二次根式和它的性质 PPT优秀课件
合集下载
二次根式的ppt课件
将二次根式化简成最简二 次根式,即根号内不含能 开方的因数或因式。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
变形技巧
根据题目要求,对二次根 式进行变形,如平方差公 式、完全平方公式等。
估算方法
利用二次根式的性质进行 估算,比较大小,求取值 范围等。
易错点提醒
忽略二次根式的非负性。 运算顺序不正确。
变形过程中出错。
感谢您的观看
THANKS
总结词
有理化因式
详细描述
有理化因式是指将一个二次根式化简为最 简二次根式,其关键是将根号下的被开方 数分解为两个互为有理数乘积的因式。
方法
例子
选择与原二次根式相乘后,能够使得根号 内被开方数= sqrt(-7) = sqrt(7)
二次根式是指根号内含有 变量的表达式,其一般形 式为$\sqrt{a}$,其中$a$ 是非负数。
二次根式的性质
二次根式具有非负性,即 $\sqrt{a} \geq 0$,当且 仅当$a=0$时等号成立。
二次根式的运算
二次根式可以与有理数进 行四则运算,运算顺序先 乘方再乘除,最后加减。
方法总结
化简方法
表达式与符号
表达式
二次根式可以表示为$\sqrt{a}$(其 中a是非负数)及其变体,如 $\sqrt[3]{a}$等。
符号
$\sqrt{}$是二次根式的符号,表示求 某个数的平方根。
运算顺序与规则
运算顺序
二次根式的运算顺序与其他数学运算符相同,先乘方再乘除,最后加减。
规则总结
二次根式可以进行加减运算、乘除运算、幂运算等,运算结果需满足二次根式 的限制条件。
05
二次根式的综合例题
代数例题
总结词
二次根式的代数例题主要涉及完全平方公式 、平方差公式以及多项式展开等知识点。
二次根式及其性质课件
1 •下列式子一定是二次根式的是( C )
知1-练
2 •(中考·武汉)若代数式 C
•则x的取值范围是( )
在实数范围内有意义,
•A.x≥-2 B.x>-2 C.x≥2 D.x≤2
知识点 2 二次根式的性质
知2-导
做一做
(1)计算下列各式,你能得到什么猜想?
4 9 ____, 4 9 _____; 4 _____, 4 _____;
•
的根指数为2,所以
是二次根式.
• (7)是.理由:因为|x|≥0,且 根式.
的根指数为2,所以
是二次
总结
知1-讲
二次根式是在初始的外在情势上定义的,不能从化 简结果上判断,如 是二次根式. 像 (a≥0)这样的式子只能称为含有二次根式 的式子,不能称为二次根式.
知1-讲
• 例2 当x取怎样的数时,下列各式在实数范围内有意 义?
知识点 1 二次根式的定义
知1-讲
形如 a (a≥0)的式子叫做二次根式. 其中a为整式或分式,a叫做被开方式. 特点:①都是形如 a 的式子,
②a都是非负数.
例1 判断下列各式是否为二次根式,并说明理由.
知1-讲
导引: 判断一个式子是不是二次根式,实质是看它是否具备二次根
式定义的条件,紧扣定义进行辨认.
知3-练
1 (中考·淮安)下列式子为最简二次根式的是( A )
2 在下列根式中,不是最简二次根式的是( D )
1. 当a≥0时, 2. 当a≥0时, •3.
完成教材P43,习题T1-T4
谢谢!
知2-讲
知识点
商的算术平方根再探索 (1)商的算术平方根的性质的实质是逆用二次根式的除法
《二次根式课件》公开课课件
二次根式的历史与文化背景
01
二次根式的起源
二次根式最初起源于古希腊数学家毕达哥拉斯学派,他们研究了直角三
角形的边长关系,发现了直角三角形的勾股定理。
02 03
二次根式的发展历程
随着数学的发展,二次根式在各个历史时期都得到了广泛的应用和研究 。特别是在文艺复兴时期,数学家们开始系统地研究二次根式的性质和 运算方法。
二次根式的性质
总结词
二次根式具有非负性、算术平方根的单调性、算术平方根的取值范围等性质。
详细描述
二次根式的被开方数是非负数,因此二次根式本身也是非负数。此外,算术平 方根具有单调性,即随着被开方数的增大,其平方根也单调增大。最后,算术 平方根的取值范围是非负实数。
二次根式的化简
总结词
化简二次根式的方法包括因式分解、配方法、直接开平方法 和分母有理化等。
二次根式在代数式变形中的应用
总结词
简化表达式
详细描述
二次根式在代数式变形中有着重要的应用,它可以简化复杂的代数表达式。通过利用二 次根式的性质和运算法则,可以将复杂的代数表达式化简为更简单的形式,方便后续的
运算和分析。
二次根式在代数式变形中的应用
总结词:因式分解
详细描述:在代数式变形中,二次根式还可以用于因式分解 。通过提取公因式和利用二次根式的性质,可以将多项式进 行因式分解,从而更好地理解和分析代数式的结构。
详细描述
化简二次根式是数学中常见的代数运算之一。通过因式分解 或配方法,将二次根式化为最简形式。如果被开方数是多项 式,则可以使用直接开平方法或分母有理化进行化简。化简 后的二次根式更易于计算和运用。02 二次 Nhomakorabea式的运算
二次根式的加减法
二次根式课件ppt
计算过程。
பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。
பைடு நூலகம்
03
二次根式的应用
求解实际问题
求解最优化问题
二次根式可以用于求解最优化问题, 例如在投资组合、生产计划等领域, 通过二次根式求解最优解,以实现最 大利润或最小成本。
求解面积和体积问题
二次根式可以用于求解一些几何图形 的面积和体积,例如在计算矩形、三 角形、球体等的面积和体积时,可以 使用二次根式进行计算。
有界性
当$a \geq 0$时,$\sqrt{a} \leq \sqrt{a + b}$($b > 0$)。
正定性
当$a > b > 0$时,$\sqrt{a} > \sqrt{b}$。
05
二次根式的综合题
与方程有关的综合题
总结词
二次根式与方程的结合,涉及解方程、方程的根、根的判别式等。
详细描述
01
02
03
性质1
二次根式被开方数必须是 非负数,否则无意义。
性质2
二次根式的被开方数中不 能含有分母,否则不能化 简。
性质3
二次根式的被开方数中不 能含有能开得尽方的因数 或因式,否则也不能化简 。
二次根式的运算
加减运算
同类二次根式可以合并, 不同类二次根式不能合并 。
乘除运算
二次根式相乘除时,只需 将被除式与除式同时平方 再约分即可。
乘法法则
$(a\sqrt{b}) \times (c\sqrt{d}) = ac\sqrt{bd}$($a,b,c,d \geq 0$)。
除法法则
$\frac{(a\sqrt{b})}{(c\sqrt{d})} = \frac{a}{c}\sqrt{\frac{b}{d}}$($a,b,c,d \geq 0$,$bd \neq 0$)。
二次根式ppt课件
02
二次根式的化简与求值
化简二次根式的方法
因式分解法
将被开方数进行因式分解,提取 完全平方数。例如,√(24) = √(4×6) = 2√6。
分母有理化
当分母含有二次根式时,通过与其 共轭式相乘使分母变为有理数。例 如,1/(√3 + 1) = (√3 - 1)/[(√3 + 1)(√3 - 1)] = (√3 - 1)/2。
计算$(sqrt{3} + sqrt{2})(sqrt{3} - sqrt{2})$。
利用平方差公式进行计算,即 $(sqrt{3} + sqrt{2})(sqrt{3} sqrt{2}) = (sqrt{3})^2 (sqrt{2})^2 = 3 - 2 = 1$。
04
二次根式在方程中的应用
二次根式与一元二次方程的关系
二次根式ppt课件
目录
• 二次根式基本概念与性质 • 二次根式的化简与求值 • 二次根式的运算与变形 • 二次根式在方程中的应用 • 二次根式在不等式中的应用 • 二次根式在函数中的应用
01
二次根式基本概念与性质
二次根式的定义
01
02
03geq 0$)的式子叫做二次根式 。
二次根式的变形技巧
分母有理化
利用平方差公式将分母化为有理 数,同时保持分子的形式不变。
提取公因式
将多项式中相同的部分提取出来 ,简化计算过程。
完全平方公式
将某些二次根式化为完全平方的 形式,便于进行开方运算。
典型例题解析
例题1
解析
例题2
解析
计算$sqrt{8} + sqrt{18}$。
先将$sqrt{8}$和$sqrt{18}$化 为最简二次根式,即$sqrt{8} = 2sqrt{2}$,$sqrt{18} = 3sqrt{2}$,然后根据同类二次 根式的加法法则进行计算,即 $2sqrt{2} + 3sqrt{2} = 5sqrt{2}$。
二次根式的概念和性质 PPT教学课件(数学人教版八年级下册)
a中的a≥0; a≥ 0. 双重非负性
(3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算术平方根
是二次根式.
数学初中 二次根式的概念和性质
课堂小结
(4)你知道了二次根式的哪些性质?
( a )2= a(a≥0) a2 =a(a≥0)
a2 a
(5)我们以前学习过的整式、分式都能像数一样进行运算,你认为 对于二次根式应该进一步研究哪些问题?
数学初中 二次根式的概念
上面问题中,得到的结果分别是: 3, S, 65 , h. 5
1 这些式子分别表示什么意义? 2 这些式子有什么共同特征?
h 分别表示 3,S,65,5 的算术平方根.
这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
数学初中 二次根式的概念
t
1 含有数或表示数的字母; 2 用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式.
数学初中
课堂小结
二次根式的概念和性质
1 本节课你学到了哪一类新的式子? 2 二次根式有意义的条件是什么?二次根式的值的范围是什么? 3 二次根式与算术平方根有什么关系?
数学初中 二次根式的概念
变式 a 取何值时,下列二次根式有意义? (1) a2 -2a+1 ;(2) -(a-1)2 .
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
数学初中 二次根式的性质
问题1 根据算术平方根的意义填空.
( 4 )2= __4___;( 2 )2= ___2__;
(2)由 x-2≥0,得 x≥2
数学初中 二次根式的性质
(3)二次根式与算术平方根有什么关系? 二次根式都是非负数的算术平方根,带有根号的算术平方根
是二次根式.
数学初中 二次根式的概念和性质
课堂小结
(4)你知道了二次根式的哪些性质?
( a )2= a(a≥0) a2 =a(a≥0)
a2 a
(5)我们以前学习过的整式、分式都能像数一样进行运算,你认为 对于二次根式应该进一步研究哪些问题?
数学初中 二次根式的概念
上面问题中,得到的结果分别是: 3, S, 65 , h. 5
1 这些式子分别表示什么意义? 2 这些式子有什么共同特征?
h 分别表示 3,S,65,5 的算术平方根.
这些式子的共同特征是: 都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
数学初中 二次根式的概念
t
1 含有数或表示数的字母; 2 用基本运算符号连接数或表示数的字母. 用基本运算符号把数或表示数的字母连接起来得到的式子叫代数式.
数学初中
课堂小结
二次根式的概念和性质
1 本节课你学到了哪一类新的式子? 2 二次根式有意义的条件是什么?二次根式的值的范围是什么? 3 二次根式与算术平方根有什么关系?
数学初中 二次根式的概念
变式 a 取何值时,下列二次根式有意义? (1) a2 -2a+1 ;(2) -(a-1)2 .
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
数学初中 二次根式的性质
问题1 根据算术平方根的意义填空.
( 4 )2= __4___;( 2 )2= ___2__;
(2)由 x-2≥0,得 x≥2
数学初中 二次根式的性质
二次根式ppt课件
通过案例讲解二次根式在实际问 题中的应用
分析数学模型和实际问题之间的 关系
课程安排
4. 课堂练习和总结(10分钟)
提供课堂练习,检验学生对所 学内容的掌握情况
总结本节课的重点和难点,进 行回顾和总结
PART 02
二次根式的基本概念
二次根式的定义
总结词:非负数
详细描述:二次根式是指根号内含有未知数的数学表达式,它必须满足被开方数为非负数,否则没有 意义。
要点二
培养学生的数学思维和解决问题 的能力,例如
让学生自己设计一个与二次根式相关的问题并解决它等。
PART 06
总结与回顾
主要知识点回顾
二次根式的定义
二次根式是一种可以用来解决各 种实际问题的数学工具,它表示 一个非负数通过开方得到的平方
根。
二次根式的性质
二次根式具有非负性、有界性、正 值性等性质,这些性质在解决实际 问题时具有重要的应用价值。
PART 04
二次根式的应用
代数领域的应用
01
02
03
根式与方程的解
通过二次根式,我们可以 求解一元二次方程的解, 确定其实数根和虚数根。
根式的化简
在代数运算中,对根式进 行化简可以简化表达式, 提高运算效率。
根式与不等式
利用根式可以求解一元二 次不等式,通过确定不等 式的解集,解决实际问题 。
- \sqrt{3}$等。
解决与二次根式相关的实际问题,例如 :计算圆的面积或周长等。
掌握和运用二次根式的运算法则和公式 ,例如:$(a+b)\sqrt{a} = a\sqrt{a}
+ b\sqrt{a}$等。
综合练习题
要点一
通过综合题目,考察学生对二次 根式的全面理解和运用,例如
二次根式的性质课件
案例二
求解$sqrt{2x + 1} + sqrt{x - 2} leq 5$。同样先确定定 义域,再利用二次根式的性质和不等式的解法进行求解。
实践操作
给出一些具体的一元二次不等式问题,让学生尝试利用二 次根式的性质进行求解,并引导学生总结求解过程中的注 意事项和技巧。
05
二次根式在函数图像和性质中应 用
06
总结回顾与拓展延伸
关键知识点总结回顾
• 二次根式的定义:$\sqrt{a}$($a \geq 0$)是一个二次根式 ,其中$a$是被开方数,$\sqrt{}$是根号。
关键知识点总结回顾
二次根式的性质 $sqrt{a^2} = |a|$($a$为任意实数)
$(sqrt{a})^2 = a$($a geq 0$)
04
解
$sqrt{12} + sqrt{27} = sqrt{4 times 3} + sqrt{9 times 3} = 2sqrt{3} + 3sqrt{3} = 5sqrt{3}$。
06
解
$x^2 - y^2 = (x + y)(x - y) = [(sqrt{3} + 1) + (sqrt{3} - 1)][(sqrt{3} + 1) - (sqrt{3} - 1)] = (2sqrt{3})(2) = 4sqrt{3}$。
二次函数图像和性质回顾
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
二次函数的图像是一条抛物线,对称 轴为 $x = -frac{b}{2a}$,顶点坐标 为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
求解$sqrt{2x + 1} + sqrt{x - 2} leq 5$。同样先确定定 义域,再利用二次根式的性质和不等式的解法进行求解。
实践操作
给出一些具体的一元二次不等式问题,让学生尝试利用二 次根式的性质进行求解,并引导学生总结求解过程中的注 意事项和技巧。
05
二次根式在函数图像和性质中应 用
06
总结回顾与拓展延伸
关键知识点总结回顾
• 二次根式的定义:$\sqrt{a}$($a \geq 0$)是一个二次根式 ,其中$a$是被开方数,$\sqrt{}$是根号。
关键知识点总结回顾
二次根式的性质 $sqrt{a^2} = |a|$($a$为任意实数)
$(sqrt{a})^2 = a$($a geq 0$)
04
解
$sqrt{12} + sqrt{27} = sqrt{4 times 3} + sqrt{9 times 3} = 2sqrt{3} + 3sqrt{3} = 5sqrt{3}$。
06
解
$x^2 - y^2 = (x + y)(x - y) = [(sqrt{3} + 1) + (sqrt{3} - 1)][(sqrt{3} + 1) - (sqrt{3} - 1)] = (2sqrt{3})(2) = 4sqrt{3}$。
二次函数图像和性质回顾
二次函数的一般形式:$f(x) = ax^2 + bx + c$,其中 $a neq 0$。
当 $a > 0$ 时,抛物线开口向上;当 $a < 0$ 时,抛物线开口向下。
二次函数的图像是一条抛物线,对称 轴为 $x = -frac{b}{2a}$,顶点坐标 为 $left(-frac{b}{2a}, c frac{b^2}{4a}right)$。
《最简二次根式》二次根式PPT课件
2.被开方数是分数的二次根式化简
例 2 化简 1125. 分析:因为,125=5×5×5=52×5,所以,只需 分子、分母同乘以 5 就可以了.
解法一: 1125= 513××55=255.
3.被开方数是小数的二次根式化简
例 3 化简 1.5.
分析:被开方数是小数时,常把小数化成相 应的分数,然后进行求解.
1 8x3
x
0
0.8 4 45 2 5 5 55 5
4 1 9 92 3 2 2 2 22 2
20a2b 4a2 5b c 2 a 5bc 2a 5bc
c
cc
c
c
x2
1 8x3
x2
1 2x x2 8x3 2x 4x2
2x
2x 4
1.最简二次根式的概念.
满足下列条件的二次根式,叫做最简二次根式。
(2) 1 6x 9x2 (x 1) 3
(2)3x 1
(3) x 32 1 x2 1 x 3 (3)2
2、如果 a3 a2 a a 1, 那么a的取值范围是 ( D )
A. a 0 C. a 1
B. a 1
D. 1 a 0
3.化简 1 x3 x
错解:原式 1 x x2 x
18
32
被开方数不 含开得尽方 的因数
a 3
b2
(b 0)
9a
3a 3
ba
(b 0)
3a
被开方数 不含分母
(1)被开方数各因式的指数都为1. (2)被开方数不含分母.
被开方数满足上述两个条件的二次根式,叫 做最简二次根式.
如:1 x2 y √
4
6m(a2 b2 ) √
1 4
x2 y x 4
《二次根式和它的性质》PPT课件(上课用)
(3)( 0.85)2 = ( 0.85)2 = 0.85;
(4)( a + 5)2 =a+5 (a≥ 5) .
快速抢答
(1)( 12)2; (3)( 3.6 )2;
(2)(4 5 )2; (4)( x2+ 1)2
知识点.性质公式( a)2 = a(a≥ 0的) 逆用
把式子 ( a )2 = a(a≥ 0) 反过来,就得到 a = ( a )2 (a≥ 0).
•
1、有时候,我们活得累,并非生活过于刻薄,而是我们太容易被外界的氛围所感染,被他人的情绪所左右。
•
2、身材不好就去锻炼,没钱就努力去赚。别把窘境迁怒于别人,唯一可以抱怨的,只是不够努力的自己。
•
3、大概是没有了当初那种毫无顾虑的勇气,才变成现在所谓成熟稳重的样子。
•
4、世界上只有想不通的人,没有走不通的路。将帅的坚强意志,就像城市主要街道汇集点上的方尖碑一样,在军事艺术中占有十分突出的地位。
•
18、在人生的舞台上,当有人愿意在台下陪你度过无数个没有未来的夜时,你就更想展现精彩绝伦的自己。但愿每个被努力支撑的灵魂能吸引更多的人同行。
•
19、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会中看到了某种忧患。莫找借口失败,只找理由成功。
•
20、每一个成就和长进,都蕴含着曾经受过的寂寞、洒过的汗水、流过的眼泪。许多时候不是看到希望才去坚持,而是坚持了才能看到希望。
•
5、世上最美好的事是:我已经长大,父母还未老;我有能力报答,父母仍然健康。
•
6、没什么可怕的,大家都一样,在试探中不断前行。
•
7、时间就像一张网,你撒在哪里,你的收获就在哪里。纽扣第一颗就扣错了,可你扣到最后一颗才发现。有些事一开始就是错的,可只有到最后才不得不承认。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
80
2
(3)( 3.6 ) ; 3.6
(4)( x2+ 1 )
x2+1
知识点3.性质公式 的逆用 ( a ) 2 = a(a≥ 0)
把式子 ( a ) 2 = a(a≥ 0) 反过来,就得到
a = ( a ) (a≥ 0).
利用这个式子,可以把任何一个非负数写 成一个数的平方的形式。
2
小试牛刀
把下列非负数写成一个数的平方的形式: (1)5 ( 5 ) 2 (2)3.4 ( 3.4 ) 2
(1)( 16 ) 2 =16;
(2)(3 7 ) 2 = 32× ( 7 ) 2 = 9× 7 = 63; (3)( 0.85 ) 2 = (
0.85 ) 2 =2 =a+5 (a≥ 5) .
快速抢答
(1)( 12 ) 2 ;
2
12
(2)(4 5 ) 2 ;
1 2 2 2 ( y 0 ) , x + y 7, , x y 2
√
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (m≤0), (5) xy (x,y 异号) (4) m , (6) a +1 ,
2
(7)
3
5
在实数范围内,负数没有平方根
思考:
若 x + 2 是二次根式,则字母x需要满足 什么条件呢?
x取何值时,下列各式在实数范围内有意义?
(1) x + 3 (2 )
3 2x
1 x2
(3) 1 + x 2
(5) x
+
(4)
x
因为 a (a ≥ 0)表示a的算术平方根, 所以 a (a ≥ 0)总是一个非负数,
即 a ≥ 0(a ≥ 0).
知识点2 二次根式的性质 1.a≥0, a ≥0
( 双重非负性)
例3:已知(x+2)2 + y =0,求xy=? 解: ∵ ( x+2 )2 ≥0, y ≥0,(x+2)2+ y =0
∴ (x+2 )2 =0, y =0
解得x=-2
x y=0
y
∴
练习:若
xy =(-2)0=1
a+
a + b + 1 =0,求a、b的值。
小试身手
已知 a b + 6与 a + b 8互为相反数
二次根式和它的性质
我国自主研制的第一艘载人航 天飞船“神舟5号”于2003年10月15 日发射成功.
(1)运用运载火箭发射航天飞船,火箭必须达到一定的 速度,才能克服地心的引力,将飞船送入环绕地球运行 的轨道.这个速度称为第一宇宙速度.第一宇宙速度的 计算公式是 V1 = gR .其中g≈9.8米/秒2,R为地球的半 径.你能求出第一宇宙速度吗?
求a,b的值
a=1,b=7
例4.根据算术平方根的意义填空:
( 4) =
2
( 2) =
2
1 2 ( ) = 3
( 0) =
2
知识点2 二次根式的性质 2. a
2
= a (a≥0)
例5 计算:
解:
(1)( 16 ) 2 ; (3)( 0.85 ) 2 ;
(2)(3 7 ) 2 ;
(4)( a + 5 ) 2 (a≥ 5).
● 完成工作的方法,是爱惜每一分钟。──达尔文
● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
(1)二次根式的概念
(2)二次根式的性质
① a≥0, a ≥0 2 ② a = a (a≥0)
梦想的力量 当我充满自信地,朝着梦想的方向迈进
并且毫不畏惧地,过着我理想中的生活 成功,会在不期然间忽然降临!
● 一个不注意小事情的人,永远不会成功大事业。──卡耐基
● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 ──爱因斯坦
1
(1 ) x 3
解:(1)要使 则x-3 解得x ∴当x
(2 ) 1 x
x 3 在实数范围内有意义
0
3 在实数范围内有意义
3时, x 3
1
( 2) 1 x
1
解:要使 1 x 在实数范围内有意义 则 1- x ≠0 x≥0 解得x≥0且x≠1
1
∴当x≥0且x≠1时, 1 x在实数范围内有意义
p
(4)你发现上面各题的答案有什么共同特点?与学过的算术平方根等相比有什 么共同点?与同学交流.
式子 S+25 , 2S ,
s
p
与算术平方根的共同点:
乙 甲
①都是形如
a的式子,
②a都是非负数.
知识点1:二次根式
一般地,形如
a(a≥0)的式子叫做二次根式.
其中a为整式或分式,a叫做被开方式.
举出几个二次根式的例子:如:
(2)要使一艘飞船脱离地心引力,进入围绕太阳运行的 轨道所需要的速度称为第二宇宙速度.第二宇宙速度 为 V2 = 2V1 .第二宇宙速度是多少?
交流与发现
山青林场有甲、乙、丙、丁四块正方形苗圃.已知甲苗圃的面积为S平方米.
(1)如果乙苗圃的面积比甲苗圃大25平方米,乙苗圃的边长是多少? S + 25 米. (2)如果丙苗圃的面积为甲苗圃的2倍,丙苗圃的边长是多少? 2 S 米. s 1 (3)如果丁苗圃的面积是甲苗圃的面积的 ,丁苗圃的边长是多少? p 米
● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果
● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有 益。──高尔基 ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列 宁 ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅
1 (3) 6
1 2 ( ) 6
(4)x(x≥0) ( x ) 2
试一试
例6:在
m2 7 范围内因式分解:
解: 7 = ( 7 ) 2
m 7 = m ( 7)
2 2
2
= (m + 7 )(m 7 )
练习:在实数范围内因式分解
4 m (1) 4 x 3 (2) 4
2
?
课堂小结
强调:
要保证二次根式有意义,就要使根号下的 数大于等于0。
例1 x取什么实数时,二次根式
解:二次根式
? 2 x 有意义 1
2 x 1 有意义的条件是2x-1≥0.
由2x-1≥0,得
1 x≥ 2
1 即当x取大于或等于 的实数时,式子 2
2 x 1有意义.
例2、x是怎样的实数时,下列各式在实数范围 内有意义?