像个天书?别急,听我慢慢说。
其实说白了,摆动滚子从动件盘形凸轮机构就是一种利用凸轮和从动件之间的相互作用来完成某种动作的机械结构。
说白了,凸轮就像个“演员”,它带动从动件来完成一个又一个的动作。
而那“从动件”,就像是一个忠实的“配角”,听从凸轮的指挥,做出各种各样的“舞蹈”。
这个“舞蹈”有点复杂,可能在看似简单的机器里就能找到它的身影,比如一些自动化设备,或者那些精密的仪器。
咱们今天要聊的就是这个盘形凸轮,特别是它怎么与“摆动滚子”合作,演绎出惊人的机械之舞。
二、盘形凸轮的设计要点既然说到盘形凸轮,咱就不绕圈子了。
盘形凸轮就像是个平底盘子,通常是圆形的,有着非常独特的形状。
盘子的每个小部分都会影响到整个机器的运动轨迹。
肯定有人会问:这不就是个扁平的圆盘嘛,能干啥?当然能干大事儿啦!它的设计就像做一道精致的菜,需要精准掌握好每个细节,才能让机器顺畅运行。
你看啊,凸轮的形状、角度、尺寸,都得经过精确计算,哪怕一点点差错,整个机构的动作都会受到影响。
想象一下,你做饭时放盐放多了,结果整锅菜都是咸的——就是这么简单。
设计时得注意的是,凸轮的轨迹要确保它能够稳定地推动摆动滚子从动件,使得机器能够按预定的节奏“跳舞”。
三、摆动滚子的作用与设计接下来说说那个“摆动滚子”。
别看它名字有点复杂,实际上它就是一个小小的滚轮,像是舞台上的一个小演员。
它通过与凸轮的接触,完成了各种各样的运动。
就像舞者跟着音乐的节奏转圈跳舞,它随着盘形凸轮的转动而做出摆动的动作。
这个小家伙可有点讲究,它不仅得跟上节奏,还得保持“稳定性”,不能乱了阵脚。
要是滚子跑偏了,结果可能就是机器乱作一团。
想象一下一个舞蹈队,领舞掉队了,后面的都跟不上节奏,这多糟糕呀。
为了避免这种情况发生,我们设计摆动滚子时,要考虑它的材质、尺寸、形状等因素,保证它的运动流畅且稳定。