基于matlab的车牌识别算法论文大学毕设论文
基于MATLAB的车牌定位算法设计 电子信息工程毕业设计论文
北京联合大学信息学院毕业设计题目:基于MATLAB的车牌定位算法设计姓名:学号:2009080403104学院:信息学院专业:电子信息工程同组人:指导教师:协助指导教师:2011年5月12日摘要车牌自动识别系统是现代智能交通管理的重要组成部分,可用于各级各类车辆管理场所。
与传统的车辆管理方法相比,它大大地提高了管理效率与水平,节省了人力、物力,实现了车辆管理的科学化、规范化,对交通治安起到了一定的保障作用,因此有着广泛的应用前景。
车牌自动识别系统一般包括车牌定位、字符分割和字符识别三个模块。
它的研究主要涉及到模式识别、人工智能、计算机视觉、数字图像处理等众多学科领域。
车牌的定位、分割更是该系统的关键,由于图像场景的复杂性以及车牌位置和图像质量的不可预知性,牌照定位分割系统一直都未做到令人满意,所以有必要对其进行进一步的研究。
本文通过对大量资料的搜集、整理,总结了近年来国内外在车牌定位分割领域的最新研究成果和进展,对车牌区域的固有特征和目前的车牌定位、分割技术进行了分析和比较,提出了自己的观点并设计了一个车牌定位、分割系统。
本文利用MATLAB工具实现车牌定位算法研究。
利用灰度修正.滤波和图像增强等处理方法.较好地消除了图像的噪音,提高了图像质量。
通过对车牌特征的研究,利用边缘扫描方法实现车牌定位。
关键词:车牌定位;倾斜矫正;图像预处理;图像分割AbstractVehicles License Plate Recognition System(LPRS),which is all important part of the contemporary Intelligent Transportation System(ITS),can be applied to vehicle management situations of all levels and all kinds.Compared with traditional vehicles managements,LPRS has greatly improved the efficiency and level of management and saved manpower and material resources,laying a good foundation for the realization of standardized management.We Call safely come to the conclusion that LPRS has already improved the order of the traffic system, illustrating a good prospect of application for us.Generally, the LPR system consists of three modules:license plate location、character segmentation and character recognition.Its study concerns various disciplines including Pattern Recognition、Artificial Intelligence,Computer Vision、Digital Image Processing and SO 011.It is the location and segmentation of license plates standing at the heart of LPR system.Considering that the complexity of image background and the uncertainly of plate position and image quality,it is necessary to do further research into it.By summarizing the latest research achievements and development in the area of license plate location and segmentation both here and abroad,this paper, after making a deep comparison between the intrinsic characteristics of license plate and the current location and segmentation technologies on it,proposes its own understanding and designs a new LP location and segmentation system.The paper introduces a method of car license plate location and realizes a system of car license plate location based on MATLAB.The pre--processing methods including gray level modification,filter and image enhancement,are used to improve image quality and cut image noise.Car license plate location is realized by the method of edge detection and according to the car plate feature.key words:License plate location;Slant correction;Image pre--process ;car Image Segmentation.目录摘要 (1)Abstract (2)引言 (4)一、绪论 (5)1 . 1 、课题的背景和意义 (5)1 . 2、国内外研究状况 (5)1 . 3、车牌识别系统的应用范围 (6)二、系统概述 (9)三、硬件系统设计 (10)3.1、硬件系统设计 (10)3.2、各模块功能 (10)3.3、各模块与DSP的接口设计 (10)3.4.系统原理图和生成的PCB板 (15)四、在MATLAB环境下实现车牌定位的功能 (17)4.1、车牌定位系统介绍 (17)4.2、图像预处理 (17)4.3、灰度化 (18)4.4、图像边缘检测 (20)4.5、形态学处理 (21)4.6、车牌提取 (23)五、结论 (25)问题和不足: (26)不足之处: (27)六、主要参考资料如下: (28)七、致谢 (29)引言随着我国交通运输的不断发展,智能交通系统(Intelligent Traffic System,简称ITS)的推广变的越来越重要,而作为ITS的一个重要组成部分,车辆牌照识别系统(vehicle license plate recognition system,简称LPR)对于交通管理、治安处罚等工作的智能化起着十分重要的作用。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着智能化交通系统的不断发展,车牌识别技术在现代交通管理中发挥着越来越重要的作用。
基于MATLAB的车牌识别系统研究,能够为智能交通系统提供准确、高效的车牌信息处理手段。
本文旨在介绍基于MATLAB的车牌识别系统的基本原理、方法以及实际应用。
二、车牌识别系统基本原理车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别四个基本环节。
基于MATLAB的车牌识别系统采用数字图像处理技术,对采集到的车牌图像进行处理,以实现车牌的准确识别。
1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是去除图像中的噪声、增强图像的对比度,以便于后续的车牌定位和字符分割。
MATLAB提供了丰富的图像处理函数,如滤波、二值化、边缘检测等,可以有效地实现图像预处理。
2. 车牌定位车牌定位是车牌识别系统的关键环节,主要采用颜色分割、形态学方法、投影分析等方法。
在MATLAB中,可以通过颜色空间转换、阈值分割等手段,提取出车牌区域,为后续的字符分割和识别提供基础。
3. 字符分割字符分割是将车牌图像中的每个字符进行分离的过程。
在MATLAB中,可以采用投影法、连通域法等方法进行字符分割。
首先对车牌区域进行垂直投影,根据投影峰值的分布情况,确定每个字符的位置,然后进行水平投影,进一步确定每个字符的宽度,从而实现字符的精确分割。
4. 字符识别字符识别是车牌识别系统的最后一步,主要是对分割后的字符进行识别。
在MATLAB中,可以采用模板匹配、神经网络等方法进行字符识别。
模板匹配法是通过将待识别的字符与标准字符模板进行比对,找出最相似的字符作为识别结果。
神经网络法则是通过训练大量的样本数据,建立字符识别的模型,从而实现高精度的字符识别。
三、MATLAB在车牌识别系统中的应用MATLAB作为一种强大的数学计算软件,在车牌识别系统中发挥着重要作用。
首先,MATLAB提供了丰富的图像处理函数和算法库,可以方便地实现图像的预处理、车牌定位、字符分割和字符识别等过程。
基于matlab图像处理的车牌识别系统_毕业设计论文
基于matlab图像处理的车牌识别系统目录摘要 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2车牌系统简介 (4)1.2.1国内外现状 (5)1.2.2车牌识别难点 (6)1.3 MATLAB的简介 (7)1.3 MATLAB语言特点 (8)第二章图像预处理 (8)2.1 图像采集 (8)2.2 图像预处理 (9)2.2.1 图像灰度化 (9)2.2.2 图像增强 (11)第三章车牌定位与分割 (12)3.1 车牌定位 (13)3.2 车牌分割 (17)3.3 车牌进一步处理 (17)第四章字符分割和归一化 (18)4.1 字符分割 (19)4.2 字符归一化 (19)4.3 字符识别 (20)第五章汽车号牌识别系统实现与分析 (22)5.1 系统实现 (22)5.2 系统分析 (25)总结 (28)参考文献 (29)致谢 (30)摘要随着二十一世纪到来,经济快速发展和人们生活水平显著提高,汽车逐渐成为家庭的主要交通工具。
汽车的产量快速增多,车辆流动也变得越来越频繁,因此给交通带来了严重问题,如交通堵塞、交通事故等,智能交通系统(Intelligent Transportation System)的产生就是为了从根本上解决交通问题。
在智能交通系统中车牌识别技术占有重要位置,车牌识别技术的推广普及必将对加强道路管理、城市交通事故、违章停车、处理车辆被盗案件、保障社会稳定等方面产生重大而深远的影响。
该设计主要研究基于MATLAB软件的汽车号牌设别系统设计,系统主要包括图像采集、图像预处理、车牌定位、字符分割、字符识别五大核心部分。
系统的图像预处理模块是将图像经过图像灰度化、图像增强、边缘提取、二值化等操作,转换成便于车牌定位的二值化图像;利用车牌的边缘、形状等特征,再结合Roberts 算子边缘检测、数字图像、形态学等技术对车牌进行定位;字符的分割采用的方法是将二值化后的车牌部分进行寻找连续有文字的块,若长度大于设定的阈值则切割,从而完成字符的分割;字符识别运用模板匹配算法完成。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别(License Plate Recognition,简称LPR)系统是一种智能化的图像识别系统,被广泛应用于公安交通、车辆管理等重要领域。
其作用是通过识别和读取车牌号码信息,提高车辆管理和安全控制的效率和精度。
本文将基于MATLAB软件平台,对车牌识别系统进行深入研究,并探讨其应用前景。
二、车牌识别系统概述车牌识别系统主要包括图像预处理、车牌定位、字符分割和字符识别等四个主要步骤。
其中,图像预处理是提高图像质量、去除噪声和增强图像特征的重要环节;车牌定位则是通过图像处理技术,将车牌从复杂背景中提取出来;字符分割则是将车牌上的字符进行分割,以便于后续的字符识别;字符识别则是通过机器学习、深度学习等技术,对分割后的字符进行分类和识别。
三、MATLAB在车牌识别系统中的应用MATLAB是一种强大的数学计算软件,具有强大的图像处理和机器学习功能。
在车牌识别系统中,MATLAB可以用于图像预处理、车牌定位、字符分割和字符识别的全过程。
1. 图像预处理在MATLAB中,可以使用图像处理工具箱中的各种滤波器、直方图均衡化等技术,对图像进行去噪、增强等预处理操作,以提高图像质量和特征提取的准确性。
2. 车牌定位MATLAB中提供了多种图像处理算法,如边缘检测、形态学处理等,可以用于车牌的定位。
通过这些算法,可以从复杂的背景中提取出车牌区域,为后续的字符分割和识别提供基础。
3. 字符分割在MATLAB中,可以通过投影法、连通域法等算法,对车牌区域进行字符分割。
这些算法可以有效地将车牌上的字符进行分割,为后续的字符识别提供方便。
4. 字符识别MATLAB中集成了多种机器学习和深度学习算法,可以用于字符的分类和识别。
通过训练分类器或神经网络等模型,可以对分割后的字符进行准确的分类和识别。
四、实验结果与分析本文通过实验验证了基于MATLAB的车牌识别系统的有效性和准确性。
基于MATLAB的车牌识别研究_毕业设计论文
车牌识别技术研究摘要:车牌识别是现代智能交通系统中的重要组成部分之一,应用十分的广泛。
它以数字图像处理、模式识别、计算机视觉等技术基础,对摄像机所拍摄的车辆图像进行分析,得到每一辆汽车唯一的车牌号码,从而完成识别过程,它对汽车防盗、缓解交通紧张等起到了积极的作用。
本文主要介绍了有关于车牌识别技术的原理,以及基于MA TLAB的车牌识别的设计,对一张车辆图片进行一系列的预处理(灰度化、边缘检测、腐蚀、填充、形态滤波)之后,将车牌中的字符分割出来,最后将分割出的字符与数据库中存储的字符进行模板匹配。
通过以上的步骤的实现,该系统便能完成牌照图像的定位分割和牌照字符的自动识别。
关键词:MA TLAB;图像预处理;车牌定位;字符分割;字符识别License plate recognition technology research Abstract:License plate recognition is one of the modern intelligenttransportation system is an important part of a wide range of applications. It is technology-based digital image processing, pattern recognition, computer vision, vehicle camera captured images were analyzed, only every car license plate number, thus completing the identification process, its car security, relieve stress and other traffic from to a positive role. This paper introduces the principle of license plate recognition technology and design based on MATLAB license plate recognition, for a series of vehicle image preprocessing (gray, edge detection, corrosion, fill, morphological filtering) after the license plate characters split up, and finally split the data stored in the character and the character template matching. By implementing the above steps, the system will be able to complete the positioning of the vehicle license plate image segmentation and automatic license plate character recognition.Key words:MA TLAB;image preprocessing; license plate location; character segmentation; character recognition目录1 绪论 (1)1.1研究目的和意义 (1)1.2国内外研究现状 (2)1.3我国车牌分析 (3)1.4本文章节安排 (3)2 数字图像处理概述 (5)2.1图像及其组成要素 (5)2.2数字图像及其表示 (5)2.3数字图像处理基础 (6)2.4MATLAB在数字图像处理中的应用 (6)3 车牌识别系统的原理及方法 (8)3.1车牌识别系统简述 (8)3.2车牌图像预处理 (9)3.2.1 图像灰度化 (9)3.2.2 边缘检测 (9)3.2.3 形态学图像处理 (10)3.3车牌定位原理 (11)3.4车牌字符分割 (13)3.4.1 字符分割 (13)3.4.2 字符归一化处理 (13)3.5字符识别 (13)3.5.1 字符识别简述 (13)3.5.2 字符识别分类 (14)3.5.3 基于模板匹配的字符识别 (14)4 运用MATLAB实现车牌识别 (17)4.1车牌图像灰度化 (17)4.1.1 程序分析 (17)4.1.2 结果分析 (18)4.2车牌图像预处理 (19)4.2.1 程序分析 (19)4.2.2 结果分析 (20)4.3牌照定位 (22)4.3.1 程序分析 (22)4.3.2 结果分析 (23)4.4字符分割 (24)4.4.1 程序分析 (24)4.4.2 结果分析 (25)4.5字符识别 (25)4.5.1 程序分析 (26)4.5.2 结果分析 (27)5 总结 (29)附录 (30)参考文献 (34)致谢 (35)1 绪论1.1 研究目的和意义随着计算机、通信技术、计算机网络技术在人们日常生活中的不断发展和应用,带来了经济的快速发展,社会已经进入了信息化时代,自动处理信息的能力不断提高并在人们生活的各个领域中得到广泛的应用。
基于matlab车牌识别毕业论文
摘要伴随着时代的发展,车辆的逐渐走进千家万户,车辆的管理日益困难,于是车牌识别系统的应用得到了广泛发展。
车牌识别系统主要包括了图像采集、图像预处理、车牌定位、字符分割、字符识别五个核心部分。
本文侧重于介绍图像预处理、车牌定位、字符分割三个模块的实现。
车牌识别系统使车辆管理更智能化,数字化,有效的提升了交通管理的方便性和有效性。
本文的图像预处理环节则采用图像灰度化和用Roberts算子对车牌进行边缘检测。
车牌定位和分割采用的是利用数学形态法来确定车牌位置,然后利用车牌彩色信息的彩色分割法来完成车牌部位分割。
分割后的字符先进行二值化处理,再对垂直投影进行扫描后完成对字符的分割。
本课题是基于Matlab下的环境下对其进行仿真。
关键词:图像预处理图像定位图像分割ABSTRACTWith the development of era, the car gradually into the homes, vehicles management is becoming more and more difficult, so the application of license plate recognition system has been widely developed. License plate recognition system mainly includes image acquisition, image preprocessing, license plate location, character segmentation, character recognition five core part. This paper focuses on the image preprocessing, license plate location, character segmentation, the realization of the three modules. The vehicle license plate recognition system management more intelligent, digital, can effectively enhance the convenience and effectiveness of traffic management. The image grayscale image preprocessing step, the use and license plate with Roberts operator edge detection. License plate location and segmentation is using mathematical morphology method is used to determine the license plate location, license plate color information of color segmentation method is then used to complete the license plate segmentation. After the character segmentation binarization processing first, and then to complete vertical projection after scanning to the segmentation of the characters. This topic is based on carry on the simulation under Matlab environment.Key Words:image preprocessing, license plate localization, character segmentation .目录第1章绪论 (1)1.1本课题的研究背景 (2)1.2本课题研究的意义和目 (2)1.3本课题研究的内容 (2)第2章本课题程序设计 (3)2.1 开发环境............................................................................ . (3)2.1.1设计方案 (3)2.2 图像预处理 (3)2.2.1 图像灰度化 (3)2.2.2 图像边缘检测 (5)2.3 图像的定位和分割 (6)2.3.1车牌定位 (6)2.3.2车牌分割 (9)2.4 对定位后的车牌再处理 (10)2.5 字符的分割与归一化 (11)2.5.1 字符的分割 (12)2.5.2 字符的归一化 (13)3 实验结果与分析 (14)总结 (15)致谢 (16)参考文献 (17)附录................................................................................ .. (18)绪论1.1本课题的研究背景伴随着我国现代化事业的高速发展,人民的生活水平也正逐步提高,车辆的数量也日益增加,给人们的出行带来了便捷的同时,也对公路车辆的管理带来了巨大的压力,人工管理的方式也不能满足实际的需要。
基于Matlab的车牌识别(论文)
基于Matlab的车牌识别摘要:车牌识别技术是智能交通系统的重要组成部分,在近年来得到了很大的发展。
本文从预处理、边缘检测、车牌定位、字符分割、字符识别五个方面,具体介绍了车牌自动识别的原理。
并用MATLAB软件编程来实现每一个部分,最后识别出汽车车牌。
一、设计原理车辆车牌识别系统的基本工作原理为:将摄像头拍摄到的包含车辆车牌的图像通过视频卡输入到计算机中进行预处理,再由检索模块对车牌进行搜索、检测、定位,并分割出包含车牌字符的矩形区域,然后对车牌字符进行二值化并将其分割为单个字符,然后输入JPEG或BMP格式的数字,输出则为车牌号码的数字。
车牌自动识别是一项利用车辆的动态视频或静态图像进行车牌号码、车牌颜色自动识别的模式识别技术。
其硬件基础一般包括触发设备、摄像设备、照明设备、图像采集设备、识别车牌号码的处理机等,其软件核心包括车牌定位算法、车牌字符分割算法和光学字符识别算法等。
某些车牌识别系统还具有通过视频图像判断车辆驶入视野的功能称之为视频车辆检测。
一个完整的车牌识别系统应包括车辆检测、图像采集、车牌识别等几部分。
当车辆检测部分检测到车辆到达时触发图像采集单元,采集当前的视频图像。
车牌识别单元对图像进行处理,定位出车牌位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。
二、设计步骤总体步骤为:车辆→图像采集→图像预处理→车牌定位→字符分割→字符定位→输出结果基本的步骤:a.车牌定位,定位图片中的车牌位置;b.车牌字符分割,把车牌中的字符分割出来;c.车牌字符识别,把分割好的字符进行识别,最终组成车牌号码。
车牌识别过程中,车牌颜色的识别依据算法不同,可能在上述不同步骤实现,通常与车牌识别互相配合、互相验证。
(1)车牌定位:自然环境下,汽车图像背景复杂、光照不均匀,如何在自然背景中准确地确定车牌区域是整个识别过程的关键。
首先对采集到的视频图像进行大范围相关搜索,找到符合汽车车牌特征的若干区域作为候选区,然后对这些侯选区域做进一步分析、评判,最后选定一个最佳的区域作为车牌区域,并将其从图象中分割出来。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展和智能化水平的提升,车牌识别系统在智能交通系统中扮演着越来越重要的角色。
车牌识别技术作为计算机视觉和人工智能领域的一个重要应用,在交通安全、车辆管理、车辆监控等方面有着广泛的应用。
本文将介绍一种基于MATLAB 的车牌识别系统研究,该系统旨在通过图像处理和机器学习算法实现高效、准确的车牌识别。
二、车牌识别系统的原理与架构基于MATLAB的车牌识别系统主要包括以下几个步骤:图像预处理、车牌定位、字符分割和字符识别。
首先,系统将获取的图像进行预处理,包括灰度化、二值化等操作,以提高图像的对比度和清晰度。
然后,通过边缘检测和形态学操作等方法,定位出图像中的车牌区域。
接着,对车牌区域进行字符分割,将每个字符分割出来。
最后,利用机器学习算法对每个字符进行识别,得到车牌号码。
三、图像预处理图像预处理是车牌识别系统的重要步骤之一。
在MATLAB 中,我们首先对获取的图像进行灰度化和二值化处理。
灰度化操作可以将彩色图像转换为灰度图像,减少计算量。
二值化操作可以将灰度图像转换为二值图像,提高图像的对比度和清晰度。
此外,还可以通过滤波、去噪等操作进一步优化图像质量。
四、车牌定位车牌定位是车牌识别系统的关键步骤之一。
在MATLAB中,我们可以通过边缘检测和形态学操作等方法实现车牌定位。
具体而言,我们首先对预处理后的图像进行边缘检测,提取出图像中的边缘信息。
然后,利用形态学操作对边缘信息进行填充、腐蚀等处理,得到车牌区域的轮廓信息。
最后,通过轮廓检测和面积筛选等方法,定位出图像中的车牌区域。
五、字符分割与识别字符分割与识别是车牌识别系统的核心步骤。
在MATLAB 中,我们可以通过投影法或连通域法等方法实现字符分割。
具体而言,我们首先对车牌区域进行投影分析,根据字符在投影图上的特点进行分割。
然后,对每个字符进行归一化处理,使其大小和位置一致。
最后,利用机器学习算法对每个字符进行识别。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是现代智能交通系统的重要组成部分,具有广泛的应用前景。
本文将详细探讨基于MATLAB的车牌识别系统的研究,从算法设计到实验结果,全方位地分析系统的性能与特点。
二、车牌识别系统概述车牌识别系统主要通过图像处理和计算机视觉技术,对道路上的车牌进行自动识别。
系统主要包括图像预处理、车牌定位、字符分割和字符识别等几个关键步骤。
基于MATLAB的车牌识别系统,利用其强大的图像处理和矩阵运算能力,为车牌识别提供了有效的技术支持。
三、系统设计1. 图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声、增强车牌信息、改善图像质量等。
在MATLAB中,可以通过灰度化、滤波、二值化等操作,对图像进行预处理。
2. 车牌定位车牌定位是车牌识别系统的关键步骤之一,主要利用图像处理技术,从整个图像中提取出车牌区域。
常用的车牌定位方法包括投影法、边缘检测法、模板匹配法等。
在MATLAB中,可以通过这些方法实现车牌的快速定位。
3. 字符分割与识别字符分割与识别是车牌识别的核心步骤,主要将定位后的车牌图像中的字符进行分割,并识别出每个字符的具体内容。
在MATLAB中,可以通过连通域分析、投影分析等方法实现字符的分割与识别。
四、实验结果与分析为了验证基于MATLAB的车牌识别系统的性能,我们进行了大量的实验。
实验结果表明,该系统在各种光照条件、不同角度、不同颜色的车牌下均能实现较高的识别率。
同时,该系统还具有实时性高、鲁棒性强等优点。
在实验过程中,我们还对系统的各个步骤进行了详细的分析。
通过调整图像预处理的参数、优化车牌定位算法、改进字符分割与识别的方法等手段,不断提高系统的性能。
最终,我们得到了一个具有较高识别率的车牌识别系统。
五、结论本文研究了基于MATLAB的车牌识别系统,从算法设计到实验结果进行了全面的分析。
实验结果表明,该系统具有较高的识别率、实时性和鲁棒性等优点,能够满足实际需求。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言随着科技的发展,车牌识别系统在交通管理、安全监控、车辆定位等领域的应用越来越广泛。
MATLAB作为一种强大的编程语言和数据处理工具,被广泛应用于图像处理和机器视觉等领域。
本文旨在研究基于MATLAB的车牌识别系统,包括系统的基本原理、实现方法、实验结果和结论。
二、车牌识别系统的基本原理车牌识别系统是一种基于图像处理和机器视觉技术的自动识别系统。
其主要原理包括图像预处理、车牌定位、字符分割和字符识别四个部分。
在MATLAB中,这些过程通过数字图像处理算法、计算机视觉算法以及机器学习算法实现。
(一)图像预处理图像预处理是车牌识别系统的第一步,主要目的是消除图像中的噪声和干扰信息,提高图像的清晰度和对比度,以便后续的图像处理和分析。
常用的预处理方法包括灰度化、二值化、滤波等。
(二)车牌定位车牌定位是车牌识别系统的关键步骤,其主要目的是从图像中准确地检测出车牌的位置。
常用的车牌定位方法包括基于颜色特征的方法、基于形状特征的方法和基于模板匹配的方法等。
在MATLAB中,可以通过边缘检测、Hough变换等方法实现车牌的定位。
(三)字符分割字符分割是将车牌图像中的每个字符分割出来的过程。
常用的字符分割方法包括投影法、连通域法等。
在MATLAB中,可以通过图像形态学操作、阈值分割等方法实现字符的分割。
(四)字符识别字符识别是将分割后的字符进行分类和识别的过程。
常用的字符识别方法包括模板匹配法、神经网络法等。
在MATLAB中,可以通过训练分类器、使用机器学习算法等方法实现字符的识别。
三、车牌识别系统的实现方法在MATLAB中,我们可以通过编写程序实现车牌识别系统的各个步骤。
具体实现方法如下:(一)图像预处理首先,对输入的图像进行灰度化和二值化处理,消除噪声和干扰信息。
然后,通过滤波等操作提高图像的清晰度和对比度。
(二)车牌定位通过边缘检测和Hough变换等方法检测出车牌的轮廓,并确定车牌的位置。
基于Matlab的车牌识别系统设计课程设计论文
课程设计(数字信号处理)题目:基于matlab的车牌识别系统设计目录1 绪论 (2)1.1 车牌号识别研究背景 (2)1.2 车牌号识别技术研究现状和趋势 (3)1.3 车牌识别研究内容 (4)2 车牌识别系统设计原理概述 (5)3 车牌识别系统程序设计 (7)3.1 图像读取及车牌区域提取 (7)3.2 字符切割 (14)3.3字符识别 (17)4 仿真结果及分析 (19)4.1 车牌定位及图像读取及其图像处理 (19)4.2 车牌字符分割及其图像处理 (20)4.3 车牌字符识别及其图像处理 (21)5 结论 (21)6 个人心得 (25)附录:程序清单 (25)1 绪论1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。
微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
作为信息来源的自动检测、图像识别技术越来越受到人们的重视。
近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。
汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。
车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。
2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。
3)牌照多样性。
其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。
基于Matlab的车牌识别系统毕设论文
车牌定位、车牌字符切分及车牌字符识别三个模块。车牌定位模块中提出了基于小波变 换的车牌边缘提取的算法,以及车牌二次定位的算法,提高了系统在光照条件较差的情 况下的定位准确率,该算法对于各种底色的车牌具有良好的适应性;车牌的二值化采用 了改进的 Otus 算法,重新划分了其两维直方图的区域,改进后的算法大大减少了运
关键词:车牌识别;车牌定位;倾斜矫正;字符分割;字符识别
Design of license plate recognition system based on Matlab
ABSTRACT
As an important direction of intelligent traffic management, PRL (Plate Recognition of License System)has been more and more attention. PRL can be applied to the parking management system, the intelligent traffic management system, the vehicle management system and the other areas,.And plays an important role in public security management of transportation management. Although there are some vehicle plate recognition system related products to appear at present, their algorithm's research and development have never stopped. This paper firstly make a deep research on the existing technologies of PRL. And develop a PRL-system with the software of Matlab. The design just Matlab software .The PRL-system take the existing-picture as the target without the collecting program.The software of PRL-system consist of three modules:The license area locating,license plate character segment,and the recognition of every character.The modules of license area locating use edge detection algorithm based on wavelet transform,which has good adaptability for more quantity of background or license are.The program of take the RGB-picture to binary-picture by Otus,divide the two dimensional histogram of area.Character-cut cutting to the trough for
毕业设计论文基于matlab的车牌识别系统的设计(附程序+详解注释)
车牌号识别系统是基于图像处理技术的基础进行研究的。本课题图像处理分为以下几方面:
1.图像数字化
其目的是将模拟形式的图像通过数字化设备变为数字计算机可用的离散的图像数据。
2.图像变换
为了达到某种目的而对图像使用一种数学技巧,经过变换后的图像更为方便、容易地处理和操作。
3.图像增强
图像增强的主要目标是改善图像的质量。采用某些处理技术来突出图像中的某些信息,削弱或消除某些无关信息,从而有目的地强调图像的整体或局部特征,让观察者能看到更加直接、清晰的分析和处理图像。直方图修正、灰度变换、强化图像轮廓等都是常用的手段。
车牌识别系统是一项科技含量很高的多种技术结合的产品,主要有计算机视觉、数字图像处理、数字视频处理、模式识别等技术组成。也是智能交通系统的核心技术,产生于60年代。在80年代,由于城市交通问题日益严重,美国和欧洲许多国家投入了大量的人力和物力,建立了自动化高速公路网,安装了摄像、雷达探测系统和光纤网络,简历智能交通系统。在美国、欧洲、日本等发达国家的带动下,世界各国也开始简历智能交通系统。由于公路车流量日益增大、道路交通日益拥挤,车辆管理相对越来越困难,因此各个发达国家和发展中国家都在积极建设适应未来交通运输需求的智能交通系统。
焦作大学
毕业设计(论文)说明书
作者:学号:
学院(系):信息工程学院
基于MATLAB的车牌分割与数字识别系统毕业论文
学号:南湖学院毕业设计(论文)题目:基于MATLAB的车牌分割与数字识别算法设计作者届别系别机械与电子工程系专业电子信息工程指导老师职称完成时间2013.05摘要车牌识别技术是智能道路交通管理的重要容,其识别的准确性和可靠性直接影响到交通管理系统的性能。
车牌识别技术包括车牌图像获取、车牌定位、车牌分割、车牌校正、车牌字符分割、车牌字符归一化和车牌字符识别,本文重点针对车牌图像的分割和车牌数字的识别进行了算法研究和设计,同时也对其它步骤进行了探讨。
论文首先对获取的车牌图像进行了预处理,包括车牌图像增强、车牌区域提取、车牌几何校正以与车牌字符分割和归一化,然后设计了BP网络算法,最后在MATLAB平台上设计实现了以上各种算法。
实验结果表明,本文中的分割算法能准确的获取字符区域并实现对字符的分割和归一化,经过训练后的BP网络能稳定、可靠的实现对分割后字符的识别,实验结果达到预期要求。
关键词:MATLAB;车牌分割;图像预处理;数字识别AbstractLicense plate recognition technology is an important content of intelligent traffic management, accuracy and reliability identification directly affects the performance of traffic management system. License plate recognition technology include license plate image acquisition, license plate location, license plate segmentation, license plate correction, license plate character segmentation, normalization of license plate character segmentation and license plate character recognition. This paper mainly design and research on the algorithm for license plate image segmentation and license plate number recognition, but also for other steps. Firstly, the thesis get the license plate image preprocessing, including license plate image enhancement, plate region extraction, plate geometric correction and license plate character segmentation and normalization, and then designs the BP network algorithm, finally use the MATLAB platform to design algorithms to implement above. Experimental results show that the segmentation algorithm in this thesis can obtain character area and realize the character segmentation and normalization accurately, after training the BP network can implement the recognition for character segmentation stably and reliably, the experimental reaches expectation.Keywords: MATLAB; License plate segmentation; Image preprocessing; Digital identification目录摘要IABSTRACTI1 绪论11.1引言11.2车牌识别技术概述11.3车牌分割和数字识别的发展历史和现状2 1.4车牌分割和数字识别在车牌识别中的作用31.5本文的主要容与结构安排32 车牌分割方法42.1车牌获取42.2车牌预处理42.3车牌分割73 车牌数字识别方法113.1数字识别概述113.2车牌数字特点113.3基于神经网路的车牌数字识别134 基于MATLAB的算法设计与实现154.1MATLAB概述154.2车牌分割算法设计154.3车牌字符识别算法设计245 总结与展望315.1总结315.2展望31参考文献32致 341 绪论1.1 引言近年来,由于国外的交通迅速发展,车牌识别系统作为数字摄像、计算机信息管理、图像分割和图形识别技术在智能交通领域得到广泛的应用,该项技术成为了智能交通管理系统中不可或缺的重要组成部分,例如道路交通监控、交通事故现场勘察、交通违章自动记录、高速公路超速管理系统、小区智能化管理等各方面,是智能交通管理系统中高效、时效的最重要手段之一[1-2]。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别系统是一种在计算机视觉领域应用广泛的图像处理技术,它在道路交通管理、智能停车和安全监控等领域有着重要的应用价值。
近年来,随着人工智能技术的飞速发展,车牌识别技术也在不断提高,尤其是基于MATLAB平台的车牌识别系统研究,更是受到了广泛关注。
本文将介绍基于MATLAB的车牌识别系统的研究背景、目的和意义,并详细阐述其基本原理和实现方法。
二、车牌识别系统概述车牌识别系统是一种通过图像处理和计算机视觉技术对车辆车牌进行自动识别、定位、分割和字符识别的系统。
基于MATLAB的车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别等四个主要模块组成。
通过这四个模块的协同作用,可以实现对车牌信息的准确识别。
三、基于MATLAB的图像预处理技术图像预处理是车牌识别系统的第一步,其目的是提高图像的信噪比,减少噪声对后续处理的干扰。
基于MATLAB的图像预处理技术主要包括灰度化、二值化、去噪、滤波等步骤。
首先,通过灰度化处理将彩色图像转换为灰度图像;其次,二值化处理可以将灰度图像转换为二值图像,提高后续处理的准确性;接着,利用MATLAB中的去噪和滤波函数对图像进行进一步优化;最后,将处理后的图像进行归一化处理,以便于后续的定位和分割。
四、车牌定位技术研究车牌定位是车牌识别系统的关键环节之一,其目的是在图像中准确地定位出车牌的位置。
基于MATLAB的车牌定位技术主要包括边缘检测、区域生长、投影分析等方法。
首先,通过边缘检测算法检测出图像中的边缘信息;其次,利用区域生长算法对边缘信息进行扩展,得到包含车牌的候选区域;然后,通过投影分析等方法对候选区域进行进一步筛选和优化;最后,将车牌位置信息输出。
五、字符分割与识别技术研究字符分割与识别是车牌识别系统的核心环节之一。
基于MATLAB的字符分割与识别技术主要包括分割算法、特征提取和分类器设计等步骤。
首先,通过一定的分割算法将车牌中的字符进行分割;其次,提取每个字符的特征信息;然后,设计分类器对特征信息进行分类和识别;最后,将识别的字符信息输出。
基于MATLAB的汽车牌照自动识别技术研究
基于MATLAB的车牌自动识别技术研究1、本文概述随着技术的快速发展和智能时代的到来,自动驾驶、智能交通系统等领域的研究和应用逐渐成为全球热点。
在这些领域,汽车牌照的自动识别技术起着至关重要的作用。
汽车牌照自动识别技术作为车辆的唯一标识,不仅可以提高交通管理效率,还可以为车辆跟踪、违章记录等提供有力支持。
本文旨在通过对相关算法和技术的深入探索,研究基于MATLAB的汽车牌照自动识别技术,为实际应用提供理论支持和技术指导。
本文首先阐述了车牌自动识别技术的研究背景和意义,指出其在智能交通系统中的重要地位。
随后,文章回顾了国内外该领域的研究现状和发展趋势,分析了现有技术的优缺点,为后续研究提供了理论支持。
在此基础上,重点介绍了基于MATLAB的车牌自动识别技术的实现过程,包括预处理、车牌定位、字符分割、字符识别等关键环节。
通过对这些方面的详细阐述,展示了MATLAB在车牌识别技术中的强大功能和优势。
本文还对所提出的算法和技术进行了实验验证和性能分析,并通过对比实验和实际应用案例验证了所提出算法的有效性和实用性。
展望了车牌自动识别技术的未来发展方向,为相关领域的研究人员提供了有益的参考和启示。
通过本文的研究,我们希望能为车牌自动识别技术的发展和推广做出贡献,推动智能交通系统的进一步发展,为人们的出行和生活带来更方便、更安全的体验。
2、车牌自动识别技术综述车牌自动识别(ALPR)是一项利用图像处理、模式识别、人工智能等技术自动捕获、识别和提取车牌的关键技术。
随着智能交通系统的发展,车牌自动识别技术已广泛应用于交通管理、车辆跟踪、违章记录、停车场管理等领域。
车牌自动识别技术主要包括四个步骤:图像预处理、车牌定位、字符分割和字符识别。
图像预处理用于提高图像质量,减少噪声干扰,并为后续步骤提供清晰稳定的图像。
车牌定位是使用算法在预处理的图像中定位车牌的位置,为后续的字符分割提供准确的车牌区域的过程。
字符分割是将车牌中的字符逐一分割,为字符识别中的单个字符提供输入的过程。
《2024年基于MATLAB的车牌识别系统研究》范文
《基于MATLAB的车牌识别系统研究》篇一一、引言车牌识别(License Plate Recognition,简称LPR)系统是一种集成了计算机视觉和数字图像处理技术的高级应用。
随着智能交通系统的快速发展,车牌识别技术已成为交通管理、车辆监控和安全防范等领域的重要技术手段。
本文将详细介绍基于MATLAB的车牌识别系统的研究,包括系统设计、算法实现以及实验结果分析等方面。
二、系统设计2.1 系统架构基于MATLAB的车牌识别系统主要包括预处理、车牌定位、字符分割和字符识别四个模块。
首先,通过预处理模块对图像进行去噪、二值化等操作;然后,车牌定位模块利用颜色空间转换和形态学方法定位车牌区域;接着,字符分割模块将车牌区域分割成单个字符;最后,字符识别模块对分割后的字符进行识别,输出车牌号码。
2.2 图像预处理图像预处理是车牌识别的基础,主要包括灰度化、去噪、二值化等操作。
灰度化将彩色图像转换为灰度图像,便于后续处理;去噪则采用滤波等方法消除图像中的噪声;二值化将灰度图像转换为二值图像,便于后续的特征提取和识别。
三、车牌定位3.1 颜色空间转换车牌定位的关键在于准确提取出车牌区域。
通过将图像从RGB颜色空间转换到HSV或YCbCr颜色空间,可以更好地提取出车牌的颜色特征。
在转换后的颜色空间中,车牌区域通常具有较为明显的颜色特征,便于后续的定位和分割。
3.2 形态学方法形态学方法是一种常用的图像处理方法,包括腐蚀、膨胀、开运算和闭运算等操作。
通过形态学方法可以对车牌区域进行精确的定位和分割,提取出完整的车牌区域。
四、字符分割与识别4.1 字符分割字符分割是将车牌区域分割成单个字符的过程。
通常采用的方法包括投影分析、连通域分析和模板匹配等。
投影分析通过计算车牌区域的投影特征,将车牌区域分割成多个字符;连通域分析则通过检测图像中的连通区域,将每个字符单独提取出来;模板匹配则利用预先定义的字符模板,对车牌区域进行匹配和分割。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于Matlab的车牌识别算法摘要车牌系统是计算机视觉和模式识别技术在智能交通领域的重要应用课题之一。
车牌识别系统是以特定目标为对象的专用计算机系统,该系统主要包括三个内容:车牌定位、字符分割和字符识别。
其中车牌定位的目的就是从所拍摄的汽车图像中确定车牌的位置,从而便于后续的字符分割和字符识别工作。
目前常用的方法有:基于模板匹配的方法、基于特征的方法和神经网络法等。
本设计采用基于模板匹配算法和基于人工神经网络算法对车牌进行定位识别,此算法只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,。
此算法分割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。
但对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0)。
关键词:车牌识别系统;字符分割;车牌定位LICENSE PLATE RECOGNITION ALGORITHM BASEDON MATLABABSTRACTLicense plate system is a computer vision and pattern recognition technology in one of the important application research topic in the field of intelligent transportation. License plate recognition system based on specific goals of a special computer system, the system mainly includes three contents: license plate locating, character segmentation and character recognition. One of the purpose of license plate location is taken from the auto locate the license plate in the image, so as to facilitate the subsequent work character segmentation and character recognition. Now commonly used methods are: based on template matching method, based on the characteristics of the method and neural network, etc.This design USES based on template matching algorithm and based on artificial neural network algorithm to locate license plate recognition, the algorithm is only for blue white license plate segmentation recognition, the algorithm can be directly applicable in principle to the black white plate,. This algorithm to segment the image pixel values and template image, thus to avoid the cut out in the process of image pixel values are not consistent. But black on white background and black text plate, yellow bottom plate, adjustments need to license plate localization algorithm, and the image inversion of (0, 1, 1, 0).Key words: license plate recognition system; Character segmentation; License plate location目录1 前言 (4)1.1车牌号识别研究背景 (4)1.2 车牌号识别技术研究现状和趋势 (5)1.2.1国内外车牌识别技术情况及我国车牌特点 (5)1.2.2车牌识别技术的应用前景 (6)1.3 车牌识别研究内容 (7)2 车牌识别系统设计原理概述 (9)3 车牌识别系统程序设计 (11)3.1图像读取及车牌区域提取 (11)3.1.1图像灰度图转化 (11)3.1.2图像的边缘检测 (13)3.1.3灰度图腐蚀 (14)3.1.4图像平滑处理 (15)3.1.5移除小对象 (16)3.1.6车牌区域的边界值计算 (17)3.2字符切割 (18)3.2.1字符切割前的图像去噪处理 (18)3.2.2字符切割前的图像膨胀和腐蚀处理 (19)3.2.3字符切割 (19)3.3字符识别 (22)3.3.1字符识别方法选择 (22)3.3.2字符归一化 (22)3.3.3字符匹配识别 (23)4 仿真结果及分析 (26)4.1 车牌定位及图像读取及其图像处理 (26)4.2 车牌字符分割及其图像处理 (26)5 结论 (28)参考文献 (29)致谢............................................... 错误!未定义书签。
1 前言1.1 车牌号识别研究背景随着我国公路交通事业的发展,车辆的数量正在迅速增长,在给出行提供方便的同时,车辆管理上存在的问题日益突出,人工管理的方式已经不能满足实际的需要。
微电子、通信和计算机技术在交通领域的应用极大地提高了交通管理效率。
作为信息来源的自动检测、图像识别技术越来越受到人们的重视。
近年来计算机的飞速发展和数字图像技术的日趋成熟,为传统的交通管理带来巨大转变,先进的计算机处理技术,不但可以将人力从繁琐的人工观察、监测中解放出来,而且能够大大提高其精确度,汽车牌照自动识别系统就是在这样的背景与目的下进行开发的。
汽车牌照等相关信息的自动采集和管理对于交通车辆管理、园区车辆管理、停车场管理、交警稽查等方面有着十分重要的意义,成为信息处理技术的一项重要研究课题。
关于车牌识别技术及定位系统研究,在我国已经有了十几年的发展历程,目前系统的应用还处于起步阶段,大规模投入使用的成熟系统还没有出现,汽车牌照识别系统作为改进交通管理的有效工具,技术水平仍需完善。
国内外学者对此已经有了较多工作,但实际效果并不理想,尤其是对车牌自适应性强、速度快、准确率高的高速车牌定位方法还有待进一步研究。
另外,对辅助光源要求高,也很难有效解决复杂背景下多车牌移动识别的技术难题,如:车牌图像的倾斜、车牌表面污秽或磨损、光线干扰等都会影响定位的准确性。
传统车牌识别一般仅支持单一车辆,背景比较简单。
而当今许多实际应用场合,如在繁忙交通路口临时对欠税费、报废、挂失等车辆的稽查,则监视区域比较复杂,现有识别方法无法直接应用;而且多数情况下,同时出现多辆汽车,背景有广告牌、树木、建筑物、斑马线以及各种背景文字等,现有的识别方法也不能很好的适应多变的环境,所以对车牌识别技术的研究依然是目前高科技领域的热门课题之一。
车牌识别系统的成功设计、开发和应用具有相当大的社会效益、经济效益和学术意义。
车牌识别的难点:1)由于车牌图像多在室外采集,会受到光照条件、天气条件的影响,会出现图像模糊,对比度低,目标区域过小,色彩失真等影响,并且会伴随复杂的背景图像,这些都会影响车牌定位及识别。
2)每次采集时目标所处位置不会一样,采集视角会有很大变化,并且由于车牌挂的不正,都将导致车牌出现扭曲。
3)牌照多样性。
其他国家的汽车牌照格式,如尺寸大小,牌照上字符的排列等,通常只有一种。
而我国则根据不同车型、用途,规定了多种牌照格式,例如分为军车、警车、普通车等。
我国标准车牌照是由汉字、英文字母和阿拉伯数字组成的,汉字的识别与字母和数字的识别有很大的不同,增加了识别的难度。
4)我国汽车牌照的底色和字符颜色多样,蓝底白字、黄底黑字、黑底白字、红底黑字、绿底白字等多种。
5)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下国外发达国家不允许上路,而在我国仍可上路行驶。
使得车牌的对比度降低,特征不是很明显,即使在定位准确的情况下,字符的识别也会受到很大影响。
目前在国内存在多种牌照格式,且存在以上种种困难和特殊性,加大了我国车牌自动识别的难度,使得中国车辆牌照识别远远难于国外的车辆牌照识别。
因而如何提高识别率和识别处理的实时性及实用性成了一个紧要的任务。
1.2 车牌号识别技术研究现状和趋势1.2.1国内外车牌识别技术情况及我国车牌特点目前,一些发达国家车牌识剐系统在实际交通系统中已经成功应用,而我国的开发应用进展缓慢,基本停留在实验室阶段。
这是因为我国的实际情况与国外有所区别。
国外车牌比较规范统一,而我国车牌规范不够,较为多样化。
不同汽车类型有不同的规格、大小和颜色,所以车牌的颜色多,且字符位数不统一,对处理造成了一定的困难。
虽然很多研究人员已对车牌识别进行了较为深入的研究,但目前在车牌定位和字符分割这两个关键环节还存在着有待解决的难题。
一是当车牌图像的对比度较小、光照不均匀、车牌磨损褪色以及有类似车牌纹理特征的干扰时,有效定位率下降;其次在车牌字符分割时,光照不均、对比度较小、倾斜、污迹、字符粘连和断裂等严重退化的车牌图像的字符分割效果也不理想。
而对于车牌字符的识别来说,其识别的准确率很大程度上依赖于车牌定位和字符分割是否成功。
车牌字符的识别作为最终对车牌图像的理解,可以借鉴光学字符识别的宝贵经验,相对于车牌定位和字符分割来说反而比较容易实现。
国内外有大量关于车牌识别方面的研究报道。
国外在这方面的研究工作开展较早。
在上世纪70 年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。
同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。
发展到今日,国外对车牌检测的研究已经取得了一些令人瞩目的成就,识别率都在80%以上,甚至有高于90%。
并且已经实现了产品化,并在实际的交通系统中得到了广泛的应用。
目前我国有普通地方车牌号、武警车牌号、军队车牌号三种类型,普通地方车牌号又叫自选号牌车牌(如图1所示),自选号牌车牌尺寸是520122.5MM,即车牌长宽比为4.5:1,一共7个字符,每个字符的高宽比为2:1。