兰州一中2015-2016-1高二期末考试数学试题(文科)

合集下载

甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试卷 Word版含答案

甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试卷 Word版含答案

甘肃省兰州第一中学2014-2015学年高二上学期期末考试数学(文)试题 说明:本试卷分第I 卷(选择题)和第II卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卷(卡)上,交卷时只交答题卷(卡) 第I 卷(选择题) 一、选择题(每小题3分,共30分,将答案写在答题卡上) 1已知为虚数单位,且,则的值为() A B. C.-4 D. 2.过点P(2,4)且与抛物线y2=8x有且只有一个公共点的的直线有() A0条 B.1条 C.2条 D..3条 3双曲线的一条渐近线方程是( ) A. B. C. D. 4.下列命题错误的是 ( ) A.命题“若,则”的逆否命题为“若,则” B.若命题,,则“”为: C.“ ”是“”的充分不必要条件 D.若或;q:或,则是的必要不充分条件. 5.曲线与曲线的()A.焦点相同B.离心率相等C.准线相同D.焦距相等 6.根据右边程序框图,当输入10时,输出的是() A .12 B.19 C.14.1 D.30 7.如果命题p?q为真命题,p?q为假命题,那么()A.命题p、q都是真命题B.命题p、q都是假命题C.命题p、q只有一个真命题D.命题p、q至少有一个是真命题 8.设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为() A. B.5 C. D. 9.已知p:关于x的不等式的解集为R;q:关于x的不等式的解集为R,则p是q成立的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 10.已知F是双曲线的左焦点,E是该双曲线的右顶点,过点F且垂直于x轴的直线与双曲线交于A、B两点,若ABE是锐角三角形,则该双曲线的离心率e的取值范围为( )A.(1,+∞)B.(1,2)C.(1,1+)D.(2,1+) 第II卷(非选择题) 二、填空题(每小题4分,共1分,将答案写在答题卡上) 1的共轭复数是. 12.过抛物线的焦点作倾斜角为直线,直线抛物线,两点,则弦的长是13.已知椭圆与双曲线的公共焦点为F1,F2,点P是两条曲线的一个公共点,则cos∠F1PF2的值为 . 14.若椭圆与直线交于A,B两点,若,则过原点与线段AB的中点M的连线的斜率为 . 兰州一中201-2015学年第一学期高二年级期末数学试题 答题卡() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案第II卷(非选择题) 二、填空题(每小题4分,共1分) 11.__________________ 12.__________________ 13.14.__________________ 三、解答题(本题共5小题,共分) 15(10分),若, ();()的值 . 16.(10分)设分别为椭圆的左、右两个焦点. ()若椭圆上的点两点的距离之和等于,椭圆的方程和焦点坐标; ()设点是()中所得椭圆上的动点,17.(10分)已知命题成立.命题有实数根.若为假命题,为假命题,求实数的取值范围 18.(本题12分)、, 且过点. (1)求双曲线方程; (2)若点在双曲线上,求证:; (3)对于(2)中的点,求的面积. 19.(本题12分)如图,设抛物线:的焦点为F,为抛物线上的任一点(其中≠0),过P 点的切线交轴于点 (),求证; (),过M点的直线抛物线于A、B两点,若,求的值 兰州一中201-2015学年第一学期高二年级期末数学试题 答() 第I 卷(选择题) 一、选择题(每小题分,共分) 题号 1 2 3 4 5 6 7 8 9 10 答案 C B DD C C D B B 第II卷(非选择题) 三、解答题(本题共5小题,共分) 15.(10分), …………………………….5分 (2)把Z=1+i代入,即, 得 …………………………….7分 所以 解得 所以实数,b的值分别为-3,4 …………………………….10分 16. (10分)解:()椭圆C的焦点在x轴上, 由椭圆上的点A到F1、F2两点的距离之和是4,得2a=4,即a=2又点所以椭圆C的方程为…………4分()设 …………8分又 ………….10分17.(10分) 解: 即命题…………………………分 有实数根…,即…………………………分 因为为假命题,为假命题 则为真命题,所以为假命题,为真命题,:…………………………分 由 即的取值范围是: …………………………1分 18.(本题12分), 又双曲线过点,解得 故双曲线方程为. ……………………………4分,,∴, ∴,,∴, 又点在双曲线上,∴, ∴,即. ……………………………8分 ,∴的面积为6. ……………………………12分 19.(本题12分)解(Ⅰ)证明:由抛物线定义知, …….2分 设过P点的切线 由 令得, 可得PQ所在直线方程为 ∴得Q点坐标为(0, )∴即|PF|=|QF| ………………………….6分 (Ⅱ)设A(x1, y1),B(x2, y2),又M点坐标为(0, y0)∴AB方程为 由得 M P Q y x F O A B M P Q y x F O A B。

甘肃省兰州第一中学2015-2016学年高一下学期期末考试数学试题 含答案

甘肃省兰州第一中学2015-2016学年高一下学期期末考试数学试题 含答案

兰州一中2015-2016—2学期期末考试试题高一数学说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本题共10小题,每小题3分,共30分.在每小题给出的四个选项中只有一个....选项符合题意)1。

已知角α的终边经过点)3,(-m p ,且54cos -=α,则m 等于( )A .114-B .114 C .-4 D .42.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,已知,13A a b π===,则c=( )A .1B . 2C 1 D3。

πππ425tan 32cos 3)34sin(-+-的值为( )A .13+-B .13--C .3D .1-4.已知510cos sin =+αα,则=αtan ( )A .—3或31-B .-3C .31-D .3或31-5.将函数sin y x x =的图象向右平移a (a>0)个单位长度,所得函数的图象关于y 轴对称,则a 的最小值是( )A .3πB .76π C6。

如图,在ABC ∆中,13AN AC =,P 是若2,11AP mAB AC =+则实数m 的A .911 B .511 C .311 D .211=-20cos 20sin 10cos 2.7( )A .21 B .1 C .2D .38.若向量a 与b 不共线,0≠⋅b a ,且b ba a a a c ⋅⋅-=(,则向量a 与c 的 夹角为( )A .0B .6πC .3πD .2π9.已知53)4sin(=+πx ,且π<<x 0,则=x 2cos ( ) A .2524 B .2524- C .257D .257-10.已知0,ω>函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( )A .15[,]24 B .13[,]24C .1(0,]2D .(0,2]第Ⅱ卷(非选择题)二、填空题(本题共5小题,每小题4分,共20分) 11.在ABC ∆中,已知150,30,b c B ===则C = .12。

易错汇总2015-2016年甘肃省兰州一中高二上学期期末数学试卷(文科)与解析

易错汇总2015-2016年甘肃省兰州一中高二上学期期末数学试卷(文科)与解析


由 cos∠PF1F2+cos∠QF1F2=0,得
+
=0,
整理得:
,∴ 5a=7c,
第 8 页(共 15 页)
(x)的导函数,若 f ′(1)=3,则 a 的值为( )
A.4
B.3
【解答】 解: f ′(x)=alnx+a,
C.2
D.1
∵ f ′( 1) =3,∴ a=3.
故选: B.
5.(4 分) “≤a0”是“函数 f( x) =| (ax﹣ 1) x| 在区间( 0,+∞)内单调递增 ”的
()
A.充分不必要条件
可得 yA=2 , yB=﹣ 2 , ∴ | AB| =4 .
故选: D. 8.(4 分)已知 F1、F2 为双曲线 C:x2﹣y2=2 的左、右焦点,点 P 在 C上,| PF1| =2| PF2| ,
则 cos∠ F1PF2=( )
A.
B.
C.
D.
【解答】 解:将双曲线方程 x2﹣y2=2 化为标准方程 ﹣ =1,则 a= ,b= ,
A.
B.
C.
D.
二、填空题(本大题共 4 小题,每小题 4 分,共 16 分) 13.( 4 分)若抛物线 y2=2px(p>0)的准线经过双曲线 x2﹣y2=1 的一个焦点,
则 p=

14.(4 分)设函数 f(x)在(0,+∞)内可导,且 f( ex)=x+ex,则 f (′1)=

15.( 4 分)有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走
圆心 C 的轨迹方程是(

A.
B.
C.y2=8x
D.y2=8x( x≠ 0)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)(解析版)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)(解析版)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)回归分析中,相关指数R2的值越大,说明残差平方和()A.越小B.越大C.可能大也可能小D.以上都不对2.(4分)如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960B.0.864C.0.720D.0.5763.(4分)已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56%B.13.59%C.27.18%D.31.74%4.(4分)在极坐标系中,曲线关于()A.直线θ=对称B.直线θ=对称C.点对称D.极点对称5.(4分)若直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y =0对称,则实数k+m=()A.﹣1B.1C.0D.26.(4分)设(5x﹣)n的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N =56,则展开式中常数项为()A.5B.15C.10D.207.(4分)设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3B.4C.5D.68.(4分)函数的图象沿x轴向右平移a个单位(a>0),所得图象关于y 轴对称,则a的最小值为()A.πB.C.D.9.(4分)已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13B.15C.19D.2110.(4分)两球O1和O2在棱长为1的正方体ABCD﹣A1B1C1D1的内部,且互相外切,若球O1与过点A的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2﹣)πB.4(2﹣)πC.3(2+)πD.4(2+)π二、填空题(本大题共5小题,每小题4分,共20分)11.(4分)已知随机变量2ξ+η=8,若ξ~B(10,0.4),则E(η)=,D(η).12.(4分)(选做题)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:,若曲线C1与曲线C2交于A、B两点则AB=.13.(4分)某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是,两次闭合后都出现红灯闪烁的概率为,则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是.14.(4分)若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则+++…+=.15.(4分)只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有个.三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.(10分)4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X的分布列,期望E(X)和方差D(X)附:K2=n=a+b+c+d17.(10分)计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水年入流量X(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,并假设各年的年入流量相互独立.(1)求未来4年中,至多有1年的年入流量超过120的概率.(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X 限制,并有如下关系:若某台发电机运行,则该台年利润为1000万元;若某台发电机未运行,则该台年亏损160万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?18.(10分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的年宣传费x i 和年销售量y i (i =1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.表中w i =i ,=w i .(1)根据散点图判断,y =a +bx 与y =c +d哪一个适宜作为年销售量y 关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程;(3)已知这种产品的年利润z 与x ,y 的关系为z =0.2y ﹣x .根据(2)的结果回答下列问题:①年宣传费x =49时,年销售量及年利润的预报值是多少? ②年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:.19.(10分)已知函数f(x)=x(a+lnx)的图象在点(e,f(e))(e为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a的值;(Ⅱ)若k为整数时,k(x﹣1)<f(x)对任意x>1恒成立,求k的最大值.2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:用系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,而用相关系数r的值判断模型的拟合效果时,|r|越大,模型的拟合效果越好,由此可知相关指数R2的值越大,说明残差平方和越小.故选:A.2.【解答】解:根据题意,记K、A1、A2正常工作分别为事件A、B、C;则P(A)=0.9;A1、A2至少有一个正常工作的概率为1﹣P()P()=1﹣0.2×0.2=0.96;则系统正常工作的概率为0.9×0.96=0.864;故选:B.3.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.4.【解答】解:曲线,可得=2sinθ﹣2cosθ,可得ρ2=2ρsinθ﹣2ρcosθ,它的普通方程为:x2+y2=2y﹣2.圆的圆心坐标(,1),经过圆的圆心与原点的直线的倾斜角为:,在极坐标系中,曲线关于直线θ=对称.故选:B.5.【解答】解:由题意,可得∵直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,∴直线x+2y=0是线段MN的中垂线,得k•(﹣)=﹣1,解之得k=2,所以圆方程为x2+y2+2x+my﹣4=0,圆心坐标为,将代入x+2y=0,解得m=﹣1,得k+m=1.故选:B.6.【解答】解:令二项式中的x为1得到展开式的各项系数和为M=4n,二项式系数和为N=2n,由M﹣N=56,得n=3,∴其展开式的通项为令3﹣=0得r=2代入通项解得常数项为15.故选:B.7.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m==0,m﹣1>0,m>1,因此m不能为0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,另解:等差数列{a n}的前n项和为S n,即有数列{}成等差数列,则,,成等差数列,可得2•=+,即有0=+,解得m=5.又一解:由等差数列的求和公式可得(m﹣1)(a1+a m﹣1)=﹣2,m(a1+a m)=0,(m+1)(a1+a m+1)=3,可得a1=﹣a m,﹣2a m+a m+1+a m+1=+=0,解得m=5.故选:C.8.【解答】解:函数==﹣,沿x轴向右平移a个单位(a>0),可得y=,∵图象关于y轴对称,∴∴sin2x cos2a=0∴2a=kπ(k∈Z)∵a>0∴a的最小值为.故选:D.9.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣4(﹣4)﹣(t﹣1)=17﹣(4t+),由基本不等式可得+4t≥2=4,∴17﹣(4t+)≤17﹣4=13,当且仅当4t=即t=时取等号,∴的最大值为13,故选:A.10.【解答】解:∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π(R12+R22)≥4π•2()2=2π(R1+R2)2=3(2﹣)π.故选:A.二、填空题(本大题共5小题,每小题4分,共20分)11.【解答】解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵2ξ+η=8,∴Eη=E(8﹣2ξ)=8﹣8=0,Dη=D(8﹣2ξ)=4×2.4=9.6,故答案为:0;9.6.12.【解答】解:对于曲线C1:ρ=2cosθ,两边都乘以ρ得:ρ2=2ρcosθ,∵ρ2=x2+y2,且ρcosθ=x∴曲线C的普通方程是x2+y2﹣2x=0,表示以(1,0)为圆心、半径为1的圆;对于曲线C2:,可得它是经过原点且倾斜角为的直线,∴曲线C2的普通方程为y=x,即x﹣y=0因此点(1,0)到直线x﹣y=0的距离为:d==设AB长为m,则有(m)2+d2=r2,即m2+=1,解之得m=(舍负)故答案为:13.【解答】解:设事件A表示开关第一次闭合后出现红灯闪烁,B表示开关第二次闭合后出现红灯闪烁,则P(A)=,P(AB)=,∴在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是:P(B|A)===.故答案为:.14.【解答】解:在(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R)中,令x=0,可得a0=1,令x=,可得a0++++…+=0,故,+++…+=﹣1,故答案为:﹣1.15.【解答】解:由题意知,本题需要分步计数1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.故答案为:18三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.【解答】解:(1)完成下面的2×2列联表如下…(3分)≈8.249VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关…(6分)(2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为.由题意可知X~B(3,),P(x=i)=(i=0,1,2,3)…(8分)从而分布列为.…(10分)E(x)=np=,D(x)=np(1﹣p)=…(12分)17.【解答】解:(1)依题意,p1=P(40<X<80)==0.2,p2=P(80≤X≤120)==0.7,p3=P(X>120)==0.1.由二项分布得,在未来4年中至多有1年的年入流量超过120的概率为p=(1﹣p3)4+(1﹣p3)3p3=0.94+4×0.93×0.1=0.9477.…(5分)(2)记水电站年总利润为Y(单位:万元).①安装1台发电机的情形.由于水库年入流量总大于40,故一台发电机运行的概率为1,对应的年利润Y=1000,E (Y)=1000×1=1000.…(7分)②安装2台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣160=840,因此P(Y=840)=P(40<X<80)=p1=0.2;当X≥80时,两台发电机运行,此时Y=1000×2=2 000,因此P(Y=2 000)=P(X≥80)=p2+p3=0.8.由此得Y的分布列如下:所以,E(Y)=840×0.2+2 000×0.8=1768.…(9分)③安装3台发电机的情形.依题意,当40<X<80时,一台发电机运行,此时Y=1000﹣320=680,因此P(Y=680)=P(40<X<80)=p1=0.2;当80≤X≤120时,两台发电机运行,此时Y=1000×2﹣160=1840,因此P(Y=1840)=P(80≤X≤120)=p2=0.7;当X>120时,三台发电机运行,此时Y=1000×3=3 000,因此P(Y=3 000)=P(X>120)=p3=0.1.由此得Y的分布列如下:所以,E(Y)=680×0.2+1840×0.7+3 000×0.1=1724.…(11分)综上,欲使水电站年总利润的均值达到最大,应安装发电机2台…(12分)18.【解答】解:(1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.由于d==68,c=﹣d=100.6,所以y关于w的线性回归方程为y=100.6+68w,因此y关于w的线性回归方程为y=100.6+68.(3)①由(2)知,当x=49时,年销量y的预报值y=100.6+68•=576.6,年利润z的预报值z=576.6×0.2﹣49=66.32.②根据(2)的结果知,年利润z的预报值z=0.2(100.6+68)﹣x=﹣x+13.6+20.12.所以当==6.8,即x=46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.19.【解答】解:(Ⅰ)求导数可得f′(x)=a+lnx+1,∵函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3,∴f′(e)=3,∴a+lne+1=3,∴a=1(4分)(Ⅱ)k(x﹣1)<f(x)对任意x>1恒成立,∴k<对任意x>1恒成立,由(1)知,f(x)=x+xlnx,令g(x)==,则g′(x)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(5分)令h(x)=x﹣lnx﹣2(x>1),则h′(x)=>0,所以函数h(x)在(1,+∞)上单调递增.…(7分)因为h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,…(9分)所以函数g(x)==在(1,x0)上单调递减,在(x0,+∞)上单调递增.所以g(x)min=g(x0)=x0.因为x0>3,所以x>1时,k<3恒成立故整数k的最大值是3.…(12分)。

兰州一中2015-2016年高二数学(文)第一学期期中考试试题及答案

兰州一中2015-2016年高二数学(文)第一学期期中考试试题及答案

兰州一中2015-2016-1学期高二年级期中考试试题数 学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题,共36分)一、 选择题(本大题共12小题,每小题3分,共36分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上..........) 1.不等式111-≥-x 的解集为 ( )A .(-∞,0]∪(1,+∞)B .[0,+∞)C .[0,1)∪(1,+∞)D .(-∞,0]∪[1,+∞)2.在等差数列{}n a 中,已知21=a ,1332=+a a ,则654a a a ++等于 ( ) A .40 B .42 C .43 D .453.已知各项为正数的等比数列{}n a 中,5321=a a a ,10987=a a a ,则654a a a 等于( )A .5 2B .7C .6D .4 24.ABC ∆中内角C B A ,,的对边分别为c b a ,,.若bc b a 322=-,B C sin 32sin =,则A = ( ) A .π65B .π32 C .3π D .6π 5.等差数列{}n a 中,10a >,310S S =,则当n S 取最大值时,n 的值为 ( ) A .6 B .7 C .6或7 D .不存在6.已知a ,b 为非零实数,若b a >且0>ab ,则下列不等式成立的是 ( ) A .22b a > B .b a a b > C .b a ab 22> D .2211ab b a < 7.下列命题中正确的是 ( ) A .函数xx y 1+=的最小值为2. B .函数2322++=x x y 的最小值为2.C .函数)0(432>--=x xx y 的最小值为342-. D .函数)0(432>--=x xx y 的最大值为342-. 8.在ABC ∆中,若2222sin sin b C c B +2cos cos bc B C =,则ABC ∆是 ( )A .等边三角形B .等腰三角形C .等腰直角三角形D .直角三角形 9.如图所示,位于A 处的信息中心获悉:在其正东方向相距40海里的B 处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C 处的乙船,现乙船朝北偏东θ的方向即沿直线CB 前往B 处救援,则θcos 等于 ( )A .721 B .1421C .14213 D .282110.已知点O 为直角坐标系原点,P ,Q 的坐标均满足不等式组⎪⎩⎪⎨⎧≥-≤+-≤-+0102202534x y x y x ,则POQ ∠cos 取最小值时的POQ ∠的大小为 ( ) A .6π B .4π C .3π D .2π11.在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,若2222c b a =+,则C cos 的最小值为 ( )A .23 B .22 C .21 D .21- 12.已知2)1()(=-+x f x f ,)1()1()1()0(f nn f n f f a n +-+++= *)(N n ∈,则数列{}n a 的通项公式为 ( )A .1-=n a nB .n a n =C .1+=n a nD .2n a n =第II 卷(非选择题)二、填空题(每小题4分,共16分,将答案写在答题卡上..........) 13.若不等式022>+-bx ax 的解集为⎭⎬⎫⎩⎨⎧<<-3121|x x ,则=+b a . 14.如果实数x ,y 满足约束条件⎪⎩⎪⎨⎧-≥≥+-≤++10101y y x y x ,那么目标函数y x z -=2的最小值为 .15.有两个等差数列{a n },{b n },其前n 项和分别为S n ,T n ,若327++=n n T S n n ,则55b a = .. 16.在等比数列{}n a 中,若,81510987=+++a a a a 8998-=⋅a a ,则=+++109871111a a a a . 兰州一中2015-2016-1学期高二年级期中(文科)数学试题答 题 卡第I 卷(选择题)第II 卷(非选择题)二、填空题(每小题4分,共16分)13. 14. 15. 16.三、 解答题(本大题共5小题,共48分)17.(本小题8分)解关于x 的不等式0)1(2>--+a a x x ,)(R a ∈.18.(本小题8分)(1)若0>x ,0>y ,1=+y x ,求证:411≥+yx .(3分) (2)设x ,y 为实数,若122=++xy y x ,求y x +的最大值.(5分)19.(本小题10分)ABC ∆中,角C B A ,,所对的边分别为c b a ,,.已知3=a ,36cos =A ,2π+=A B .(1)求b 的值; (2)求ABC ∆的面积. 20.(本小题10分)已知单调递增的等比数列{}n a 满足28432=++a a a ,且23+a 是2a ,4a 的等差中项.(1)求数列{}n a 的通项公式;(2)若n n n a a b 21log =,数列{}n b 的前n 项和为n S ,求n S .21.(本小题12分)已知数列{}n a 满足11=a ,nn a a 4111-=+,其中*N n ∈. (1)设122-=n n a b ,求证:数列{}n b 是等差数列,并求出{}n a 的通项公式;(2)设14+=n a c nn ,数列{}2+n n c c 的前n 项和为n T ,证明3<n T .谢谢大家。

【焦点】甘肃省兰州学年高二上学期期末考试数学文试题Word版含答案

【焦点】甘肃省兰州学年高二上学期期末考试数学文试题Word版含答案

【关键字】焦点兰州一中2016-2017-1学期期末考试试题高二数学(文)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共10 小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上.)1. 命题p: 对 x R,x3-x2+1≤0,则p是()A.不存在x R,x3-x2+1≤0B. x R,x3-x2+1≥0C. x R,x3-x2+1>0D.对 x R,x3-x2+1>02. 抛物线y2=2px上横坐标为6的点到焦点的距离是10,则焦点到准线距离是()A.4B.8C.16D.323. 下列求导数运算正确的是()A. B. (logx )'=C. D.4. 若a、b为实数, 且a+b=2, 则3a+3b的最小值为()A.6 B.18 C.2 D.25. 椭圆+y2=1的焦点为F1、F2,经过F1作垂直于x轴的直线与椭圆的一个交点为P,则| |等于()A. B. C. D.46.2x2-5x-3<0的一个必要不充分条件是()A.-<x<3 B.-<x<0 C.-3<x<D.-1<x<67.过双曲线左焦点F1的弦AB长为6,则(F2为右焦点)的周长是()A.28 B.22 C.14 D.128.已知双曲线 (a>0,b>0)的一条渐近线平行于直线l:y=2x+10,双曲线的一个焦点在直线l上,则双曲线的方程为()A. B. C. D.9. 椭圆上一点A关于原点的对称点为B,F为其右焦点,若,设,且,则该椭圆离心率的取值范围为()A. B. C. D.10. 已知点P在曲线上,α为曲线在点P处的切线的倾斜角,则α的取值范围是()A.[0,) B.[,) C.(,] D.[,π)第Ⅱ卷(非选择题)2、选择题(本大题共4小题,每小题4分,共16分,将答案写在答题卡上.)11.一个物体运动的方程为s=at3+3t2+2t,其中s的单位是米,t的单位是米/秒,若该物体在4秒时的瞬时速度是50米/秒,则= .12. 已知满足,则z=2x-y的最小值为.13. 已知是直线被椭圆所截得的线段的中点,直线的方程为.14.设双曲线=1(0<b<a)的半焦距为c,直线l经过双曲线的右顶点和虚轴的上端点.已知原点到直线l的距离为c,则双曲线的离心率为.兰州一中2016-2017-1学期期末考试答题卡高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10答案2、填空题(每小题4分,共16分)11.; 12.;13.; 14. .三、解答题(本大题共5 小题,共44分)15.(本小题8分)己知a,b,c都是正数,且a,b,c成等比数列.求证:a2+b2+c2>(a-b+c)2.16.(本小题8分)已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2- m)x-1, y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.17.(本小题8分)已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.18.(本小题10分)已知抛物线C :y2=2px(p>0)过点A(1,-2). (1) 求抛物线C 的方程,并求其准线方程;(2) 若平行于OA(O 为坐标原点)的直线l 与抛物线C 相交于两点,且直线OA 与l 的距离等于,求直线l 的方程.19. (本小题10分)已知定点1(F ,动点B是圆222:(12F x y += (F 2为圆心)上一点,线段F 1B 的垂直平分线交BF 2于P . (1)求动点P 的轨迹方程;(2)若直线y =kx +2(k ≠0)与P 点的轨迹交于C 、D 两点.且以CD 为直径的圆过坐标原点,求k 的值.兰州一中2016-2017-1学期期末考试参考答案高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)二、填空题(每小题4分,共16分)11.12; 12.-125; 13.082=-+y x ; 14三、解答题(本大题共5 小题,共44分) 15.(8分)证明:∵a ,b ,c 成等比数列,∴b 2=ac ∵a ,b ,c 都是正数,c a ca acb +<+≤=<∴20 ∴a +c >b , ……………………………4分∴a 2+b 2+c 2-(a -b +c )2=2(ab +bc -ca )=2(ab +bc - b 2)=2b (a +c -b )>0 ∴ a 2+b 2+c 2>(a -b +c )2. ……………………………8分 16.(8分)解:若函数y =x 2+mx∴m ≥2,即p :m ≥2 ……………………………2分 若函数y =-4x 2+4(2- m )x -1≤0恒成立, 则△=16(m -2)2-16≤0,解得1≤m ≤3,即q :1≤m ≤3 ……………………………4分 ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假当p 真q 假时,由213m m m ≥⎧⎨<>⎩或 解得:m >3 ……………………………6分当p 假q 真时,由213m m <⎧⎨≤≤⎩解得:1≤m <2综上,m 的取值范围是{m |m >3或1≤m <2} …………………………8分 17.(8分)解:设P (t ,at 2),则l 1斜率k 1=2at ∴l 1:y -at 2=2at (x -t )l 2斜率k 2=3bx 2|x=1=3b ∴ l 2:y -b =3b (x -1) …………………………3分 ∵ l 1与l 2交于点M (2,2),∴ 222(2)23(21)at at t b b ⎧-=-⎨-=-⎩ ∴ 242012at at b ⎧-+=⎪⎨=⎪⎩ ① …………………………5分 又l 1⊥l 2 ∴ k 1·k 2=-1 ∴at =-13② …………………………7分由①②得t =10,a =-130…………………………8分 18.(10分)解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故抛物线方程为y 2=4x ,准线为x =-1. ……………………………3分 (2)设直线l 的方程为y =-2x +t ,由⎩⎪⎨⎪⎧y =-2x +t y 2=4x 得y 2+2y -2t =0. ……………………………5分 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. ……………………………7分由直线OA 与l 的距离d =55可得|t |5=15,解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以直线l 的程为2x +y -1=0. ……………………………10分19.(10分)解:(1)由题意1PF PB =且2PB PF +=,12PF PF ∴+=22>∴P 点轨迹是以12,F F 为焦点的椭圆.设其标准方程为22221x y a b+=(0)a b >>2a ∴=a =又∴=2c 2221b ac =-=,∴P 点轨迹方程为2213x y +=. ……………………………4分(2)假设存在这样的k ,由222330y kx x y =+⎧⎨+-=⎩得22(13)1290k x kx +++=.由22(12)36(13)0k k ∆=-+>得21k >.设1122(,),(,)C x y D x y ,则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①, (6)分若以CD 为直径的圆过坐标原点,则有12120x x y y +=,而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,∴212121212(1)2()40x x y y k x x k x x +=++++= ②,将①式代入②式整理可得2133k =,其值符合0∆>,故k =±.………10分此文档是由网络收集并进行重新排版整理.word 可编辑版本!。

2015兰州一中高二数学下期末试卷

2015兰州一中高二数学下期末试卷

2015兰州一中高二数学下期末试卷考试是紧张又充满挑战的,同学们一定要把握住分分钟的时间,复习好每门功课,下面是编辑老师为大家准备的兰州一中高二数学下期末试卷。

一、选择题(共12小题,每小题5分,每小题四个选项中只有一项符合要求。

)1.的值为()A.B.C.D.2.已知集合,则=()A.B.C.D.3.命题r:如果则且.若命题r的否命题为p,命题r的否定为q,则()A.P真q假B.P假q真C.p,q都真D.p,q都假4.若函数是奇函数,则的值为()A.1B.2C.3D.45.已知直线和平面,则的一个必要条件是()(A),(B),(C),(D)与成等角6.将函数的图象向左平移个单位,再向下平移个单位,得到函数的图象,则的解析式为()A.B.C.D.7.设非零向量错误!未找到引用源。

、错误!未找到引用源。

、错误!未找到引用源。

满足|错误!未找到引用源。

|=|错误!未找到引用源。

|=|错误!未找到引用源。

|,错误!未找到引用源。

+错误!未找到引用源。

=错误!未找到引用源。

,则向量错误!未找到引用源。

、错误!未找到引用源。

间的夹角为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

8.设函数,曲线在点处的切线方程为,则曲线在点处切线的斜率为()A.B.C.D.9.设,,,(e是自然对数的底数),则()A.B.C.D.10.现有四个函数:①;②;③;④的图象(部分)如下:则按照从左到右图象对应的函数序号安排正确的一组是()①④②③B.①④③②C.④①②③D.③④②①11.在数列中,已知,则等于()(A)(B)(C)(D)12.对于函数,若存在区间,使得,则称函数为和谐函数,区间为函数的一个和谐区间.给出下列4个函数:①;②;③;④.其中存在唯一和谐区间的和谐函数为()A.①②③B.②③④C.①③D.②③精心整理,仅供学习参考。

甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题Word版含解析

甘肃省兰州市第一中学2016-2017学年高二下学期期末考试数学(文)试题Word版含解析

兰州一中2016-2017学年2学期期末考试试题高二数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的实部与虚部之和为()A. B. C. D.【答案】B【解析】,复数的实部和虚部之和是,故选B.2. 已知等比数列满足,则()A. 64B. 81C. 128D. 243【答案】A【解析】试题分析:∵,∴,∴,∴.考点:等比数列的通项公式.3. 已知,则的最小值是 ( )A. 6B. 5C.D.【答案】C【解析】试题分析:,考点:基本不等式4. 图像上相邻的最高点和最低点之间的距离是()A. B. C. 2 D.【答案】A【解析】函数的周期,相邻最高点和最低点的横坐标间的距离为,根据勾股定理最高点和最低点之间的距离为,故选A.5. 参数方程(为参数)所表示的曲线是()A. 一条射线B. 两条射线C. 一条直线D. 两条直线【答案】B【解析】或,所以表示的曲线是两条射线.故选B.考点:参数方程.6. 如图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A. ?B. ?C. ?D. ?【答案】D【解析】由题意可知输出结果为第1次循环,第2次循环,第3次循环,第4次循环,第5次循环,此时满足输出结果,退出循环,所以判断框中的条件为.故选7. 已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A. [-1,2]B. [-1,]C. [-,1]D. [-1,-]【答案】C【解析】由题意得为方程的根,且,所以,因此不等式bx2-x+a≤0为 ,选C.8. 圆的圆心极坐标是()A. B. C. D.【答案】A【解析】略9. 要得到函数的图象,只要将函数的图象()A. 向左平移单位B. 向右平移单位C. 向右平移单位D. 向左平移单位【答案】C【解析】分析:根据平移的性质,2x2x,根据平移法则“左加右减”可知向右平移个单位.解答:解:∵y=sin2x y=sin(2x)故选:C10. 若,,,,则()A. B. C. D.【答案】D【解析】因为,所以且,因为所以,又,所以,故故选D.点睛:本题主要考查了三角函数求值,属于基础题,在本题中,将所求的拆成是关键。

易错汇总2014-2015年甘肃省兰州一中高二上学期数学期末试卷(文科)及答案

易错汇总2014-2015年甘肃省兰州一中高二上学期数学期末试卷(文科)及答案

所以( 1+i)x+y=(1+i)2=2i.
故选: D. 2.( 3 分)过点 P( 2,4)且与抛物线 y2=8x 有且只有一个公共点的直线有 ( )
A.0 条
B.1 条
C.2 条
D..3 条
【解答】 解:由题意可知点 P(2,4)在抛物线 y2=8x 上
故过点 P( 2, 4)且与抛物线 y2=8x 只有一个公共点时只能是
的一条渐近线为

第 6 页(共 13 页)
由方程组
,消去 y,
有唯一解,
所以△ =

所以 ,

故选: D.
9.(3 分)已知 p:关于 x 的不等式 | x﹣ 2|+| x+2| >m 的解集是 R; q:关于 x
的不等式 x2+mx+4>0 的解集是 R.则 p 成立是 q 成立的(

A.充分不必要条件
【解答】 解:由图可知:
该程序的作用是计算分段函数
C.14.1
D.﹣ 30
的函数值.
当当输入 10 时,输出的是: 1.9× 10﹣4.9=14.1.
故选: C.
7.(3 分)如果命题 p∨q 为真命题, p∧ q 为假命题,那么(

A.命题 p、q 都是真命题
B.命题 p、q 都是假命题
C.命题 p、q 至少有一个是真命题
11.( 4 分)复数 的共轭复数是

12.( 4 分)过抛物线 y2=8x 的焦点作倾斜角为 直线 l,直线 l 与抛物线相交与
A,B 两点,则弦 | AB| 的长是

13.( 4 分)椭圆 + =1 和双曲线 ﹣y2=1 的公共焦点为 F1、F2,P 是两曲线

甘肃省兰州第一中学2015-2016届高二下学期期中考试数

甘肃省兰州第一中学2015-2016届高二下学期期中考试数

兰州一中2015-2016-2学期期中考试试题高二数学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.下面几种推理过程是演绎推理的是A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人B.根据三角形的性质,可以推测空间四面体的性质C .平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D .在数列}{n a 中,*1121,,2nn na a a n a +==∈N +,计算23,,a a 由此归纳出}{n a 的通项公式 2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度 3.右图是《集合》的知识结构图,如果要加入“交集”,则应该放在A . “集合的概念”的下位B . “集合的表示”的下位C . “基本关系”的下位D . “基本运算”的下位4.曲线123+-=x x y 在点)0,1(处的切线方程为A . 1y x =-B . 1y x =-+C . 22y x =-D . 22y x =-+ 5.下表为某班5位同学身高x (单位:cm )与体重y (单位kg )的数据,若两个变量间的回归直线方程为 1.16y x a =+,则a 的值为A .-121.04B .123.2C .21D .-45.126.已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R ,类比三角形的面积可得四面体的体积为A . R s s s s V )(214321+++=B . R s s s s V )(314321+++= C . R s s s s V )(414321+++= D . R s s s s V )(4321+++=7.若正实数b a ,满足1=+b a ,则A .ba 11+有最大值4 B . ab 有最小值41C . b a +有最大值2D . 22b a +有最小值228.如果执行右面的程序框图,那么输出的S =A . 2450B . 2500C . 2550D . 26529.定义运算:()()x x y x y y x y ≥⎧⎪⊗=⎨<⎪⎩,例如344⊗=,则231()(cos sin )24a a -⊗+-的最大值为A . 4B . 3C . 2D . 110.若函数)(x f 在R 上可导,其导函数为)(′x f ,且函数)(′)-1(=x f x y 的图象如图所示,则下列结论中一定成立的是A . 函数)(x f 有极大值(2)f -,无极小值B . 函数)(x f 有极小值(1)f ,无极大值C . 函数)(x f 有极大值(2)f -和极小值)1(fD . 函数)(x f 有极大值)1(f 和极小值(2)f -兰州一中2015-2016-2学期期中考试高二数学(文科)答题卡一、 选择题(每小题4分,共40分)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 11.i 是虚数单位,239i 2i 3i 9i ++++= .(用i a b +的形式表示,a b ∈R ,)12.设1,0a b c >><给出下列三个结论: ①bca c >;②c cb a <;③)(log )(logc b c a a b ->-;④ln()ln()a c b c ->-. 其中所有正确命题的序号是 .13.已知函数2()ln f x x x ax =+-在(0,1)上是增函数,则a 的取值范围是 . 14.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有),1(N n n n ∈>个点,每个图形总的点数记为n a ,则_____6=a ;233445201520169999________a a a a a a a a ++++=.. . . . . . . . . . . . . . . . . .2=n 3=n 4=n三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分10分) 已知复数()()21213i i z i +--=-,若212z az b i ++=+,(1)求||z ; (2)求实数,a b 的值.16.(本小题满分10分)(1)解不等式255x x -+-<;(2)如果关于x 的不等式25x x a -+-<的解集不是空集,求实数a 的取值范围.17.(本小题满分12分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中随机抽取一人为优秀的概率为7. (1)请完成上面的列联表;(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.参考公式和数据: ))()()(()(22d b c a d c b a bc ad n K ++++-=18.(本小题满分12分) 已知函数ln ()xf x x=. (1)设实数k 使得()f x kx <恒成立,求k 的取值范围;(2)设()() ()g x f x kx k R =-∈,若函数()g x 在区间21[,e ]e上有两个零点,求k 的取值范围.兰州一中2015-2016-2学期期中考试高二数学(文科)参考答案一、选择题(每小题4分,共40分)二、填空题:(每小题4分,共16分)11. 45i + 12. ①②③ 13. (-∞ 14. 15;20142015三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分10分) 解:(1)22224133i i iz i i i -+-+===---,2=∴z (5)分(2)把z =1-i 代入212z az b i ++=+,即()()21112i a i b i -+-+=+, 得()212a b a i i +-+=+所以1(2)2a b a +=⎧⎨-+=⎩, 解得4;5a b =-=所以实数a ,b 的值分别为-4,5 …………………………….10分16.(本小题满分10分)解:(1)由绝对值不等式的几何意义易得原不等式的解集为(1,6).…………………….5分 (2)令25y x x =-+-,而min 3y =,所以3a >. …………………….10分 17.(本小题满分12分) 解:(1) (4)分(2)根据列联表的数据,得到02.5109.675305055)45203010(10522>≈⨯⨯⨯⨯-⨯⨯=K , 因此有97.5%的把握认为成绩与班级有关系. …………………………….8分 (3)设“抽到10或11号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为 (x ,y ),所有基本事件有(1,1)、(1,2)、(1,3)、…(6,6),共36个.事件A 包含的 基本事件有(2,6)、(3,5)、(4,4)、(5,3)、(6,2) 、(3,6)、(4,5)、(5,4) 、(6,3)共9个,91()364P A ∴==. ………………….12分 18.(本小题满分12分)解:(1)设2()ln ()(0)f x xh x x x x==>,则312ln ()(0)x h x x x -'=>令()312ln 0xh x x -'==,解得:x = 当x 在(0,)+∞上变化时,()h x ',()h x 的变化情况如下表:由上表可知,当x =()h x 取得最大值12e由已知对任意的0x >,()()f x k h x x>=恒成立 所以,k 得取值范围是1(,)2e+∞. …………………………….6分(2)令()0g x =得:2()ln f x xk x x ==由(1)知,2ln ()x h x x=在1[e 上是增函数,在2]上是减函数.且21()e e h =-,12e h =,242(e )e h =当421e 2ek <≤时,函数()g x 在21[,e ]e 上有2个零点. ……………………………12分。

数学文卷·2015届甘肃省兰州一中高二下学期期末考试(2014.07)

数学文卷·2015届甘肃省兰州一中高二下学期期末考试(2014.07)

甘肃兰州一中2013—2014学年度下学期期末考试高二数学文试题【试卷综评】本套试题重点考查了几何证明、绝对值不等式、参数方程与极坐标这三部分内容,这是高考数学当中三选一的试题;考查相似三角形的判定和性质定理的应用及直角三角形的射影定理的应用;考查圆的切线定理和性质定理的应用;考查相交弦定理,切割线定理的应用;考查圆内接四边形的判定与性质定理.考查极坐标与直角坐标的互化以及有关圆的极坐标问题;考查直线、圆和圆锥曲线的参数方程以及简单的应用问题.紧紧抓住含绝对值不等式的解法,以及利用重要不等式对一些简单的不等式进行证明.命题方向:1.牢牢抓住圆的切线定理和性质定理,以及圆周角定理和弦切角等有关知识,重点掌握解决问题的基本方法;紧紧抓住相交弦定理、切割线定理以及圆内接四边形的判定与性质定理,重点以基本知识、基本方法为主,通过典型的题组训练,掌握解决问题的基本2.要抓住极坐标与直角坐标互化公式这个关键点,这样就可以把极坐标问题转化为直角坐标问题解决,同时复习以基础知识、基本方法为主;紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.3. 考查含绝对值不等式的解法,考查有关不等式的证明,利用不等式的性质求最值.这是一套考查基础知识较全面的、有价值的试题,值得学生认真的对待.一.选择题(共10题,每题3分)1.不等式22x x->-的解集是A.(,2)-∞ B.(,)-∞+∞C.(2,)+∞D.(,2)(2,)-∞⋃+∞【知识点】绝对值的意义;绝对值不等式的解法.【答案解析】A解析:解:若原不等式22x x->-成立,则满足20x-<,即2x<,故选A.【思路点拨】由绝对值的意义可知,需满足20x-<成立解之即可.2.已知点P的极坐标为(1,)π,则过点P且垂直于极轴的直线方程为A.1ρ=B.cosρθ=C.1cosρθ=-D.1cosρθ=【知识点】参数方程与普通方程之间的转化.【答案解析】C解析:解:点P的直角坐标是(-1,0),则过点P且垂直极轴所在直线的直线方程是x=-1,化为极坐标方程为ρcosθ=-1,即1cosρθ=-.故选C.【思路点拨】利用点P的直角坐标是(-1,0),过点P且垂直极轴所在直线的直线方程是x=-1,化为极坐标方程,得到答案3.参数方程2cos sin x y θθ=⎧⎨=⎩(θ为参数)和极坐标方程6cos ρθ=-所表示的图形分别是A .圆和直线B .直线和直线C .椭圆和直线D .椭圆和圆【知识点】参数方程、极坐标方程化为普通方程.【答案解析】D 解析 :解:参数方程2cos sin x y θθ=⎧⎨=⎩ (θ为参数)化为普通方程是2214x y +=,易知图形表示的为椭圆;极坐标方程6cos ρθ=-化为普通方程是()2239x y ++=,易知图形表示的为圆.故选D.【思路点拨】把参数方程、极坐标方程化为普通方程再判断所表示的图形即可. 4.如图在△ABC 中,MN ∥BC ,MC ,NB 交于点O ,则图中相似三角形的对数为 A .1 B .2 C .3 D .4【知识点】相似三角形的判定.【答案解析】B 解析 :解:在△ABC 中,∵MN ∥BC ,MC ,NB 交于点O ,∴图中相似三角形有:AMN ABC DD ∽,MON COB D D ∽, ∴图中相似三角形的对数为2对.故选:B .【思路点拨】利用相似三角形判定定理求解.5.经过点M (1,5)且倾斜角为3π的直线,以定点M 到动点P 的位移t 为参数的参数方程是A .⎪⎪⎩⎪⎪⎨⎧-=+=t y t x 235211 B .⎪⎪⎩⎪⎪⎨⎧+=-=t y t x 235211 C .⎪⎪⎩⎪⎪⎨⎧-=-=t y t x 235211 D .⎪⎪⎩⎪⎪⎨⎧+=+=t y t x 235211 【知识点】直线的参数方程【答案解析】D 解析 :解:根据直线参数方程的定义,得1cos35sin 3x t y t p p ì=+ïïíï=+ïî,即1125x t y ì=+ïïíï=ïî,故参数方程为:1125x ty ì=+ïïíï=ïî,故选D . 【思路点拨】根据直线参数方程的定义可求.6. 圆的极坐标方程分别是θρcos 2=和θρsin 4=,两个圆的圆心距离是 A .2 BC .5 D . 5【知识点】极坐标方程化为直角坐标方程的方法;圆的标准方程.【答案解析】C 解析 :解:圆θρcos 2=,化为直角坐标方程为()2211x y -+=,圆心为()1,0,圆θρsin 4=化为直角坐标方程为()2221x y +-=,圆心为()0,2,=故选:C .【思路点拨】把圆的极坐标方程化为直角坐标方程,可得圆的标准方程,求出圆心坐标,可得两个圆的圆心距离. 7.函数46y x x =-+-的最小值为A .2B C .4 D .6 【知识点】绝对值的和表示的几何意义. 【答案解析】A 解析 :解:函数46y x x =-+-表示的是数轴上的点x 到4,6两点的距离和,求函数的最小值即数轴上的点x 到4,6两点的距离和的最小值,故最小值是4,6两点的距离2,故选A.【思路点拨】利用绝对值的和表示的几何意义判断出最小值即可. 8.下列四个不等式:①12(0)x x x +≥≠;②(0)c c a b c a b <>>>;③(,,0)a m a a b m b m b +>>+,④222()22a b a b ++≥恒成立的是A .3B .2C .1D .0【知识点】基本不等式成立的条件;不等式的性质.【答案解析】B 解析 :解:对于①:当0x <时,很明显12(0)x x x +≥≠不成立;对于②:110,,a b c a b >>>\<由不等式的性质知c ca b <;对于③:a m ab m b +>+成立的条件是,,0a b m >且a b <;对于④:()20,a b - 即222a b ab + ,两边同时加上22a b +得:()222222a b a b ab +?+,两边同时除以4可得222()22a b a b ++≥;综上:四个命题恒成立的是②④;故选B.【思路点拨】利用基本不等式成立的条件以及不等式的性质对四个命题依次判断即可.9.若曲线 002sin 301sin 30x t y t ⎧=-⎪⎨=-+⎪⎩ (t 为参数)与曲线ρ=B ,C 两点,则||BC 的值为A .72 BC .27D .30 【知识点】参数方程、极坐标方程化为普通方程;勾股定理.【答案解析】D 解析 :解:曲线 002sin 301sin 30x t y t ⎧=-⎪⎨=-+⎪⎩ (t 为参数)化为普通方程是10x y +-=由几何意义知ρ=228x y +=;则圆心()0,0到直线10x y +-=的距离为2d =,所以||BC == D.【思路点拨】先把参数方程、极坐标方程化为普通方程,在弦心距、半弦长、半径组成的直角三角形中利用勾股定理解之即可.10.如图,过圆内接四边形ABCD 的顶点C 引圆的切线MN ,AB 为圆直径,若∠BCM =038,则∠ABC =A .038B .052 C .068 D .042【知识点】与圆有关的角大小的求法. 【答案解析】B 解析 :解:连结OC ,∵过圆内接四边形ABCD 的顶点C 引圆的切线MN ,AB 为圆直径,∠BCM =038,∴000OCB 903852?-=,∴0ABC OCB52??.故选:B .【思路点拨】解题时要注意切线性质的灵活运用,连结OC ,由切线性质得0OCB 52?,所以0ABC OCB 52??.二.填空题(共5题,每题4分)11.已知直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数),2,:12.x s l y s =⎧⎨=-⎩(s 为参数), 若12l l ⊥,则实数k = .【知识点】直线方程化为普通方程;两直线垂直的充要条件.【答案解析】-1解析 :解:直线112:2x t l y kt =-⎧⎨=+⎩(t 为参数)化为普通方程是422k k y x +=-+, 2,:12.x s l y s =⎧⎨=-⎩(s 为参数)化为普通方程是21y x =-+,因为12l l ⊥,所以212k 骣琪-?=-琪桫,解得1k =-,故答案为1-.【思路点拨】把两直线都转化为普通方程的点斜式找出各自的斜率,然后利用直线垂直的充要条件解之即可.12.在直角坐标系中,曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,曲线2C 的方程为y x b =+.若曲线1C 与2C 有两个不同的交点,则实数b 的取值范围是 .【知识点】极坐标和直角坐标的互化;圆的参数方程.【答案解析】1b ?解析 :解:曲线1C 的参数方程为],0[sin ,cos πθθθ∈⎩⎨⎧==y x ,化为普通方程()2210x y y += ,图象是圆心在原点半径为1的上半圆.由圆心到直线y x b =+的距离得:2bd =,得到b =,结合图象得:实数b的取值范围是1b ?故答案为:1b?【思路点拨】先消去参数θ得到曲线的普通方程,再利用直角坐标与极坐标间的关系,即利用222cos ,sin ,x y x y r q r q r ===+,进行代换即得曲线在的直角坐标方程.在直角坐标系中画出它们的图形,由图观察即可得实数b 的取值范围.13. 若r q p ,,为正实数,且1111p q r ++=,则p q r ++的最小值是 .【知识点】基本不等式的应用.【答案解析】9解析 :解:若r q p ,,为正实数,且1111p q r ++=,则()1113369q p p r r qp q r p q r p q r p q r p q r 骣琪++=++++=++++++?=琪桫,当且仅当3p q r ===时,等号成立,故p q r ++的最小值是9, 故答案为:9.【思路点拨】由题意得:()1113q p p r r qp q r p q r p q r p q r p q r 骣琪++=++++=++++++琪桫,利用基本不等式求得它的最小值.14. 如图,圆O 上一点C 在直径AB 上的射影为D .2AD =,AC = 则AB =____ __,CD =___ __.【知识点】圆周角定理;三角形相似的判定.【答案解析】10,4解析 :解:因为圆O 上一点C 在直径AB 上的射影为D ,所以,AC BC CD AB ^^,易知,ADC ACB D D ∽有AC ADAB AC =,代入2AD =,AC =解得10AB =;同理:ADC CDB DD ∽,解得4CD =,故答案为10,4. 【思路点拨】由已知条件判断出,ADC ACB DD ∽以及ADC CDB D D ∽,然后利用相似求出结果即可.15. 如图,AC 为⊙O 的直径,OB AC ⊥,弦BN 交AC 于点M .若OC ,1OM =,则MN 的长为 .【知识点】相交弦定理.【答案解析】1解析 :解:由题意得:1,CM CO OM =+1AM AO OM =-, 2224,2BM OB OM BM =+=\=,根据相交弦定理有,CM AMBM MN ? 代入数值可解得()()1112CM AMMN BM ×===,故答案为:1.【思路点拨】求出CM 、AM 、BM 的值再利用相交弦定理即可解出MN . 三.解答题(共5题,50分)16.(10分) 设函数()|21||3|f x x x =+--. (1)解不等式()0f x >;(2)已知关于x 的不等式3()a f x +<恒成立,求实数a 的取值范围.【知识点】带绝对值的函数;分类讨论思想;构造函数的思想;恒成立问题.【答案解析】(1)2(,4)(,)3-∞-⋃+∞(2)132a <-解析 :解:(1)∵14,21()|21||3|32,324,3x x f x x x x x x x ⎧--<-⎪⎪⎪=+--=--≤≤⎨⎪+>⎪⎪⎩,∵()0,f x >∴①当12x <-时,40x -->,∴4x <-;②当132x -≤≤时,320x ->,∴233x <≤;③当3x >时,40x +>,∴3x >.综上所述,不等式()0f x >的解集为:2(,4)(,)3-∞-⋃+∞…(5分)(2)由(1)知,14,21()32,324,3x x f x x x x x ⎧--<-⎪⎪⎪=--≤≤⎨⎪+>⎪⎪⎩,∴当12x <-时,742x -->-;当132x -≤≤时,73272x -≤-≤;当3x >时,47x +>,综上所述,7()2f x ≥-.∵关于x 的不等式3()a f x +<恒成立,∴()3a f x <-恒成立,令()()3g x f x =-,则13()2g x ≥-.∴132a <-…10 分【思路点拨】(1)通过分类讨论,去掉绝对值函数中的绝对值符号,转化为分段函数,即可求得不等式()0f x>的解集;(2)构造函数()()3g x f x=-,关于x的不等式3()a f x+<恒成立,即()3a f x<-恒成立,可得min()a g x<,即可.17.(10分)已知函数()3 f x x=-.(1)若不等式(1)()f x f x a-+<的解集为空集,求a的范围;(2)若1,1<<ba,且0≠a,求证:)()(abfaabf>.【知识点】绝对值三角不等式;用分析法证明绝对值不等式. 【答案解析】(1)1a≤(2)见解析解析:解:(1)由题意可得:()()(1)()43431f x f x x x x x-+=-+-≥-+-=,不等式(1)()f x f x a-+<的解集为空集,1a∴≤……………5分(2)要证)()(abfaabf>,只需证|||1|abab->-,只需证22)()1(abab->-而)1)(1(1)()1(22222222>--=+--=---bababaabab,从而原不等式成立.- ---------------------------------10分【思路点拨】(1)由条件利用绝对值三角不等式可得(1)()1f x f x-+≥,再根据不等式(1)()f x f x a-+<的解集为空集,可得a的范围.(2)寻找使)()(abfaabf>成立的充分条件为22)()1(abab->-,而由条件可得,22)()1(abab->-显然成立,从而原不等式成立.18. (10分)在平面直角坐标系xOy中,已知直线l的参数方程为12xy⎧=-⎪⎨⎪=+⎩,(t为参数),直线l与抛物线24(4x tty t=⎧⎨=⎩为参数)交于,A B两点,求线段AB的长.【知识点】直线与抛物线的位置关系;相交关系的应用;参数方程化成普通方程.【答案解析】解析:解:直线l的参数方程为12,2x t y ⎧=-⎪⎪⎨⎪=⎪⎩化为普通方程为3x y +=,抛物线方程:24y x =,·········· 5分 联立可得21090x x -+=, ∴交点(12)A ,,(96)B -,,故||AB =········· 10分【思路点拨】直线l 和抛物线的参数方程化为普通方程,联立,求出A ,B 的坐标,即可求线段AB 的长.19.(10分)[在直角坐标系xoy 中,曲线1C 的参数方程为⎩⎨⎧==ααsin cos 3y x ,(α为参数),以原点O 为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为24)4sin(=+πθρ.(1) 求曲线1C 的普通方程与曲线2C 的直角坐标方程; (2) 设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值,并求此时点P 的坐标.【知识点】参数方程、极坐标方程化为直角坐标方程的方法;点到直线的距离公式的应用;正弦函数的值域.【答案解析】(1)曲线1C 的普通方程为:1322=+y x ,曲线2C 的直角坐标方程为:08=-+y x (2)d 的最小值为23,此时点P 的坐标为)21,23(.解析 :解:(1)由曲线1C :⎩⎨⎧==ααsin cos 3y x 得⎪⎩⎪⎨⎧==ααsin cos 3y x即:曲线1C 的普通方程为:1322=+y x ...........2分由曲线2C :24)4sin(=+πθρ得:24)cos (sin 22=+θθρ即:曲线2C 的直角坐标方程为:08=-+y x ...........5分(2) 由(1)知椭圆1C 与直线2C 无公共点, 椭圆上的点)sin ,cos 3(ααP 到直线08=-+y x 的距离为28)3sin(228sin cos 3-+=-+=παααd 所以当1)3sin(=+πα时,d 的最小值为23,此时点P 的坐标为)21,23( ----10分【思路点拨】(1)由条件利用同角三角函数的基本关系把参数方程化为直角坐标方程,利用直角坐标和极坐标的互化公式cos ,sin ,x y ρθρθ==把极坐标方程化为直角坐标方程.(2)求得椭圆上的点)sin ,cos 3(ααP 到直线08=-+y x 的距离为d 的表达式,可得d 的最小值,以及此时的α的值,从而求得点P 的坐标.20.(10分)如图所示,已知PA 与⊙O 相切,A 为切点,过点P 的割线交圆于B 、C 两点,弦CD ∥AP ,AD 、BC 相交于点E ,F 为CE 上一点,且2DE EF EC =⋅.(1)求证:CE EB EF EP ⋅=⋅;(2)若:3:2CE EB =,3DE =,2EF =,求PA 的长.【知识点】相似三角形的判定和性质定理;平行线的性质;对顶角的性质;相交弦定理;切割线定理. 【答案解析】(1)见解析(2)4315=PA解析 :解:(I )∵EC EF DE ⋅=2,∴C EDF ∠=∠,又∵C P ∠=∠,∴P EDF ∠=∠,∴EDF ∆∽PAE ∆∴EP EF ED EA ⋅=⋅又∵EB CE ED EA ⋅=⋅,∴EP EF EB CE ⋅=⋅ ···5分(II )3=BE ,29=CE ,415=BPPA 是⊙O 的切线,PC PB PA ⋅=2,4315=PA ·······10分【思路点拨】(1)由已知EC EF DE ⋅=2可得到C EDF ∠=∠.由平行线的性质可得C P ∠=∠,于是得到P EDF ∠=∠,再利用对顶角的性质即可证明EDF ∆∽PAE ∆.于是得到EP EF ED EA ⋅=⋅.利用相交弦定理可得EB CE ED EA ⋅=⋅,进而证明结论;(2)利用(1)的结论可得415=BP ,再利用切割线定理可得PC PB PA ⋅=2,即可得出PA .。

甘肃省兰州高二上学期期末考试数学(文)试题 Word版含答案

甘肃省兰州高二上学期期末考试数学(文)试题 Word版含答案

兰州一中2016-2017-1学期期末考试试题高二数学(文)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷(选择题)一、选择题(本大题共10 小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将答案写在答题卡上...........) 1. 命题p : 对∀ x ∈R ,x 3-x 2+1≤0,则⌝p 是( ) A.不存在x ∈R ,x 3-x 2+1≤0 B. ∃ x ∈R ,x 3-x 2+1≥0C. ∃ x ∈R ,x 3-x 2+1>0D.对∀ x ∈R ,x 3-x 2+1>02. 抛物线y 2=2px 上横坐标为6的点到焦点的距离是10,则焦点到准线距离是( )A.4B.8C.16D.323. 下列求导数运算正确的是( ) A. 2'11)1(xx x +=+B. (log 2x )'=2ln 1x C. e xx 3'log 3)3(= D. x x x x sin 2)cos ('2-=4. 若a 、b 为实数, 且a +b =2, 则3a +3b 的最小值为( ) A .6B .18C .23D .2435. 椭圆24x +y 2=1的焦点为F 1、F 2,经过F 1作垂直于x 轴的直线与椭圆的一个交点为P ,则|2PF uuu r|等于( )A.B. C.72D.4 6.2x 2-5x -3<0的一个必要不充分条件是( ) A .-21<x <3 B .-21<x <0 C .-3<x <21 D .-1<x <67. 过双曲线221169x y -=左焦点F 1的弦AB 长为6,则2ABF D (F 2为右焦点)的周长是( ) A .28 B .22 C .14 D .128.已知双曲线22221x y a b -= (a >0,b >0)的一条渐近线平行于直线l :y =2x +10,双曲线的一个焦点在直线l 上,则双曲线的方程为( )A. 2233125100x y -=B. 221205x y -=C. 221520x y -=D. 2233110025x y -=9. 椭圆上22221(0)x y a b a b+=>>一点A 关于原点的对称点为B ,F 为其右焦点,若AF BF ⊥,设ABF α∠=,且[,]124ππα∈,则该椭圆离心率的取值范围为( )A.B.C. D.10. 已知点P 在曲线41x y e =+上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( )A .[0,4π)B .[4π,2π)C .(2π,34π]D .[34π,π)第Ⅱ卷(非选择题)二、选择题(本大题共4小题,每小题4分,共16分,将答案写在答题卡上..........) 11.一个物体运动的方程为s =at 3+3t 2+2t ,其中s 的单位是米,t 的单位是米/秒,若该物体在4秒时的瞬时速度是50米/秒,则a = .12. 已知y x ,满足43035251x y x y x -+≤⎧⎪+≤⎨⎪≥⎩,则z =2x -y 的最小值为 .13. 已知)2,4(P 是直线l 被椭圆193622=+y x 所截得的线段的中点,直线l 的方程为 .14.设双曲线2222b y a x -=1(0<b <a )的半焦距为c ,直线l 经过双曲线的右顶点和虚轴的上端点.已知原点到直线l 的距离为43c ,则双曲线的离心率为 .兰州一中2016-2017-1学期期末考试答题卡高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题(每小题4分,共16分)11.;12.;13.;14. .三、解答题(本大题共5 小题,共44分)15.(本小题8分)己知a,b,c都是正数,且a,b,c成等比数列.求证:a2+b2+c2>(a-b+c)2.16.(本小题8分)已知命题p:函数y=x2+mx+1在(-1,+∞)上单调递增,命题q:对函数y=-4x2+4(2- m)x-1, y≤0恒成立.若p∨q为真,p∧q为假,求m的取值范围.17.(本小题8分)已知曲线C1:y=ax2上点P处的切线为l1,曲线C2:y=bx3上点A(1,b)处的切线为l2,且l1⊥l2,垂足M(2,2),求a、b的值.18.(本小题10分)已知抛物线C:y2=2px(p>0)过点A(1,-2).(1) 求抛物线C的方程,并求其准线方程;(2)若平行于OA(O为坐标原点)的直线l与抛物线C相交于两点,且直线OA与l的距离等于,求直线l的方程.19. (本小题10分)已知定点1(F ,动点B 是圆222:(12F x y += (F 2为圆心)上一点,线段F 1B 的垂直平分线交BF 2于P . (1)求动点P 的轨迹方程;(2)若直线y =kx +2(k ≠0)与P 点的轨迹交于C 、D 两点.且以CD 为直径的圆过坐标原点,求k 的值.兰州一中2016-2017-1学期期末考试参考答案高二数学(文)一、选择题(本大题共10 小题,每小题4分,共40分)二、填空题(每小题4分,共16分)11.12; 12.-125; 13.082=-+y x ; 14三、解答题(本大题共5 小题,共44分) 15.(8分)证明:∵a ,b ,c 成等比数列,∴b 2=ac ∵a ,b ,c 都是正数,c a ca acb +<+≤=<∴20 ∴a +c >b , ……………………………4分∴a 2+b 2+c 2-(a -b +c )2=2(ab +bc -ca )=2(ab +bc - b 2)=2b (a +c -b )>0 ∴ a 2+b 2+c 2>(a -b +c )2. ……………………………8分 16.(8分)解:若函数y =x 2+mx ∴m ≥2,即p :m ≥2 ……………………………2分 若函数y =-4x 2+4(2- m )x -1≤0恒成立, 则△=16(m -2)2-16≤0,解得1≤m ≤3,即q :1≤m ≤3 ……………………………4分 ∵p ∨q 为真,p ∧q 为假,∴p 、q 一真一假当p真q假时,由213mm m≥⎧⎨<>⎩或解得:m>3 ……………………………6分当p 假q真时,由213mm<⎧⎨≤≤⎩解得:1≤m<2综上,m的取值范围是{m|m>3或1≤m<2} …………………………8分17.(8分)解:设P(t,at2),则l1斜率k1=2at∴l1:y-at2=2at(x-t)l2斜率k2=3bx2|x=1=3b∴l2:y-b=3b(x-1) …………………………3分∵l1与l2交于点M(2,2),∴222(2)23(21)at at tb b⎧-=-⎨-=-⎩∴242012at atb⎧-+=⎪⎨=⎪⎩①…………………………5分又l1⊥l2∴k1·k2=-1 ∴at=-13②…………………………7分由①②得t=10,a=-130…………………………8分18.(10分)解:(1)将(1,-2)代入y 2=2px ,得(-2)2=2p ·1, 所以p =2.故抛物线方程为y 2=4x ,准线为x =-1. ……………………………3分 (2)设直线l 的方程为y =-2x +t ,由⎩⎨⎧y =-2x +ty 2=4x得y 2+2y -2t =0. ……………………………5分 因为直线l 与抛物线C 有公共点,所以Δ=4+8t ≥0,解得t ≥-12. ……………………………7分由直线OA 与l 的距离d =55可得|t |5=15, 解得t =±1.因为-1∉[-12,+∞),1∈[-12,+∞),所以直线l 的程为2x +y -1=0. ……………………………10分19.(10分)解:(1)由题意1PF PB =且2PB PF +=,12PFPF ∴+=22> ∴P 点轨迹是以12,F F 为焦点的椭圆.设其标准方程为22221x y a b+=(0)a b>>2a ∴=即a =又∴=2c 2221b ac =-=,∴P 点轨迹方程为2213x y +=. ……………………………4分(2)假设存在这样的k ,由222330y kx x y =+⎧⎨+-=⎩得22(13)1290k x kx +++=.由22(12)36(13)0k k ∆=-+>得21k >.设1122(,),(,)C x y D x y ,则1221221213913k x x k x x k ⎧+=-⎪⎪+⎨⎪=⎪+⎩①, (6)分若以CD 为直径的圆过坐标原点,则有12120x x y y +=,而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++,∴212121212(1)2()40x x y y k x x k x x +=++++= ②,将①式代入②式整理可得2133k =,其值符合0∆>,故3k =± .………10分。

甘肃省兰州市第一中学2016-2017学年高二下学期期末考

甘肃省兰州市第一中学2016-2017学年高二下学期期末考

兰州一中2016-2017学年2学期期末考试试题高二数学(文)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,全卷满分150分,考试时间120分钟第I卷(共60分)一、选择题:本大题共12小题,每小题5分,共20分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数的实部与虚部之和为()A. B. C. D.【答案】B【解析】,复数的实部和虚部之和是,故选B.2. 已知等比数列满足,则()A. 64B. 81C. 128D. 243【答案】A【解析】试题分析:∵,∴,∴,∴.考点:等比数列的通项公式.3. 已知,则的最小值是 ( )A. 6B. 5C.D.【答案】C【解析】试题分析:,考点:基本不等式4. 图像上相邻的最高点和最低点之间的距离是()A. B. C. 2 D.【答案】A【解析】函数的周期,相邻最高点和最低点的横坐标间的距离为,根据勾股定理最高点和最低点之间的距离为,故选A.5. 参数方程(为参数)所表示的曲线是()A. 一条射线B. 两条射线C. 一条直线D. 两条直线【答案】B【解析】或,所以表示的曲线是两条射线.故选B.考点:参数方程.6. 如图所给的程序运行结果为,那么判断框中应填入的关于的条件是()A. ?B. ?C. ?D. ?【答案】D【解析】由题意可知输出结果为第1次循环,第2次循环,第3次循环,第4次循环,第5次循环,此时满足输出结果,退出循环,所以判断框中的条件为.故选7. 已知关于x的不等式ax2-x+b≥0的解集为[-2,1],则关于x的不等式bx2-x+a≤0的解集为()A. [-1,2]B. [-1,]C. [-,1]D. [-1,-]【答案】C【解析】由题意得为方程的根,且,所以,因此不等式bx2-x+a≤0为 ,选C.8. 圆的圆心极坐标是()A. B. C. D.【答案】A【解析】略9. 要得到函数的图象,只要将函数的图象()A. 向左平移单位B. 向右平移单位C. 向右平移单位D. 向左平移单位【答案】C【解析】分析:根据平移的性质,2x2x,根据平移法则“左加右减”可知向右平移个单位.解答:解:∵y=sin2x y=sin(2x)故选:C10. 若,,,,则()A. B. C. D.【答案】D【解析】因为,所以且,因为所以,又,所以,故故选D.点睛:本题主要考查了三角函数求值,属于基础题,在本题中,将所求的拆成是关键。

甘肃省兰州第一中学2015-2016届高二下学期期中考试数学(文)试题Word版含答案

甘肃省兰州第一中学2015-2016届高二下学期期中考试数学(文)试题Word版含答案

兰州一中2015-2016-2学期期中考试试题高二数学(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.答案写在答题卡上,交卷时只交答题卡.第Ⅰ卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项. 1.下面几种推理过程是演绎推理的是A.某校高二年级有10个班,1班62人,2班61人,3班62人,由此推测各班人数都超过60人B.根据三角形的性质,可以推测空间四面体的性质C .平行四边形对角线互相平分,矩形是平行四边形,所以矩形的对角线互相平分D .在数列}{n a 中,*1121,,2nn na a a n a +==∈N +,计算23,,a a 由此归纳出}{n a 的通项公式 2.用反证法证明命题:“三角形的内角中至少有一个不大于60度”时,假设正确的是A .假设三内角都不大于60度B .假设三内角都大于60度C .假设三内角至多有一个大于60度D .假设三内角至多有两个大于60度 3.右图是《集合》的知识结构图,如果要加入“交集”,则应该放在A . “集合的概念”的下位B . “集合的表示”的下位C . “基本关系”的下位D . “基本运算”的下位4.曲线123+-=x x y 在点)0,1(处的切线方程为A . 1y x =-B . 1y x =-+C . 22y x =-D . 22y x =-+ 5.下表为某班5位同学身高x (单位:cm )与体重y (单位kg )的数据,若两个变量间的回归直线方程为 1.16y x a =+,则a 的值为A .-121.04B .123.2C .21D .-45.126.已知三角形的三边分别为c b a ,,,内切圆的半径为r ,则三角形的面积为a s (21=r c b )++;四面体的四个面的面积分别为4321,,,s s s s ,内切球的半径为R ,类比三角形的面积可得四面体的体积为A . R s s s s V )(214321+++=B . R s s s s V )(314321+++= C . R s s s s V )(414321+++= D . R s s s s V )(4321+++=7.若正实数b a ,满足1=+b a ,则A .ba 11+有最大值4 B . ab 有最小值41C . b a +有最大值2D . 22b a +有最小值228.如果执行右面的程序框图,那么输出的S =A . 2450B . 2500C . 2550D . 26529.定义运算:()()x x y x y y x y ≥⎧⎪⊗=⎨<⎪⎩,例如344⊗=,则231()(cos sin )24a a -⊗+-的最大值为A . 4B . 3C . 2D . 110.若函数)(x f 在R 上可导,其导函数为)(′x f ,且函数)(′)-1(=x f x y 的图象如图所示,则下列结论中一定成立的是A . 函数)(x f 有极大值(2)f -,无极小值B . 函数)(x f 有极小值(1)f ,无极大值C . 函数)(x f 有极大值(2)f -和极小值)1(fD . 函数)(x f 有极大值)1(f 和极小值(2)f -兰州一中2015-2016-2学期期中考试高二数学(文科)答题卡一、 选择题(每小题4分,共40分)第Ⅱ卷二、填空题:本大题共4小题,每小题4分,共16分. 11.i 是虚数单位,239i 2i 3i 9i ++++= .(用i a b +的形式表示,a b ∈R ,)12.设1,0a b c >><给出下列三个结论: ①bca c >;②c cb a <;③)(log )(logc b c a a b ->-;④ln()ln()a c b c ->-. 其中所有正确命题的序号是 .13.已知函数2()ln f x x x ax =+-在(0,1)上是增函数,则a 的取值范围是 . 14.如图所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有),1(N n n n ∈>个点,每个图形总的点数记为n a ,则_____6=a ; 233445201520169999________a a a a a a a a ++++=.. . . . . . . . . . . . . . . . . .2=n 3=n 4=n三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.(本小题满分10分) 已知复数()()21213i i z i +--=-,若212z az b i ++=+,(1)求||z ; (2)求实数,a b 的值.16.(本小题满分10分)(1)解不等式255x x -+-<;(2)如果关于x 的不等式25x x a -+-<的解集不是空集,求实数a 的取值范围.17.(本小题满分12分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.已知在全部105人中随机抽取一人为优秀的概率为7. (1)请完成上面的列联表;(2)根据列联表的数据,若按97.5%的可靠性要求,能否认为“成绩与班级有关系”; (3)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到8或9号的概率.参考公式和数据: ))()()(()(22d b c a d c b a bc ad n K ++++-=18.(本小题满分12分) 已知函数ln ()xf x x=. (1)设实数k 使得()f x kx <恒成立,求k 的取值范围;(2)设()() ()g x f x kx k R =-∈,若函数()g x 在区间21[,e ]e上有两个零点,求k 的取值范围.兰州一中2015-2016-2学期期中考试高二数学(文科)参考答案一、选择题(每小题4分,共40分)二、填空题:(每小题4分,共16分)11. 45i + 12. ①②③ 13. (,-∞ 14. 15;20142015三、解答题:本大题共4小题,共44分.解答应写出文字说明,证明过程或演算步骤. 15. (本小题满分10分) 解:(1)22224133i i iz i i i -+-+===---,2=∴z (5)分(2)把z =1-i 代入212z az b i ++=+,即()()21112i a i b i -+-+=+,得()212a b a i i +-+=+所以1(2)2a b a +=⎧⎨-+=⎩, 解得4;5a b =-=所以实数a ,b 的值分别为-4,5 …………………………….10分16.(本小题满分10分)解:(1)由绝对值不等式的几何意义易得原不等式的解集为(1,6).…………………….5分 (2)令25y x x =-+-,而min 3y =,所以3a >. …………………….10分 17.(本小题满分12分) 解:(1) (4)分(2)根据列联表的数据,得到02.5109.675305055)45203010(10522>≈⨯⨯⨯⨯-⨯⨯=K , 因此有97.5%的把握认为成绩与班级有关系. …………………………….8分 (3)设“抽到10或11号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为 (x ,y ),所有基本事件有(1,1)、(1,2)、(1,3)、…(6,6),共36个.事件A 包含的 基本事件有(2,6)、(3,5)、(4,4)、(5,3)、(6,2) 、(3,6)、(4,5)、(5,4) 、(6,3)共9个,91()364P A ∴==. ………………….12分 18.(本小题满分12分) 解:(1)设2()ln ()(0)f x xh x x x x==>,则312ln ()(0)x h x x x -'=>令()312ln 0xh x x-'==,解得:x =当x 在(0,)+∞上变化时,()h x ',()h x 的变化情况如下表:由上表可知,当x =()h x 取得最大值12e由已知对任意的0x >,()()f x k h x x>=恒成立 所以,k 得取值范围是1(,)2e+∞. …………………………….6分(2)令()0g x =得:2()ln f x xk x x ==由(1)知,2ln ()x h x x=在1[e 上是增函数,在2]上是减函数.且21()e e h =-,12e h =,242(e )e h =当421e 2ek <≤时,函数()g x 在21[,e ]e 上有2个零点. ……………………………12分。

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(文科)(解析版)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(文科)(解析版)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(文科)一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线 D.一条直线和一条射线2.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.B.C.D.13.已知等比数列{a n}中,a5a7=6,a2+a10=5,则等于()A.B.C.D.或4.直线(t为参数)上与点A(﹣2,3)的距离等于的点的坐标是()A.(﹣4,5)B.(﹣3,4)C.(﹣3,4)或(﹣1,2)D.(﹣4,5)或(0,1)5.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④6.函数的值域是()A.[﹣,]B.[﹣,]C.[]D.[]7.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE•CB=AD•DB B.CE•CB=AD•AB C.AD•AB=CD2D.CE•EB=CD28.在△ABC中,AB=5,BC=7,AC=8,则的值为()A.79 B.69 C.5 D.﹣59.在极坐标系中,点P(2,)到直线ρsin(θ﹣)=1的距离等于()A.1 B.2 C.3 D.10.若不等式(x﹣1)2﹣log a x≤0在x∈(1,2)内恒成立,则a的取值范围是()A.B.C.1<a≤2 D.1<a<2二、填空题:本大题共4小题,每小题4分,共16分.11.在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=.12.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.13.若x2+4y2=5,则x+y的最小值为,最小值点为.14.如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为.三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.设不等式|2x﹣1|<1的解集为M.(Ⅰ)求集合M;(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.16.在直角坐标系xOy中,曲线C1的参数方程为(α为参数)M是C1上的动点,P点满足=2,P点的轨迹为曲线C2(Ⅰ)求C2的方程;(Ⅱ)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线θ=与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.17.已知曲线C: +=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值.18.已知函数f(x)=(1)求函数f(x)的单调递减区间;(2)若不等式f(x)≤x+c对一切x∈R恒成立,求c的取值范围.2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(文科)参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.1.极坐标方程(ρ﹣1)(θ﹣π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线 D.一条直线和一条射线【考点】简单曲线的极坐标方程.【分析】由题中条件:“(ρ﹣1)(θ﹣π)=0”得到两个因式分别等于零,结合极坐标的意义即可得到.【解答】解:方程(ρ﹣1)(θ﹣π)=0⇒ρ=1或θ=π,ρ=1是半径为1的圆,θ=π是一条射线.故选C.2.从甲乙丙三人中任选两名代表,甲被选中的概率为()A.B.C.D.1【考点】等可能事件的概率.【分析】从3个人中选出2个人,则每个人被选中的概率都是.【解答】解:从3个人中选出2个人当代表,则所有的选法共有3种,即:甲乙、甲丙、乙丙,其中含有甲的选法有两种,故甲被选中的概率是,故选C.3.已知等比数列{a n}中,a5a7=6,a2+a10=5,则等于()A.B.C.D.或【考点】等比数列的性质.【分析】首先根据等比数列的性质得出a5a7=a2a10根据题设可推断a2和a10是方程x2﹣5x+6=0的两根,求得a2和a10,进而求得q8代入答案可得.【解答】解:∵a2a10=6,a2+a10=5,∴a2和a10是方程x2﹣5x+6=0的两根,求得a2=2,a10=3或a2=3,a10=2∴q 8==或∴=q 8=或故选D4.直线(t 为参数)上与点A (﹣2,3)的距离等于的点的坐标是( ) A .(﹣4,5) B .(﹣3,4)C .(﹣3,4)或 (﹣1,2)D .(﹣4,5)或(0,1)【考点】参数方程化成普通方程.【分析】由题意可得: =,解得t 即可得出.【解答】解:由题意可得: =,化为:t 2=,解得t=.当t=时,x=﹣2﹣=﹣3,y=3+=4,可得点(﹣3,4);当t=﹣时,x=﹣2+=﹣1,y=31=2,可得点(﹣1,2).综上可得:满足条件的点的坐标为:(﹣3,4);或(﹣1,2).故选:C .5.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m ⊥α,n ∥α,则m ⊥n②若α∥β,β∥γ,m ⊥α,则m ⊥γ ③若m ∥α,n ∥α,则m ∥n ④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是( )A .①和②B .②和③C .③和④D .①和④【考点】空间中直线与平面之间的位置关系;命题的真假判断与应用;空间中直线与直线之间的位置关系;平面与平面之间的位置关系.【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案.【解答】解:对于①,因为n ∥α,所以经过n 作平面β,使β∩α=l ,可得n ∥l , 又因为m ⊥α,l ⊂α,所以m ⊥l ,结合n ∥l 得m ⊥n .由此可得①是真命题;对于②,因为α∥β且β∥γ,所以α∥γ,结合m ⊥α,可得m ⊥γ,故②是真命题; 对于③,设直线m 、n 是位于正方体上底面所在平面内的相交直线, 而平面α是正方体下底面所在的平面,则有m ∥α且n ∥α成立,但不能推出m ∥n ,故③不正确;对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面,则有α⊥γ且β⊥γ,但是α⊥β,推不出α∥β,故④不正确.综上所述,其中正确命题的序号是①和②故选:A6.函数的值域是()A.[﹣,]B.[﹣,]C.[]D.[]【考点】函数y=Asin(ωx+φ)的图象变换;函数的值域.【分析】先根据二倍角公式进行化简,再由两角和与差的正弦公式化为y═Asin(ωx+ρ)+b 的形式,进而根据正弦函数的性质可得到答案.【解答】解:,故选C.7.如图,∠ACB=90°,CD⊥AB于点D,以BD为直径的圆与BC交于点E.则()A.CE•CB=AD•DB B.CE•CB=AD•AB C.AD•AB=CD2D.CE•EB=CD2【考点】与圆有关的比例线段.【分析】连接DE,以BD为直径的圆与BC交于点E,DE⊥BE,由∠ACB=90°,CD⊥AB 于点D,△ACD∽△CBD,由此利用三角形相似和切割线定理,能够推导出CE•CB=AD•BD.【解答】解:连接DE,∵以BD为直径的圆与BC交于点E,∴DE⊥BE,∵∠ACB=90°,CD⊥AB于点D,∴△ACD∽△CBD,∴,∴CD2=AD•BD.∵CD2=CE•CB,∴CE•CB=AD•BD,故选A.8.在△ABC中,AB=5,BC=7,AC=8,则的值为()A.79 B.69 C.5 D.﹣5【考点】余弦定理;平面向量数量积的含义与物理意义.【分析】由三角形的三边,利用余弦定理求出cosB的值,然后利用平面向量的数量积的运算法则表示出所求向量的数量积,利用诱导公式化简后,将各自的值代入即可求出值.【解答】解:由AB=5,BC=7,AC=8,根据余弦定理得:cosB==,又||=5,||=7,则=||•||cos(π﹣B)=﹣||•||cosB=﹣5×7×=﹣5.故选D9.在极坐标系中,点P(2,)到直线ρsin(θ﹣)=1的距离等于()A.1 B.2 C.3 D.【考点】简单曲线的极坐标方程.【分析】利用,把极坐标分别化为直角坐标,再利用点到直线的距离公式即可得出.【解答】解:点P(2,)化为直角坐标P,即P.直线ρsin(θ﹣)=1展开:ρsinθ﹣=1,∴直角坐标方程为:y﹣x=2.∴点P到直线的距离d==+1.故选:D.10.若不等式(x﹣1)2﹣log a x≤0在x∈(1,2)内恒成立,则a的取值范围是()A.B.C.1<a≤2 D.1<a<2【考点】函数恒成立问题.【分析】根据二次函数和对数函数的图象和性质,由已知当x∈(1,2)时,不等式(x﹣1)2≤loga x恒成立,则y=log a x必为增函数,且当x=2时的函数值不小于1,由此构造关于a 的不等式,解不等式即可得到答案.【解答】解:∵函数y=(x﹣1)2在区间(1,2)上单调递增,∴当x∈(1,2)时,y=(x﹣1)2∈(0,1),若不等式(x﹣1)2≤log a x恒成立,则a>1且1≤log a2即a∈(1,2],故选:C.二、填空题:本大题共4小题,每小题4分,共16分.11.在极坐标系中,若过点A(3,0)且与极轴垂直的直线交曲线ρ=4cosθ于A、B两点,则|AB|=.【考点】简单曲线的极坐标方程.【分析】先将原极坐标方程ρ=4cosθ两边同乘以ρ后化成直角坐标方程,再利用直角坐标方程进行求解即得.【解答】解:将原极坐标方程ρ=4cosθ,化为:ρ2=4ρcosθ,化成直角坐标方程为:x2+y2﹣4x=0,即y2+(x﹣2)2=4.此圆与直线x=3相交于A,B两点,则|AB|=故填:.12.已知直线l的参数方程为(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0(ρ≥0,0≤θ<2π),则直线l与曲线C的公共点的极径ρ=.【考点】直线的参数方程.【分析】直线l的参数方程化为普通方程、曲线C的极坐标方程化为直角坐标方程,联立求出公共点的坐标,即可求出极径.【解答】解:直线l的参数方程为,普通方程为y=x+1,曲线C的极坐标方程为ρsin2θ﹣4cosθ=0的直角坐标方程为y2=4x,直线l与曲线C联立可得(x﹣1)2=0,∴x=1,y=2,∴直线l与曲线C的公共点的极径ρ==.故答案为:.13.若x2+4y2=5,则x+y的最小值为,最小值点为(﹣2,).【考点】二维形式的柯西不等式.【分析】把已知等式变形,然后利用三角换元,借助于辅助角公式化简求得答案.【解答】解:由x2+4y2=5,得,令,得,∴=(tanα=2,α为锐角).∴x+y的最小值为﹣,此时sin(θ+α)=﹣1,即θ+α=,k∈Z.,k∈Z.则x===.∴y=﹣,最小值点为().故答案为:;().14.如图,在△ABC中,∠C=90°,∠A=60°,AB=20,过C作△ABC的外接圆的切线CD,BD⊥CD,BD与外接圆交于点E,则DE的长为5.【考点】与圆有关的比例线段.【分析】利用直角△ABC的边角关系即可得出BC,利用弦切角定理可得∠BCD=∠A=60°.利用直角△BCD的边角关系即可得出CD,BD.再利用切割线定理可得CD2=DE•DB,即可得出DE.【解答】解:在△ABC中,∠C=90°,∠A=60°,AB=20,∴BC=AB•sin60°=.∵CD是此圆的切线,∴∠BCD=∠A=60°.在Rt△BCD中,CD=BC•cos60°=,BD=BC•sin60°=15.由切割线定理可得CD2=DE•DB,∴,解得DE=5.故答案为5.三、解答题:本大题共4小题,共44分.解答应写出文字说明、证明过程或演算步骤. 15.设不等式|2x﹣1|<1的解集为M.(Ⅰ)求集合M;(Ⅱ)若a,b∈M,试比较ab+1与a+b的大小.【考点】绝对值不等式;不等式比较大小.【分析】(Ⅰ)由|2x﹣1|<1 可得﹣1<2x﹣1<1,求出x 的范围,即可得到集合M.(Ⅱ)由(Ⅰ)及a,b∈M知0<a<1,0<b<1,根据(ab+1)﹣(a+b)=(a﹣1)(b﹣1)>0,得到ab+1与a+b的大小.【解答】解:(Ⅰ)由|2x﹣1|<1 可得﹣1<2x﹣1<1,∴0<x<1,集合M=(0,1).(Ⅱ)由(Ⅰ)及a ,b ∈M 知 0<a <1,0<b <1, 所以(ab +1)﹣(a +b )=(a ﹣1)(b ﹣1)>0, 故 ab +1>a +b .16.在直角坐标系xOy 中,曲线C 1的参数方程为(α为参数)M 是C 1上的动点,P 点满足=2,P 点的轨迹为曲线C 2 (Ⅰ)求C 2的方程;(Ⅱ)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |. 【考点】简单曲线的极坐标方程;轨迹方程.【分析】(I )先设出点P 的坐标,然后根据点P 满足的条件代入曲线C 1的方程即可求出曲线C 2的方程;(II )根据(I )将求出曲线C 1的极坐标方程,分别求出射线θ=与C 1的交点A 的极径为ρ1,以及射线θ=与C 2的交点B 的极径为ρ2,最后根据|AB |=|ρ2﹣ρ1|求出所求.【解答】解:(I )设P (x ,y ),则由条件知M (,).由于M 点在C 1上,所以即从而C 2的参数方程为(α为参数)(Ⅱ)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ.射线θ=与C 1的交点A 的极径为ρ1=4sin ,射线θ=与C 2的交点B 的极径为ρ2=8sin.所以|AB |=|ρ2﹣ρ1|=.17.已知曲线C :+=1,直线l :(t 为参数)(Ⅰ)写出曲线C 的参数方程,直线l 的普通方程.(Ⅱ)过曲线C 上任意一点P 作与l 夹角为30°的直线,交l 于点A ,求|PA |的最大值与最小值.【考点】参数方程化成普通方程;直线与圆锥曲线的关系. 【分析】(Ⅰ)联想三角函数的平方关系可取x=2cos θ、y=3sin θ得曲线C 的参数方程,直接消掉参数t 得直线l 的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距离公式得到P到直线l的距离,除以sin30°进一步得到|PA|,化积后由三角函数的范围求得|PA|的最大值与最小值.【解答】解:(Ⅰ)对于曲线C: +=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,|PA|取得最大值,最大值为.当sin(θ+α)=1时,|PA|取得最小值,最小值为.18.已知函数f(x)=(1)求函数f(x)的单调递减区间;(2)若不等式f(x)≤x+c对一切x∈R恒成立,求c的取值范围.【考点】函数恒成立问题;分段函数的应用.【分析】(1)求函数f(x)的单调递减区间;(2)若不等式f(x)≤x+c对一切x∈R恒成立,求c的取值范围【解答】解:(1)当x≤1时,f′(x)=3x2﹣2x,由f′(x)<0解得0<x<,此时函数单调递减,当x>1时,函数f(x)=lnx单调递增,不满足条件,故函数f(x)的单调递减区间(0,);(2)设g(x)=f(x)﹣x=,当x≤1时,g′(x)=3x2﹣2x﹣1,由g′(x)<0解得﹣<x<1,此时函数单调递减,由g′(x)>0解得x<﹣或x>1,此时函数单调递增,当x>1时,g(x)=lnx﹣1单调递增,所以函数g(x)的单调递增区间为,单调递减区间为.所以函数,要使不等式f(x)≤x+c对一切x∈R恒成立,即g(x)≤c对一切x∈R恒成立,所以.。

甘肃省兰州第一中学2015-2016学年高二上学期期末考试数学(文)试题 含答案

甘肃省兰州第一中学2015-2016学年高二上学期期末考试数学(文)试题 含答案

兰州一中2015-2016—1学期高二年级期末考试数学试卷(文科)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分100分,考试时间100分钟.请将所有试题的答案写在答题卡上,交卷时只交答题卡。

第Ⅰ卷(选择题,共48分)一、选择题(本大题共10小题,每小题4分,共48分) 1.下列说法正确的是( ) A .命题“若21x >,则1x >”的否命题为“若21x >,则1x ≤”B .命题“201x,x ∃∈>R ”的否定是“21x ,x ∀∈>R ”C .命题“若x y =,则cos cos x y =”的逆否命题为假命题D .命题“若x y =,则cos cos x y =”的逆命题为假命题 2。

设函数()f x 在1x =处可导,则(1)(1)lim2x f x f x∆→+∆--∆等于( )A .(1)f ' B.1(1)2f '- C .2(1)f '- D .(1)f '-3。

已知命题p :若x y >,则x y -<-;命题q :若x y >,则22xy >.在命题①p q ∧; ②p q ∨;③()p q ⌝∧;④()p q ⌝∨中,真命题是( )A .①③B .①④C .②③D .②④4。

已知函数()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若()13f '= ,则a的值为( )A .4 B. 3 C .2 D .1 5。

“0a ≤"是“函数()(1)f x ax x=-在区间(0,)+∞内单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6。

已知函数3()1f x ax x =++的图象在点(1,(1))f 的切线过点(2,7),则a 的值为( )A .1 B. 2 C .3 D .4 7. 过双曲线2213y x -=的右焦点且与x 轴垂直的直线,交该双曲线的两条渐近线于A,B两点,则AB =( )AB 。

甘肃省兰州一中高二数学下学期期末试卷理(含解析)

甘肃省兰州一中高二数学下学期期末试卷理(含解析)

2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.回归分析中,相关指数R2的值越大,说明残差平方和()A.越小 B.越大C.可能大也可能小D.以上都不对2.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960 B.0.864 C.0.720 D.0.5763.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%4.在极坐标系中,曲线关于()A.直线θ=对称B.直线θ=对称C.点对称D.极点对称5.若直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,则实数k+m=()A.﹣1 B.1 C.0 D.26.设(5x﹣)n的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N=56,则展开式中常数项为()A.5 B.15 C.10 D.207.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.68.函数的图象沿x轴向右平移a个单位(a>0),所得图象关于y轴对称,则a的最小值为()A.πB. C.D.9.已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.2110.两球O1和O2在棱长为1的正方体ABCD﹣A1B1C1D1的内部,且互相外切,若球O1与过点A 的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2﹣)πB.4(2﹣)πC.3(2+)π D.4(2+)π二、填空题(本大题共5小题,每小题4分,共20分)11.已知随机变量2ξ+η=8,若ξ~B(10,0.4),则E(η)= ,D(η).12.(选做题)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:,若曲线C1与曲线C2交于A、B两点则AB= .13.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是,两次闭合后都出现红灯闪烁的概率为,则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是.14.若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则+++…+= .15.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有个.三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X 的分布列,期望E(X)和方程D(X)附:K2=n=a+b+c+dP(K2≥k0)0.100 0.050 0.025 0.010 0.001k0 2.706 3.841 5.024 6.635 10.828 17.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<80 80≤X≤120 X>120发电机最多可运行台数 1 2 3若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?18.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.46 .6 5636.8289.8 1.6 1 469 108.8表中w i=i, =w i.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y﹣x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:.19.已知函数f(x)=x(a+lnx)的图象在点(e,f(e))(e为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a的值;(Ⅱ)若k为整数时,k(x﹣1)<f(x)对任意x>1恒成立,求k的最大值.2015-2016学年甘肃省兰州一中高二(下)期末数学试卷(理科)参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.回归分析中,相关指数R2的值越大,说明残差平方和()A.越小 B.越大C.可能大也可能小D.以上都不对【考点】相关系数.【分析】根据回归分析的公式和性质,可以用来衡量模拟效果好坏的几个量分别是相关指数,残差平方和和相关系数,只有残差平方和越小越好,其他的都是越大越好.【解答】解:用系数R2的值判断模型的拟合效果,R2越大,模型的拟合效果越好,而用相关系数r的值判断模型的拟合效果时,|r|越大,模型的拟合效果越好,由此可知相关指数R2的值越大,说明残差平方和越小.故选A2.如图,用K、A1、A2三类不同的元件连接成一个系统.当K正常工作且A1、A2至少有一个正常工作时,系统正常工作,已知K、A1、A2正常工作的概率依次是0.9、0.8、0.8,则系统正常工作的概率为()A.0.960 B.0.864 C.0.720 D.0.576【考点】相互独立事件的概率乘法公式.【分析】首先记K、A1、A2正常工作分别为事件A、B、C,易得当K正常工作与A1、A2至少有一个正常工作为相互独立事件,而“A1、A2至少有一个正常工作”与“A1、A2都不正常工作”为对立事件,易得A1、A2至少有一个正常工作的概率;由相互独立事件的概率公式,计算可得答案.【解答】解:根据题意,记K、A1、A2正常工作分别为事件A、B、C;则P(A)=0.9;A1、A2至少有一个正常工作的概率为1﹣P()P()=1﹣0.2×0.2=0.96;则系统正常工作的概率为0.9×0.96=0.864;故选B.3.已知某批零件的长度误差(单位:毫米)服从正态分布N(0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为()(附:若随机变量ξ服从正态分布N(μ,σ2),则P(μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%)A.4.56% B.13.59% C.27.18% D.31.74%【考点】正态分布曲线的特点及曲线所表示的意义.【分析】由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,可得P(3<ξ<6)=(95.44%﹣68.26%),即可得出结论.【解答】解:由题意P(﹣3<ξ<3)=68.26%,P(﹣6<ξ<6)=95.44%,所以P(3<ξ<6)=(95.44%﹣68.26%)=13.59%.故选:B.4.在极坐标系中,曲线关于()A.直线θ=对称B.直线θ=对称C.点对称D.极点对称【考点】简单曲线的极坐标方程.【分析】化极坐标方程为普通方程,求出圆的圆心的极坐标,即可得到象限.【解答】解:曲线,可得=2sinθ﹣2cosθ,可得ρ2=2ρsinθ﹣2ρcosθ,它的普通方程为:x2+y2=2y﹣2.圆的圆心坐标(,1),经过圆的圆心与原点的直线的倾斜角为:,在极坐标系中,曲线关于直线θ=对称.故选:B.5.若直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,则实数k+m=()A.﹣1 B.1 C.0 D.2【考点】直线和圆的方程的应用.【分析】由题意,得直线x+2y=0是线段MN的中垂线,利用垂直直线的斜率关系算出k=2,得出圆方程为x2+y2+2x+my﹣4=0,将圆心坐标代入x+2y=0,解得m=﹣1,可得本题答案.【解答】解:由题意,可得∵直线y=kx+1与圆x2+y2+kx+my﹣4=0交于M,N两点,且M,N关于直线x+2y=0对称,∴直线x+2y=0是线段MN的中垂线,得k•(﹣)=﹣1,解之得k=2,所以圆方程为x2+y2+2x+my﹣4=0,圆心坐标为,将代入x+2y=0,解得m=﹣1,得k+m=1.故选:B6.设(5x﹣)n的展开式的各项系数之和为M,二项式系数之和为N,若M﹣N=56,则展开式中常数项为()A.5 B.15 C.10 D.20【考点】二项式系数的性质.【分析】通过给二项式中的x赋值1求出展开式的各项系数和;利用二项式系数和公式求出二项式系数和,代入M﹣N=56求出n;利用二项展开式的通项公式求出二项展开式的通项,令x的指数为0,求出常数项.【解答】解:令二项式中的x为1得到展开式的各项系数和为M=4n,二项式系数和为N=2n,由M﹣N=56,得n=3,∴其展开式的通项为令3﹣=0得r=2代入通项解得常数项为15.故选B.7.设等差数列{a n}的前n项和为S n,若S m﹣1=﹣2,S m=0,S m+1=3,则m=()A.3 B.4 C.5 D.6【考点】等差数列的性质;等差数列的前n项和.【分析】由a n与S n的关系可求得a m+1与a m,进而得到公差d,由前n项和公式及S m=0可求得a1,再由通项公式及a m=2可得m值.【解答】解:a m=S m﹣S m﹣1=2,a m+1=S m+1﹣S m=3,所以公差d=a m+1﹣a m=1,S m==0,得a1=﹣2,所以a m=﹣2+(m﹣1)•1=2,解得m=5,故选C.8.函数的图象沿x轴向右平移a个单位(a>0),所得图象关于y轴对称,则a的最小值为()A.πB. C.D.【考点】二倍角的余弦;函数y=Asin(ωx+φ)的图象变换.【分析】先利用二倍角公式,诱导公式,化简函数,再利用图象关于y轴对称,即可求a的最小值.【解答】解:函数==﹣,沿x轴向右平移a个单位(a>0),可得y=,∵图象关于y轴对称,∴∴sin2xcos2a=0∴2a=kπ(k∈Z)∵a>0∴a的最小值为.故选D.9.已知,若P点是△ABC所在平面内一点,且,则的最大值等于()A.13 B.15 C.19 D.21【考点】平面向量数量积的运算.【分析】建系,由向量式的几何意义易得P的坐标,可化=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得.【解答】解:由题意建立如图所示的坐标系,可得A(0,0),B(,0),C(0,t),∵,∴P(1,4),∴=(﹣1,﹣4),=(﹣1,t﹣4),∴=﹣(﹣1)﹣4(t﹣4)=17﹣(+4t),由基本不等式可得+4t≥2=4,∴17﹣(+4t)≤17﹣4=13,当且仅当=4t即t=时取等号,∴的最大值为13,故选:A.10.两球O1和O2在棱长为1的正方体ABCD﹣A1B1C1D1的内部,且互相外切,若球O1与过点A 的正方体的三个面相切,球O2与过点C1的正方体的三个面相切,则球O1和O2的表面积之和的最小值为()A.3(2﹣)πB.4(2﹣)πC.3(2+)π D.4(2+)π【考点】球内接多面体.【分析】设出球O1与球O2的半径,求出面积之和,利用相切关系得到半径与正方体的对角线的关系,通过基本不等式,从而得出面积的最小值.【解答】解:∵AO1=R1,C1O2=R2,O1O2=R1+R2,∴(+1)(R1+R2)=,R1+R2=,球O1和O2的表面积之和为4π(R12+R22)≥4π•2()2=2π(R1+R2)2=3(2﹣)π.故选:A.二、填空题(本大题共5小题,每小题4分,共20分)11.已知随机变量2ξ+η=8,若ξ~B(10,0.4),则E(η)= 0 ,D(η)9.6 .【考点】二项分布与n次独立重复试验的模型.【分析】根据变量ξ~B(10,0.4)可以根据公式做出这组变量的均值与方差,随机变量2ξ+η=8,知道变量η也符合二项分布,故可得结论.【解答】解:∵ξ~B(10,0.4),∴Eξ=10×0.4=4,Dξ=10×0.4×0.6=2.4,∵2ξ+η=8,∴Eη=E(8﹣2ξ)=8﹣8=0,Dη=D(8﹣2ξ)=4×2.4=9.6,故答案为:0; 9.6.12.(选做题)在极坐标系中,曲线C1:ρ=2cosθ,曲线C2:,若曲线C1与曲线C2交于A、B两点则AB= .【考点】简单曲线的极坐标方程.【分析】分别将曲线C1与曲线C2的极坐标方程化成普通方程,得到曲线C1是以(1,0)为圆心、半径为1的圆,而曲线C2是经过原点的直线y=x.由直线与圆相交,利用点到直线的距离公式并结合垂径定理,可以算出AB的长.【解答】解:对于曲线C1:ρ=2cosθ,两边都乘以ρ得:ρ2=2ρcosθ,∵ρ2=x2+y2,且ρcosθ=x∴曲线C的普通方程是x2+y2﹣2x=0,表示以(1,0)为圆心、半径为1的圆;对于曲线C2:,可得它是经过原点且倾斜角为的直线,∴曲线C2的普通方程为y=x,即x﹣y=0因此点(1,0)到直线x﹣y=0的距离为:d==设AB长为m,则有(m)2+d2=r2,即m2+=1,解之得m=(舍负)故答案为:13.某种电路开关闭合后,会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯闪烁的概率是,两次闭合后都出现红灯闪烁的概率为,则在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是.【考点】古典概型及其概率计算公式.【分析】设事件A表示开关第一次闭合后出现红灯闪烁,B表示开关第二次闭合后出现红灯闪烁,则P(A)=,P(AB)=,由此能求出在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率.【解答】解:设事件A表示开关第一次闭合后出现红灯闪烁,B表示开关第二次闭合后出现红灯闪烁,则P(A)=,P(AB)=,∴在第一次闭合后出现红灯闪烁的条件下,第二次出现红灯闪烁的概率是:P(B|A)===.故答案为:.14.若(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R),则+++…+= ﹣1 .【考点】二项式定理的应用.【分析】在所给的等式中,令x=0,可得a0=1;再令x=,可得a0++++…+=0,从而求得要求式子的值.【解答】解:在(1﹣2x)2016=a0+a1x+a2x2+…+a2016x2016(x∈R)中,令x=0,可得a0=1,令x=,可得a0++++…+=0,故, +++…+=﹣1,故答案为:﹣1.15.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数共有18 个.【考点】排列、组合及简单计数问题.【分析】本题需要分步计数,由题意知1,2,3中必有某一个数字重复使用2次.首先确定谁被使用2次,再把这2个相等的数放在四位数不相邻的两个位置上,最后将余下的2个数放在四位数余下的2个位置上,相乘得结果.【解答】解:由题意知,本题需要分步计数1,2,3中必有某一个数字重复使用2次.第一步确定谁被使用2次,有3种方法;第二步把这2个相等的数放在四位数不相邻的两个位置上,也有3种方法;第三步将余下的2个数放在四位数余下的2个位置上,有2种方法.故共可组成3×3×2=18个不同的四位数.故答案为:18三、解答题(本大题共4小题,每小题10分,共40分.解答应写出文字说明、证明过程或演算步骤)16.4月23人是“世界读书日”,某中学在此期间开展了一系列的读书教育活动,为了解本校学生课外阅读情况,学校随机抽取了100名学生对其课外阅读时间进行调查,下面是根据调查结果绘制的学生日均课外阅读时间(单位:分钟)的频率分布直方图,若将日均课外阅读时间不低于60分钟的学生称为“读书谜”,低于60分钟的学生称为“非读书谜”(1)根据已知条件完成下面2×2的列联表,并据此判断是否有99%的把握认为“读书谜”与性别有关?非读书迷读书迷合计男15女45合计(2)将频率视为概率,现在从该校大量学生中,用随机抽样的方法每次抽取1人,共抽取3次,记被抽取的3人中的“读书谜”的人数为X,若每次抽取的结果是相互独立的,求X 的分布列,期望E(X)和方程D(X)附:K2=n=a+b+c+dP(K2≥k0)0.100 0.050 0.025 0.010 0.001k0 2.706 3.841 5.024 6.635 10.828【考点】离散型随机变量的期望与方差;独立性检验.【分析】(1)利用频率分布直方图,直接计算填写表格,然后利用个数求解K2,判断即可.(2)求出概率的分布列,然后利用超几何分布求解期望与方差即可.【解答】解:(1)完成下面的2×2列联表如下非读书迷读书迷合计男40 15 55女20 25 45合计60 40 100…≈8.249VB8.249>6.635,故有99%的把握认为“读书迷”与性别有关…(2)视频率为概率.则从该校学生中任意抽取1名学生恰为读书迷的概率为.由题意可知X~B(3,),P(x=i)=(i=0,1,2,3)…从而分布列为X 0 1 2 3P.…E(x)=np=,D(x)=np(1﹣p)=…17.计划在某水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量X(年入流量:一年内上游来水与库区降水之和.单位:亿立方米)都在40以上,其中,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.(Ⅰ)求未来4年中,至多有1年的年入流量超过120的概率;(Ⅱ)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量X限制,并有如下关系:年入流量X 40<X<80 80≤X≤120 X>120发电机最多可运行台数 1 2 3若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)先求出年入流量X的概率,根据二项分布,求出未来4年中,至少有1年的年入流量超过120的概率;(Ⅱ)分三种情况进行讨论,分别求出一台,两台,三台的数学期望,比较即可得到.【解答】解:(Ⅰ)依题意,p1=P(40<X<80)=,,,由二项分布,未来4年中,至多有1年的年入流量超过120的概率为=(Ⅱ)记水电站的总利润为Y(单位,万元)(1)安装1台发电机的情形,由于水库年入流总量大于40,故一台发电机运行的概率为1,对应的年利润Y=5000,E(Y)=5000×1=5000,(2)安装2台发电机的情形,依题意,当 40<X<80时,一台发电机运行,此时Y=5000﹣800=4200,因此P(Y=4200)=P(40<X<80)=p1=,当X≥80时,两台发电机运行,此时Y=5000×2=10000,因此,P(Y=10000)=P(X≥80)=P2+P3=0.8,由此得Y的分布列如下Y 4200 10000P 0.2 0.8所以E(Y)=4200×0.2+10000×0.8=8840.(3)安装3台发电机的情形,依题意,当 40<X<80时,一台发电机运行,此时Y=5000﹣1600=3400,因此P(Y=3400)=P(40<X<80)=p1=0.2,当80≤X≤120时,两台发电机运行,此时Y=5000×2﹣800=9200,因此,P(Y=9200)=P(80≤X≤120)=p2=0.7,当X>120时,三台发电机运行,此时Y=5000×3=15000,因此,P(Y=15000)=P(X>120)=p3=0.1,由此得Y的分布列如下Y 3400 9200 15000P 0.2 0.7 0.1所以E(Y)=3400×0.2+9200×0.7+15000×0.1=8620.综上,欲使水电站年总利润的均值达到最大,应安装发电机2台.18.某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费x i和年销售量y i(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.46 .6 5636.8289.8 1.6 1 469 108.8表中w i=i, =w i.(1)根据散点图判断,y=a+bx与y=c+d哪一个适宜作为年销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x,y的关系为z=0.2y﹣x.根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?附:对于一组数据(u1,v1),(u2,v2),…,(u n,v n),其回归直线v=α+βu的斜率和截距的最小二乘估计分别为:.【考点】线性回归方程.【分析】(1)根据散点图,即可判断出,(2)先建立中间量w=,建立y关于w的线性回归方程,根据公式求出w,问题得以解决;(3)①年宣传费x=49时,代入到回归方程,计算即可,②求出预报值得方程,根据函数的性质,即可求出.【解答】解:(1)由散点图可以判断,y=c+d适宜作为年销售量y关于年宣传费x的回归方程类型.(2)令w=,先建立y关于w的线性回归方程.由于 d==68,c=﹣d=100.6,所以y关于w的线性回归方程为y=100.6+68w,因此y关于w的线性回归方程为y=100.6+68.(3)①由(2)知,当x=49时,年销量y的预报值y=100.6+68•=576.6,年利润z的预报值z=576.6×0.2﹣49=66.32.②根据(2)的结果知,年利润z的预报值z=0.2﹣x=﹣x+13.6+20.12.所以当==6.8,即x=46.24时,z取得最大值.故年宣传费为46.24千元时,年利润的预报值最大.19.已知函数f(x)=x(a+lnx)的图象在点(e,f(e))(e为自然对数的底数)处的切线的斜率为3.(Ⅰ)求实数a的值;(Ⅱ)若k为整数时,k(x﹣1)<f(x)对任意x>1恒成立,求k的最大值.【考点】利用导数求闭区间上函数的最值;利用导数研究曲线上某点切线方程.【分析】(Ⅰ)求导数,利用函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3,可得f′(e)=3,从而可求实数a的值;(Ⅱ)构造g(x)==,求导函数,令h(x)=x﹣lnx﹣2(x>1),确定h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4),进而可得g(x)==在(1,x0)上单调递减,在(x0,+∞)上单调递增,求出最小值,即可得解.【解答】解:(Ⅰ)求导数可得f′(x)=a+lnx+1,∵函数f(x)=ax+xlnx的图象在点x=e(e为自然对数的底数)处的切线斜率为3,∴f′(e)=3,∴a+lne+1=3,∴a=1(Ⅱ)k(x﹣1)<f(x)对任意x>1恒成立,∴k<对任意x>1恒成立,由(1)知,f(x)=x+xlnx,令g(x)==,则g′(x)=,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣令h(x)=x﹣lnx﹣2(x>1),则h′(x)=>0,所以函数h(x)在(1,+∞)上单调递增.…因为h(3)=1﹣ln3<0,h(4)=2﹣2ln2>0,所以方程h(x)=0在(1,+∞)上存在唯一实根x0,且满足x0∈(3,4).当1<x<x0时,h(x)<0,即g'(x)<0,当x>x0时,h(x)>0,即g'(x)>0,…所以函数g(x)==在(1,x0)上单调递减,在(x0,+∞)上单调递增.所以g(x)min=g(x0)=x0.因为x0>3,所以x>1时,k<3恒成立故整数k的最大值是3.…。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

兰州一中2015-2016-1学期高二年级期末考试
数学试卷(文科)
说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分100分,考试时间100分钟。

请将所有试题的答案写在答题卡上,交卷时只交答题卡。

第Ⅰ卷(选择题,共48分)
一、选择题(本大题共10小题,每小题4分,共48分)
1. 下列说法正确的是 ( ) A .命题“若2
1x >,则1x >”的否命题为“若2
1x >,则1x ≤”
B .命题“2
001x ,x ∃∈>R ”的否定是“2
1x ,x ∀∈>R ”
C .命题“若x y =,则cos cos x y =”的逆否命题为假命题
D .命题“若x y =,则cos cos x y =”的逆命题为假命题 2. 设函数()f x 在1x =处可导,则0
(1)(1)
lim 2x f x f x
∆→+∆--∆等于 ( )
A .(1)f ' B. 1
(1)2
f '-
C .2(1)f '-
D .(1)f '- 3. 已知命题p :若x y >,则x y -<-;命题q :若x y >,则22x y >.在命题①p q ∧; ②p q ∨;③ ()p q ⌝∧;④()p q ⌝∨中,真命题是
( )
A .①③
B .①④
C .②③
D .②④
4. 已知函数
()()ln ,0,f x ax x x =∈+∞ ,其中a 为实数,()f x '为()f x 的导函数,若
()13f '= ,则a 的值为 ( )
A .4 B. 3 C .2 D .1
5. “0a ≤”是“函数()(1)f x ax x =-在区间(0,)+∞内单调递增”的 ( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件
6. 已知函数3
()1f x ax x =++的图象在点(1,(1))f 的切线过点(2,7),则a 的值为( )
A .1 B. 2 C .3 D .4
7. 过双曲线2
2
13
y x -=的右焦点且与x 轴垂直的直线,
交该双曲线的两条渐近线于A ,B 两点,则AB = ( )
A B. C .6 D . 8. 已知1F 、2F 为双曲线
C :222x y -=的左、右焦点,点P 在C 上,12||2||PF PF =,则12cos F PF ∠为 ( )
A.
14 B. 35 C. 34 D. 4
5
9. 若动圆C 过定点(4,0)A ,且在y 轴上截得弦MN 的长为8,则动圆圆心C 的轨迹方程
是 ( )
A.
221412
x y -= B. 22
1(2)412x y x -=> C. 28y x = D. 28(0)y x x =≠
10. 过点(1,1)M 作斜率为12-的直线与椭圆C : 22
221(0)x y a b a b
+=>>相交于A ,B 两
点,若M 是线段AB 的中点,则椭圆C 的离心率等于 ( )
A.
12 B. 2 C. D. 23 11. 设曲线1
1
x y x +=
-在点(3,2)处的切线与直线10ax y ++=垂直,则a = ( ) A .2- B. 12-
C .1
2
D .2 12.设椭圆C :22
221(0)x y a b a b
+=>>的左右焦点分别为1F ,2F ,过点1F 的直线与
C 交于点P ,Q . 若212||||PF F F =,且113||4||PF QF =,则
b
a
的值为 ( )
A .
35 B .57 C D
第Ⅱ卷(非选择题,共52分)
二、填空题(本大题共4小题,每小题4分,共16分)
13. 若抛物线22(0)y px p =>的准线经过双曲线221x y -=的一个焦点,则
p = .
14. 设函数()f x 在(0,)+∞内可导,且()x x f e x e =+,则(1)f '= __________. 15.有甲、乙、丙、丁四位歌手参加比赛,其中只有一位获奖,有人走访了四位歌手,甲说“是乙或丙获奖”,乙说“甲、丙都未获奖”,丙说”我获奖了”,丁说“是乙获奖”。

四位歌手的话只有两位是真的,则获奖的歌手是_____.
16.已知抛物线C :28y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的
一个交点,若4FP FQ =
,则||QF = .
三、解答题(本大题共4小题,共36分) 17. (本小题满分8分)
给定两个命题p :对任意实数x 都有2
10ax ax ++>恒成立;q :关于x 的方程
20x x a -+=有实数根.如果p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围.
18.(本题满分8分) 设函数()b
f x ax x
=-
,曲线()y f x =在点(1,(1))f 处的切线方程为340x y --=. (Ⅰ) 求()f x 的解析式;
(Ⅱ) 证明:曲线()f x 上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值.
19.(本小题满分10分)
如图,已知四边形ABCD 内接于抛物线2x y =,点 (3,9)C ,AC 平行于x 轴,BD 平行于该抛物线在点C 处的切线,90BAD ∠=
. (Ⅰ)求直线BD 的方程;
(Ⅱ)求四边形ABCD 的面积.
20.(本小题满分10分)
已知椭圆22221(0)x y a b a b +=>>
的离心率e =
,焦距为(Ⅰ)求椭圆的方程;
(Ⅱ)若直线2y kx =+与椭圆交于,C D 两点.问是否存在常数k ,使得以CD 为 直径的圆过坐标原点O ,若存在,求出k 的值;若不存在,请说明理由.
高二数学答题卡(文科)
二、填空题(每小题4分,共16分)
13._____________ 14.___________ 15. ___________ 16._____________ 三、解答题(本大题共4小题,共36分) 17.(本小题满分8分)
给定两个命题p :对任意实数x 都有2
10ax ax ++>恒成立;q :关于x 的方程
20x x a -+=有实数根.如果p q ∧为假命题,p q ∨为真命题,求实数a 的取值范围.
18.(本题满分8分) 设函数()b
f x ax x
=-
,曲线()y f x =在点(1,(1))f 处的切线方程为340x y --=. (Ⅰ) 求()f x 的解析式;
(Ⅱ) 证明:曲线()f x 上任一点处的切线与直线0x =和直线y x =所围成的三角形面积为定值.
如图,已知四边形ABCD 内接于抛物线2x y =,点
(3,9)C ,AC 平行于x 轴,BD 平行于该抛物线在点C 处
的切线,90BAD ∠=
. (Ⅰ)求直线BD 的方程;
(Ⅱ)求四边形ABCD 的面积.
已知椭圆22221(0)x y a b a b +=>>的离心率3
e =,焦距为(Ⅰ)求椭圆的方程;
(Ⅱ)若直线2y kx =+与椭圆交于,C D 两点.问是否存在常数k ,使得以CD 为 直径的圆过坐标原点O ,若存在,求出k 的值;若不存在,请说明理由.。

相关文档
最新文档