地震勘探资料数据处理复习总结

合集下载

长安大学地震勘探复习总结

长安大学地震勘探复习总结

1.地震勘探(Seismic exploration):它利用岩石的弹性差异来进行勘探。

是通过人工激发地震波,研究地震波在弹性不同的地下地层中传播的规律,以查明地下的地质构造,为油气或其他勘探目的服务一种物探方法。

○名2.地震勘探生产过程:地震资料野外采集、地震资料室内处理、地震资料解释。

○简3.振动:某质点在其平衡位置附近做来回往返的运动。

4.振幅:振动幅度,质点来回运动距平衡位置的最大距离。

5.波动:振动在介质中的传播。

振动是波动的震源。

6.质点振动能量传播的速度,则称为波速,即地震波传播速度7.质点的振动方向与波的传播方向相同,则称为纵波。

如果质点的振动方向与波的传插方向垂直,则称为横波。

8.傅立叶展开的重要性质:唯一性定理;线性叠加定理(特例:叠加定理,相似性定理);时标变换定理;延时定理;褶积定理;○简第一章,地震勘探的基本概念9.波阵面:在某一时刻,波到达时间各点所连成的面,称为波阵面。

○名(平面波和球面波)(与波前关系)10.几何地震学:利用波的射线概念可大大简化波的传播问题,是利用几何作图来反映物理过程的简单方法,利用这种方法来研究地震波传播的学科叫做几何地震学。

11.振动图:以时间为横坐标,以质点离平衡位置的距离为纵坐标,画出某一质点的振动情况;波剖面:以质点所在空间位置为横坐标,以质点离开它平衡位置的距离为纵坐标,某一时刻画出的图。

○简12.射线平面:由入射线、反射线和过反射点界面法线所组成的平面称为射线平面。

13.波长:在一个周期T内,波沿着波线前进的距离。

波数:波长的导数,表示在单位距离上波的。

14.惠更斯原理:在空间中,任意时刻波前面上的每一个点都可以看成是一个新的点源(子波源),并由它产生二次扰动形成元波前,各个元波前的包络就是下一个时刻的新波前的位置。

○简15.惠更斯-菲涅耳原理:波前面上各个新点源产生的二次扰动,都可以传播到空间上任意一个观测点M上,形成相互干涉的叠加振动;该叠加振动就是该观测点M的总扰动,即M点的波场。

地震资料处理期末总结

地震资料处理期末总结

地震资料处理期末总结一、引言地震是地球表面上的一种自然现象,它是由于地球内部的板块运动引起的。

地震的发生不仅给人们的生产生活带来了极大的威胁,还对地质灾害预测、环境监测、土地规划等方面的工作提出了严峻的挑战。

因此,对地震资料的准确分析和处理显得尤为重要。

在本次地震资料处理的学习中,我深刻认识到了地震资料处理的重要性,并积累了一定的经验和知识。

现将本次地震资料处理的主要内容和结果进行总结如下。

二、资料获取本次地震资料处理的数据来源主要包括:观测站记录的地震波形资料、地震仪器记录的地震波形资料、仪器记录的参考波形资料、观测站记录的旁路波形资料以及其他补充资料。

我在课程学习期间,通过收集这些资料,对地震的发生和传播过程进行了深入的研究。

三、资料预处理在进行地震资料的分析之前,需要对收集到的地震数据进行预处理。

预处理的过程包括:数据录入、数据质量评估、数据清洗、数据修正和数据校准。

我在预处理过程中,首先进行了数据录入,将原始地震波形数据输入到计算机中,并对数据的质量进行评估,剔除掉质量较差的数据。

然后对数据进行清洗,去除杂乱的噪声信号。

接下来,对数据进行修正,对可能存在的异常值进行修正,并根据参考波形进行数据校准,使得地震波形数据具有更精确的信息。

四、资料分析在进行地震波形分析之前,我对地震资料进行了特征提取和数据预处理。

然后,我采用了谱分析、小波变换、模式识别和统计分析等方法,对地震波形数据进行详细的分析。

在谱分析中,我通过计算谱线的频率分布和能量密度,得到了地震波形的频谱特征,揭示了地震波形的频率成分。

在小波变换中,我采用小波分析方法对地震波形进行分解和重构,得到更加精细的时间-频率图像。

在模式识别中,我通过计算各种特征参数,对地震波形进行分类和识别,建立了地震波形的模式库。

在统计分析中,我通过统计不同地震波形的特征参数,得到了地震波形的统计特征,为地震资料的处理和预测提供了重要的依据。

五、资料处理结果通过对地震资料的准确分析和处理,我得到了丰富的处理结果。

地震勘探资料数据处理复习总结

地震勘探资料数据处理复习总结

地震勘探资料数据处理复习总结地震资料的处理方法和结果在很大程度上受野外采集参数的影响。

地震剖面的“三高”:高信噪比、高分辨率和高保真度。

地震资料处理主要有三个阶段;每一个阶段都是为了提高地震分辨率,即分离出两个无论在空间上还是时间上都非常相近的同相轴的能力。

●(a)反褶积是通过压缩基本地震子波成为尖脉冲并压制交混回响,沿着时间方向提高时间分辨率;●(b)叠加是沿着偏移距方向压缩,把地震资料的数据量压缩成零偏移距剖面,以提高信噪比;●(c)偏移是一个使绕射收敛,并将叠加剖面上的倾斜同相轴归到它们地下的真实位置上,通常在叠加剖面(接近于零偏移距剖面)上做偏移,来提高横向分辨率。

●几何扩散校正:通过给数据加一增益恢复函数以校正波前(球面)扩散对振幅的影响。

●建立野外观测系统:把所有道的炮点和接收点位置坐标等测量信息都储存于道头中以保证各道的正确叠加。

●野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。

关于分辩率的讨论:有一种普遍的误解,认为要增加时间分辨率只需要高频,这是不真实的。

只有低频或只有高频不能改善时间分辨率。

要增加时间分辨率低频和高频两者都需要。

时间分辨率取决于有效信号的频带宽度.最小平方法---根据误差的平方和最小来设计滤波器;最小相位信号是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。

最小相位滤波器是具有同样振幅响应的一切可能的滤波器簇中能量延迟最小的滤波器,也称最小延迟滤波器。

若最小相位滤波器的输入是最小相位,则其输出也是最小相位,对于地震子波,除了零相位子波外,最小相位子波的分辨率最高。

下面的四个子波中哪一个是最小相位的:子波A :(4,0,-1)子波B :(2,3,-2)子波C :(-2,3,2)子波D :(-1,0,4)频率、视波数和视速度的关系为:**=k fV理想滤波器的滤波因子应为无穷序列,而数字滤波因子只能取有限个值。

地震勘探复习总结

地震勘探复习总结

主频:频谱曲线极大值所对应的频率地震子波:炸药爆炸在弹性形变区形成弹性波。

弹性波在近距离内仍会发生较大变化,传播一定距离后便相对稳定,形成地震子波,并被认为在以后的传播中,地震子波将不发生大的变化。

几何地震学:研究地震波波前的空间位置与其传播时间的关系。

引用波前、射线等几何图形来描述波的运动过程和规律。

振动:一点在平衡位置的运动。

振动图:检波器记录的所在之点的地面振动,它的振动曲线叫做该点的振动图。

波剖面:地震波在传播过程中,某一时刻整个介质振动分布情况斯奈尔定律用途:①确定射线路径;②确定波的走时和利用走时确定界面位置。

③问题:不能给出反射波和透过波的振幅信息。

折射波:滑行波在滑行的过程中,下层介质中的质点就会产生振动,形成新的震源,并在上层介质中产生新的地震波。

静校正:对由于地形高低、激发井深、低(降)速带等因素引起的反射波旅行时的畸变进行的校正。

动校正:用于动校正的正常时差是随着反射波的t0时间(或反射层的深度)而变化的,因而称为动校正。

静校正:静校正只与地面坐标(位置)有关,与反射波的t0时间(或反射层的深度)无关。

剩余时差:地震波按水平界面一次反射波做动校正后的反射时间与共中心点出垂直反射时间之差。

水平叠加:将不同接受点接收到的来自地下同一反射点的不同激发点的信号,经动校正后叠加起来。

多次波:从震源出发,到达接收点时,在地下界面发生了一次以上反射的波。

全程多次波、短程多次波、微曲多次波、虚反射N:接收道数n:覆盖次数多次观测系统:炮点向前移动道数= N∙S2n绕射波:地震波在传播过程中若遇到一些地层或岩性的突变点(如断层的断棱、地层或岩性的尖灭点、不整合面的突起点等),这些突变点就称为新震源,再次发出球面子波向四周传播。

这种波动在地震勘探中为绕射波。

回转波,在图中的表现为两个地震道呈“蝴蝶状”B图是经过对水平叠加剖面做偏移归位后的地震剖面。

回转波是凹界面上的反射波,是在凹界面上形成的,形成条件是圆曲率半径小于深度,通过偏移归位,回转波可以归位恢复到凹界面真正形态偏移处理由于水平叠加的剖面存在自身的一些缺点,如绕射波没有收敛,干涉带没有分解,回转波没有归位等,并且其显示出来的反射点位置也往往不是地下真实的位置,因此要求进行偏移处理,经过处理后,剖面上绕射波收敛,回转波归位,从而更真实的反映地下的构造形态.波的对比:识别真正来自地下多个反射界面的反射波,并在一条或多条地震剖面上识别属于一个界面的反射波。

地震数据总结报告范文(3篇)

地震数据总结报告范文(3篇)

第1篇一、报告背景地震作为一种自然灾害,对人类生活和社会经济造成严重的影响。

为了更好地了解地震的分布规律、特点以及地震灾害的影响,本报告对地震数据进行整理、分析,总结地震发生的基本情况,为地震预测、防震减灾工作提供参考。

二、数据来源本报告所涉及地震数据来源于国家地震局、中国地震台网中心、中国地震局地震预测研究所等权威机构发布的地震目录。

三、数据整理与分析1. 地震活动概况(1)地震频次:根据地震目录统计,全球每年发生地震约500万次,其中3级以上地震约5万次,7级以上地震约10次。

(2)地震分布:地震主要分布在环太平洋地震带、地中海-喜马拉雅地震带、阿尔卑斯-喜马拉雅地震带等板块边缘地区。

我国地震主要分布在西南、西北、华北、东北等地区。

(3)地震震级:地震震级分为九个等级,其中7级以上地震为强震,具有破坏性。

本报告主要关注7级以上地震。

2. 地震时间分布(1)年度地震数量:从年度地震数量来看,地震活动呈现出周期性波动。

20世纪90年代以来,全球地震活动呈上升趋势,2004年、2011年、2015年等年份地震数量较多。

(2)月度地震数量:地震活动在月度上呈现出明显的季节性波动。

我国地震主要集中在6-8月份,这与我国西南地区的雨季有关。

3. 地震震中分布(1)地震震中分布特征:地震震中分布呈现出明显的板块边界特征。

在板块边缘地区,地震震中较为密集,而在板块内部地区,地震震中较为分散。

(2)地震震中集中区域:我国地震主要集中在以下区域:西南地区(如四川、云南、贵州等)、西北地区(如新疆、青海、甘肃等)、华北地区(如北京、天津、河北等)。

4. 地震灾害损失(1)地震灾害损失情况:地震灾害损失主要包括人员伤亡、财产损失、基础设施损坏等方面。

以7级以上地震为例,我国地震灾害损失巨大,每次地震都会造成数百人伤亡、数千亿元财产损失。

(2)地震灾害损失与地震震级的关系:地震震级越高,地震灾害损失越严重。

据统计,7级以上地震的灾害损失占我国地震灾害总损失的90%以上。

地震数据处理-知识点

地震数据处理-知识点

第一章概述1.1 地震数据处理的目的是对地震采集数据做各种处理提高反射波数据的信噪比、分辨率和保真度以便于解释。

地震数据处理主要包括地震反褶积、叠加和偏移成像三大技术。

地震反褶积是通过压缩地震子波提高地震时间分辨率;叠加的目的是压制随机噪声提高地震信噪比;偏移成像包括射线偏移和波动方程偏移两大类,主要目的是实现反射界面的空间归位和恢复反射界面空间的波场特征、振幅变化和反射系数,提高地震空间分辨率和地震保真度。

1.2地震数据处理包括预处理、常规处理和特殊处理三个阶段。

常规处理包括反褶积、叠加和偏移三大技术。

预处理是把野外数据格式转换成适合计算机处理的格式并对数据做相应编辑和校正。

它包括数据解编、格式转换、编辑、几何扩散校正、建立野外观测系统和野外静校正等。

数据解编:把按时分道的数据记录方式变换成按道分时的数据记录方式。

道编辑:噪音道、带有瞬变噪音的道或单频信号道都要删除;极性反转的道要改正。

几何扩散校正:通过给数据加一增益恢复函数,以校正波前(球面)扩散对振幅的影响。

野外静校正:对路上资料,把所有炮点和接收点位置均校正到一个公共基准面上,以消除高程、低降速带和井深对旅行时的影响。

反褶积的基础是最佳维纳滤波。

特殊处理主要包括T-P变换、小波变换、三维叠前深度偏移、子波处理、属性分析和反演等。

T-P变换:将偏移距-时间域变换到射线参数-截距时间域,可用来压制面波和多次波。

小波变换:小波变换与多尺度分析可用于去噪、数据压缩、提高分辨率处理、信号增强和解波动方程等。

第二章数字滤波2.1 滤波器可以分为模拟滤波器和数字滤波器采样定理时域实参数的滤波器,其频率振幅谱是偶对称的,而相位谱是奇对称的。

一个滤波器如果是稳定的,这是指当输入信号为有限信号时,其输出也是有限信号。

最小相位,在时间域中也称最小能量延迟,在频率域则常称为最小相位滞后。

纯振幅滤波器也称零相位滤波器。

又称为理想滤波器。

2.2 理想滤波器常设计成四种类型:低通滤波器、带通滤波器、带陷滤波器和高通滤波器。

成都理工大学 地震勘探资料处理及解释复习资料及答案

成都理工大学 地震勘探资料处理及解释复习资料及答案

1----断层在时间剖面的特征标志?1)标准层反射同相轴发生错断,是断层在地震剖面上表现的基本形式。

2)标准层反射波同相轴数目突然增减或消失,波组间隔发生突变,断层下降盘地层加厚,上升盘地层变薄。

3)反射同相轴形状和产状发生突变,这往往是断层作用所致。

4)标准层反射波同相轴发生分叉、合并、扭曲及强相位转换等。

5)断面波、绕射波等异常波的出现,是识别断层的主要标准。

2----伪门条件及消除方法??滤波处理的是离散信号,由付氏变换的特性可知:离散函数的频谱是一个周期函数,其周期为1/△,即有:DFT(h(n))=H(k)=H(k+1/Δ)则通频带以1/△为周期重复出现,若称第一个门为“正门”,则其它的门为“伪门”。

②克服的方法:a)选择适当的采样间隔△使伪门出现在干扰波频率范围之外,一般采样间隔△取得越小,伪门处于频率越高的地方,离正门越远,在离散采样之前让信号通过“去假频”滤波器,滤掉高频成分。

3--反滤波原理及影响因素地震记录是地层反射系数序列r(t)与地震子波b(t)的褶积,x(t)=r(t)*b(t),b(t)就相当地层滤波因子。

为提高分辨率,可设计一个反滤波器,设反滤波因子为a(t),并要求a(t)与b(t)满足a(t)* b(t)=∂(t),用a(t)对地震记录x(t)反滤波x(t)* a(t)= r(t)*b(t) * a(t)= r(t)* ∂(t)= r(t),其结果为反射系数序列,即为反射波的基本原理。

影响因素:1)各种反滤波方法都必须有若干假设条件;2)反射地震记录的褶积模型问题;3)噪声干扰的影响;4)原始地震资料的质量问题。

4----.爆炸反射界面成像原理(叠后偏移成像原理)①把地下地质界面看成具有爆炸性的爆炸源。

②爆炸源的形状、位置与地质界面一致。

③爆炸源产生的波的能量、极性与地质界面反射系的大小、正负对应。

④并假定当t=0时,所有爆炸源同时起爆,沿界面法线方向发射上行波到达地面观测点。

地震勘探重点总结

地震勘探重点总结

绪 论一、石油勘探的主要方法 地质法—岩石露头 物探法—面积覆盖、连续测量、间接 钻井法—一点、直接勘探二、地球物理勘探方法 重力法—岩石密度差异 磁法—岩石磁性差异电法—岩石电性差异 地震勘探—岩石弹性差异(3) 地震勘探: 通过人工方法激发地震波, 研究地震波在地层中传播的情况, 以查明地下的地质构造、地层岩性等, 为寻找油气田或其它勘探目的服务的一种物探方法。

地震勘探具有精度高、作业范围大、布局灵活、成本低等特点, 是最有效的物探方法。

地震波的传播路径: 透射波路径 反射波路径 滑行波路径 (4)地震勘探的几种方法 折射波法 反射波法—主要的地震勘探方法 (基本原理: 回声测距原理)h=1/2vt 透射波法地震勘探的三大环节 野外采集 室内处理 资料解释 (1) 野外采集 按照预先设计的观测系统, 炮点激发、检波器接收、仪器记录, 得到原始地震资料(按时分道)。

数据通常记成SEGB 或SEGD 格式, 班报有电子格式的和手写格式的。

这一部分工作由物探地震小队完成 (2)室内处理 将野外采集的原始地震资料转化为可用于地质解释的地震剖面 包括: 预处理、常规处理和特殊处理三块内容。

这部分工作由资料处理中心完成 (3)资料解释 结合地质、测井、录井、油藏工程等, 进行综合解释。

多由物探研究院、物探公司、地质研究院、采油厂地质所等完成。

井间地震技术可以提供高精度地下成像资料, 能分辨2-5米薄层和小断层, 为描述井间精细构造、薄层砂体分布, 确定储层连通性、剩余油分布等复杂地质问题, 指导调整井的布署和采收率的提高, 提供非常可靠的技术手段 地震勘探期望解决的问题⏹ 1. h=1/2vt, 时间t 不仅包含有地下界面的深度信息, 而且还有炮检距(x )的信息。

如何消除? -----动校正⏹ 2、地表的起伏变化、表层低速带厚度变化等如何消除? ------静校正。

⏹ 3.地下地层的成层性导致地震波传播速度的差异, 如何认识和利用速度及其差异。

《地震勘探原理》复习总结——石油大学

《地震勘探原理》复习总结——石油大学

第一章绪论1.地球物理勘探的概念及分类概念:利用物理学原理和相关技术获取某些地质参数、特征及变化规律, 从而对地质问题经行切实合理的分析和解释的油气勘探手段。

分类: 地震勘探、电法勘探、重力勘探、磁法勘探2.地震勘探的概念利用人工激发的地震波来定位矿藏, 确定考古位置, 获取工程地质信息的勘探方法, 它是地球物理勘探中最重要、解决油气勘探问题最有效的一种方法。

3.地震勘探的基本原理人工激发的弹性波在岩石中传播时, 遇到岩层的分界面便产生反射波或折射波, 在它们返回地面时用高灵敏度的仪器记录, 根据波的传播路程和旅行时间, 确定发生弹性波反射或折射的岩层界面的埋藏深度和形状, 从而认识地下地质构造, 寻找油气圈闭。

4.地震勘探的三个环节野外资料采集、室内资料处理、地震资料解释第二章地震波运动学理论1.基本概念●各种介质的概念(1)均匀介质与非均匀介质均匀介质: 介质内每一点的物理特性参数均相同非均匀介质: 介质内的物理特性参数随空间位置的变化而变化(2)弹性介质与非弹性介质弹性介质: 介质卸载后能够完全恢复到加载前状态非弹性介质: 卸载后不能够完全恢复到加载前状态(3)各向同性介质与各向异性介质各向同性介质: 介质参数与方向无关各向异性介质: 介质参数随方向变化而变化(4)单相与双相、多相单相: 固体、流体(油、气、水)双相: 固体骨架以及孔隙内的流体实际地下介质的特征: 非均匀、非弹性、各向异性、多相●波动、弹性波、地震波、波前、波后、波面、振动曲线(地震记录)、波形曲线(波剖面、波场快照)波动: 振动在介质中传播形成波动;弹性波: 振动在弹性介质中传播形成弹性波;地震波: 地层中传播的弹性波;波前: 在某一时刻, 介质中刚刚开始振动的点连接起来形成的面;波后:在某一时刻, 介质中刚刚停止振动的点连接起来形成的面;波面: 介质中同一时刻开始振动的点连接起来形成的曲面;振动曲线: 即地震记录, 在某一点处质点位移和时间的关系(同一点不同时刻的位移形成的曲线);波形曲线:又叫波剖面、波长快照, 某一时刻各点的位移(同一时刻各点的位移形成的曲线);●波长、视波长、速度、视速度、周期、频率波长: 波在一个振动周期内传播的距离;视波长: 不是沿波的传播方向确定的波长;速度:在沿波的传播方向上, 波在单位时间前进的距离;视速度: 不是沿波的传播方向确定的速度;周期: 波传播一个波长的距离所需要的时间;频率: 周期的倒数;●体波、面波、纵波、横波体波: 振动能够在整个介质区域内传播形成的波。

地震数据处理重点整理

地震数据处理重点整理

地震数据处理重点整理(个人观点)一、题型判断题20分/10个名词解释30分/5个简答题30分/3个计算题20分/2个二、名词解释1、地震剖面的“三高”:高信噪比、高分辨率和高保真度。

2、野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。

剩余静校正:野外静校正后,在地震数据中仍然残留有各种剩余静态时移,对这些的校正称为剩余静校正。

3、反褶积:沿时间坐标轴作用,通过压缩地震子波提高地震时间分辨率。

4、最小相位信号:是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。

5、视波数:k=f/v,由于地震勘探是沿测线观测的,因此可以用视波长、视速度、视波数来描述地震波特征,可表示为k*=f/v*,其中k*为视波数。

6、预白化:为了解决带限问题,在地震信号的功率谱P(w)中,从低频到高频统一加一白噪。

7、子波整形反褶积:将不同相位的子波转变为最佳子波的反褶积。

8、速度分析:为叠加提供最佳叠加速度的方法。

9、静校正:存在地形起伏、低速带的厚度变化和速度的横向变化等,此时时距曲线发生畸变,对这些因素的校正,称为静校正。

10、动校正:在水平界面的情况下,从观测到的反射波旅行时中减去正常时差t,得到相当于自激自收的时间,这一过程叫做动校正。

11、正常时差:在界面水平时,对界面上某点以跑检距进行观测得到的反射波旅行时与自激自收观测的旅行时之差,称为正常时差。

12、拉伸畸变:动校正结果出现频率畸变,同相轴移向低频。

13、水平叠加:水平叠加是将CMP道集记录经NMO动校后叠加起来,目的是压制随机噪音,提高地震信噪比。

14、速度谱:把每一种速度所得的叠加结果并排显示在速度-双程零炮检距时间平面中,称此为速度谱。

15、速度扫描:应用一系列常速度在CMP道集进行动校正,并将结果并列显示,从中选出能使反射波同相轴拉平程度最高的速度作为NMO速度的速度分析方法称为速度扫描。

地震数据解释知识点总结

地震数据解释知识点总结

地震数据解释知识点总结地震是由地球内部的构造运动所引起的地壳震动现象。

地震的发生给地球表面带来了巨大的破坏,也给人们的生命财产造成了严重的损失。

因此,地震的研究和预测对于人类的生存和生活至关重要。

而地震数据的解释更是地震研究的核心内容之一。

本文将从地震数据的收集、处理、解释和应用等方面进行深入的总结和讨论。

一、地震数据的收集地震数据的收集是对地震研究的基础工作。

地震数据主要来源于地震台网、地震观测站、卫星遥感等多个渠道。

其中,地震台网是最主要的数据来源之一,通过地震台网可以获取到地震的发生时间、震源位置、震级大小、震中距等重要信息。

地震观测站主要负责记录地震波的传播情况,以及地震时的实时监测。

卫星遥感则通过遥感技术获取地震发生后地表的变化状况,为地震灾害的后续监测和救灾提供重要数据。

地震数据的收集是一个系统工程,需要依靠现代化的设备和技术来完成。

同时,还需要不断完善和更新数据采集的方法和手段,以适应地震科学研究的需要。

二、地震数据的处理地震数据的处理是对地震数据进行分析和加工,提取有用信息的过程。

地震数据处理主要包括了数据清洗、数据质量评估、数据解译等内容。

数据清洗是指对原始数据进行初步的清洗和整理,以去除噪声和错误信息。

数据质量评估是对数据进行评估和检查,以确定数据的可靠性和准确性。

数据解译是对清洗和评估后的数据进行进一步的分析和解释,得出地震活动的规律和特征。

地震数据的处理需要依靠专业的软件和算法来完成,同时还需要考虑数据的时效性和准确性,保证处理结果的可靠性和真实性。

三、地震数据的解释地震数据的解释是对地震数据进行解析和研究,寻求地震活动的规律和趋势。

地震数据的解释主要包括了地震活动的特征分析、震源机制的研究、地震危险性评估等内容。

地震活动的特征分析是指对地震活动的时间、空间、能量等特征进行分析和总结,以了解地震的发生规律和变化趋势。

震源机制的研究是对地震源的形成机制和运动方式进行分析和研究,以揭示地震活动的物理本质和机理。

(完整版)地震数据数字处理总结

(完整版)地震数据数字处理总结

中国石油大学(北京)《地震数据处理方法》勘查2011级复习重点总结第一章地震数据处理基础1、地震信号的特点:1)实信号2)离散3)有限长4)能量有限5)非周期2、采样定律内容:一个连续信号,如果其最高频率小于尼奎斯特折叠频率,即信号的采样频率大于信号最高频率的两倍,则利用离散采样后的信号可以恢复原始信号。

3、采样定律的应用条件:信号的采样频率大于信号最高频率的两倍,即:最高频率至少要在一个周期内采到两个样点4、采样频率、折叠(尼奎斯特)频率、信号最高频率定义:5、假频的定义:高于尼奎斯特频率的高频成分以尼奎斯特频率为中心向低频方向折叠,形成假的频率成分,称为假频。

6、假频的判断和计算:7、地震信号的频谱特点:1)有限带宽(带限)2)有一定主频(主频越高,分辨能力越强)8、判别相位性质的三种办法:1)相位延迟(不常用)2)能量延迟3)Z变换的多项式求根(根都在单位圆外,为最小相位(延迟)信号)9、一维数字滤波实现方法、具体步骤:1)频率域:实现方法:(以零相位为例,翻译略)具体步骤:a、地震频谱分析:确定分析有效频率范围b、设计滤波器:压制噪声保留有效信号c、地震记录FFT变换:标准化变换长度d、进行滤波运算:振幅谱相乘相位谱相加e、滤波结果IFFT2)时间域:(也叫褶积滤波)实现方法:(以零相位为例,翻译略)具体步骤:a、地震记录频谱分析:确定中心频率、带宽b、设计滤波器:确定滤波算子长度(频带越宽,长度越短)c、确定滤波因子离散值:双边对乘实参数d、进行滤波运算:地震记录与滤波因子褶积10、伪门的定义:对连续的滤波因子用时间采样间隔离散采样后,得到离散的滤波因子,若再按离散的滤波因子计算出与它相应的滤波器的频率特性,这时在频率特性的图形上,除了有同原来连续的滤波因子的频率特性对应的“门”外,还会周期性地重复出现很多“门”,这些门称为“伪门”。

产生“伪门”的原因:由于对滤波因子离散采样。

11、吉布斯现象:当对滤波因子用有限项代替无限项时,在原始信号突变点(间断点)处,通过信号出现的明显的振荡现象。

地震资料处理复习总结(第1-6章)

地震资料处理复习总结(第1-6章)

《地震勘探资料处理》第一章~第六章复习要点总结第一章 地震数据处理基础一维谱分析数字地震记录中,每个地震道是一个按一定时间采样间隔排列的时间序列,每一个地震道都可以用一系列具有不同频率、不同振幅、相位的简谐曲线叠加而成。

应用一维傅里叶变换可以得到地震道的各个简谐成分;应用一维傅里叶反变换可以将各个简谐成分合并为原来的地震道序列。

连续函数正反变换公式:dt et x X t i ωω-∞∞-⎰=)()(~ 正变换 ωωπωd e X t x t i ⎰∞∞-=)(~21)( 反变换 通常由傅里叶变换得到的频谱为一个复函数,称为复数谱。

它可以写成指数形式 )()()(|)(~|)(~ωφωφωωωi i e A e X X ==式中)(ωA 为复数的模,称为振幅谱;)(ωϕ为复数的幅角,称为相位谱。

)()()(22ωωωi r X X A +=,)()(tan )(1ωωωφr i X X -=(弧度也可换算为角度)离散情况下和这个差不多(看PPT 和书P2-3)一维傅里叶变换频谱特征:1、一维傅里叶变换的几个基本性质(推导)线性 翻转 共轭 时移 褶积 相关(功率谱),P3-72、Z 变换(推导)3、采样定理 假频 尼奎斯特频率,tf N ∆=21二维谱分析二维傅里叶变换),(k X ω称为二维函数),(t x X 的频——波谱。

其模量|),(|k X ω称为函数),(t x X 的振幅谱。

由),(k X ω这些频率f 与波数k 的简谐成分叠加即可恢复原来的波场函数),(t x X (二维傅里叶反变换)。

如果有效波和干扰波的在f-k 平面上有差异,就可以利用二维频率一波数域滤波将它们分开,达到压制干扰波,提高性噪比的目的。

二维频谱产生空间假频的原因数字滤波在地震勘探中,用数字仪器记录地震波时,为了保持更多的波的特征,通常利用宽频带进行记录,因此在宽频带范围内记录了各种反射波的同时,也记录了各种干扰波。

地震资料处理期末总结范文

地震资料处理期末总结范文

地震资料处理期末总结范文一、引言地震是一种地球常见的自然现象,对人类社会和经济造成的影响很大。

地震的监测和资料处理在减轻地震灾害、保护人民生命财产安全方面起着非常重要的作用。

在本学期的地震资料处理课程中,我系统地学习了地震监测和资料处理的理论知识,并学会了使用一些数据处理软件和工具。

通过对这门课程的学习,我对地震监测和资料处理的原理、方法和技巧有了更深入的理解和掌握,下面将对我的学习总结进行详细的介绍。

二、资料处理方法1. 数据获取在地震监测和资料处理过程中,首先需要获取地震相关的数据。

这包括地震仪器获取的地震波形数据、地震定位数据和震级数据等。

数据的获取方法主要有三种:实地观测、近地面监测和远地面监测。

在实际操作中,我主要使用近地面监测方法获取数据。

2. 数据处理地震数据处理是地震监测的重要环节,主要包括数据预处理、数据质量控制和数据分析等步骤。

首先,需要对原始数据进行预处理,主要是去除噪声和干扰。

然后,对数据进行质量控制,包括数据的窗口选择、标定和检查等。

最后,对处理后的数据进行分析,得到地震参数和相关信息。

3. 数据解释数据解释是根据处理后的地震数据,得出与地震相关的信息和结论的过程。

通过对地震波形的分析和解释,可以确定地震的震源深度、震源机制和震源位置等。

同时,还可以分析地震破裂过程和地震活动规律,为地震预测和地震工程提供科学依据。

三、实践案例在本学期的学习中,我参与了一个实践案例的处理工作,该案例是对某地区的一个地震事件进行资料处理和解释。

具体步骤如下:1. 数据获取:获取了该地区的地震波形数据、震相数据和震级数据等。

2. 数据处理:首先对原始地震波形数据进行预处理,去除了噪声和干扰。

然后,对处理后的数据进行质量控制,保证数据的准确性和可靠性。

最后,对数据进行分析,得出了该地震事件的震源位置和震级等参数。

3. 数据解释:通过对处理后的地震数据进行分析和解释,确定了该地震事件的震源位置和震级,并分析了地震破裂过程和地震活动规律。

地震勘探原理总复习可编辑全文

地震勘探原理总复习可编辑全文

1绪论一、名词解释1.地球物理方法:它是以岩矿石(或地层)与其围岩的物理性质差异为物质基础,用专门的仪器设备观测和研究天然存在或人工形成的物理场的变化规律,进而达到查明地质构造寻找矿产资源和解决工程地质、水文地质以及环境监测等问题为目的勘探,叫地球物理勘探,简称物探。

相应的各种勘探方法,叫地球物理勘探方法,简称为物探方法。

利用各种物理仪器在地面观测地壳上的各种物理现象,从而推断、了解地下的地质构造特点,寻找可能的储油构造。

2、地震勘探:由地球内部的构造力、火山活动、塌陷等引起的地震。

利用天然地震了解地球内部(地壳、地幔等情况),进行地球分层等。

通过人工的方法激发地震波,研究地震波在地层中传播的情况,以查明地下地质构造,为寻找油气田或其他勘探目的服务的一种物探方法。

二、简答题1、了解地下资源信息有那些主要手段。

1.地质法2、地球物理方法3、钻探法4、综合方法2、几种主要地球物理勘探方法,它们的基本原理。

主要的勘探方法有地震勘探重力勘探磁法勘探电法勘探地球物理测井重力勘探利用岩石、矿物(地层)之间的密度差异,根据万有引力定律,引起的重力场变化,而产生重力异常,用重力仪测量其异常值,根据异常变化情况反演地下地质构造情况。

磁法勘探利用岩石、矿物(地层)之间的磁性差异,引起磁场变化,产生磁力异常,用磁力仪测量其异常值,根据异常变化情况反演地下地质构造情况。

电法勘探利用岩石、矿物(地层)之间的电性差异 ,引起电(磁)场变化产生电性异常,用电法(磁)仪测量其异常值, 根据异常变化情况反演地下地质构造情况地震勘探方法利用岩石、矿物(地层)之间的弹性差异引起弹性波场变化产生弹性异常(速度不同) 用地震仪测量其异常值(时间变化) ,最后根据异常变化情况反演地下地质构造情况。

3、地震勘探的主要工作环节。

野外数据采集室内资料处理地震资料解释4、依据岩石物理性质的差异,可以分为很多的勘探方法,请说出几种物探方法,各是依据什么样的物理性质差异?地震勘探重力勘探磁法勘探电法勘探重力勘探根据密度差异地震勘探根据弹性差异磁法勘探根据磁性差异电法勘探根据电性差异2一、名词解释1. 地震波运动学研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。

地震勘探学复习重点全(优秀版)word资料

地震勘探学复习重点全(优秀版)word资料

地震勘探学复习重点全(优秀版)word资料1. 振动图,波动图振动图:波在传播过程中,某一质点的位移u是随时间t变化的,描述某一质点位移与时间关系的图形叫做地震波的质点振动图形.波动图:在地震勘探中,通常把同一时刻沿地震测线的各质点离开平衡位置的位移分布所构成的图形叫做地震波的波剖面。

即位移u 是距离x的函数,u=f(x) 。

2. 纵波,横波特点费马定理,斯奈尔定律纵波(P波):质点的振动方向与波传播方向平行(或一致)的波。

横波(S波):质点的振动方向与波传播方向垂直的波。

费马原理(又称射线原理或最小时间原理)内容:它较通俗的表达是:波在各种介质中传播路径,满足所用时间为最短的条件。

斯奈尔定律:入射线、透射线位于反射界面法向的两侧,入射线、透射线和法线同在一个平面内.入射角的正弦和透射角的正弦之比,等于入射波的速度和透射波的速度之比。

3. 反射波,透射波,折射波,滑行波,多次波反射波:各地层之间存在阻抗差异透射波:透射波产生在速度不同的分界面上折射波: 在任一地层顶面形成折射波,必须是该层波速大于上覆所有各层的波速。

识别多次波的重要标志:t0标志,角度标志4. 地震纵向/横向分辨率地震纵向分辨率:指在纵向上能分辨岩性单元的最小厚度。

地震横向分辨率:指在横向上能确定特殊地质体的大小、位置和边界的精确程度。

5. 反射波时距曲线推导虚震源弹性:物体在外力作用下发生了形变,当外力去掉以后,物体就立刻恢复其原状。

塑性:物体在外力作用下发生了形变,当外力掉以后仍旧保持其受外力时的形状。

弹性体: 具有弹性的物体叫做弹性体;塑性体: 具有塑性的物体叫做塑性体弹性波: 振动在弹性介质中传播就形成了弹性波b.惠更斯原理(又称波前原理):在弹性介质中,若已知任一时刻t 的波前,则该波前面上的每一个点都可以看作是新的震源(子波源),并各自发出子波(由子波源向各方发出的微弱的波),所有这些子波以介质中的波速v 向各方传播,经过Δt时间间隔,它们的包络面便是t+Δt 时刻的波前。

(完整版)地震资料数字处理复习题

(完整版)地震资料数字处理复习题

地震资料数字处理复习题一、名词解释〔20分〕1、速度谱把地震波的能量相对于波速的变化关系的曲线称为速度谱。

在地震勘探中,速度谱通常指屡次覆盖技术中的叠加速度谱。

2、反滤波又称反褶积,是指为提高纵向分辨率,去掉大地滤波器的作用,把延续几十至100ms的地震子波b〔t〕压缩成原来的震源脉冲形式,地震记录变成反映反射系数序列的窄脉冲组合。

3、地震资料数字处理就是利用数字计算机对野外地震勘探所获得的原始资料进行加工、改良,以期得到高质量的、可靠的地震信息,为下一步资料解释提供可靠的依据和有关的地质信息。

4、数字滤波数字滤波就是指用数学运算的方式用数字电子计算机来实现滤波。

对离散化后的信号进行滤波,输入、输出都是离散数据。

5、水平叠加将不同接收点受到的来自地下同一反射点的不同激发点的信号,经动校正叠加起来。

6、叠加速度在一般情况下,都可将共中心点反射波时距曲线看作双曲线,用一个同样的式子来表示:t2=t2+x2/V2,其中,V 就是叠加速度。

0 αα7、静校正把由于激发和接收时地表条件变化所引起的时差找出来,再对其进行校正,使畸变了的时距曲线恢复成双曲线,以便能够正确地解释地下的构造情况,这个过程叫做静校正。

8、动校正消除由于接受点偏离炮点所引起的时差的过程,又叫正常时差校正。

9、假频一个连续信号用过大的采样得到的离散序列实际上含有连续信号中高频成分的奉献。

这些高频成分折叠到离散时间序列中较低的频率。

这种现象是由连续信号采样缺乏引起的,称作假频。

10、亮点技术所谓“亮点〞狭义地说是指地震反射剖面上由于地下油气藏存在所引起的地震反射波振幅相对增强的“点〞。

利用地震反射波的振幅异常,同时也利用反射波的极性反转、水平反射的出现、速度的降低及吸收系数的增大等一系列亮点标识综合指示地下油、气藏的存在,进而直接寻找油、气藏的技术。

11、相关定量地表示两个函数之间相似程度的一种数学方法。

12、自相关表示波形本身在不同相对时移值时的相关程度。

《地震资料数字处理》复习精选全文完整版

《地震资料数字处理》复习精选全文完整版

可编辑修改精选全文完整版《地震资料数字处理》复习地震资料数字处理围绕以下三方面工作:1、提高信噪比;2、提高分辨率;3、提高保真度。

一、提高信噪比的处理1、原理利用噪声和信号在时间、空间、频率和其他变换域中的分布差异,设计滤波因子,将噪声进行压制。

2、处理顺序提高信噪比包含消除噪声和增强信号两部分内容。

消除噪声一般在叠前的各种道集上进行,主要针对规则干扰如多次波和面波等,增强信号一般在叠后剖面上进行,主要针对随机噪声。

3、随机噪声是指没有固定的频率、时间、方向的振幅扰动和震动,其成因大致是来自环境因素、次生因素和仪器因素,其中次生干扰的强度与激发能量有关。

随机噪声在记录上表现为杂乱无章的波形或脉冲,在频率上分布宽而不定,在空间上没有确定的视速度。

随机噪声的随机性与道间距有关,如果道间距减小到一定程度,许多随机噪声表现出道间的相干性,当道距大于随机噪声的相干半径才表现出随机性。

4、一维滤波器(伪门、Gibbs现象)频率滤波器是根据信号和噪声在频率分布上的差异而设计时域或频域一维滤波算子。

它压制通放带以外的频率成分,保留通放带以内的频率成分。

Gibbs现象是由于频率域的不连续或截断误差引起的,通放带和压制带之间设置过渡带可克服此现象,设计滤波器就是控制过度带的形状和宽度。

5、二维滤波器二维滤波是根据有效信号和相干噪声在视速度分布上的差异,来压制噪声或增强信号。

通常用来压制低视速度相干噪声,在f-k平面上占据低频高波数区域。

二维滤波比较容易产生蚯蚓化现象,而且混波相现象明显,在空间采样条件不满足或陡倾角的情况下受到空间假频的影响,一般常用于压制一些规则干扰,如面波和多次波等。

6、频率-波数域二维滤波实现步骤:(1)把时间和空间窗口里的数据变换到f-k域;(2)在f-k域,通过外科切除,按径向扇形划分压制区C(乘振幅置零)、过渡区S(乘振幅置0至1变化)、通放区P (乘振幅置1) ;(3)从f -k 域反变换到t -x 域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地震资料的处理方法和结果在很大程度上受野外采集参数的影响。

地震剖面的“三高”:高信噪比、高分辨率和高保真度。

地震资料处理主要有三个阶段;每一个阶段都是为了提高地震分辨率,即分离出两个无论在空间上还是时间上都非常相近的同相轴的能力。

●(a)反褶积是通过压缩基本地震子波成为尖脉冲并压制交混回响,沿着时间方向提高时间分辨率;●(b)叠加是沿着偏移距方向压缩,把地震资料的数据量压缩成零偏移距剖面,以提高信噪比;●(c)偏移是一个使绕射收敛,并将叠加剖面上的倾斜同相轴归到它们地下的真实位置上,通常在叠加剖面(接近于零偏移距剖面)上做偏移,来提高横向分辨率。

●几何扩散校正:通过给数据加一增益恢复函数以校正波前(球面)扩散对振幅的影响。

●建立野外观测系统:把所有道的炮点和接收点位置坐标等测量信息都储存于道头中以保证各道的正确叠加。

●野外静校正:对陆上资料,把所有炮点和接收点位置均校正到一个公共基准面上以消除高程、低降速带和井深对旅行时的影响。

关于分辩率的讨论:有一种普遍的误解,认为要增加时间分辨率只需要高频,这是不真实的。

只有低频或只有高频不能改善时间分辨率。

要增加时间分辨率低频和高频两者都需要。

时间分辨率取决于有效信号的频带宽度.最小平方法---根据误差的平方和最小来设计滤波器;最小相位信号是具有对相同振幅谱的物理可实现信号中相位最小的信号,或者说能量延迟最小的信号。

最小相位滤波器是具有同样振幅响应的一切可能的滤波器簇中能量延迟最小的滤波器,也称最小延迟滤波器。

若最小相位滤波器的输入是最小相位,则其输出也是最小相位,对于地震子波,除了零相位子波外,最小相位子波的分辨率最高。

下面的四个子波中哪一个是最小相位的:子波A :(4,0,-1) 子波B :(2,3,-2)子波C :(-2,3,2) 子波D :(-1,0,4)频率、视波数和视速度的关系为:**=k fV理想滤波器的滤波因子应为无穷序列,而数字滤波因子只能取有限个值。

因而数字滤波出现伪门现象和吉布斯现象。

实际滤波器设计时,通常对频谱曲线进行镶边,目的是减弱吉布斯现象。

空间变量的付里叶变换定义为空间频率,即单位距离内的波数。

折叠波数Nyq K 为:其中:△x 为空间采样间隔。

下图为六个道集,倾角范围为0、3、6、9、12、15(ms/道)的36Hz 单一频率同相轴,道间距为25m ;计算这六组信号的波数,并说明,是否会出现假波数。

xK Nyq ∆=21f xt V f VT k ∆∆====11λx∆FK12图2如图2所示,在f-k 平面上有两条直线1、2,判断其初速度的相对大小。

如图所示:六个相同倾角的同相轴(左)在频波域(右)由于视速度相同,聚焦在一直线上。

互相关公式:21()()()T xy i T r x i y i ττ==+∑,M ±±±= ,,,210τ褶积公式()()()y n h x n τττ+∞=-∞=-∑互相关和自相关地震处理常常需要测定两个道的相似性及时间对齐的情况。

相关是另一种时间算子,它用来进行以下测定。

假设下面两个子波:子波1:(2,1,-1,0,0)子波2:(0,0,2,l ,-1)子波1和子波2的互相关2 1 -1 0 0 输出 延迟0 0 2 1 -1 2 -40 0 2 1 1 1 -30 0 2 1 -1 6 -20 0 2 1 -1 1 -10 0 2 1 -1 -2 00 0 2 1 -1 0 10 0 2 1 -1 0 20 0 2 1 -1 0 3 0 0 2 1 1 0 4表 1-8 子波2对子波1的互相关0 0 2 1 -1 输出 延迟2 1 -1 0 0 -0 -42 1 1 0 0 0 -32 1 -1 0 0 0 -22 1 -1 0 0 0 12 1 -1 0 0 2 02 1 -1 0 0 1 12 1 -1 0 0 6 22 1 -1 0 0 13 2 1 -1 0 0 -2 4地震子波(1,- 21)与反射系数序列(1, 0, 21)对的褶积 震源子波 输出响应 1 -21 21 0 1 1 21 0 1 21- 21 0 1 21 21 0 1 41-一次反射波在地震记录上的特征:反射时间、大小、极性各不相同,一般假设为平稳随机的,在时间上具有不可预测性。

多次波在地震记录上的特征:出现有规律,波形与一次反射波相似,可预测。

简单说明预测反滤波的应用在子波不满足最小相位时,必须先对子波进行处理,然后再做反褶积。

把这时的反褶积,称为子波整形反褶积。

3、简述静校正处理的一般流程答: (1) 对于井下震源应用井深校正;(2)将炮点和检波点校正到与地质表面平缓形态对应的浮动基准面上(3) 进行初步的速度分析,并应用时差校正;(4) 应用基准面从浮动基准面移动炮点和接收点到CMP道集所参照的平的基准面(5) CMP道集应用剩余静校正;(6)将平坦参考基准面的炮点和接收点移动回浮动基准面;(7)用步骤(3)中得到的速度进行反时差校正;(8)进行速度分析和应用时差校正;(9)应用基准面校正,将炮点和接收点从浮动基准面移动到参考平坦基准面,(10)对数据进行切除和叠加,叠加剖面是指的平坦基准面反褶积讨论:1.相同振幅谱的子波,期望输出为零延迟脉冲反褶积时最小相位子波的误差最小;2.非最小相位子波,要得到合适的反褶积效果,期望输出的相位应作延迟,与子波相位匹配;3.若反褶积因子可取时间负轴值,则仍然可得到较好的褶积效果(a(t)非因果反褶积影响因素:1、计算出的反因子,不是真正期望的反因子,一般是最小平方意义下并加上白噪声计算出来的;2、反射系数不是平稳的随机序列;3、地震道中包含有规则噪声,影响了反因子的计算;4、反因子长度的截断效应.反Q滤波由岩石的固有衰减引起的频率衰减使传播中波形的高频成分随旅行时的增加而损失。

地震波的衰减通常可以用一个无量纲的因子Q 来描述。

反Q 滤波是一种频率衰减补偿的方法。

例 设输入子波已知,)21,1()(-=t b ,试求反子波。

解:(1)用Z 变换法子波的Z 变换 Z Z B 211)(-= 反子波的Z 变换 +++=-=2)41()21(12111)(Z Z Z Z A 由此,得到反子波为:),41,21,1()( =t a 所以子波)21,1()(-=t b 的反子波为最小相位子波,且是无穷序列。

若取前两项,即)21,1()(=t a ,则两项反褶积输出为)41,0,1(-,与期望输出(1,0,0)的误差能量为161。

例 设输入子波已知,)21,1()(-=t b ,试求反子波。

解:最小平方反褶积 子波的自相关为)21,45(-,b(0)=1,所以滤波方程为 ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--01)1()0(45212145a a 解得 )218,2120()(=t a ,褶积输出为)214,212,2120(--, 与期望输出(1,0,0)的误差能量为211。

从中可看出最小平方反褶积比两项反褶积的精度要高预白化:为了解决带限问题,在地震信号的功率谱)(ωP 中,从低频到高频统一加一白噪。

)0()()0()()(2xx xx xx r R r X P λωλωω+=+=λ称为白噪系数。

λ的选取原则:1, λ太小,对方程求取稳定解帮助不大2,λ太大,反褶积的作用变小。

当,时∞→λ则反褶积输出就等于输入。

3,实际处理中,白噪系数一般取0.5%~5%,最大不超过10%。

地震剖面中什么是可以预测的、什么是可预测的.反褶积假设条件:●假设1:地层是由具有常速的水平层组成。

●假设2:震源产生一个平面压缩波(P波),法向入射到层边界上,在这种情况下,不产生剪切波(S波)。

( 假设1在复杂构造区和具有巨大横向相变的区域是不成立的。

假设2隐含着我们的地震道正问题模型是基于零偏移距记录成立的,而零偏移距记录是永远无法得到的。

)●假设3:震源波形在地下传播过程中不变,即它是稳定的。

●假设4:噪音成分是零。

●假设5:震源波形是已知的。

●假设6:反射系数序列是一个随机过程。

这意味着地震记录具有地震子波的特征,即它们的自相关和振幅谱是相似的。

第四章速度分析-为叠加提供最佳叠加速度。

动校正-消除炮检距对反射波旅行时的影响。

静校正-消除地表起伏和低降速带的变化对反射波旅行时的影响。

正常时差依赖于反射层以上以的速度、偏移距、与反射同相轴有关的双程零偏移距时间、反射层的倾角、炮点-检波器方向与真倾角方向的夹角、近地表的复杂程度和反射层上的介质。

定义:为校正正常时差所用的速度称为动校正速度。

1.单个水平反射层:NMO速度等于该反射层上部介质的速度。

2.单个倾斜反射层:NMO速度等于该反射层上部介质速度除以反射层倾角的余弦。

若考虑三维空间倾斜反射层,还需考虑方位角因素。

3.多层水平反射层:小炮检距时,某个水平反射层的NMO速度等于该反射层上覆介质的rms速度。

4.多层任意倾斜反射层:只要倾角不大,分布不广,仍可用双曲线近似。

NMO速度与叠加速度的差别:NMO速度是依据小排列双曲线形状分布旅行时间(Taner和Koehler,1969; Al-Chalabi,1973);而叠加速度则是依照与整个排列长度数据拟合最好的双曲线。

如果所用速度高于介质速度,双曲线不能完全拉平,称为欠校正。

所用速度低于介质速度,双曲线上翘,称为过校正。

动校拉伸—动校正结果出现频率畸变,同相轴移向低频。

动校拉伸畸变:炮检距越大拉伸畸变大,目的层越浅拉伸畸变大。

解决动校拉伸的办法:切除。

正常时差依赖于反射层以上以的速度、偏移距、与反射同相轴有关的双程零偏移距时间、反射层的倾角、炮点-检波器方向与真倾角方向的夹角、近地表的复杂程度和反射层上的介质。

定义:为校正正常时差所用的速度称为动校正速度。

自动统计静校正方法假设条件(1)同一炮点在低速带中入射的时间与入射角无关,即可认为在低速带中都是垂直入射的。

(2)炮点(或接收点)由于地形起伏及低速带变化所引起的静校正量时差是随机的,其均值为零。

如图所示(为动校正前的CDP道集,为不同速度动校正后的道集,分析效果与产生的原因。

速度分析有哪些常用方法:22x t 法、速度扫描、常速叠加法(CVS)、速度谱五.影响速度估算的因素下述因素会限制地震资料速度估算的精度和分辨率[伊尔马滋(Yilmaz ),1993]:(1)排列长度:缺乏大炮检距信息意味着缺乏辨别速度所需要的重要时差;但大炮检距区域的资料有拉伸问题。

(2)叠加次数:叠加32次甚至16次对速度谱没有影响,但再低使峰值发生严重位移。

(3)S/N 比:存在高幅随机噪音时也可识别有效信号,但S/N 不高时精度要受限制。

(4)切除:会减少浅层叠加次数,导致切除带位置的同相轴振幅减弱,它对速度谱有副作用;校正方法是用切除带中有效叠加次数比例乘叠加振幅来实现。

相关文档
最新文档