专题09动态几何定值问题(原卷版)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题九动态几何定值问题
【考题研究】
数学因运动而充满活力,数学因变化而精彩纷呈。动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。
【解题攻略】
动态几何形成的定值和恒等问题是动态几何中的常见问题,其考点包括线段(和差)为定值问题;角度(和差)为定值问题;面积(和差)为定值问题;其它定值问题。
解答动态几何定值问题的方法,一般有两种:
第一种是分两步完成:先探求定值. 它要用题中固有的几何量表示.再证明它能成立.探求的方法,常用特殊位置定值法,即把动点放在特殊的位置,找出定值的表达式,然后写出证明.
第二种是采用综合法,直接写出证明.
【解题类型及其思路】
在中考中,动态几何形成的定值和恒等问题命题形式主要为解答题。在中考压轴题中,动态几何之定值(恒等)问题的重点是线段(和差)为定值问题,问题的难点在于准确应用适当的定理和方法进行探究。
【典例指引】
类型一【线段及线段的和差为定值】
【典例指引1】已知:△ABC是等腰直角三角形,∠BAC=90°,将△ABC绕点C顺时针方向旋转得到△A′B′C,记旋转角为α,当90°<α<180°时,作A′D⊥AC,垂足为D,A′D与B′C交于点E.
(1)如图1,当∠CA ′D =15°时,作∠A ′EC 的平分线EF 交BC 于点F . ①写出旋转角α的度数; ②求证:EA ′+EC =EF ;
(2)如图2,在(1)的条件下,设P 是直线A ′D 上的一个动点,连接P A ,PF ,若AB =
2,求线段P A +PF 的最小值.(结果保留根号) 【举一反三】
如图(1),已知∠=90MON o ,点P 为射线ON 上一点,且=4OP ,B 、C 为射线OM 和ON 上的两个动点(OC OP >),过点P 作PA ⊥BC ,垂足为点A ,且=2PA ,联结BP .
(1)若
1
2
PAC ABOP
S S ∆=
四边形时,求tan BPO ∠的值; (2)设PC x =,
AB
y BC
=求y 与x 之间的函数解析式,并写出定义域; (3)如图(2),过点A 作BP 的垂线,垂足为点H ,交射线ON 于点Q ,点B 、C 在射线OM 和ON 上运动时,探索线段OQ 的长是否发生变化?若不发生变化,求出它的值。若发生变化,试用含x 的代数式表示OQ 的长.
类型二 【线段的积或商为定值】
【典例指引2】如图①,矩形ABCD 中,2,5,1AB BC BP ===,090MPN ∠=,将MPN ∠绕点P 从PB 处开始按顺时针方向旋转,PM 交边AB (或AD )于点E ,PN 交边AD (或CD )于点F .当PN 旋转至PC 处时,MPN ∠的旋转随即停止.
(1)特殊情形:如图②,发现当PM 过点A 时,PN 也恰好过点D ,此时ABP ∆是否与PCD ∆相似?并说明理由;
(2)类比探究:如图③,在旋转过程中,
PE
PF
的值是否为定值?若是,请求出该定值;若不是,请说明理
由;
(3)拓展延伸:设AE t =时,EPF ∆的面积为S ,试用含t 的代数式表示S ; ①在旋转过程中,若1t =时,求对应的EPF ∆的面积; ②在旋转过程中,当EPF ∆的面积为4.2时,求对应的t 的值.
【举一反三】
如图1,已知直线y =a 与抛物线2
14
y x =交于A 、B 两点(A 在B 的左侧),交y 轴于点C (1)若AB =4,求a 的值
(2)若抛物线上存在点D (不与A 、B 重合),使1
2
CD AB =
,求a 的取值范围 (3)如图2,直线y =kx +2与抛物线交于点E 、F ,点P 是抛物线上的动点,延长PE 、PF 分别交直线y =-2于M 、N 两点,MN 交y 轴于Q 点,求QM ·QN 的值。
图1 图2
类型三 【角及角的和差定值】
【典例指引3】如图,在△ABC 中,∠ABC >60°,∠BAC <60°,以AB 为边作等边△ABD (点C 、D 在边AB 的同侧),连接CD .
(1)若∠ABC =90°,∠BAC =30°,求∠BDC 的度数; (2)当∠BAC =2∠BDC 时,请判断△ABC 的形状并说明理由; (3)当∠BCD 等于多少度时,∠BAC =2∠BDC 恒成立.
【举一反三】
如图1,抛物线2
: 2W y ax =-的顶点为点A ,与x 轴的负半轴交于点D ,直线AB 交抛物线W 于另一点
C ,点B 的坐标为()1,0.
(1)求直线AB 的解析式;
(2)过点C 作CE x ⊥轴,交x 轴于点E ,若AC 平分DCE ∠,求抛物线W 的解析式; (3)若1
2
a =
,将抛物线W 向下平移()0m m >个单位得到抛物线1W ,如图2,记抛物线1W 的顶点为1A ,与x 轴负半轴的交点为1D ,与射线BC 的交点为1C .问:在平移的过程中,11tan D C B ∠是否恒为定值?若是,请求出11tan D C B ∠的值;若不是,请说明理由.
类型四 【三角形的周长为定值】
【典例指引4】如图,现有一张边长为22的正方形ABCD ,点P 为正方形 AD 边上的一点(不与点 A 、点D 重合),将正方形纸片折叠,使点 B 落在 P 处,点 C 落在 G 处,PG 交DC 于H ,折痕为 EF ,连接 BP ,BH .
(1)求证:EPB EBP ∠=∠; (2)求证:APB BPH ∠=∠;
(3)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?不变化,求出周长,若变化,说明理由; (4)设AP 为x ,四边形EFGP 的面积为S ,求出S 与x 的函数关系式.