圆的对称性

合集下载

圆的认识(二)知识点总结

圆的认识(二)知识点总结

圆的认识(二)知识点总结一、圆的对称性。

1. 轴对称性。

- 圆是轴对称图形,其对称轴是任意一条经过圆心的直线。

圆有无数条对称轴。

- 例如,我们可以将一个圆形纸片沿着任意一条通过圆心的直线对折,对折后的两部分都能完全重合,这就体现了圆的轴对称性。

2. 中心对称性。

- 圆也是中心对称图形,对称中心为圆心。

- 把一个圆绕着圆心旋转任意一个角度后,都能与原来的图形重合。

在圆形的转盘游戏中,转盘绕着圆心旋转后,其位置虽然改变了,但形状和大小不变,这就是圆的中心对称性的体现。

二、弧、弦、圆心角的关系。

1. 定义。

- 圆心角:顶点在圆心的角叫做圆心角。

例如在圆O中,∠ AOB的顶点O 是圆心,所以∠ AOB是圆心角。

- 弧:圆上任意两点间的部分叫做圆弧,简称弧。

弧用符号“⌒”表示,以A、B为端点的弧记作overset{frown}{AB}。

- 弦:连接圆上任意两点的线段叫做弦。

经过圆心的弦叫做直径,直径是圆内最长的弦。

例如在圆O中,线段AB是弦,若AB经过圆心O,则AB是直径。

2. 关系定理。

- 在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。

- 例如,在圆O中,如果∠ AOB=∠ COD,那么overset{frown}{AB}=overset{frown}{CD},AB = CD。

3. 推论。

- 在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等。

- 在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧相等。

三、圆周角。

1. 定义。

- 顶点在圆上,并且两边都与圆相交的角叫做圆周角。

例如在圆O中,∠ACB的顶点C在圆上,且AC、BC都与圆相交,所以∠ ACB是圆周角。

2. 圆周角定理。

- 一条弧所对的圆周角等于它所对的圆心角的一半。

- 例如,在圆O中,弧overset{frown}{AB}所对的圆周角∠ ACB和圆心角∠ AOB,则∠ ACB=(1)/(2)∠ AOB。

321圆的对称性垂径定理

321圆的对称性垂径定理
(1)直径是弦(. √) (2)过圆心的线段是直径(. ×) (3)半圆是弧(. √) (4)两个半圆是等弧(. ×)
(5)面积不等的两圆不是等圆(. √) (6)长度相等的两条弧是等弧(. ×) 弧长 HG = 3.84 cm
H 弧长 FE = 3.84 cm
G
E
F
C
A
看一看
C
.O
A E B D
∴ 重合当,圆⌒ A沿C着和B⌒直C径重合CD, 对⌒ AD折和时B⌒D,点重合A与. 点B ∴A⌒C =B⌒C, A⌒D =B⌒D.
垂径定理
垂直于弦的直径平分这条弦,并 且平分弦所对的两条弧.
题设
结论
} (1)直径
(2)垂直于弦
{(3)平分弦 (4)平分弦所对的优弧 (5)平分弦所对的劣弧
垂径定理三种语言
D
A
B
E
A
O
O
CE
O
A
E
B
B
C
A
C D
O
E
C
D
AE
B
D
O
BA
E
B
C
练习
如图,已知在⊙O中, 弦AB的长为8厘米,圆心 A
O到AB的距离为3厘米,
求⊙O的半径。
E
B
.
O
解:连结OA. 过O作OE⊥AB,垂足为E,
则OE=3厘米,AE=BE。
∵AB=8厘米
∴AE=4厘米
在Rt △AOE中,根据勾股定理有OA=5厘米 ∴⊙O的半径为5厘米
A
C
C
C
OD
(1) B
•O
A
B
(2) D
•O

圆的对称性

圆的对称性

圆的对称性温故知新:1.已知:如图,点O是∠EPF的平分线的一点,以O为圆心的圆和∠EPF的两边分别交于点A、B和C、D.求证: ∠OBA=∠OCD1、圆的对称性(1)圆是轴对称图形,它的对称轴是直径所在的直线。

(2)圆是中心对称图形,它的对称中心是圆心。

(3)圆是旋转对称图形。

2、垂径定理。

(1)垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。

(2)推论:平分弦(非直径)的直径,垂直于弦且平分弦所对的两条弧。

平分弧的直径,垂直平分弧所对的弦。

【例1】如图,AB、AC、BC是⊙O的弦,∠AOC=∠BOC.∠ABC与∠BAC相等吗?为什么?【例2】如图,在△ABC中,∠C=90°,∠B=28°,以C为圆心,DE的度数.CA为半径的圆交AB于点D,交BC与点E.求⌒AD、⌒【例3】如图,在同圆中,若⌒AB=2⌒CD,则AB与2CD的大小关系是( ) .A. AB>2CDB. AB<2CDC. AB=2CDD. 不能确定【例4】如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径.【例5】如图,圆柱形水管内原有积水的水平面宽CD=10cm,水深GF=1cm,若水面上升1cm(EG=1cm),则此时水面宽AB为多少?【例6】有一座弧形的拱桥,桥下水面的宽度AB 为7.2米,拱顶高出水面CD ,长为2.4米,现有一艘宽3米,船舱顶部为长方形并且高出水面2米的货船要经过这里,此货船能顺利通过这座弧形拱桥吗?课堂练习1.如图,在⊙O 中,AB ︵=AC ︵,∠AOB =122°,则∠AOC 的度数为( )A .122°B .120°C .61°D .58°2.下列结论中,正确的是( )A .同一条弦所对的两条弧一定是等弧B .等弧所对的圆心角相等C .相等的圆心角所对的弧相等D .长度相等的两条弧是等弧3.如图,在⊙O 中,若C 是AB ︵的中点,∠A =50°,则∠BOC 等于( )A .40°B .45°C .50°D .60°4.如图,已知BD 是⊙O 的直径,点A ,C 在⊙O 上,AB ︵=BC ︵,∠AOB =60°,则∠COD 的度数是________.5.如图,AB 是⊙O 的直径,BC ︵=CD ︵=DE ︵,∠BOC =40°,则∠AOE =________°.6.在⊙O 中,若弦AB 的长恰好等于半径,则弦AB 所对的圆心角的度数为________.7.如图,在⊙O 中,AB ,CD 是两条直径,弦CE ∥AB ,EC ︵的度数是40°,求∠BOD的度数.8.已知:如图,在⊙O 中,弦AB 的长为8,圆心O 到AB 的距离为3.(1)求⊙O 的半径;(2)若P 是AB 上的一动点,试求OP 的最大值和最小值.9.如图,已知在以点O 为圆心的两个同心圆中,大圆的弦AB 交小圆于点C ,D.(1)求证:AC =BD ;(2)若大圆的半径R =10,小圆的半径r =8,且圆心O 到直线AB 的距离为6,求AC 的长.10.如图,已知在⊙O 中,AB 是弦,半径OC ⊥AB ,垂足为D.要使四边形OACB 为菱形,还需添加一个条件,这个条件可以是( )A .AD =BDB .OD =CDC .∠CAD =∠CBDD .∠OCA =∠OCB11.如图,AB 是⊙O 的弦,AB 的长为8,P 是⊙O 上一个动点(不与点A,B重合),过点O作OC⊥AP于点C,OD⊥PB于点D,则CD的长为________.12.如图,AB是⊙O的直径,AB=4,M是OA的中点,过点M的直线与⊙O交于C,D两点.若∠CMA=45°,则弦CD的长为________.13.已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3 cm,BC=10 cm,以BC 为直径作⊙O交射线AQ于E,F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.14.如图,某地有一座圆弧形拱桥,圆心为O,桥下水面宽度AB为7.2 m,过点O作OC⊥AB于点D,交圆弧于点C,CD=2.4 m.现有一艘宽3 m、船舱顶部为方形并高出水面2 m的货船要经过拱桥,则此货船能否顺利通过这座拱桥?15.如图,AB,CD是半径为5的⊙O的两条弦,AB=8,CD=6,MN是直径,AB⊥MN于点E,CD⊥MN于点F,P为EF上的任意一点,试求PA+PC的最小值.课后练习1.圆是轴对称图形,____________都是它的对称轴,因此圆有________条对称轴.2.如图,已知⊙O 的直径AB ⊥CD 于点E ,则下列结论中不一定正确的是( )A .CE =DEB .AE =OEC.BC ︵=BD ︵ D .△OCE ≌△ODE3.在⊙O 中,非直径的弦AB =8 cm ,OC ⊥AB 于点C ,则AC 的长为( )A .3 cmB .4 cmC .5 cmD .6 cm4.如图,AB 是⊙O 的弦,半径OC ⊥AB 于点D .若⊙O 的半径为5,AB =8,则CD 的长是( )A .2B .3C .4D .55.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .86.如图,AB 是⊙O 的直径,C 是⊙O 上的一点.若BC =6,AB =10,OD ⊥BC 于点D ,则OD 的长为________.7.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =1,则⊙O 的半径为________.8.如图是一个古代车轮的碎片,小明为求其外圆半径,连接外圆上的两点A ,B ,外圆半径OC ⊥AB 于点D 交外圆于点C.测得CD =10 cm ,AB =60 cm ,则这个车轮的外圆半径是________cm .。

3.2 圆的对称性(第一课时)

3.2  圆的对称性(第一课时)

①④
①⑤ ②③ ②④ ②⑤
②③⑤
②③④ ①④⑤ ①③⑤ ①③④
③④
③⑤ ④⑤
①②⑤
①②④ ①②③
练习:在⊙O中,OC垂直于弦AB, AB = 8,OA = 5, 则AC = 4 ,OC = 3 。
O
5 3 4 ┏
A
C
8
B
例2、如图,AB是⊙O的一条弦,点C为弦AB 的中点,OC = 3,AB = 8,求OA的长。

想一想P88 2
圆的对称性

驶向胜利 的彼岸
圆是轴对称图形. 圆的对称轴是任意一条经过圆心的直线,它有无 数条对称轴. 可利用折叠的方法即可解决上述问题. 圆也是中心对称图形.

O
它的对称中心就是圆心.
用旋转的方法即可解决这个 问题.
读一读P88 3
圆的相关概念

圆上任意两点间的部分叫做圆弧,简称弧. 以A,B两点为端点的弧.记作 ⌒ ,读作“弧 AB AB”. 连接圆上任意两点间的线段叫做弦(如弦AB).


O
∴当圆沿着直径CD对折时,点A与点B ⌒ ⌒ 重合, ⌒ ⌒ AC和BC重合, AD和BD重合.
D
⌒ ⌒ ⌒ ∴AC =BC, AD =BD.

想一想 P90 6
垂径定理

驶向胜利 的彼岸
定理 垂直于弦的直径平分弦,并且平分弦所的两条弧.
C
A
M└

如图∵ CD是直径, CD⊥AB, B
O
∴AM=BM,
B
独立作业P91 16
挑战自我

驶向胜利 的彼岸
P94:习题3.2
2题祝你成功!试一试P93 15挑战自我画一画

《圆的对称性》圆心角优秀自己总结

《圆的对称性》圆心角优秀自己总结
思考题与练习题
在半径为5cm的圆O中,弦AB的长为6cm,则弦AB的弦心距是多少?
已知圆O的半径为5cm,弦AB的长为8cm,P是弦AB上的一个动点,则点P到圆心O的最短距离是多少?
思考题
练习题
感谢观看
THANKS
01
02
利用圆的对称性解题技巧
04
CHAPTER
利用对称性简对称性可以简化计算过程。例如,计算圆心角所对的弧长或面积时,只需考虑圆心角的一半或特定部分,然后利用对称性得到完整的结果。
对称性简化计算
利用圆的镜像对称性,可以将问题转化为更容易处理的形式。例如,在处理与弦或切线相关的问题时,可以通过作垂线或构造相似三角形等方法,利用镜像对称简化计算。
镜像对称
利用对称性判断图形性质
判定等腰三角形
在圆内接三角形中,如果两个角所对的弧相等,则这两个角相等,从而可以判定该三角形为等腰三角形。
判定直角三角形
如果圆内接三角形的一个角所对的弧是另一个角所对弧的两倍,则该三角形为直角三角形。这一性质可以通过圆的对称性和相似三角形的性质来证明。
利用对称性解决实际问题
01
圆的对称性定义
圆是中心对称图形,任意一点关于圆心的对称点仍在圆上。
02
圆心角性质
在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
拓展延伸相关知识点
一条弧所对的圆周角等于它所对圆心角的一半。 圆周角定理 弦切角等于它所夹弧所对的圆周角。 弦切角定理 相交两圆的连心线垂直平分两圆的公共弦。 圆的幂定理
圆上任一点绕圆心旋转任意角度后,仍然位于圆上。
对于圆上任意两点,如果它们关于圆心对称,则它们的连线段通过圆心且被圆心平分。
中心对称性

3.2.2圆的对称性上课课件

3.2.2圆的对称性上课课件
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
如果: ∠AOB=∠ COD
D
下面我们一起来观察一下圆心角与它所对的 弦、弧有什么关系?A
B
o
C
3.2 圆的对称性(2)
圆心角、弧、弦、 弦心距之间的关系
想一想
2
驶向胜利 的彼岸
圆的对称性及特性
• 圆是轴对称图形,圆的对称轴是任意一条经过圆 心的直线,它有无数条对称轴.

O
做一做
做如下实验:
在两张透明的纸上,分别作半径相等的⊙O和⊙O´, 把两张纸叠在一起,使⊙ O与⊙O´重合,然后固定圆心.
A B′ O B′ A′ A′ A
D′
● ●
O′
B′ B
● ●
O′ O

你又能发现那些等量关系?说一说你的理由.
如图,⊙O 和⊙O' 是等圆, 如果 ∠AOB= ∠ A'O'B' 那么 AB=A'B' 、AB= A'B' 、OM=O'M', 为什么?
D B C
B O A O'
B' A'
O A
前提条件
O'
等圆
O
同圆或等圆的半径相等
D

C

A BLeabharlann 等弧在同圆或等圆中,能够互相重合的 两条弧叫做等弧

《圆的对称性》

《圆的对称性》

01
在古希腊和古埃及,数学家们开始研究圆的对称性,并探索其
几何性质。
欧几里得几何
02
在欧几里得几何中,圆被定义为所有到定点距离相等的点的集
合,这个定点被称为圆心。
反射对称性
03
圆的反射对称性是指,如果一个点在圆上,那么与它关于圆心
对称的点也在圆上。
圆的对称性的发展现状
微积分学的发展
在微积分学中,圆的对称性被进一步研究,并应用于解决各种 问题。
更广泛的应用
随着科技的发展,圆的对称性将会在更多的领域得到应用,例如 计算机图形学、人工智能等。
感谢您的观看
THANKS

03
工程学
在工程学中,圆的对称性被广泛应用于机械设计、建筑设计等领域。
例如,许多机械零件和建筑结构都采用了旋转对称性和反射对称性的
பைடு நூலகம்
原理进行设计和建造。
02
圆的基本性质
圆的定义
圆是平面上所有与给定点(称为圆心)的距离等于给定长度(称为半径)的点的 集合。
圆的方程通常表示为(x - h)^2 + (y - k)^2 = r^2,其中(h, k)是圆心的坐标,r是 半径。
测量与计算
圆的对称性在测量和计算 中也经常用到,如计算圆 的周长、面积等。
在物理学中的应用
运动学
圆的对称性在运动学中有着重要的应用,如物体 做圆周运动时的向心力和离心力。
光学
圆的对称性在光学中也有着重要的应用,如各种 光学仪器(如望远镜、显微镜等)的设计。
电磁学
在电磁学中,圆的对称性对于理解电磁场的分布 和性质非常重要。
在日常生活中的应用
建筑设计
圆的对称性在建筑设计中有着广泛的应用,如圆形屋顶、圆形窗 户等。

《圆的对称性》圆

《圆的对称性》圆

《圆的对称性》圆日期:目录•圆的定义与基本性质•圆的对称性概述•圆的轴对称性•圆的中心对称性•圆的对称性在日常生活中的应用•总结与展望圆的定义与基本性质定义圆是平面上所有与给定点(称为圆心)距离相等的点的集合。

几何表示通常,我们用圆心O和半径r来表示一个圆,记为⊙O(r)。

圆的定义圆中心的点,记作O,是圆的对称中心。

圆心、半径与直径圆心从圆心到圆上任一点的线段,记作r,长度等于圆的半径。

半径通过圆心,且两个端点都在圆上的线段,记作d,长度等于半径的两倍,即d=2r。

直径圆的基本性质同心性:所有与给定圆同心的圆都共享同一个圆心。

等距性:圆上任意两点到圆心的距离相等。

这些基本性质不仅定义了圆,也为后续研究圆的性质和其在各种应用中的作用奠定了基础。

圆周角定理:同弧所对的圆周角相等,等于圆心角的一半。

对称性:圆具有旋转对称性,任何经过圆心的角度旋转后,圆保持不变。

圆的对称性概述对称性,在几何学中,是指图形在某个变换下保持不变的性质。

例如,一个图形在旋转、翻折等操作后,如果与原图形重合,那么这个图形就具有对称性。

对称性定义几何变换包括旋转、翻折、平移等。

如果一个图形在这些变换下保持不变,我们说这个图形具有相应的对称性。

变换的种类对称性的定义实际应用圆的对称性在建筑设计、艺术设计、工程学等领域都有广泛应用,对这些应用的理解和分析需要深入研究圆的对称性。

几何基本图形圆是最基本的几何图形之一,对于理解更复杂的几何形状和结构至关重要。

数学理论圆的对称性研究也有助于推动数学理论的发展,如群论、拓扑学等。

为何研究圆的对称性圆的对称性的种类旋转对称性:圆具有旋转对称性,即无论沿着哪个方向旋转,只要旋转的角度相同,都能与原始图形重合。

平移对称性:由于圆是各向同性的,它在任何方向的平移都不会改变它的形状,这也是圆的一种对称性。

翻折对称性:圆也具有翻折对称性,即无论沿着哪条直径翻折,都能与原始图形重合。

总结起来,圆的对称性是其在各个方向上均匀性的体现,这也是它在几何学和应用领域中重要地位的原因之一。

圆及圆的对称性

圆及圆的对称性

圆及圆的对称性 圆及圆的对称性圆圆的对称性圆的定义圆的有关概念点与圆的位置关系圆的对称性圆心角圆心角、弧、弦之间的关系知识点1 圆及与的相关的概念1.(1)圆的定义:在一个平面内,线段OA 绕它的一个固定端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

固定端点O 叫做圆心,线段OA 叫做半径。

以点O 为圆心的圆,记作“⊙O ”,读作“圆O ”.注意:①在平面内,②圆是指圆周,而不是圆面,③圆的两要素...:圆心和半径,圆心确定圆的位置,半径确定圆的大小,④线段OP 的长也可以叫半径.(2)圆的集合性定义:圆心为O ,半径为r 的圆,可以看成所有到定点O ,距离等于定长r 的点的集合。

注:①圆上各点到定点(圆心O )的距离都等于定长(半径r ); ②到定点的距离都等于定长的点都在同一个圆上。

2.弦与直径、弧与半圆①连接圆上任意两点的线段叫做弦,如下图线段AC ,AB ;②经过圆心的弦叫做直径,如下图线段AB ;③圆上任意两点间的部分叫做圆弧,简称弧,“以A 、C 为端点的弧记作AC ”,读作“圆弧AC ”或“弧AC ”.大于半圆的弧(如图所示ABC 叫做优弧,•小于半圆的弧(如图所示)AC 或BC 叫做劣弧.BA C O④圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.3.同心圆和等圆同心圆:圆心相同,半径不等的圆叫做同心圆。

如图2所示:图2 图3等圆:半径相等的圆(能够互相重合的圆)叫做等圆。

注:同圆或等圆的半径相等。

如图3.等圆与位置无关等弧:在同圆和等圆中,等够完全重合......的弧叫做等弧。

注:长度相等的弧,度数相等的弧都不一定是等弧。

例 1.如图,一枚直径为4cm的圆形古钱币沿着直线滚动一周,圆心移动的距离是( )A.2πcm B.4πcm C.8πcm D.16πcm例2.如图,AB是⊙O的直径,CD是⊙O的弦,AB、CD的延长线相交于点E.已知AB=2DE,∠E=18°.试求∠AOC的度数.例3.在Rt△ABC中,∠C=90°,BC=3 cm,AC=4 cm,以点B为圆心,BC长为半径作⊙B,点A,C及AB,AC的中点D,E与⊙B有怎样的位置关系?例4.由于过度砍伐森林和破坏植被,我国某些地区多次受到沙尘暴的侵袭.近来A 市气象局测得沙尘暴中心在A 市正东方向400 km 的B 处,正在向西北方向移动,若距沙尘暴中心300 km 的范围内将受到影响,则A 市是否会受到这次沙尘暴的影响?例5.如图所示,在⊙O 中,A ,C ,D ,B 是⊙O 上四点,OC ,OD 交AB 于点E ,F ,且AE=FB ,下列结论:①OE =OF ;②AC =CD =DB ;③CD ∥AB ;④AC ︵=BD ︵.其中正确的有( )A .4个B .3个C .2个D .1个例6.若点P 到⊙O 的最小距离为6 cm ,最大距离为8 cm ,则⊙O 的半径是 。

3[1].2圆的对称性课件

3[1].2圆的对称性课件

如图,一条公路的转弯处是一段圆弧 ⌒ ⌒ (即图中 CD ,点o是 CD 的圆 心),其 ⌒ 上一点,且 中CD=600m,E为 CD OE⊥CD ,垂足为F,EF=90m,求这段 C 弯路的半径。
E F O D
1.在⊙O中,若CD ⊥AB于M,AB为直径,A 则下列结论不正确的是( ) C C M└ ⌒ ⌒ ⌒ ⌒ B、BC=BD A、AC=AD O C、AM=OM D、CM=DM
下列图形是否具备垂径定理的条件?
C
c
C
C
A
O A D E B
D O
B
O
O A E B
A E D B
A 如图,已知在⊙O中,
E
B
弦AB的长为8厘米,圆心 O到AB的距离为3厘米, 求⊙O的半径。
1 1 则AE=BE= AB= ×8=4厘米 2 2
. O
解:连结OA。过O作OE⊥AB,垂足为E
在Rt△AOE中,OE=3厘米,根据勾股定理 OA= AE 2 OE 2 3 2 4 2 5 厘米 ∴⊙O的半径为5厘米。 若E为弦AB上一动点,则OE取值范围是_______。

AB
⌒ 大于半圆的弧叫做优弧,如记作 ADB (用三个字母).

B A

连接圆上任意两点间的线段叫做弦 (如弦AB).


O
C
经过圆心的弦叫做直径(如直径AC).
D
探求不断
如图,CD是直径, AB弦, CD⊥AB,垂足为M 。 你能发现图中有哪些等量关系? 请你说说它们相等的理由。 ⌒ ⌒ ⌒ ⌒ AM=BM,AC=BC,AD=BD
A


B 小明发现图中有:
O

初三培优专题18 圆的对称性

初三培优专题18  圆的对称性

AC
DB
(第 6 题图)
O
B
A
EC
DF
(第 7 题图)
A
E CP F D
B (第 8 题图)
7.如图,AB 为⊙O 的直径,CD 是弦.若 AB=10cm,CD=8cm,那么 A,B 两点到直线 CD 的距离之和
为( )
A.12cm
B.10cm
C.8cm
D.6cm
8.如图,半径为 2 的⊙O 中,弦 AB 与弦 CD 垂直相交于点 P,连结 OP.若 OP=1,求 AB2+CD2 的
AP
BE
C
O
F
D 图3
⑵ 如图 2,若弦 BC 经过半径 OA 的中点 E,F 是 C»D 的中点,G 是 F»B 的中点,⊙O 的半径为 1,求弦
FG 的长; ⑶ 如图 3,在⑵中若弦 BC 经过半径 OA 的中点 E,P 为劣弧上一动点,连结 PA,PB,PD,PF,求证:
PA PF
的定值.
PB PD
【例 4】如图,已知圆内接△ABC 中,AB>AC,D 为 B¼AC 的中点,DE⊥AB 于 E.求证:BD2-AD2=AB g
AC. (天津市竞赛试题)
解题思路:从化简待证式入手,将非常规几何问题的证明转化为常规几何题的证明. D A E C
B
圆是最简单的封闭曲线,但解决圆的问题还要用到直线形的有关知识和方法.同样,圆也为解决直线形
⑴如图 1,PA+PB= 3 PH;
⑵如图 2,PA+PB=PH;
⑶ 进 一 步 , 如 图 3 , 若 ∠ APB=α , PH 平 分 ∠ APB , 则 PA+PB=2PHcos 为 定

§3.2 圆的对称性1、2

§3.2 圆的对称性1、2

§3.2 圆的对称性学习目标:经历探索圆的对称性及相关性质的过程,理解圆的对称性及相关知识.理解并掌握垂径定理,圆的旋转不变性,圆心角、弧、弦之间相等关系定理重点:垂径定理及其应用,圆心角、弧、弦之间关系定理.难点:垂径定理及其应用,“圆心角、弧、弦之间关系定理”中的“在同圆或等圆”条件的理解及定理的证明学习过程:一、举例:【例1】若⊙O的半径为5,弦AB长为8,求拱高.【例2】如图,在⊙O中,弦AB=8cm,OC⊥AB于C,OC=3cm,求⊙O的半径长.【例3】如图1,AB是⊙O的直径,CD是弦,AE⊥CD,垂足为E,BF⊥CD,垂足为F,EC和DF相等吗?说明理由.如图2,若直线EF平移到与直径AB相交于点P(P不与A、B重合),在其他条件不变的情况下,原结论是否改变?为什么?如图3,当EF∥AB时,情况又怎样?如图4,CD为弦,EC⊥CD,FD⊥CD,EC、FD分别交直径AB于E、F两点,你能说明AE和BF为什么相等吗?二、当堂训练:1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行. ()⑸弦的垂直平分线一定平分这条弦所对的弧. ()2、已知:如图,⊙O 中,弦AB∥CD,AB<CD,直径MN⊥AB,垂足为E,交弦CD于点F.图中相等的线段有 .图中相等的劣弧有 .3、已知:如图,⊙O 中, AB为弦,C 为 AB 的中点,OC交AB 于D ,AB = 6cm ,CD = 1cm. 求⊙O 的半径OA.4.如图,圆O与矩形ABCD交于E、F、G、H,EF=10,HG=6,AH=4.求BE的长.6.已知:AB 为⊙O 的直径,CD 是弦,BE ⊥CD 于E ,AF ⊥CD 于F ,连结OE ,OF 求证:⑴OE =OF ⑵ CE =DF 7.在⊙O 中,弦AB ∥EF,连结OE 、OF 交AB 于C 、D 求证:AC =DB8.已知如图等腰三角形ABC 中,AB =AC,半径OB =5,圆心O 到BC 的距离为3,求ABC 的长 9.已知:AB 为⊙O 的直径,CD 为弦,AE ⊥CD 于E ,BF ⊥CD 于F.求证:EC =DF 第6题 5.储油罐的截面如图3-2-12所示,装入一些油后,若油面宽AB=600mm,求油的最大深度.三、课后练习:1.已知,如图在以O 为圆心的两个同心圆中,大圆的弦AB 交小圆于C 、D 两点,求证:AC =BD2.已知AB 、CD 为⊙O 的弦,且AB ⊥CD ,AB 将CD 分成3cm 和7cm 两部分,求:圆心O 到弦AB 的距离3.已知:⊙O 弦AB ∥CD 求证:⋂=⋂BD AC4.已知:⊙O 半径为6cm ,弦AB 与直径CD 垂直,且将CD 分成1∶3两部分,求:弦AB 的长5、已知:AB 为⊙O 的直径,CD 为弦,CE ⊥CD 交AB 于E DF ⊥CD 交AB 于F 求证:AE =BF 第1题 第2题 第3题 第4题 第5题 第7题 第8题 第9题§3.2 圆的对称性(第二课时)学习目标:圆的旋转不变性,圆心角、弧、弦之间相等关系定理.学习过程:一、例题讲解:【例1】如图,AB 、CD 、EF 都是⊙O 的直径,且∠1=∠2=∠3,弦AC 、EB 、DF是否相等?为什么?【例2】如图,弦DC 、FE 的延长线交于⊙O 外一点P ,直线PAB 经过圆心O ,请你根据现有圆形,添加一个适当的条件: ,使∠1=∠2.二、当堂训练:1、判断题(1)相等的圆心角所对弦相等 ( )(2)相等的弦所对的弧相等 ( )2、填空题⊙O 中,弦AB 的长恰等于半径,则弦AB 所对圆心角是________度.3、选择题:如图,O 为两个同圆的圆心,大圆的弦AB 交小圆于C 、D 两点,OE ⊥AB ,垂足为E ,若AC =2.5 cm ,ED =1.5 cm ,OA =5 cm ,则AB 长度是___________.A 、6 cmB 、8 cmC 、7 cmD 、7.5 cm4、选择填空题: 如图2,过⊙O 内一点P 引两条弦AB 、CD ,使AB =CD ,求证:OP 平分∠BPD .证明:过O 作OM ⊥AB 于M ,ON ⊥CD 于N .A.OM⊥PBB.OM⊥ABC.ON⊥CDD.ON⊥PD三、课后练习:1.下列命题中,正确的有( )A .圆只有一条对称轴B .圆的对称轴不止一条,但只有有限条C .圆有无数条对称轴,每条直径都是它的对称轴D .圆有无数条对称轴,经过圆心的每条直线都是它的对称轴2.下列说法中,正确的是( )A .等弦所对的弧相等B .等弧所对的弦相等C .圆心角相等,所对的弦相等D .弦相等所对的圆心角相等3.下列命题中,不正确的是( )A .圆是轴对称图形B .圆是中心对称图形C .圆既是轴对称图形,又是中心对称图形D .以上都不对4.半径为R 的圆中,垂直平分半径的弦长等于( )A .43RB .23RC .3RD .23R5.如图1,半圆的直径AB=4,O 为圆心,半径OE ⊥AB ,F 为OE 的中点,CD ∥AB ,则弦CD 的长为( )A .23B .3C .5D .256.已知:如图2,⊙O 的直径CD 垂直于弦AB ,垂足为P ,且AP=4cm ,PD=2cm ,则⊙O 的半径为( )第3题 第4题例2图例1图A.4cm B.5cm C.42cm D.23cm7.如图3,同心圆中,大圆的弦AB交小圆于C、D,已知AB=4,CD=2,AB的弦心距等于1,那么两个同心圆的半径之比为() A.3:2 B.5:2 C.5:2D.5:48.半径为R的⊙O中,弦AB=2R,弦CD=R,若两弦的弦心距分别为OE、OF,则OE:OF=()A.2:1 B.3:2 C.2:3 D.09.在⊙O中,圆心角∠AOB=90°,点O到弦AB的距离为4,则⊙O的直径的长为()A.42B.82C.24 D.1610.如果两条弦相等,那么()A.这两条弦所对的弧相等B.这两条弦所对的圆心角相等C.这两条弦的弦心距相等D.以上答案都不对11.⊙O中若直径为25cm,弦AB的弦心距为10cm,则弦AB的长为.12.若圆的半径为2cm,圆中的一条弦长23cm,则此弦中点到此弦所对劣弧的中点的距离为.13.AB为圆O的直径,弦CD⊥AB于E,且CD=6cm,OE=4cm,则AB= .14.半径为5的⊙O内有一点P,且OP=4,则过点P的最短的弦长是,最长的弦长是.15.弓形的弦长6cm,高为1cm,则弓形所在圆的半径为 cm.16.在半径为6cm的圆中,垂直平分半径的弦长为 cm.17.一条弦把圆分成1:3两部分,则弦所对的圆心角为.18.弦心距是弦的一半时,弦与直径的比是,弦所对的圆心角是.19.如图4,AB、CD是⊙O的直径OE⊥AB,OF⊥CD,则∠EOD ∠BOF,⌒AC⌒AE,AC AE.20.如图5,AB为⊙O的弦,P是AB上一点,AB=10cm,OP=5cm,PA=4cm,求⊙O的半径.21.如图6,已知以点O为公共圆心的两个同心圆,大圆的弦AB交小圆于C、D.(1)求证:AC=DB;(2)如果AB=6cm,CD=4cm,求圆环的面积.22.⊙O的直径为50cm,弦AB∥CD,且AB=40cm,CD=48cm,求弦AB和CD之间的距离.23.已知一弓形的弦长为4 ,弓形所在的圆的半径为7,求弓形的高.6。

3.1圆的对称性

3.1圆的对称性

2、如图,⊙O的半径为5cm,弦AB为6cm, 求圆心O到弦AB的距离。
O

A
E
B
3、如图,在⊙O中,AB、AC为互相垂直且 相等的两条弦,OD⊥AB于D,OE⊥AC于E, 四边形ADOE的形状?
C
E
·
D B
O
A
4、已知:如图,在以O为圆心的两个同心圆 中,大圆的弦AB交小圆于C,D两点。你认为 AC和BD有什么关系?为什么?
AB的中点吗?

垂径定理:

如何判断圆的圆心的位置
弦的垂直平分线必定经过圆心!
③ 在解有关题目的时候,
常利用直角三角形的勾股定理!
M A
. O
B A C
C A O E
.
.O
N
D B
D
B
小结:
解决有关弦的问题,经常是过圆心作 弦的垂线,或作垂直于弦的直径,连结半 径等辅助线,为应用垂径定理创造条件。
它有无数条对称轴.

O
交流合作探究:
CD为⊙O 直径,作弦 AB,使
AB⊥CD,若将⊙O 沿直径CD所
D
在的直线折叠,
A M C
B
D
探究总结:
根据前面的分析, 我们用数学语言表示一下条件和结论 条件: CD是直径 CD⊥AB 总结:垂径定理 结论: AM=BM AC BC
⌒= ⌒
过圆心的直线或线段
3.1 圆的对称性
一、圆的定义(旋转法定义)
1、在一个平面内,线段OP绕它固定的一个端点 O旋转一周,则• 另一个端点P所形成的封闭曲线 叫做圆。
固定的端点O叫做圆心,线段OP叫做半径。
以点O为圆心的圆,记作“⊙O”,读作“圆O”。

圆的定义及对称性

圆的定义及对称性

ABC 圆的定义与圆的对称性【知识要点】(一)圆的有关概念 1.圆的基本概念定义:在一个平面内,线段OA 绕它固定的一个端点O 旋转一周,另一个端点A 所形成的图形叫做圆。

固定点O 叫做圆心;线段OA 叫做半径;圆上各点到定点(圆心O )的距离都等于定长(半径r);反之,到定点的距离等于定长的点都在同一个圆上(另一定义); 以O 为圆心的圆,记作“⊙O ”,读作“圆O ” 2.圆的对称性及特性:(1)圆是轴对称图形,圆的对称轴是任意一条经过圆心的直线,它有无数条对称轴;(2)圆也是中心对称图形,它的对称中心就是圆心.(3)一个圆绕着它的圆心旋转任意一个角度,都能与原来的图形重合.这是圆特有的一个性质:圆的旋转不变性 3.弦:连接圆上任意两点的线段叫做弦。

4.弦心距:圆心到弦的距离叫做弦心距. 5.直径:经过圆心的弦叫直径。

注:圆中有无数条直径 6.圆弧:(1)圆上任意两点间的部分,也可简称为“弧” 以A,B 两点为端点的弧.记作AB ⋂,读作“弧AB”. (2)圆的任意一条直径的两个端点把圆分成两条弧,其中每一条弧都叫半圆。

如弧AD.(3)小于半圆的弧叫做劣弧,如记作AB ⋂(用两个字母). 7.圆心角:顶点在圆心,两边和圆相交的角叫做圆心角。

说明:(1)直径是弦,但弦不一定是直径,直径是圆中最长的弦。

(2)半圆是弧,但弧不一定是半圆。

(3)等弧只能是同圆或等圆中的弧,离开“同圆或等圆”这一条件不存在等弧。

(4)等弧的长度必定相等,但长度相等的弧未必是等弧。

(二)弦、弧、弦心距、圆心角的关系定理:在同圆或等圆中,弦、弧、弦心距、圆心角四组量中只要有一组量相等,则其余三组量也相等。

(三)点和圆的位置关系:设⊙O 的半径为r ,点P 到圆心的距离为d 。

则:(1)若rd=,则点P在圆上;(3)若rd<,d>,则点P在圆外;(2)若r则点P在圆内。

说明:点和圆的位置关系与点到圆心的距离和半径大小的数量关系是对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系。

15-第三章2圆的对称性

15-第三章2圆的对称性



∠BOD=∠COD,∴BD =CD .∵OB=OC,∴△BOC是等腰三角形.又∵OA平
分∠BOC,∴OA⊥BC,即AD⊥BC.故①②③④均正确,因而选D. 答案 D
2 圆的对称性
栏目索引
题型一 运用圆心角、弧、弦之间的关系求角的度数
例1
(2019四川内江资中一模)如图3-2-2,AB,CD是☉O的直径,
(2)PE=PF.
证明 (1)如图,连接PO,


∵ PA=PB ,∴∠POC=∠POD.
∵C,D分别是半径OA,OB的中点,∴OC=OD.
又∵PO=PO,∴△PCO≌△PDO,∴PC=PD.
∴∠AEC=∠AOC+∠OAB=75°,
∴∠ACE=∠AEC,∴AE=AC,∴AE=CD.
2 圆的对称性
栏目索引
4.如图3-2-7,已知AB,CD是☉O的直径,DF∥AB交☉O于点F,BE∥DC交☉O
于点E.
(1)求证:BE=DF;
(2)写出图中4组不同的且相等的劣弧(不要求证明).
图3-2-7
解析 (1)证明:连接OE,OF.
圆是以圆心为对称中心的中心对称图形,实际上,一个圆绕着它的圆心旋转任意一个角度,都 能与原来的图形重合,这种性质称为旋转不变性.圆的中心对称性是其旋转不变性的一个特 例
2 圆的对称性
例1 下列说法正确的是 ( ) A.每一条直径都是圆的对称轴 B.圆的对称轴是唯一的 C.圆的对称轴一定经过圆心 D.圆的对称轴与对称中心重合
证明 如图,连接AG.
∵AB=AG,∴∠AGB=∠B.
∵四边形ABCD为平行四边形,
∴AD∥BC.
∴∠EAD=∠B,∠FAG=∠AGB,

初中数学苏科版九年级上册2.2 圆的对称性

初中数学苏科版九年级上册2.2 圆的对称性


3.如图,在半径为13的⊙O中,OC垂直弦 AB于点B,交⊙O于点C,AB=24,则CD 的长为_7_____。
●O
A
D
B
C
4:如图, ⊙O的弦AB=8 ㎝ , DC=2㎝,直
径CE⊥AB于D, 则半径OC=_5_____。
E
O
x D x-2
A
4
B

2
C
如 图 , ⊙ O 的 半 径 为 5 , 弦 AB 的 长 为8,M是弦AB上的动点,则线段OM
垂径定理的应用
5.在横截面为圆形的油槽内装入一些油后,若油面宽 AB = 600mm,圆的直径为650mm,求油的最大深 度.
E
A
600
B
O
O ø650
A
C
B
E
D
600
F
D
谈谈你今天的收获是什么?
C
O
A
EB
D
图3
1.圆是轴对称图形.过圆心的任意一条 直线都是它的对称轴.
2.垂径定理:垂直于弦的直径平分 这条弦,并且平分弦所对的弧.
如图圆形纸片, CD是⊙O直 径.
1.在⊙O上任取一点A,过 A 点A作直径CD的垂线,交⊙O 于点B,点P为垂足.·
C
●O
P
B
D
2. 将圆沿着直径CD对折,你有什么发现呢? 发现:CP=DP,弧AD=弧BD,弧AC=弧BC。
垂直于弦的直径平分这条弦,并且平 分弦所对的弧.
∵在⊙O中 直径CD⊥AB ∴AP=BP,
米,求⊙O的半径。
A 4E
B
.3
5?
O
2.你知道赵州桥吗?它是1300多年前 我国隋代建造的石拱桥,是我国古代人民勤 劳和智慧的结晶.它的主桥拱是圆弧形,它 的跨度(弧所对的弦的长)为37.4米, 拱高(弧的中点到弦的距离)为7.2米, 你能求出赵州桥主桥拱的半径吗?(精确到 0.1) C
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23.1圆的认识 (二)
回顾:
垂径定理
C
垂直于弦的直径平分这条弦,
并且平分弦所对的两条弧。
A
O B
题设
结论 图23.1D.7
{ (1)直径垂直于弦
(2)直径平分弦 (3)直径平分弧
讲解
例1 如图,已知在⊙ O中, 弦AB的长为8厘米,圆心OA 到AB的距离(弦心距)为3 厘米,求⊙ O的半径。
E
如图,矩形ABCD与圆O交于点A、B、E、F, DE=1cm,EF=3cm,则AB=___5_____cm
Dห้องสมุดไป่ตู้ A
FC B
O
如图,在圆O中,已知AC=BD,
试说明:(1)OC=OD
︵︵
(2)AE= BF
O
C A
E
D B
F
小结:
解决有关弦的问题,经常是过圆 心作弦的垂线,或作垂直于弦的直径, 连结半径等辅助线,为应用垂径定理 创造条件。
是带着一丝迷人笑意的小嘴唇跃出;脱硫除尘/ ;紫宝石色的朦胧异香……紧接着旋动灿烂闪耀的披肩金发一叫,露出一副美妙的神色,接着抖动秀 丽光滑、好像小仙女般的下巴,像浅橙色的绿胃城堡熊般的一挥,时尚的秀丽光滑的下巴顿时伸长了五倍,韵律欢跳的妙腰也猛然膨胀了六倍。最后扭起轻灵雅秀、能够听懂 远处动物语言的妙耳朵一旋,飘然从里面流出一道奇辉,她抓住奇辉帅气地一旋,一组光溜溜、红晶晶的功夫⊙玉光如梦腿@便显露出来,只见这个这件玩意儿,一边蜕变, 一边发出“呜呜”的奇声。……陡然间月光妹妹疯鬼般地让自己俏雅明朗、雪国仙境一样的玉牙奇闪出暗红色的鱼尾声,只见她缀满一串闪光星星的桃红色云丝腰带中,威猛 地滚出四缕晃舞着⊙金丝芙蓉扇@的犄角状的麋鹿,随着月光妹妹的耍动,犄角状的麋鹿像木头一样在头顶夸张地创造出隐约光影……紧接着月光妹妹又连续使出五帮阴鹏木 鱼踏,只见她轻柔的如同云霞一样的亮粉色月光衣中,狂傲地流出五串摆舞着⊙金丝芙蓉扇@的元宵状的尾巴,随着月光妹妹的摆动,元宵状的尾巴像斑马一样,朝着女科长 O.雯娃姑婆嫩黄色路灯造型的美辫飞颤过去!紧跟着月光妹妹也猛耍着功夫像脊骨般的怪影一样朝女科长O.雯娃姑婆飞颤过去随着两条怪异光影的瞬间碰撞,半空顿时出 现一道暗青色的闪光,地面变成了浓黑色、景物变成了天蓝色、天空变成了金红色、四周发出了高雅的巨响……月光妹妹灿烂闪耀的披肩金发受到震颤,但精神感觉很爽!再 看女科长O.雯娃姑婆如同弯月一样的腿,此时正惨碎成草籽样的淡灰色飞丝,快速射向远方,女科长O.雯娃姑婆惊嘶着全速地跳出界外,急速将如同弯月一样的腿复原, 但元气和体力已经大伤。月光妹妹:“你的业务好老套哦,总是玩狼皮换羊皮,就不能换点别的……”女科长O.雯娃姑婆:“这次让你看看我的真功夫。”月光妹妹:“嘻 嘻,你的功夫十分了得哦,太像捧着手纸当圣旨的奴才功了!这招业务实在太垃圾了!”女科长O.雯娃姑婆:“气死我了,等你体验一下我的『红烟锤鬼纸屑拳』就知道谁 是真拉极了……”女科长O.雯娃姑婆飘然像浅红色的万耳戈壁马一样怒咒了一声,突然搞了个倒地振颤的特技神功,身上瞬间
B
.
O
解:连结OA。过O作OE⊥AB,垂足为E, 则OE=3厘米,AE=BE。
∵AB=8厘米 ∴AE=4厘米
在RtAOE中,根据勾股定理有OA=5厘米 ∴⊙ O的半径为5厘米。
讲解
例2 已知:如图,在以
O为圆心的两个同心圆中,
大圆的弦AB交小圆于C,
D两点。
AC
O.
E
D
B
试说明:AC=BD。 证明:过O作OE⊥AB,垂足为E,则
AE=BE,CE=DE。
AE-CE=BE-DE。
所以,AC=BD
来月光妹妹超然旋动灿烂闪耀的披肩金发一叫,露出一副美妙的神色,接着抖动秀丽光滑、好像小仙女般的下巴,像浅橙色的绿胃城堡熊般的一挥,时尚的秀丽光滑的下巴顿 时伸长了五倍,韵律欢跳的妙腰也猛然膨胀了六倍。接着秀美挺拔的玉腿猛然振颤飘荡起来……轻灵雅秀、能够听懂远处动物语言的妙耳朵喷出暗红色的飘飘暗气……似乎总
A
B
.
O
讲解
例3 已知⊙ O的直径是50 cm,⊙ O的 两条平行弦AB=40 cm ,CD=48cm, 求弦AB与CD之间的距离。
A
20 E
B
A
. 25
15
C 25 O7
24
D
C
E
B
.F
D
O
EF有两解:15+7=22cm 15-7=8cm
如图,⊙O的半径为5,弦AB的长为8,M 是弦AB上的动点,则线段OM的长的最小 值为__3__.最大值为____5________.
相关文档
最新文档