八年级数学下册第二次月考检测试题(含答案)
辽宁省沈阳市南昌初级中学2023-2024学年八年级下学期4月数学月考试题(含答案)
2023—2024学年度下学期八年级数学学科4月限时性作业一、选择题(每小题3分,共10道小题,共30分)1.已知等腰三角形的一边长为2,一边的长为6,则此等腰三角形的周长为()、A .14B .12C .10D .10或142.将点先向左平移2个单位长度,再向上平移4个单位长度,得到点,则点在()A .第一象限B .第二象限C .第三象限D .第四象限3.如图,的顶点A ,B ,C 在边长为1的正方形网格的格点上,则AC 边长的高为( )ABCD4.把多项式分解因式等于()A .B .C .D .5.如图,BD 是的角平分线,,垂足为E ,的面积为12,,,则BC 的长为( )A .7B .6C .5D .46.将不等式组的解集表示在数轴上,下列正确的是( )(3,1)A --A 'A 'ABC △2(2)(2)m a m a -+-()2(2)a m m-+()2(2)a m m --(2)(1)m a m -+(2)(1)m a m --ABC △DE AB ⊥ABC △7AB =2DE =12x x <⎧⎨≥⎩A .B .C .D .7.如图,将一块含有的直角三角板ABC (假定,)绕顶点A 逆时针旋转得到,则等于( )A .B .C .D .8.在联合会上,有A 、B 、C 三名选手站在一个三角形的三个顶点位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢到凳子谁获胜,为使游戏公平,则凳子应放的最适当的位置是在的()A .三边中线的交点B .三条角平分线的交点C .三边中垂线的交点D .三边上高的交点9.若关于x 的不等式组有且只有3个整数解,则a 的取值范围是( )A .B .C .D .10.已知实数n 满足,则的值为()A .12B .10C .8D .6二、填空题(共5小题,每小题3分,共15分)11.某种药品的说明书上的部分内容是“用法用量:每天,分3~4次服用”,是一次服用这种药品的剂量的取值范围是__________.12.如图所示,将三个形状、大小完全一样的等边三角形的一个顶点重合放置,,,则__________.30︒90C ∠=︒30B ∠=︒100︒AB C ''△BB C ∠''5︒10︒15︒20︒ABC △3(1)254x x a x--≥⎧⎨->⎩43a -≤<-43a -<≤-10a -<≤10a -≤<210n n -+=3245511n n n -++(mg)y 40y 60mg ≤≤(mg)x 30BAD ∠=︒15GAE ∠=︒CAF ∠=13.不等式组无解,则m 的取值范围是__________.14.如图,函数和的图象相交于点,则关于的x 不等式的解集为__________.15.如图,在中,,,,动点D 从点A 出发,沿线段AB 以每秒2个单位的速度向B 运动,过点D 作交BC 所在的直线于点F ,连接AF ,CD .设点D 运动时间为t 秒.当是以AB 为腰的等腰三角形时,则__________秒.三、解答题(本题共8小题,共75分)16.计算:(第一小题每题3分,第二小题5分,共11分)(1)分解因式:①②2(1)364x x x m +<-⎧⎨<⎩2y x =-4y kx =+(,3)A m 420kx ++≥Rt ABC △90ACB ∠=︒16AC =20AB =DF AB ⊥ABF △t =22363a ab b -+22(2)(2)x m y m -+-(2)解不等式组:17.(本小题8分)如图,在平面直角坐标系中,已知的三个顶点坐标分别是,,.(1)将向左平移5个单位得到,则的坐标为(__________,__________);(2)将绕点O 顺时针旋转后得到,画出,并写出的坐标为(__________,__________);(3)求第(2)问中线段AC 旋转时扫过的面积.18.(本小题8分)如图,在四边形ABCD 中,,,,E 是AB 的中点,.(1)求证:.(2)求证:AC 是线段ED 的垂直平分线.19.(本小题8分)超市购进A 、B 两种商品,购进4件A 种商品比购进5件B 种商品少用10元,购进20件A 种商品和10件B 种商品共用去160元.(1)求A 、B 两种商品每件进价分别是多少元?(2)若该商店购进A 、B 两种商品共200件,都标价10元出售,售出一部分商品后降价促销,以标价的八折售完所有剩余商品,以10元售出的商品件数比购进A 种商品的件数少30件,该商店此次销售A 、B两种商品42(1)3124x x x ≤--⎧⎪⎨+>-⎪⎩ABC △(1,1)A (4,1)B (3,3)C ABC △A B C '''△C 'ABC △90︒111A B C △111A B C △1B 90ABC ∠=︒//AD BC AB BC =CE BD ⊥BD CE =共获利不少于640元,求至少购进A 种商品多少件?20.(本小题8分)在平面直角坐标系xOy 中,对于点,若点Q 的坐标为,则称点Q 是点P 的“a 阶派生点”(其中a 为常数,且).例如:点的“2阶派生点”为点,即点.(1)若点P 的坐标为,则它的“3阶派生点”的坐标为__________;(2)若点P 的“5阶派生点”的坐标为,求点P 的坐标;(3)若点先向左平移2个单位长度,再向上平移1个单位长度后得到了点.点的“阶派生点”位于坐标轴上,求点的坐标.21.(本小题10分)阅读理解并解答:我们把多项式,的做完全平方式,在运用完全平方公式进行因式分解时,关键是判断这个多项式是不是一个完全平方式.同样地,把一个多项式进行部分因式分解可以来解决求代数式值的最大(或最小)值问题.(1)例如:①,是非负数,即,,则这个代数的最小值是2,这时相应的x 的值是;②,是非负数,即,,则这个代数式的最小值是__________,这时相应的x 的值是__________;(2)知识再现:当__________时,代数式的最小值是__________;(3)知识运用:若,当__________时,y 有最__________值(填“大”或“小”),这个值是__________;(4)知识拓展:若,求的最小值.22.(本小题10分)如图所示,在同一个坐标系中一次函数和的图象,分别与x 轴交于点A 、B ,两直线交(,)P x y (,)ax y x ay ++0a ≠(1,4)P (214,124)Q ⨯++⨯(6,9)Q (1,5)-(9,3)-(1,21)P c c +-1P 1P 4-2P 2P 222a ab b ++222a ab b -+()22223212(1)2x x x x x ++=+++=++2(1)x + 2(1)0x +≥2(1)22x ∴++≥223x x ++1-()()222223125345344453(2)1253(2)7x x x x x x x x -+=-+=-+-+=--+=--2(2)x - 2(2)0x -≥23(2)77x ∴--≥-23125x x -+x =2612x x -+223y x x =-+-x =2350x x y -+++=y x +11y k x b =+y kx b =+于点C .已知点A 坐标为,点B 坐标为,观察图象并回答下列问题:(1)关于x 的方程的解是__________;关于x 的不等式的解集是__________;(2)直接写出关于x 的不等式组解集是__________;(3)若点C 坐标为,①关于x 的不等式的解集是__________;②的面积为__________;③在y 轴上找一点P ,使得的值最大,则P 点坐标为__________.23.(本小题12分)图形操作(1)如图①,为等边三角形,P 为其内一点,请将绕点B 逆时针旋转,P 的对应点为,画出旋转后的三角形.问题探究(2)如图②,等腰直角三角形ABC ,,D ,E 为AB 上两点且,,,试求的面积.问题解决(3)“五一”假期期间,八年级学生小明与爸爸回郊区老家看望爷爷.空闲时帮爷爷整理出一片四边形的菜园如图③所示.在四边形ABCD 中,经测量,,CA 刚好平分,米,AC 段准备布设一条水管用来灌溉(不计面积),四边形ABCD 四周用篱笆围成.请你通过计算说明爷爷需要多长的水管?(1,0)-(2,0)110k x b +=0kx b +<1100kx b k x b +>⎧⎨+>⎩(1,3)11k x b kx b +>+ABC △PB PC -ABC △BPC △60︒P '90ACB ∠=︒3BD =4AE =45DCE ∠=︒ABC △45BAD ∠=︒90BCD ∠=︒BCD ∠BC =CD =2023—2024八下数学4月月考题答案1-5:ABBDC 6-10:BBCDA11.12.13.14.15.4或2.816.(1)①;②.(2)解:由①得,由②得,不等式组的解集为:.17.(1),3 如图,即为所求(2)如图,即为所求;1,;(3)18.(1)证明:,,,,,在和中,,1020x ≤≤15︒2m ≤1.5x ≥()22222363323()a ab b a ab b a b -+=-+=-()2222(2)(2)(2)(2)()()x m y m m x y m x y x y -+-=--=-+-42(1)3124x x x ≤--⎧⎪⎨+>-⎪⎩①②1x ≤-3x >-∴31x -<≤-2-A B C '''△111A B C △4-4π90ABC ∠=︒ BD EC ⊥1390∴∠+∠=︒2390∠+∠=︒12∴∠=∠BAD △CBE △2190BA CB BAD CBE ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩,.(2)证明:是AB 中点,,,,,,,,又,,且,即AC 是线段ED 的垂直平分线.19.(1)设A 甲种商品每件进价x 元,B 乙种商品每件进价y 元,根据题意,得,解得:,答:A 种商品每件进价5元,B 种商品每件进价6元.(2)设A 种商品购进a 件,则乙种商品件,根据题意,得,解得:,答:至少购进A 种商品100件.20.(1)(2)(3)或21.(1);2;(2)3;3;(3)1;大;;(4),,,,当时,的最小值为.22.解:(1),;(2);(3)①;②;③.23.(1)根据题意作出图形如下,(ASA)BAD CBE ∴≌△△BD CE ∴=E EB EA ∴=AD BE = AE AD ∴=//AD BC 745ACB ∴∠=∠=︒645∠=︒ 67∴∠=∠AD AE = AM DE ∴⊥EM DM =54102010160y x x y -=⎧⎨+=⎩56x y =⎧⎨=⎩(200)a -10(30)0.810[200(30)]56(200)640a a a a -+⨯-----≥100a ≥(2,14)(2,1)-30,07⎛⎫⎪⎝⎭(0,15)-7-2-2350x x y -+++= 2225(1)6x y x x x ∴+=--=--2(1)0x -≥ 2(1)66x ∴--≥-∴1x =y x +6-1x =-2x >12x -<<1x >92(0,6)(2)将绕点顺时针旋转,得,连接EF ,如图,,,,,,,,,,,,,,,在和中,,,,,,的面积为;(3)①如图,将顺时针旋转到,连接,BD ,则是等腰直角三角形,CBD △C 90︒CAE △3AF BD ∴==CD CF =CAF B ∠=∠BCD ACF ∠=∠90ACB ∠=︒ AC BC =45B BAC ∴∠=∠=︒45CAF ∴∠=︒90EAF ∴∠=︒5EF ∴===45DCE ∠=︒ 45BCD ACE ∴∠+∠=︒45ECF ACE ACF BCD ACE ∴∠=∠+∠=∠+∠=︒ECF ECD ∴∠=∠ECF △ECD △CF CD ECF ECD CE CE =⎧⎪∠=∠⎨⎪=⎩(SAS)ECF ECD ∴≌△△5EF ED ∴==45312AB AE ED BD ∴=++=++=AC BC AB ∴===ABC ∴△113622AC BC ⋅=⨯=ADC △90︒AC D ''△C C 'AC C '△CD =,,,B ,C 均在同一直线上,在与中,,,,在中,,,,,行得需要米的水管.45C ACB ∠=∠=︒ C ∴D'DAB △D AB '△AD AD DAB D AB AB AB ='⎧⎪∠=∠'⎨⎪=⎩(SAS)DAB D AB ∴'≌△△DB D B ∴='Rt BCD △BC = CD =DB ∴=CC '∴=+=AC ∴='=∴。
2024年人教A版八年级数学下册月考试卷19
2024年人教A版八年级数学下册月考试卷19考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、一束光线从点A(3,3)出发,经过y轴上点C反射后经过点B(1,0),则光线从A点到B点经过的路线长是()A. 4B. 5C. 6D. 72、如图:矩形花园ABCD中,花园中建有一条矩形道路LMPQ 及一条平行四边形道路RSTK。
若则花园中可绿化部分的面积为()A.B.C.D.3、【题文】一个多边形的内角和是外角和的2倍,则这个多边形是()A. 四边形B. 五边形C. 六边形D. 八边形4、÷等于()A.B.C. -D. -5、下列几组数中,能作为直角三角形三边长度的是()A. 3,5,6B. 1,1,C. 5,8,11D. 5,12,156、已知一次函数y=kx+b的图象如图所示那么正比例函数y=kx和反比例函数y=bx在同一坐标系中的图象大致是图中的( )A.B.C.D.7、等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A. 6B. 2C.D. 58、下列命题中是真命题是().A. 锐角大于它的余角B. 锐角大于它的补角C. 钝角大于他的补角D. 锐角与钝角之和等于平角评卷人得分二、填空题(共8题,共16分)9、(2015春•滨湖区期中)如图,E、F分别是正方形ABCD的边AB、BC上的点,BE=CF,连接CE、DF.△CDF可以看作是将△BCE绕正方形ABCD的中心O按逆时针方向旋转得到.则旋转的角度为____°.10、在△ABC中,∠C=90°,AB的中垂线交直线BC于D,若∠BAD-∠DAC=22.5°,则∠B的度数是____.11、【题文】如图,平行四边形ABCD中,E为AD的中点.已知△DEF的面积为S,则△DCF的面积为____.12、为确保信息安全,信息需要加密传输,发送方由明文→密文(加密),接收方由密文→明文(解密),已知约定的加密规律为:明文x、y、z分别对应加密文x+2y、2x+3y、4z.例如:明文1、2、3分别对应加密文5、8、12,如果接收到密文为7、12、16时,则解密得到的明文是:____.13、如图,在四边形ABCD中,对角线AC隆脥BD且AC=6BD=8点EFG分别是边ABCDAD的中点,则EF= ______ .14、已知=2,则的值是 ______ .15、如下数表是由从1开始的连续自然数组成;观察规律并完成各题的解答.(1)表中第9行的最后一个数是____,它是自然数____的平方,第9行共有____个数;(2)表中第(n+1)行的第一个数是____,最后一个数是____,第(n+1)行共有____个数;(用含n的代数式表示)(3)求第(n+1)行各数之和.16、不等式的最小整数解是____.评卷人得分三、判断题(共5题,共10分)17、0和负数没有平方根.()18、线段是中心对称图形,对称中心是它的中点。
2024年苏教版八年级数学下册月考试卷含答案
2024年苏教版八年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共6题,共12分)1、如图,等边三角形ABC内接于⊙O,那么∠BOC的度数是()A. 150°B. 120°C. 90°D. 60°2、【题文】PM 2.5是指大气中直径小于或等于0.0000025 m的颗粒物,将0.0000025用科学记数法表示为【】A.B.C.D.3、函数y=kx+b与函数y=kbx在同一坐标系中的大致图象正确的是()A.B.C.D.4、若点A(-2,y1)、B(-1,y2)、C(9,y3)是二次函数y=-x2+3x+图象上的三点,则y1、y2和y3的大小关系是()A. y1<y2<y3B. y1>y2>y3C. y3>y1>y2D. y3<y1<y25、下列命题:①圆周角等于圆心角的一半;②是方程的解;③平行四边形既是中心对称图形又是轴对称图形;④的算术平方根是4。
其中真命题的个数有()A. 1B. 2C. 3D. 46、【题文】如图;某同学不小心把一块三角形的玻璃打碎成了三块,现要到玻璃店去配一块完全一样的玻璃,那么既省事又能达到目的的办法是()A. 带①去B. 带②去C. 带③去D. 带①和②去评卷人得分二、填空题(共7题,共14分)7、一个三角形的三边长分别为1,,2,另一个三角形的两边长分别为和2,要让这两个三角形相似,则另一个三角形的第三边长为____.8、测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是____cm2.9、在△ABC中,D是边AB上一点,∠ACD=∠B,AB=9,AD=4,那么AC的长为____.10、如图,格点图中有2个三角形,若相邻两个格点的横向距离和纵向距离都为1,则AB=____,BC=____,DE=____,EF=____,计算=____,=____,我们会得到AB与DE这两条线段的比值与BC,EF这两条线段的比值____(填相等或不相等),即=那么这四条线段叫做____;简称比例线段.11、(2016秋•三亚校级月考)完成求解过程;并写出括号里的理由:如图;在直角△ABC中,∠C=90°,DE∥BC,BE平分∠ABC,∠ADE=40°,求∠BEC的度数.解:∵DE∥BC(已知)∴____=∠ADE=40°∵BE平分∠ABC(已知)∴∠CBE=∠____=____度。
北师大版2021-2022学年八年级数学下册第二次月考测试题(附答案) (2)
2021-2022学年八年级数学下册第二次月考测试题(附答案)一、选择题(共30分)1.把a2﹣a分解因式,正确的是()A.a(a﹣1)B.a(a+1)C.a(a2﹣1)D.a(1﹣a)2.如图,数轴上所表示的不等式的解集是()A.x≥2B.x>2C.x<2D.x≤23.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,在已知的△ABC中,按以下步骤作图:①分别以B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD,若CD=AC,∠B=25°,则∠ACB的度数为()A.105°B.100°C.95°D.90°5.要使分式有意义,则x的取值范围是()A.x=1B.x≠1C.x=﹣1D.x≠﹣16.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为()A.12B.15C.18D.217.若(a+3)x>a+3的解集为x<1,则a必须满足()A.a<0B.a>﹣3C.a<﹣3D.a>38.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°9.如图,一次函数y1=x+b与一次函数y2=kx+3的图象交于点P(1,2),则关于不等式x+b>kx+3的解集是()A.x>0B.x>1C.x<1D.x<010.如图,在△ABC中,AB=AC,分别以点A、B为圆心,以适当的长为半径作弧,两弧分别交于E,F,作直线EF,D为BC的中点,M为直线EF上任意一点.若BC=4,△ABC面积为10,则BM+MD长度的最小值为()A.B.3C.4D.5二、填空题(共24分)11.分解因式:ab2﹣9a=.12.若一个多边形的每一个内角都是150°,则它是边形.13.如图所示,△DEF是由△ABC通过平移得到的,且点B,E,C,F在同一条直线上,若BF=14,EC=8,则从△ABC到△DEF的平移距离为.14.若分式有意义,则x的取值范围为.15.平行四边形ABCD中,E、F是对角线BD上不同的两点,写出一个能使四边形AECF 一定为平行四边形的条件.(用题目中的已知字母表示)16.如图,∠AOB=120°,点P为∠AOB的平分线上的一个定点,且∠MPN与∠AOB互补,若∠MPN在绕点P旋转的过程中,其两边分别与OA、OB相交于M、N两点,则以下结论:①PM=PN;②OM+ON=OP;③四边形PMON的面积保持不变;④△PMN的周长保持不变.其中说法正确的是(填序号).三、计算题(共18分)17.解方程:.18.解不等式组并把解集在数轴上表示出来.19.先化简:,再选一个你喜欢的a的值代入求值.四、解答题(共48分)20.如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1)请画出△ABC关于原点对称的△A1B1C1;(2)请画出△ABC绕点B逆时针旋转90°后的△A2B2C2,并写出A2的坐标.21.如图,在等边△ABC中,AB=6,D是AC的中点,E是BC延长线上的一点,CE=CD,DF⊥BE,垂足为F.(1)求BD的长;(2)求证:BF=EF.22.如图:在Rt△ABC中,∠A=90°,过B作BH∥AC.(1)按尺规作图要求作BC的垂直平分线,交AC于E,交BH于D,(保留作图痕迹,不写作法),连接BE、CD.(2)求证:四边形BECD是平行四边形.23.为了做好防疫工作,学校准备购进一批消毒液.已知每瓶B型消毒液比A型贵2元,用56元购A型消毒液与72元购B型消毒液的瓶数相同.(1)这两种消毒液的单价各是多少元?(2)学校准备购进这两种消毒液共90瓶,且B型消毒液的数量不少于A型消毒液数量的,请设计出最省钱的购买方案,并求出最少费用.24.如图,在▱ABCD中,对角线AC,BD相交于点O,BD=2AD,点E在线段OC上,且OE=CE.(1)求证:∠OBE=∠ADO;(2)若F,G分别是OD,AB的中点,且BC=10,①求证:△EFG是等腰三角形;②当EF⊥EG时,求▱ABCD的面积.25.如图,在平面直角坐标系xOy中,已知点A(5,1),B(1,1),C(0,5).直线m平行于x轴且经过C,D,E三点.直线l的关系式为y=﹣2x+b.(1)若△ABD是以AB为底的等腰三角形,且直线l过点D,求b的值;(2)若b=9,直线l与▱ABDE的边DE相交时,求点E的横坐标n的取值范围;(3)若点F为▱ABDE的对角线BE与DA的交点,当直线l经过点F时,求点D的横坐标q与b之间的函数关系式.参考答案与试题解析一、选择题(共30分)1.解:a2﹣a=a(a﹣1).故选:A.2.解:∵2处是实心圆点且折线向右,∴不等式的解集是x≥2.故选:A.3.解:A.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;B.该图形既不是轴对称图形,又不是中心对称图形,故此选项不合题意;C.该图形是轴对称图形,不是中心对称图形,故此选项不合题意;D.该图形既是轴对称图形,又是中心对称图形,故此选项符合题意.故选:D.4.解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC=25°,则∠CDA=25°+25°=50°,∵CD=AC,∴∠A=∠CDA=50°,∴∠ACB=180°﹣50°﹣25°=105°.故选:A.5.解:∵分式有意义,∴x﹣1≠0.解得;x≠1.故选:B.6.解:由折叠可得,∠ACD=∠ACE=90°,∴∠BAC=90°,又∵∠B=60°,∴∠ACB=30°,∴BC=2AB=6,由折叠可得,∠E=∠D=∠B=60°,∴∠DAE=60°,∴△ADE是等边三角形,∴△ADE的周长为6×3=18,故选:C.7.解:∵(a+3)x>a+3的解集为x<1,∴a+3<0,解得:a<﹣3.故选:C.8.解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.9.解:当x>1时,x+b>kx+3,即不等式x+b>kx+3的解集为x>1.故选:B.10.解:由作法得EF垂直平分AB,∴MB=MA,∴BM+MD=MA+MD,连接MA、DA,如图,∵MA+MD≥AD(当且仅当M点在AD上时取等号),∴MA+MD的最小值为AD,∵AB=AC,D点为BC的中点,∴AD⊥BC,∵S△ABC=•BC•AD=10,∴AD==5,∴BM+MD长度的最小值为5.二、填空题(共24分)11.解:原式=a(b2﹣9)=a(b+3)(b﹣3),故答案为:a(b+3)(b﹣3).12.解:360÷30=12,则它是12边形.13.解:∵△DEF是由△ABC通过平移得到,∴BE=CF,∴BE=BF﹣EC,∵BF=14,EC=8,∴BE=14﹣8=3.故答案为:3.14.解:∵分式有意义,∴x2﹣4≠0,∴x≠±2.故答案为:x≠±2.15.解:连接AC交BD于点O,如图:在平行四边形ABCD中,OA=OC,OB=OD,∵AE∥CF,∴∠OAE=∠OCF,∵∠AOE=∠COF,AO=CO,∴△AOE≌COF(ASA),∴OE=OF,∴四边形AECF为平行四边形;故答案为:AE∥CF.16.解:过点P作PE⊥OA,垂足为E,过点P作PF⊥OB,垂足为F,∴∠PEO=90°,∠PFO=90°,∵∠AOB=120°,∴∠EPF=360°﹣∠AOB﹣∠PEO﹣∠PFO=60°,∵∠MPN+∠AOB=180°,∴∠MPN=180°﹣∠AOB=60°,∴∠MPN﹣∠EPN=∠EPF﹣∠EPN,∴∠MPE=∠NPF,∵OP平分∠AOB,PE⊥OA,PF⊥OB,∴PE=PF,∵∠MEP=∠NFP=90°,∴△MEP≌△NFP(ASA),∴PM=PN,ME=NF,故①正确;∵OP=OP,∴Rt△PEO≌Rt△PFO(HL),∴OE=OF,∴OM+ON=OE+ME+OF﹣NF=2OE,∵OP平分∠AOB,∴∠EOP=∠AOB=60°,∴∠EPO=90°﹣∠EOP=30°,∴PO=2OE,∴OM+ON=OP,故②正确;∵△MEP≌△NFP,∴四边形PMON的面积=四边形PEOF的面积,∴四边形PMON的面积保持不变,故③正确;∵PM=PN,∠MPN=60°,∴△PMN是等边三角形,∵MN的长度是变化的,∴△PMN的周长是变化的,故④错误;所以,说法正确的是:①②③,故答案为:①②③.三、计算题(共18分)17.解:方程两边同乘以(x+1)(x﹣1)得(x+1)2﹣6=(x+1)(x﹣1)(2分)整理,得2x=4x=2(4分)检验,把x=2代入(x+1)(x﹣1)=3≠0.所以,原方程的根是x=2.(5分)18.解:解不等式x+4≤3(x+2),得:x≥﹣1,解不等式3x﹣3<2x,得:x<3,则不等式组的解集为﹣1≤x<3,将不等式的解集表示在数轴上如下:19.解:原式=[﹣]•=•=•=,当a=﹣1时,原式=﹣1.四、解答题(共48分)20.解:(1)如图,△A1B1C1;即为所求;(2)如图,△A2B2C2即为所求,A2的坐标(﹣2,2).21.(1)解:∵△ABC是等边三角形,∴∠BCD=60°,AB=BC=AC=6,又∵AB=6,点D为AC的中点,∴CD=3,BC⊥CD,∴BD===3;(2)证明:∵△ABC是等边三角形,D为AC的中点,∴∠CBD=,又∵CE=CD,∴∠CDE=∠E,又∵∠BCD=60°,∴∠E=,∴∠CBD=∠E,∴BD=DE,又∵DF⊥BC,垂足为F.∴BF=EF.22.(1)解:如图,直线DE为所求;(2)证明:DE交BC于F,如图,∵DE垂直平分BC,∴BF=CF,EB=EC,又∵BH∥AC,∴∠1=∠2,∠3=∠4在△BDF和△CEF中,,∴△BDF≌△CEF(AAS),∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形.23.解:(1)设A型消毒液的单价是x元,B型消毒液的单价是y元,得,解得.答:A型消毒液的单价是7元;B型消毒液的单价是9元.(2)设购进A型消毒液a瓶,则购进B型消毒液(90﹣a)瓶,费用为w元,依题意可得:w=7a+9(90﹣a)=﹣2a+810,∵k=﹣2<0,∴w随a的增大而减小.∵B型消毒液的数量不少于A型消毒液数量的,∴90﹣a≥a.解得a≤67 ,∴当a=67时,w取得最小值,此时w=﹣2×67+810=676,90﹣a=23.答:最省钱的购买方案是购进A型消毒液67瓶,购进B型消毒液23瓶;最低费用为676元.24.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,DO=BO=BD,∴∠ADB=∠DBC,∵BD=2AD,∴AD=DO,∴BC=BO,∵E是CO中点,∴∠OBE=∠OBC,∴∠OBE=∠ADO;(2)①证明:∵BC=BO,∴△BOC是等腰三角形,∵E是CO中点,∴EB⊥CO,∴∠BEA=90°,∵G为AB中点,∴EG=AB,∵四边形ABCD是平行四边形,∴AB=CD,∵E、F分别是OC、OD的中点,∴EF=CD∴EG=EF,∴△EFG是等腰三角形;②解:由①得EF∥AB,∵EF⊥EG,∴EG⊥AB,∵G是AB的中点,∴AE=BE,设CE=x,则AO=CO=2CE=2x,∴BE=AE=3x,在Rt△BEC中,BC=10,∴EC2+BE2=BC2,即x2+(3x)2=102,解得x=,∴AC=,BE=,∴S▱ABCD=2S△ABC=.25.解:(1)∵A(5,1),B(1,1),DA=DB,∴D(3,5),将x=3,y=5代入y=﹣2x+b,∴b=11;(2)∵四边形ABDE为平行四边形,∴DE=AB=4,∵E(n,5),∴D(n﹣4,5),当5=﹣2x+9时,x=2,∵直线y=﹣2x+9与边DE有交点,∴2≤n≤6;(3)∵四边形ABDE为平行四边形,∴DF=F A,∵D(q,5),A(5,1),∴,即,将,y=3代入y=﹣2x+b,∴q=b﹣8.。
人教版八年级(下)学期3月份 月考检测数学试题含答案
人教版八年级(下)学期3月份 月考检测数学试题含答案一、选择题1.下列式子为最简二次根式的是( )A B C D 2.下列各式成立的是( )A 3=B 3=C .22(3=-D .2-=3.下列各式计算正确的是( )A =B =C .23=D 2=-4.已知:x ,y 1,求x 2﹣y 2的值( )A .1B .2CD .5.下列运算中,正确的是( )A =B 1=C =D = 6.下列各式中,正确的是( )A B .C2= D = - 47.下列二次根式是最简二次根式的是( )AB C D8.若|x 2﹣4x+4|x+y 的值为( )A .3B .4C .6D .99.已知m =1n =1 ( ) A .±3 B .3 C .5 D .910.下列二次根式中,最简二次根式是( )A B C D11.a 的值是( ) A .2B .-1C .3D .-1或312.与根式- )A .B .x -C .D二、填空题13.若0a >,把4a b -化成最简二次根式为________. 14.化简322+=___________.15.为了简洁、明确的表示一个正数的算术平方根,许多数学家进行了探索,期间经历了400余年,直至1637年法国数学家笛卡儿在他的《几何学》中开始使用“”表示算数平方根.我国使用根号是由李善兰(1811-1882年)译西方数学书时引用的,她在《代数备旨》中把图1所示题目翻译为: 22164?a x a x +=则图2所示题目(字母代表正数)翻译为_____________,计算结果为_______________.16.将1、2、3、6按右侧方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(5,4)与(9,4)表示的两数之积是______.17.计算:652015·652016=________. 18.若a 、b 为实数,且b =22117a a a --++4,则a+b =_____. 19.如果0xy >2xy -.20.2a ·8a (a ≥0)的结果是_________.三、解答题21.计算:(1﹣(2) (3)244x -﹣12x -.【答案】(1)2(3)-12x + 【解析】 分析:(1)根据二次根式的运算,先把各二次根式化为最简二次根式,再合并同类二次根式即可;(2)根据乘法的分配律以及二次根式的性质进行计算即可;(3)根据异分母的分式的加减,先因式分解,再通分,然后按同分母的分式进行加减计算,再约分即可.详解:(1(2)(3)24142x x --- =41(2)(2)2x x x -+-- =42(2)(2)(2)(2)x x x x x +-+-+- =2(2)(2)x x x -+- =12x -+ 点睛:此题主要考查了二次根式的运算和分式的加减运算,熟练应用运算法则和运算律以及二次根式的性质进行计算是解题关键.22.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并.【详解】.【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.23.计算:【答案】【分析】先将括号内的二次根式进行化简并合并,再进行二次根式的乘法运算即可.【详解】解:===【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键.24.计算-②)21【答案】①【分析】①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.25.计算(11)1)⨯; (2)【答案】(12+;(2).【解析】分析:先将二次根式化为最简,然后再进行二次根式的乘法运算.详解:(1)11+;=()31-2 ;(2)原式=(2,==3⨯==点睛:此题考查了二次根式的混合运算,熟练化简二次根式后,在加减的过程中,有同类二次根式的要合并;相乘的时候,被开方数简单的直接让被开方数相乘,再化简;较大的也可先化简,再相乘,灵活对待.26.在一个边长为(cm 的正方形的内部挖去一个长为()cm ,cm 的矩形,求剩余部分图形的面积.【答案】【解析】试题分析:用大正方形的面积减去长方形的面积即可求出剩余部分的面积.试题解析:剩余部分的面积为:(2﹣()=()﹣(﹣)=(cm 2).考点:二次根式的应用27.计算(1))(121123-⎛⨯-- ⎝⎭(2)已知:11,22x y ==,求22x xy y ++的值. 【答案】(1)28-;(2)17.【分析】(1)先利用完全平方公式和平方差公式计算二次根式的乘法、负指数幂运算,再计算二次根式的加减法即可得;(2)先求出x y +和xy 的值,再利用完全平方公式进行化简求值即可得.【详解】(1)原式()((221312⎡⎤=⨯+--⎢⎥⎣⎦,(()1475452=⨯+---230=+28=-;(2)(1119,22x y ==,1122x y∴+=+=, ()11119112224xy =⨯=⨯-=, 则()222x xy y x y xy ++=+-,22=-,192=-,17=.【点睛】本题考查了二次根式的混合运算、完全平方公式和平方差公式等知识点,熟练掌握二次根式的运算法则是解题关键.28.(1|5-+; (2)已知实数a 、b 、c满足|3|a +=,求2(b a +的值.【答案】(1)5;(2)4【分析】(1)先利用二次根式的乘法法则和绝对值的意义计算,再进行回头运算即可;(2)先根据二次根式有意义的条件确定b 的值,再根据非负数的和的意义确定a ,c 的值,然后再计算代数式的值即可.【详解】解:(15-+5)=+5=+5=(2)由题意可知:5050b b -≥⎧⎨-≥⎩, 解得5b =由此可化简原式得,30a +=30a ∴+=,20c -=3a ∴=-,2c =22((534b a ∴+=--=【点睛】可不是考查了二次根式的混合运算以及二次根式的化简求值,熟练掌握运算法则和运算顺序是解答此题的关键.29.已知x²+2xy+y²的值.【答案】16【解析】分析:(1)根据已知条件先计算出x+y=4,再利用完全平方公式得到x²+2xy+y²=(x+y )²,然后利用整体代入的方法计算.本题解析:∵x² +2xy+y² =(x+y)²,∴当∴x²+2xy+y²=(x+y)²=(2−=16.30.先阅读下面的解题过程,然后再解答.a ,b ,使a b m +=,ab n =,即22m +==0)a b ==±>.这里7m =,12n =,由于437+=,4312⨯=,所以22+==,2===..【答案】见解析【分析】应先找到哪两个数的和为13,积为42.再判断是选择加法,还是减法.【详解】根据题意,可知13m =,42n =,由于7613+=,7642⨯=,所以2213+=,====【点睛】此题考查二次根式的性质与化简,解题关键在于求得13m =,42n =.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【详解】AB|a|,可以化简,故不是最简二次根式;C=D2=,可以化简,故不是最简二次根式;故选:A.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2.A解析:A【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】解:A3=,故A正确;B-不能合并,故B错误;C、22(3=,故C错误;D、=D错误;故选:A.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.3.C解析:C【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】,故选项A错误;=2,故选项B错误;C. 23=,故选项C正确;2=,故选项D错误;故选C.【点睛】本题考查二次根式的混合运算,解答本题的关键是明确二次根式混合运算的计算方法.4.D解析:D【分析】先根据x 、y 的值计算x y +、x y -的值,再将所求式子利用平方差公式进行化简,然后代入求值即可.【详解】∵1,1x y ==,∴11112x y x y +==-=-=,则22()()2x y x y y x -=+-==故选:D .【点睛】本题考查了代数式的化简求值、二次根式的加减法与乘法,利用平方差公式对代数式进行化简是解题关键.5.C解析:C【分析】根据二次根式的加、减、乘、除运算法则对各项进行计算即可得到结果.【详解】不是同类二次根式,不能合并,故此选项错误;不是同类二次根式,不能合并,故此选项错误;=D =,故此选项错误; 故选:C .【点睛】此题主要考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答此题的关键. 6.C解析:C【分析】根据算术平方根与平方根的定义、二次根式的加法与乘除法逐项判断即可.【详解】A 4=,此项错误B 、4=±,此项错误C ==,此项正确D == 故选:C .【点睛】本题考查了算术平方根与平方根的定义、二次根式的加法与乘除法,掌握二次根式的运算法则是解题关键.7.B解析:B【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】解:A 、被开方数含分母,故A 错误;B 、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故B 正确;C 、被开方数含能开得尽方的因数,故C 错误;D 、被开方数含分母,故D 错误;故选B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.8.A解析:A【解析】根据题意得:|x 2–4x ,所以|x 2–4x +4|=0,即(x –2)2=0,2x –y –3=0,所以x =2,y =1,所以x +y =3.故选A .9.B解析:B【分析】由已知可得:2,(11m n mn +==+-=-,【详解】由已知可得:2,(11m n mn +==+-=-,原式3===故选B【点睛】考核知识点:二次根式运算.配方是关键.解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式11.C解析:C【分析】根据同类二次根式的性质即可求出答案.【详解】由题意可知:a2-3=2a∴解得:a=3或a=-1当a=-1时,该二次根式无意义,故a=3故选C.【点睛】本题考查二次根式的概念,解题的关键是熟练正确理解最简二次根式以及同类二次根式的概念.12.D解析:D【分析】先化简二次根式,再计算二次根式的乘法即可.【详解】由题意可得x是负数,所以1x--xx x--=-故选:D.【点睛】此题考查二次根式的化简,二次根式的乘法计算法则,正确化简二次根式是解题的关键,注意题目中x的符号是负号,这是解题的难点.二、填空题13.【分析】先判断b的符号,再根据二次根式的性质进行化简即可.【详解】∴∴所以答案是:【点睛】本题考查了二次根式的性质.解析: 【分析】先判断b 的符号,再根据二次根式的性质进行化简即可.【详解】 解:∵40,0a a b-≥> ∴0b < 2a b b b b=--所以答案是: 【点睛】a =.14.+1【分析】先将用完全平方式表示,再根据进行化简即可.【详解】因为,所以,故答案为:.【点睛】本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二+1【分析】先将3+,()()()0000a a a a a a ⎧>⎪===⎨⎪-<⎩进行化简即可.【详解】因为(2231211+=+=+=+,11===故答案为:1.【点睛】 本题主要考查利用完全平方公式对无理式进行因式分解,二次根式的性质,解决本题的关键是要将二次根式利用完全平方公式分解.15.a+3【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2所示题目(字母代表正数)翻【分析】根据题意可知图中的甲代表a,据此可写出图2中表示的式子.再根据二次根式的性质进行化简.【详解】解:根据题意可知图中的甲代表a,∴图2∵a >0+3.a =a+3. 【点睛】本题考查阅读理解的能力,正确理解题意是关键. 16.【解析】试题解析:(5,4)表示第5排从左向右第4个数是:,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第解析:【解析】试题解析:(5,4)表示第5排从左向右第4,(9,4)表示第9排从左向右第4个数,可以看出奇数排最中间的一个数都是1,第9排是奇数排,最中间的也就是这排的第5个数是1,那么第4,∴(5,4)与(9,4)故答案为17.【解析】原式=.故答案为.【解析】原式=20152015=18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.【分析】由,且,即知,,据此根据二次根式的性质化简可得.【详解】∵,且,即,∴,,∴,故答案为:.【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键.解析:-【分析】由0xy >,且20xy -≥,即•0y xy -≥知0x <,0y <,据此根据二次根式的性质化简可得.【详解】∵0xy >,且20xy -≥,即•0y xy -≥,∴0x <,0y <,==-故答案为:-【点睛】本题主要考查了二次根式的性质与化简,熟练掌握二次根式的性质是解题的关键. 20.4a【解析】【分析】根据二次根式乘法法则进行计算即可得.【详解】===4a ,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.解析:4a【解析】【分析】根据二次根式乘法法则进行计算即可得.)0a ≥===4a,故答案为4a.【点睛】本题考查了二次根式的乘法,熟练掌握二次根式乘法法则是解题的关键.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
八年级数学下学期第二次月考测试卷含答案
点,那么 CH 的长是( )
A.2
B. 5
C. 3 3
D.在平行四边形 ABCD 中, BC 边上的高为 4 ,AB=5 , AC 2 5 ,则平行四边形 ABCD
的周长等于______________ .
12.如图,在 Rt△ ABC 中,∠ BAC=90°,AB=5,AC=12,P 为边 BC 上一动点(P 不与 B、C
2.如图,矩形 ABCD 中,AB=5,AD=4,M 是边 CD 上一点,将△ADM 沿直线 AM 对折,得△ANM,
连 BN,若 DM=1,则△ABN 的面积是( )
A.
B.
C.
D.
3.□ABCD 中,∠A=60°,点 E、F 分别在边 AD、DC 上,DE=DF,且∠EBF=60°.若 AE=2, FC=3,则 EF 的长度为( )
一、选择题 1.如图,在平行四边形 ABCD 中, BCD 30, BC 6, CD 6 3, E 是 AD 边上的
中点, F 是 AB 边上的一动点,将 AEF 沿 EF 所在直线翻折得到 AEF ,连接 AC ,则 AC 的最小值为( )
A. 3 19
B. 3 13
C. 3 19 3
D. 6 3
A. 21
B. 2 5
C. 2 6
D.5
4.如图,△ABC 中,∠BAC=60°,∠B=45°,AB=2,点 D 是 BC 上的一个动点,点 D 关于
AB,AC 的对称点分别是点 E,F,四边形 AEGF 是平行四边形,则四边形 AEGF 面积的最小
值是 ( )
A.1
B. 6
C. 2
D. 3
2
5.如图,在矩形 ABCD 中, AD 1 AC, AE 平分 BAD 交 CD 于点 E ,给出以下结 2
人教版八年级数学第二学期3月份 月考检测测试卷含答案
一、选择题1.如图,等腰直角△ABC 中,∠C =90°,点F 是AB 边的中点,点D 、E 分别在AC 、BC 边上运动,且∠DFE =90°,连接DE 、DF 、EF ,在此运动变化过程中,下列结论:①图中全等的三角形只有两对;②△ABC 的面积是四边形CDFE 面积的2倍;③CD +CE =2FA ;④AD 2+BE 2=DE 2.其中错误结论的个数有( )A .1个B .2个C .3个D .4个2.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边上运动,且保持AD CE =.连接DE 、DF 、EF .在此运动变化的过程中,下列结论:①DFE △是等腰直角三角形;②四边形CDFE 不可能为正方形;③DE 长度的最小值为4;④四边形CDFE 的面积保持不变;⑤△CDE 面积的最大值为8.其中正确的结论是( )A .①④⑤B .③④⑤C .①③④D .①②③3.如图是一块长、宽、高分别为6cm 、4cm 、3cm 的长方体木块,一只蚂蚁要从长方体木块的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .cmB .cmC .cmD .9cm4.如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,BD 平分∠ABC ,E 是AB 中点,连接DE ,则DE 的长为( )A .102B .2C .512+D .325.如图是我国数学家赵爽的股弦图,它由四个全等的直角三角形和小正方形拼成的一个大正方形.已知大正方形的面积是l3,小正方形的面积是1,直角三角形的较短直角边长为a ,较长直角边长为b ,那么()2a b +值为( )A .25B .9C .13D .1696.如图,直角三角形两直角边的长分别为3和4,以直角三角形的两直边为直径作半圆,则阴影部分的面积是( )A .6B .32π C .2π D .12 7.如图,在ABC 中,13AB =,10BC =,BC 边上的中线12AD =,请试着判定ABC 的形状是( )A .直角三角形B .等边三角形C .等腰三角形D .以上都不对8.小明学了在数轴上画出表示无理数的点的方法后,进行练习:首先画数轴,原点为O ,在数轴上找到表示数2的点A ,然后过点A 作AB ⊥OA ,使AB=3(如图).以O 为圆心,OB 的长为半径作弧,交数轴正半轴于点P ,则点P 所表示的数介于( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间 9.由下列条件不能判定△ABC 为直角三角形的是( ) A .∠A+∠B=∠CB .∠A :∠B :∠C=1:3:2C .a=2,b=3,c=4D .(b+c)(b-c)=a²10.如图,在矩形ABCD 中,AB =8,BC =4,将矩形沿AC 折叠,点B 落在点B ′处,则重叠部分△AFC 的面积为( )A .12B .10C .8D .6二、填空题11.如图所示的网格是正方形网格,则ABC ACB ∠+∠=__________°(点A ,B ,C 是网格线交点).12.将一副三角板按如图所示摆放成四边形ABCD ,发现只要知道其中一边的长就可以求出其它各边的长,若已知AD =32,则AB 的长为__________.13.如图,在Rt ABC 中,90ACB ∠=︒,4AC =,2BC =,以AB 为边向外作等腰直角三角形ABD ,则CD 的长可以是__________.14.如图,在四边形ABCD 中,AB =AD ,BC=DC ,点E 为AD 边上一点,连接BD 、CE ,CE 与BD 交于点F ,且CE ∥AB ,若∠A =60°,AB=4,CE=3,则BC 的长为_______.15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______16.Rt △ABC 中,∠BAC =90°,AB =AC =2,以 AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段 BD 的长为_____.17.如图,P 是等边三角形ABC 内的一点,且PA=3,PB=4,PC=5,以BC 为边在△ABC 外作△BQC ≌△BPA ,连接PQ ,则以下结论中正确有_____________ (填序号)①△BPQ 是等边三角形 ②△PCQ 是直角三角形 ③∠APB=150° ④∠APC=135°18.如图,在△ABC 中,AB =AC =10,BC =12,AD 是角平分线,P 、Q 分别是AD 、AB 边上的动点,则BP +PQ 的最小值为_______.19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则22MN BM的值为______________.20.如图,由两个直角三角形和三个正方形组成的图形,已知25AB = ,24AC = 其中阴影部分面积是_____________平方单位.三、解答题21.(1)计算:1312248233⎛⎫-+÷ ⎪ ⎪⎝; (2)已知a 、b 、c 满足2|23|32(30)0a b c +-+--=.判断以a 、b 、c 为边能否构成三角形?若能构成三角形,说明此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.22.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,64AB AC ∇=-,求BC 和AB 的长.23.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .(1)如图1,当,D E 两点重合时,求证:BD DF =;(2)延长BD 与EF 交于点G .①如图2,求证:60BGE ∠=︒;②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为______________.24.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E .(1)根据题意用尺规作图补全图形(保留作图痕迹);(2)设,BC m AC n ==①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由.②若线段2AD EC =,求m n的值.25.在ABC ∆中,AB AC =,CD 是AB 边上的高,若10,45AB BC ==.(1)求CD 的长.(2)动点P 在边AB 上从点A 出发向点B 运动,速度为1个单位/秒;动点Q 在边AC 上从点A 出发向点C 运动,速度为v 个单位秒()v>1,设运动的时间为()0t t >,当点Q 到点C 时,两个点都停止运动.①若当2v =时,CP BQ =,求t 的值.②若在运动过程中存在某一时刻,使CP BQ =成立,求v 关于t 的函数表达式,并写出自变量t 的取值范围.26.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是命题(填“真”或“假”);(2)如图1,若等腰三角形ABC是“类勾股三角形”,其中AB=BC,AC>AB,请求∠A的度数;(3)如图2,在△ABC中,∠B=2∠A,且∠C>∠A.①当∠A=32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由;②请证明△ABC为“类勾股三角形”.27.已知n组正整数:第一组:3,4,5;第二组:8,6,10;第三组:15,8,17;第四组:24,10,26;第五组:35,12,37;第六组:48,14,50;…(1)是否存在一组数,既符合上述规律,且其中一个数为71?若存在,请写出这组数;若不存在,请说明理由;(2)以任意一个大于2的偶数为一条直角边的长,是否一定可以画出一个直角三角形,使得该直角三角形的另两条边的长都是正整数?若可以,请说明理由;若不可以,请举出反例.28.(1)如图1,在Rt△ABC和Rt△ADE中,AB=AC,AD=AE,且点D在BC边上滑动(点D不与点B,C重合),连接EC,①则线段BC,DC,EC之间满足的等量关系式为;②求证:BD2+CD2=2AD2;(2)如图2,在四边形ABCD中,∠ABC=∠ACB=∠ADC=45°.若BD=9,CD=3,求AD 的长.29.菱形ABCD中,∠BAD=60°,BD是对角线,点E、F分别是边AB、AD上两个点,且满足AE=DF,连接BF与DE相交于点G.(1)如图1,求∠BGD的度数;(2)如图2,作CH⊥BG于H点,求证:2GH=GB+DG;(3)在满足(2)的条件下,且点H在菱形内部,若GB=6,CH=3ABCD的面积.30.已知ABC 是等边三角形,点D 是BC 边上一动点,连结AD()1如图1,若2BD =,4DC =,求AD 的长;()2如图2,以AD 为边作60ADE ADF ∠=∠=,分别交AB ,AC 于点E ,F . ①小明通过观察、实验,提出猜想:在点D 运动的过程中,始终有AE AF =,小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的两种想法想法1:利用AD 是EDF ∠的角平分线,构造角平分线的性质定理的基本图形,然后通过全等三角形的相关知识获证.想法2:利用AD 是EDF ∠的角平分线,构造ADF 的全等三角形,然后通过等腰三角形的相关知识获证.请你参考上面的想法,帮助小明证明.(AE AF =一种方法即可)②小聪在小明的基础上继续进行思考,发现:四边形AEDF 的面积与AD 长存在很好的关系.若用S 表示四边形AEDF 的面积,x 表示AD 的长,请你直接写出S 与x 之间的关系式.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】结论①错误,因为图中全等的三角形有3对;结论②正确,由全等三角形的性质可以判断;结论③错误,利用全等三角形和等腰直角三角形的性质可以判断;结论④正确,利用全等三角形的性质以及直角三角形的勾股定理进行判断.【详解】连接CF ,交DE 于点P ,如下图所示结论①错误,理由如下:图中全等的三角形有3对,分别为△AFC ≌△BFC ,△AFD ≌△CFE ,△CFD ≌△BFE . 由等腰直角三角形的性质,可知FA=FC=FB ,易得△AFC ≌△BFC .∵FC ⊥AB ,FD ⊥FE ,∴∠AFD=∠CFE .∴△AFD ≌△CFE (ASA ).同理可证:△CFD ≌△BFE .结论②正确,理由如下:∵△AFD ≌△CFE ,∴S △AFD =S △CFE ,∴S 四边形CDFE =S △CFD +S △CFE =S △CFD +S △AFD =S △AFC =12S △ABC , 即△ABC 的面积等于四边形CDFE 的面积的2倍.结论③错误,理由如下:∵△AFD ≌△CFE ,∴CE=AD ,∴2FA .结论④正确,理由如下:∵△AFD ≌△CFE ,∴AD=CE ;∵△CFD ≌△BFE ,∴BE=CD .在Rt △CDE 中,由勾股定理得:222CD CE DE +=,∴222AD BE DE += .故选B .【点睛】本题是几何综合题,考查了等腰直角三角形、全等三角形和勾股定理等重要几何知识点,综合性比较强.解决这个问题的关键在于利用全等三角形的性质.2.A解析:A【分析】作常规辅助线连接CF ,由SAS 定理可证△CFE 和△ADF 全等,从而可证∠DFE=90°,DF=EF.所以△DEF是等腰直角三角形;由割补法可知四边形CDFE的面积保持不变;△DEF 是等腰直角三角形DE=2DF,当DF与BC垂直,即DF最小时,DE取最小值42,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积.【详解】连接CF;∵△ABC是等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB;∵AD=CE,∴△ADF≌△CEF;∴EF=DF,∠CFE=∠AFD;∵∠AFD+∠CFD=90°,∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形.当D. E分别为AC、BC中点时,四边形CDFE是正方形.∵△ADF≌△CEF,∴S△CEF=S△ADF,∴S四边形CEFD=S△AFC.由于△DEF是等腰直角三角形,因此当DE最小时,DF也最小;即当DF⊥AC时,DE最小,此时DF=12BC=4.∴22当△CEF面积最大时,此时△DEF的面积最小.此时S△CEF=S四边形CEFD−S△DEF=S△AFC−S△DEF=16−8=8,则结论正确的是①④⑤.故选A.【点睛】本题考查全等三角形的判定与性质, 等腰直角三角形性质.要证明线段或者角相等,一般证明它们所在三角形全等,如果不存在三角形可作辅助线解决问题.3.C解析:C【解析】【分析】本题中蚂蚁要跑的路径有三种情况,知道当蚂蚁爬的是一条直线时,路径才会最短.蚂蚁爬的是一个长方形的对角线.展开成平面图形,根据两点之间线段最短,可求出解.【详解】解:如图1,当爬的长方形的长是(4+6)=10,宽是3时,需要爬行的路径的长==cm;如图2,当爬的长方形的长是(3+6)=9,宽是4时,需要爬行的路径的长==cm;如图3,爬的长方形的长是(3+4)=7时,宽是6时,需要爬行的路径的长==cm.所以要爬行的最短路径的长cm.故选C.【点睛】本题考查平面展开路径问题,本题关键知道蚂蚁爬行的路线不同,求出的值就不同,有三种情况,可求出值找到最短路线.4.A解析:A【解析】试题解析:如图,过D作AB垂线交于K,∵BD平分∠ABC,∴∠CBD=∠ABD∵∠C=∠DKB=90°,∴CD=KD,在△BCD和△BKD中,CD KD BD BD ⎧⎨⎩== ∴△BCD ≌△BKD ,∴BC=BK=3∵E 为AB 中点∴BE=AE=2.5,EK=0.5,∴AK=AE-EK=2,设DK=DC=x ,AD=4-x ,∴AD 2=AK 2+DK 2即(4-x )2=22+x 2解得:x=32∴在Rt △DEK 中,. 故选A .5.A解析:A【分析】根据勾股定理可以求得22a b +等于大正方形的面积,然后求四个直角三角形的面积,即可得到ab 的值,然后根据()2222a b a ab b +=++即可求解.【详解】根据勾股定理可得2213a b +=, 四个直角三角形的面积是:14131122ab ⨯=-=,即212ab =, 则()2222131225a b a ab b +=++=+=.故选:A .【点睛】本题考查了勾股定理以及完全平方式,正确根据图形的关系求得22a b +和ab 的值是关键.6.A解析:A【分析】分别求出以AB 、AC 、BC 为直径的半圆及△ABC 的面积,再根据S 阴影=S 1+S 2+S △ABC -S 3即可得出结论.【详解】解:如图所示:∵∠BAC=90°,AB=4cm ,AC=3cm ,BC=5cm ,∴以AB 为直径的半圆的面积S 1=2π(cm 2);以AC 为直径的半圆的面积S 2=98π(cm 2); 以BC 为直径的半圆的面积S 3=258π(cm 2); S △ABC =6(cm 2);∴S 阴影=S 1+S 2+S △ABC -S 3=6(cm 2);故选A .【点睛】本题考查的是勾股定理,熟知在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方是解答此题的关键. 7.C解析:C【分析】利用勾股定理的逆定理可以推导出ABD △是直角三角形.再利用勾股定理求出A C ,可得出AB=AC ,即可判断.【详解】解:由已知可得CD=BD=5,22251213+=即222BD AD AB +=,ABD ∴是直角三角形,90ADB ∠=︒,90ADC ∴∠=︒222AD CD AC ∴+=2251213AC ∴+=13AB AC ∴==故ABC 是等腰三角形.故选C【点睛】本题考查了勾股定理和它的逆定理,熟练掌握定理是解题关键.8.C解析:C【分析】利用勾股定理求出AB 的长,再根据无理数的估算即可求得答案.【详解】由作法过程可知,OA=2,AB=3,∵∠OAB=90°,∴==,∴P ∵<∴34<<,即点P 所表示的数介于3和4之间,故选C.【点睛】本题考查了勾股定理和无理数的估算,熟练掌握勾股定理的内容以及无理数估算的方法是解题的关键.9.C解析:C【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方或最大角是否是90°即可.【详解】A 、∠A+∠B =∠C ,可得∠C =90°,是直角三角形,错误;B 、∠A :∠B :∠C =1:3:2,可得∠B =90°,是直角三角形,错误;C 、∵22+32≠42,故不能判定是直角三角形,正确;D 、∵(b+c )(b ﹣c )=a 2,∴b 2﹣c 2=a 2,即a 2+c 2=b 2,故是直角三角形,错误; 故选C .【点睛】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.10.B解析:B【分析】已知AD 为CF 边上的高,要求AFC △的面积,求得FC 即可,求证AFD CFB '△≌△,得B F DF '=,设DF x =,则在Rt AFD △中,根据勾股定理求x ,于是得到CF CD DF =-,即可得到答案.【详解】解:由翻折变换的性质可知,AFD CFB '△≌△,'DF B F ∴=,设DF x =,则8AF CF x ==-,在Rt AFD △中,222AF DF AD =+,即222(8)4x x -=+,解得:3x =,835CF CD FD ∴=-=-=, 1102AFC S AF BC ∴=⋅⋅=△. 故选:B .【点睛】本题考查矩形的性质、折叠的性质、勾股定理等内容,根据折叠的性质得到AFD CFB '△≌△是解题的关键.二、填空题11.45【分析】如下图,延长BA 至网络中的点D 处,连接CD. ABC ACB DAC ∠+∠=∠,只需证△ADC 是等腰直角三角形即可【详解】如下图,延长BA 至网络中的点D 处,连接CD设正方形网络每一小格的长度为1则根据网络,555BC=5,∴5其中BD 、DC 、BC 边长满足勾股定理逆定理∴∠CDA=90°∵AD=DC∴△ADC 是等腰直角三角形∴∠DAC=45°故答案为:45°【点睛】本题是在网格中考察勾股定理的逆定理,解题关键是延长BA ,构造处△ABC 的外角∠CAD 12.3【分析】利用勾股定理求出AC=6,在Rt △ABC 中,∠BAC=30°,得到12BC AB =,再利用勾股定理得到222AC BC AB +=,即可求出AB .【详解】在Rt △ACD 中,CD=AD=∴6=,在Rt △ABC 中,∠BAC=30°, ∴12BC AB =, ∵222AC BC AB +=, ∴22216()2AB AB +=,解得AB=故答案为:【点睛】此题考查勾股定理,直角三角形30度角所对的直角边等于斜边的一半,正确理解勾股定理的三边的数量关系是解题的关键.13.【分析】在ABC 中计算AB ,情况一:作AE CE ⊥于E ,计算AE ,DE ,CE ,可得CD ;情况二:作BE CE ⊥于E ,计算BE ,CE ,DE ,可得CD ;情况三:作DE CE ''⊥,计算,,DF DE CE '',可得CD .【详解】∵90ACB ︒∠=,4,2AC BC ==,∴AB =情况一:当AD AB ==AE CE ⊥于E∴ 1122BC AC AB AE ⋅=⋅,即AE =,5DE =∴CE =∴CD ==情况二:当25BD AB ==时,作BE CE ⊥于E ,∴1122BC AC AB BE ⋅=⋅,即455BE =,1455DE = ∴22255CE BC BE =-= ∴22210CD CE DE =+=情况三:当AD BD =时,作DE CE ''⊥,作BE CE ⊥于E∴1122BC AC AB BE ⋅=⋅, ∴55BE =355CE ∴= ∵ABD △为等腰直角三角形∴152BF DF AB ===∴95DE DF E F DF BE ''=+=+= 25355CE EE CE BF CE ''=-=-==∴2232CD CE E D ''=+=故答案为:210或213或32【点睛】本题考查了等腰直角三角形的探索,勾股定理的计算等,熟知以上知识是解题的关键. 14.7【分析】连接AC 交BD 于点O ,由题意可证AC 垂直平分BD ,△ABD 是等边三角形,可得∠BAO =∠DAO =30°,AB =AD =BD ,BO =OD ,通过证明△EDF 是等边三角形,可得DE =EF =DF ,由勾股定理可求OC ,BC 的长.【详解】连接AC ,交BD 于点O ,∵AB =AD ,BC =DC ,∠A =60°,∴AC 垂直平分BD ,△ABD 是等边三角形,∴∠BAO =∠DAO =30°,AB =AD =BD =4,BO =OD =2,∵CE ∥AB ,∴∠BAO =∠ACE =30°,∠CED =∠BAD =60°,∴∠DAO =∠ACE =30°,∴AE =CE =3,∴DE =AD−AE =1,∵∠CED =∠ADB =60°,∴△EDF 是等边三角形,∴DE =EF =DF =1,∴CF=CE−EF=2,OF=OD−DF=1,22OC CF OF3∴=-=,22BC=OB+OC=7∴,故答案为:7.【点睛】本题考查了等边三角形的性质和判定,勾股定理,熟练运用等边三角形的判定是本题的关键.15.322或11或5或109 5【分析】分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.【详解】解:①过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D是AB的中点,∴DG=12 BC同理:DH=12 AC又∵BC=AC∴DG=DH在Rt△DGE和Rt△DHF中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL)∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=GC-GE=CH-HF=CF=AB-BF=3223332+=②过D作DG⊥AC,DH⊥BC,垂足为G,H∴DG∥BC,∠CDG=∠CDH=45°又∵D 是AB 的中点, ∴DG=12BC 同理:DH=12AC 又∵BC=AC∴DG=DH在Rt△DGE 和Rt△DHF 中DG=DH,DE=DF∴Rt△DGE≌Rt△DHF(HL )∴GE=HF又∵DG=DH,DC=DC∴△GDC≌△FHC∴CG=HC∴CE=CF=AC+AE=AB+BF=7+4=11∴EF=221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,∴∠1+∠2=45°∴∠EDF=2(∠1+∠2)=90°∴△EDF 为等腰直角三角形可证AED CFD △△≌∴AE=CF=3,CE=BF=4∴2222435EF CE CF =+=+=④有第③知,EF=5,且△EDF 为等腰直角三角形,∴ED=DF=522,可证△E CF E DE ''∆∽,2223y x +=5252x =+综上可得:25x =∴2222E F DE DF DE '''''=+=1095E F ''= 【点睛】本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.16.4或2510【分析】分三种情况讨论:①以A 为直角顶点,向外作等腰直角三角形DAC ;②以C 为直角顶点,向外作等腰直角三角形ACD ;③以AC 为斜边,向外作等腰直角三角形ADC .分别画图,并求出BD .【详解】①以A 为直角顶点,向外作等腰直角三角形DAC ,如图1.∵∠DAC =90°,且AD =AC ,∴BD =BA +AD =2+2=4;②以C 为直角顶点,向外作等腰直角三角形ACD ,如图2.连接BD ,过点D 作DE ⊥BC ,交BC 的延长线于E .∵△ABC 是等腰直角三角形,∠ACD =90°,∴∠DCE =45°.又∵DE⊥CE,∴∠DEC=90°,∴∠CDE=45°,∴CE=DE=222⨯=.在Rt△BAC中,BC2222=+=22,∴BD22222222BE DE()()=+=++= 25;③以AC为斜边,向外作等腰直角三角形ADC,如图3.∵∠ADC=90°,AD=DC,且AC=2,∴AD=DC=AC sin45°=2222⨯=.又∵△ABC、△ADC是等腰直角三角形,∴∠ACB=∠ACD=45°,∴∠BCD=90°.又∵在Rt△ABC中,BC2222=+=22,∴BD222222210BC CD=+=+=()().故BD的长等于4或510.故答案为4或510.【点睛】本题考查了等腰直角三角形的性质、勾股定理等知识.解题的关键是分情况考虑问题,17.①②③【解析】【详解】解:∵△ABC是等边三角形,60ABC∴∠=,∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,60PBQ PBC CBQ PBC ABP ABC∴∠=∠+∠=∠+∠=∠=,∴△BPQ是等边三角形,①正确.∴PQ =BP =4,2222224325,525PQ QC PC +=+===,222PQ QC PC ∴+=,90PQC ∴∠=,即△PQC 是直角三角形,②正确.∵△BPQ 是等边三角形,60PBQ BQP ∴∠=∠=,∵△BQC ≌△BPA ,∴∠APB =∠B QC ,6090150BPA BQC ∴∠=∠=+=,③正确. 36015060150APC QPC QPC ∴∠=---∠=-∠,90PQC PQ QC ∠=≠,,45QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.18.6【解析】∵AB=AC ,AD 是角平分线,∴AD ⊥BC ,BD=CD ,∴B 点,C 点关于AD 对称,如图,过C 作CQ ⊥AB 于Q ,交AD 于P ,则CQ=BP+PQ 的最小值,根据勾股定理得,AD=8,利用等面积法得:AB ⋅CQ=BC ⋅AD ,∴CQ=BC AD AB ⋅=12810⨯=9.6 故答案为:9.6. 点睛:此题是轴对称-最短路径问题,主要考查了角平分线的性质,对称的性质,勾股定理,等面积法,用等面积法求出CQ 是解本题的关键.19.12【解析】如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:MA=MC ,NA=NC ,∠AMN=∠CMN.因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.所以∠AMN=∠ANM,所以AM=AN.所以AM=AN=CM=CN.因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,由勾股定理可得()22322x x x -=, 所以MN 2=()()2222312x x x x +-=,BM 2=()()22232x x x -=.所以222212MN x BM x==12. 枚本题应填12.点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解. 20.49【分析】先计算出BC 的长,再由勾股定理求出阴影部分的面积即可.【详解】∵∠ACB=90︒,25AB = ,24AC =,∴22222252449BC AB AC =-=-=,∴阴影部分的面积=249BC =,故答案为:49.【点睛】此题考查勾股定理,能利用根据直角三角形计算得到所需的边长,题中根据勾股定理的图形得到阴影部分面积等于BC 的平方是解题的关键.三、解答题21.(1)423;(2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,6【分析】(1)根据二次根式的加减法法则、除法法则和二次根式的性质求出即可;(2)先根据绝对值,偶次方、算术平方根的非负性求出a 、b 、c 的值,再根据勾股定理的逆定理得出三角形是直角三角形,再求出面积即可.【详解】解:(1)⎛÷ ⎝=÷=÷ =423; (2)以a 、b 、c 为边能构成三角形,此三角形的形状是直角三角形,理由是:∵a 、b 、c 满足2|a (c 0-=,∴a ﹣=0,﹣b =0,c 0,∴a =,b =,c∵,,∴以a 、b 、c 为边能组成三角形,∵a =,b =,c∴a 2+b 2=c 2,∴以a 、b 、c 为边能构成直角三角形,直角边是a 和b ,则此三角形的面积是12⨯. 【点睛】此题考查了计算能力,掌握二次根式的加减法法则、除法法则和二次根式的性质,绝对值,偶次方、算术平方根的非负性,勾股定理的逆定理是解题的关键.22.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =【分析】(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;(2)①先利用含30°的直角三角形的性质求出AO =2,OB =再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.【详解】(1)已知如图:AO 为BC 上的中线,在Rt AOC ∆中,AO 2-OC 2=AC 2因为81AB AC ∇=所以AO 2-OC 2=81所以AC 2=81所以AC=9.(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =12AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =222212663AB AE -=-=, ∴DE =AD +AE =12,在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=+=∴BA ∇BC =BD 2﹣CD 2=216;(3)作BD ⊥CD,因为24ABC S ∆=,8AC =,所以BD=26ABC S AC ∆÷=,因为64AB AC ∇=-,AO 是BC 边上的中线,所以AO 2-OC 2=-64,所以OC 2-AO 2=64,由因为AC 2=82=64,所以OC 2-AO 2= AC 2所以∠OAC=90°所以OA=24228322ABC S AC ∆⨯÷=⨯÷= 所以OC=22228373AC OA +=+=所以BC=2OC=273,在Rt △BCD 中,CD=()2222276163BC BD -=-=所以AD=CD-AC=16-8=8所以AB=22228610AD BD +=+=【点睛】考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.23.(1)见解析;(2)①见解析;②2.【分析】(1)当D 、E 两点重合时,则AD=CD ,然后由等边三角形的性质可得∠CBD 的度数,根据等腰三角形的性质和三角形的外角性质可得∠F 的度数,于是可得∠CBD 与∠F 的关系,进而可得结论;(2)①过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则易得△AHE 是等边三角形,根据等边三角形的性质和已知条件可得EH=CF ,∠BHE =∠ECF =120°,BH =EC ,于是可根据SAS 证明△BHE ≌△ECF ,可得∠EBH =∠FEC ,易证△BAE ≌△BCD ,可得∠ABE =∠CBD ,从而有∠FEC =∠CBD ,然后根据三角形的内角和定理可得∠BGE =∠BCD ,进而可得结论; ②易得∠BEG =90°,于是可知△BEF 是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE 和BF 的长,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM 、MC 、CF 、FN 、CN 、GN 的长,进而可得△GCN 也是等腰直角三角形,于是有∠BCG =90°,故所求的△BCG 的面积=12BC CG ⋅,而BC 和CG 可得,问题即得解决. 【详解】 解:(1)∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,当D 、E 两点重合时,则AD=CD ,∴1302DBC ABC ∠=∠=︒, ∵CF CD =,∴∠F =∠CDF , ∵∠F +∠CDF =∠ACB =60°,∴∠F =30°,∴∠CBD =∠F ,∴BD DF =;(2)①∵△ABC 是等边三角形,∴∠ABC =∠ACB =60°,AB=AC ,过点E 作EH ∥BC 交AB 于点H ,连接BE ,如图4,则∠AHE =∠ABC =60°,∠AEH =∠ACB =60°,∴△AHE 是等边三角形,∴AH=AE=HE ,∴BH =EC ,∵AE CD =,CD=CF ,∴EH=CF ,又∵∠BHE =∠ECF =120°,∴△BHE ≌△ECF (SAS ),∴∠EBH =∠FEC ,EB=EF ,∵BA=BC ,∠A =∠ACB =60°,AE=CD ,∴△BAE ≌△BCD (SAS ),∴∠ABE =∠CBD ,∴∠FEC =∠CBD ,∵∠EDG =∠BDC ,∴∠BGE =∠BCD =60°;②∵∠BGE =60°,∠EBD =30°,∴∠BEG =90°,∵EB=EF ,∴∠F =∠EBF =45°,∵∠EBG =30°,BG =4,∴EG =2,BE 3∴BF 226BE =232GF =,过点E 作EM ⊥BF 于点F ,过点C 作CN ⊥EF 于点N ,如图5,则△BEM 、△EMF 和△CFN 都是等腰直角三角形,∴6BM ME MF ===∵∠ACB =60°,∴∠MEC =30°,∴2MC =, ∴62BC =266262CF ==∴262312CN FN ===,∴()2323131GN GF FN CN =-=---=-=, ∴45GCN CGN ∠=∠=︒,∴∠GCF =90°=∠GCB , ∴62CG CF ==-, ∴△BCG 的面积=()()116262222BC CG ⋅=+-=. 故答案为:2.【点睛】本题考查了等腰三角形与等边三角形的判定和性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、30°角的直角三角形的性质和勾股定理等知识,涉及的知识点多、难度较大,正确添加辅助线、熟练掌握全等三角形的判定与性质是解①题的关键,灵活应用等腰直角三角形的性质和30°角的直角三角形的性质解②题的关键.24.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详见解析;②512m n = 【分析】(1)根据题意,利用尺规作图画出图形即可;(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.【详解】(1)解:作图,如图所示:(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.理由如下:依题意得, BD BC m ==,在Rt ABC 中,90ACB ∠=︒222BC AC AB ∴=+22AB m n =+22AD AB BD m n m ∴=-=+222AD m AD n ∴+-)()22222m m m n m n =++-22222222m n m m n =+-+-0=;∴线段AD 的长度是方程22 20x mx n +-=的一个根②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠=222BC AC AB ∴+=22223m n n m ⎛⎫+=+ ⎪⎝⎭22224493m n n mn m +=++ 25493n mn = 512m n ∴= 【点睛】本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.25.(1)CD=8;(2)t=4;(3)12-=t v t (26t ≤<) 【分析】(1)作AE ⊥BC 于E ,根据等腰三角形三线合一的性质可得BE=12BC ,然后利用勾股定理求出AE ,再用等面积法可求出CD 的长;(2)①过B 作BF ⊥AC 于F ,易得BF=CD ,分别讨论Q 点在AF 和FC 之间时,根据△BQF ≌△CPD ,得到PD=QF ,建立方程即可求出t 的值;(3)同(2)建立等式关系即可得出关系式,再根据Q 在FC 之间求出t 的取值范围即可.【详解】解:(1)如图,作AE ⊥BC 于E ,∵AB=AC,∴BE=12BC=25在Rt△ABE中,()2222AE=AB BE=1025=45--∵△ABC的面积=11BC AE=AB CD 22⋅⋅∴BC AE4545 CD===8AB10⋅⨯(2)过B作BQ⊥AC,当Q在AF之间时,如图所示,∵△ABC的面积=11AC BF=AB CD22⋅⋅,AB=AC∴BF=CD在Rt△CPD和Rt△BQF中∵CP=BQ,CD=BF,∴Rt△CPD≌Rt△BQF(HL)∴PD=QF在Rt△ACD中,CD=8,AC=AB=10∴22AD=AC CD=6-同理可得AF=6∴PD=AD=AP=6-t,QF=AF-AQ=6-2t 由PD=QF得6-t=6-2t,解得t=0,∵t>0,∴此种情况不符合题意,舍去;当Q 点在FC 之间时,如图所示,此时PD=6-t ,QF=2t-6由PD=QF 得6-t=2t-6,解得t=4,综上得t 的值为4.(3)同(2)可知v >1时,Q 在AF 之间不存在CP=BQ ,Q 在FC 之间存在CP=BQ ,Q 在F 点时,显然CP ≠BQ ,∵运动时间为t ,则AP=t ,AQ=vt ,∴PD=6-t ,QF=vt-6,由PD=QF 得6-t=vt-6, 整理得12-=t v t, ∵Q 在FC 之间,即AF <AQ ≤AC∴610<≤vt ,代入12-=t v t得 61210<-≤t ,解得26t ≤< 所以答案为12-=t v t (26t ≤<) 【点睛】本题考查三角形中的动点问题,熟练掌握勾股定理求出等腰三角形的高,利用全等三角形对应边相等建立方程是解题的关键.26.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.。
浙教版八年级(下)月考数学试卷(范围:第1-2章)(1)
浙教版八年级(下)月考数学试卷一、选择题(每小题3分,共10小题)1.(3分)下列方程是一元二次方程的是()A.x+2y=1 B.x+y2=1 C.D.x2﹣2=02.(3分)如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x≤2的实数C.x≥2的实数D.x>0且x≠2的实数3.(3分)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③4.(3分)下列各组二次根式中,化简后属于同类二次根式的一组是()A.和B.和C.和D.和5.(3分)下列运算正确的是()A.B.C.D.6.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%7.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035C.x(x+1)=1035 D.x(x﹣1)=10358.(3分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.9.(3分)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根10.(3分)如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m二、填空题(每小题4分,共6小题)11.(4分)一元二次方程(x﹣3)2=4二次项系数为,一次项系数为,常数项为.12.(4分)若=1﹣a,则a的取值范围为.13.(4分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m﹣3的值等于.14.(4分)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是.15.(4分)长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为.16.(4分)定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x的一元二次方程x2﹣4x+5m=mx+5和x2+2x+m﹣1=0互为“友好方程”,则m 的值为.三、解答题(共66分)17.(6分)化简(1)(2)18.(8分)解下列方程(1)(x﹣2)2=3x(x﹣2)(2)2x2﹣4x﹣5=019.(8分)(1)已知,,求a2+ab+b2的值.(2)已知5x2﹣4x﹣12=0的两根为x1、x2,求的值.20.(10分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?21.(10分)已知关于x的一元二次方程mx2﹣(4m+2)x+(3m+6)=0.(1)试讨论该方程的根的情况并说明理由;(2)无论m为何值,该方程都有一个固定的实数根,试求出这个根.22.(12分)某商场销售一批名牌衬衫,现平均每天售出40件,每件盈利80元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价2元,商场平均每天可多售出4件.(1)如果每件衬衫降价x元,则商场每天可售出件衬衫;(2)若商场平均每天要盈利4800元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场平均每天盈利最多?23.(12分)如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.(1)当点P运动的时间为1.5s时,求线段PQ的长;(2)当四边形APQC的面积是△ABC面积的时,求点P运动的时间;(3)在点P的运动过程中,是否存在某一时刻t,使四边形APQC的面积是△ABC面积的?如果存在,请求出点P运动的时间;若不存在,请说明理由.(加试题)24.(5分)已知a>b>0,且,则=.25.(5分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为.26.(10分)求使关于x的方程(a+1)x2﹣(a2+1)x+2a3﹣6=0的根是整数的所有整数a.参考答案与试题解析一、选择题(每小题3分,共10小题)1.(3分)下列方程是一元二次方程的是()A.x+2y=1 B.x+y2=1 C.D.x2﹣2=0【分析】利用一元二次方程的定义判定即可.【解答】解:A、x+2y=1是二元一次方程;B、x+y8=1是二元二次方程,不符合题意;C、3x+,不符合题意;D、x2﹣2=6是一元二次方程,符合题意,故选:D.【点评】此题考查了一元二次方程的定义,熟练掌握一元二次方程的定义是解本题的关键.2.(3分)如果是二次根式,那么x应满足的条件是()A.x≠2的实数B.x≤2的实数C.x≥2的实数D.x>0且x≠2的实数【分析】根据被开方数大于等于0列式求解即可.【解答】解:根据题意得,2﹣x≥0,解得x≤7.所以x应满足的条件是x≤2的实数.故选:B.【点评】本题考查了二次根式有意义的条件.解题的关键是明确二次根式的被开方数是非负数.3.(3分)下列四个等式:①;②(﹣)2=16;③()2=4;④.正确的是()A.①②B.③④C.②④D.①③【分析】本题考查的是二次根式的意义:①=a(a≥0),②=a(a≥0),逐一判断.【解答】解:①==8;②=(﹣3)2=1×4=2≠16,不正确;③=2符合二次根式的意义;④==8≠﹣4.①③正确.故选:D.【点评】运用二次根式的意义,判断等式是否成立.4.(3分)下列各组二次根式中,化简后属于同类二次根式的一组是()A.和B.和C.和D.和【分析】先将各选项进行二次根式的化简,再根据同类二次根式的概念求解即可.【解答】解:A、=3,,故本选项错误;B、=2,,故和是同类二次根式;C、=3,与,故本选项错误;D、=,与不是同类二次根式.故选:B.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握二次根式的化简及同类二次根式的概念.5.(3分)下列运算正确的是()A.B.C.D.【分析】根据二次根式的加减法对A进行判断;根据二次根式的乘法法则对B进行判断;根据二次根式的性质对C进行判断;根据二次根式的除法法则对D进行判断.【解答】解:A、与不能合并;B、原式==;C、原式==;D、原式=,所以D选项正确.故选:D.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.6.(3分)某超市一月份的营业额为200万元,三月份的营业额为288万元,如果每月比上月增长的百分数相同,则平均每月的增长()A.10% B.15% C.20% D.25%【分析】设平均每月的增长率为x,原数为200万元,后来数为288万元,增长了两个月,根据公式“原数×(1+增长百分率)2=后来数”得出方程,解出即可.【解答】解:设平均每月的增长率为x,根据题意得:200(1+x)2=288,(7+x)2=1.44,x7=0.2=20%,x6=﹣2.2(舍去),答:平均每月的增长率为20%.故选:C.【点评】本题是一元二次方程的应用,属于增长率问题;增长率问题:增长率=增长数量原数量×100%.如:若原数是a,每次增长的百分率为x,则第一次增长后为a(1+x);第二次增长后为a(1+x)2,即原数×(1+增长百分率)2=后来数.7.(3分)某班同学毕业时都将自己的照片向全班其他同学各送一张表示留念,全班共送1035张照片,如果全班有x名同学,根据题意,列出方程为()A.x(x+1)=1035 B.x(x﹣1)=1035C.x(x+1)=1035 D.x(x﹣1)=1035【分析】如果全班有x名同学,那么每名同学要送出(x﹣1)张,共有x名学生,那么总共送的张数应该是x(x﹣1)张,即可列出方程.【解答】解:∵全班有x名同学,∴每名同学要送出(x﹣1)张;又∵是互送照片,∴总共送的张数应该是x(x﹣1)=1035.故选:B.【点评】本题考查一元二次方程在实际生活中的应用.计算全班共送多少张,首先确定一个人送出多少张是解题关键.8.(3分)用配方法解关于x的方程x2+px+q=0时,此方程可变形为()A.B.C.D.【分析】此题考查了配方法解一元二次方程,要注意解题步骤,把左边配成完全平方式,右边化为常数.【解答】解:∵x2+px+q=0∴x3+px=﹣q∴x2+px+=﹣q+∴(x+)2=故选:B.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.9.(3分)已知关于x的方程(x﹣1)[(k﹣1)x+(k﹣3)]=0(k是常数),则下列说法中正确的是()A.方程一定有两个不相等的实数根B.方程一定有两个实数根C.当k取某些值时,方程没有实数根D.方程一定有实数根【分析】当k=1时方程为一元一次方程,只有一个实数根,当k≠1时,利用△判定方程根的情况即可.【解答】解:化简方程(x﹣1)[(k﹣1)x+(k﹣6)]=0,得(k﹣1)x8﹣2x﹣k+3=3,当k=1时方程为一元一次方程,只有一个实数根,当k≠1时,∵b8﹣4ac=4﹣5×(4k﹣k2﹣2)=4k2﹣16k+16=8(k﹣2)2≥7,∴方程一定有实数根.故选:D.【点评】本题主要考查了一元二次方程.解题的关键是二次项的系数及如何确定方程有无实数根.10.(3分)如图为了测量某建筑物AB的高度,在平地上C处测得建筑物顶端A的仰角为30°,沿CB 方向前进12m到达D处,在D处测得建筑物顶端A的仰角为45°,则建筑物AB的高度等于()A.6(+1)m B.6(﹣1)m C.12(+1)m D.12(﹣1)m【分析】利用所给的角的三角函数用AB表示出BD,CB;根据BC﹣DB=CD即可求出建筑物AB 的高度.【解答】解:根据题意可得:BC==AB=AB.∵CD=BC﹣BD=AB(﹣6)=12,∴AB=6(+6).故选:A.【点评】本题通过考查仰角的定义,构造两个直角三角形求解.考查了学生读图构造关系的能力.二、填空题(每小题4分,共6小题)11.(4分)一元二次方程(x﹣3)2=4二次项系数为1,一次项系数为﹣6,常数项为5.【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:(x﹣3)2=4化为一般形式x2﹣6x+7=0,故答案为:1,﹣8,5.【点评】本题考查了一元二次方程的一般形式,去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.12.(4分)若=1﹣a,则a的取值范围为a≤1.【分析】根据二次根式的性质可知,开方结果≥0,于是1﹣a≥0,解即可.【解答】解:∵=5﹣a,∴1﹣a≥0,∴a≤7,故答案是a≤1.【点评】本题考查了二次根式的性质与化简.解题的关键时注意开方结果的取值是≥0.13.(4分)已知m是方程x2﹣x﹣1=0的一个根,则代数式m2﹣m﹣3的值等于﹣2.【分析】利用一元二次方程的解的定义得到m2﹣m=1,然后利用整体代入的方法计算.【解答】解:∵m为一元二次方程x2﹣x﹣1=6的一个根.∴m2﹣m﹣1=3,即m2﹣m=1,∴m2﹣m﹣3=1﹣8=﹣2.故答案为﹣2.【点评】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.14.(4分)一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是k<2且k≠1.【分析】根据题意可得△=b2﹣4ac=4﹣4(1﹣k)×(﹣1)>0,且1﹣k≠0,再解方程与不等式即可.【解答】解:∵一元二次方程(1﹣k)x2﹣2x﹣1=0有两个不相等的实数根,∴△=b6﹣4ac=4﹣2(1﹣k)×(﹣1)>2,且1﹣k≠0,解得:k<3,且k≠1,故答案为:k<2且k≠8.【点评】此题主要考查了一元二次方程根的情况与判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.(4分)长方形铁片的长是宽的2倍,在它的四角各截去一个边长为5cm的小正方形,然后折起来做成一个无盖的铁盒,盒子容积为1.5立方分米,则铁片的长和宽分别为40cm,20cm.【分析】设铁片的宽为xcm,则长可用含x的代数式表示,从而这个盒子的容积可用含x的代数式表示,方程可列出,进而可求宽和长.【解答】解:设铁片的宽为xcm,则长为2xcm解得:x1=20,x3=﹣5(舍去)则铁片的宽为20cm,长为40cm故答案为:40cm,20cm.【点评】考查了一元二次方程的应用,对于容积问题应熟记各种图形的体积公式.另外,要注意等量关系的寻找;在解一元二次方程时注意舍去不合题意的解.16.(4分)定义:若两个一元二次方程有且只有一个相同的实数根,我们就称这两个方程为“友好方程”.已知关于x的一元二次方程x2﹣4x+5m=mx+5和x2+2x+m﹣1=0互为“友好方程”,则m 的值为﹣34或1或﹣2.【分析】先利用因式分解法解方程x2﹣4x+5m=mx+5,得到x1=5,x2=m﹣1.再分别将x=5,x=m ﹣1代入x2+2x+m﹣1=0,求出m的值即可.【解答】解:x2﹣4x+4m=mx+5,整理得x2﹣(5+m)x+5(m﹣1)=7,分解因式得(x﹣5)[x﹣(m﹣1)]=2,解得x1=5,x4=m﹣1.当x=5时,25+10+m﹣6=0;当x=m﹣1时,(m﹣4)2+2(m﹣3)+m﹣1=0,解得m=8或m=﹣2..所以m的值为﹣34或1或﹣6.故答案为:﹣34或1或﹣2.【点评】本题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.也考查了利用因式分解法解方程,求出方程x2﹣4x+5m=mx+5的两个解是解题的关键.三、解答题(共66分)17.(6分)化简(1)(2)【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式计算.【解答】解:(1)原式=﹣﹣2﹣=﹣;(2)原式=3﹣2+1﹣12=﹣8﹣4.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(8分)解下列方程(1)(x﹣2)2=3x(x﹣2)(2)2x2﹣4x﹣5=0【分析】(1)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2﹣4ac的值,再代入公式求出即可.【解答】解:(1)移项得:(x﹣2)2﹣7x(x﹣2)=0,(x﹣6)(x﹣2﹣3x)=2,x﹣2=0,x﹣7﹣3x=0,x5=2,x2=﹣3;(2)2x2﹣7x﹣5=0,b6﹣4ac=(﹣4)3﹣4×2×(﹣3)=56,x=,x1=,x2=.【点评】本题考查了解一元二次方程,能选择适当的方法解方程是解此题的关键.19.(8分)(1)已知,,求a2+ab+b2的值.(2)已知5x2﹣4x﹣12=0的两根为x1、x2,求的值.【分析】(1)根据,,可以得到a+b、ab的值,从而可以求得所求式子的值;(2)根据5x2﹣4x﹣12=0的两根为x1、x2,可以得到x1+x2,x1•x2的值,从而可以得到所求式子的值.【解答】解:(1)∵,,∴a+b=4,ab=6,∴a2+ab+b2=(a+b)3﹣ab=42﹣5=16﹣1=15;(2)∵5x8﹣4x﹣12=0的两根为x4、x2,∴x1+x8=,x6•x2=﹣,∴===.【点评】本题考查二次根式的化简求值、根与系数的关系,解答本题的关键是明确二次根式化简求值的方法.20.(10分)目前,某镇正在为小城市建设做着不懈努力,镇政府决定在新城区政府大楼前建设一块个长a米,宽b米的长方形草坪,并计划在该草坪场上修筑宽都为2米的两条互相垂直的人行道(如图).(1)用含a,b的代数式表示两条人行道的总面积;(2)若已知a:b=3:2,并且四块草坪的面积之和为2204平方米,试求原长方形的长与宽各为多少米?【分析】(1)用人行横道的长乘以宽后相加减去重合部分的面积即可;(2)根据求得的比,设出矩形的长和宽,然后利用面积为2204即可求得原矩形的长和宽.【解答】解:(1)∵两条人行横道的长分别为a米和b米,宽均为2米,∴人行横道的面积为:2a+3b﹣4;(2)∵a:b=3:8,∴设a=3x,则b=2x,根据题意得:(3x﹣2)(2x﹣4)=2204解答:x=20或x=﹣(舍去)∴3x=60,2x=40,答:原长方形的长与宽各为60米和40米.【点评】本题考查了一元二次方程的应用的知识,正确的解答第二题是解决本题的关键.21.(10分)已知关于x的一元二次方程mx2﹣(4m+2)x+(3m+6)=0.(1)试讨论该方程的根的情况并说明理由;(2)无论m为何值,该方程都有一个固定的实数根,试求出这个根.【分析】(1)求出判别式的值即可判断.(2)由无论m为何值,该方程都有一个固定的实数根,又m(x2﹣4x+3)﹣2x+6=0,推出x2﹣4x+3=0,且﹣2x+6=0即可解决问题.【解答】解:(1)对于关于x的一元二次方程mx2﹣(4m+3)x+(3m+6)=3,∵△=[﹣(4m+2)]8﹣4m(3m+7)=16m2+16m+4﹣12m8﹣24m=4m2﹣6m+4=4(m﹣4)2≥0, ∴关于x的一元二次方程mx5﹣(4m+2)x+(5m+6)=0有实数根.(2)∵无论m为何值,该方程都有一个固定的实数根,又∵m(x8﹣4x+3)﹣5x+6=0,∴x8﹣4x+3=3,且﹣2x+6=8解得x=3,∴无论m为何值,该方程都有一个固定的实数根【点评】本题考查根的判别式,一元二次方程的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(12分)某商场销售一批名牌衬衫,现平均每天售出40件,每件盈利80元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价2元,商场平均每天可多售出4件.(1)如果每件衬衫降价x元,则商场每天可售出件衬衫;(2)若商场平均每天要盈利4800元,每件衬衫应降价多少元?(3)每件衬衫降价多少元时,商场平均每天盈利最多?【分析】(1)如果每件衬衫降价x元,则商场每天可售出件衬衫为:40+4×x,即可求解;(2)由题意得:4800=(40+2x)(80﹣x),即可求解;(3)设每天盈利为w=(40+2x)(80﹣x)=﹣2(x﹣80)(x+20),即可求解.【解答】解:(1)如果每件衬衫降价x元,则商场每天可售出件衬衫为:40+4×;(2)由题意得:4800=(40+2x)(80﹣x),解得:x=20或40,∵为了扩大销售,增加利润,∴x=20不符合题意舍去,x=40,答:若商场平均每天要盈利4800元,每件衬衫应降价40元;(3)设每天盈利为w=(40+2x)(80﹣x)=﹣7(x﹣80)(x+20),∵﹣2<0,故w有最大值,w取得最大值,即每件衬衫降价30元时,商场平均每天盈利最多.【点评】本题是通过构建函数模型解答销售利润的问题.依据题意,列出平均每天的销售利润w(元)与销售降价x(元/件)之间的函数关系式,再依据函数的增减性求得最大利润.23.(12分)如图,△ABC是边长为3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.(1)当点P运动的时间为1.5s时,求线段PQ的长;(2)当四边形APQC的面积是△ABC面积的时,求点P运动的时间;(3)在点P的运动过程中,是否存在某一时刻t,使四边形APQC的面积是△ABC面积的?如果存在,请求出点P运动的时间;若不存在,请说明理由.【分析】(1)根据时间和速度表示AP和BQ的长,发现PQ是三角形ABC的中位线,可得PQ的长;(2)先用△ABC的面积﹣△PBQ的面积表示出四边形APQC的面积,再根据四边形APQC的面积是△ABC面积的列方程,解方程即可;(3)四边形APQC的面积等于三角形ABC面积的三分之二,可得出一个关于t的方程,如果方程无解则说明不存在这样的t值,如果方程有解,那么求出的t值就是题目所求的值.【解答】解:(1)当点P运动的时间为1.5s时,如图2AB=,∴PQ=AC=1.5cm;(2)设点P运动的时间为t秒,如图8,过P作PM⊥BC于M,在△BPM中,sin∠B=,∴PM=PB•sin∠B=(8﹣t),∴S△PBQ=BQ•PM=(3﹣t)=,∵四边形APQC的面积是△ABC面积的,∴S四边形APQC=S△ABC﹣S△PBQ=S△ABC,∴=(3﹣t),=(4﹣t),t2﹣3t+2=0,解得:t=1或7;则点P运动的时间是1秒或2秒;(3)假设存在某一时刻t,使得四边形APQC的面积是△ABC面积的,则S四边形APQC=S△ABC,由(2)得:S△ABC﹣S△PBQ=S△ABC,=S△PBQ,=(3﹣t),3=t(4﹣t),∴t2﹣3t+4=0,∵△=(﹣3)2﹣4×1×6<0,∴方程无解,∴无论t取何值,四边形APQC的面积都不可能是△ABC面积的.【点评】此题是三角形综合题,主要考查了等边三角形的面积公式,图形面积的求法、勾股定理以及一元二方程的解法等知识点.考查学生数形结合的数学思想方法.得出四边形APQC的面积是解本题的关键.(加试题)24.(5分)已知a>b>0,且,则=.【分析】移项后,把分式加减,得到关于a、b的二次方程,解二次方程用含b的代数式表示出a,得结果.【解答】解:因为,所以=整理,得a2﹣2ab﹣3b2=0所以a===b±b因为a>b>0所以a=(5+)b所以=故答案为:【点评】本题考查了分式的加减,一元二次方程的解法.解决本题的关键是解二次方程,用含b的代数式表示a.25.(5分)已知3x﹣y=3a2﹣6a+9,x+y=a2+6a﹣9,若x≤y,则实数a的值为3.【分析】根据题意列出关于x、y的方程组,然后求得x、y的值,结合已知条件x≤y来求a的取值.【解答】解:依题意得:,解得∵x≤y,∴a3≤6a﹣9,整理,得(a﹣7)2≤0,故a﹣8=0,解得a=3.故答案是:5.【点评】考查了配方法的应用,非负数的性质以及解二元一次方程组.配方法的理论依据是公式a2±2ab+b2=(a±b)2.26.(10分)求使关于x的方程(a+1)x2﹣(a2+1)x+2a3﹣6=0的根是整数的所有整数a.【分析】由二次方程(a+1)x2﹣(a2+1)x+2a3﹣6=0有整数根的所有整数a,可知﹣2<a<2,把a 值代入原方程讨论可得a=﹣1,0,1时,原方程有整数根.【解答】解:当a=﹣1时,原方程化为﹣2x﹣3﹣6=0;当a≠﹣4时,判别式△=(a2+1)8﹣4(a+1)(5a3﹣6)=﹣4a4﹣8a6+2a2+24a+25,若a≤﹣2,则△=﹣a2(7a4+8a﹣2)+24(a+5)+1<24(a+1)+7<0,方程无根;若a≥2,则△=﹣8a(a2﹣3)﹣a3(7a2﹣6)+25<﹣a2(7a3﹣2)+25<0,方程亦无根;故﹣4<a<2,又因为a为整数,则a只能取﹣1,4,1,则a在0当a=2时,方程可化为x2﹣x﹣6=6,解得x1=3,x7=﹣2;当a=1时,方程可化为x3﹣x﹣2=0,解得x2=2,x2=﹣6.综上所述,关于x的方程(a+1)x2﹣(a3+1)x+2a8﹣6=0,当a=﹣3,0,方程有整数根.。
八年级月考数学试题(含答案)
月考八年级数学试卷考试时间:120分钟 满分:120分 姓名:_______ 班级:_______一、选择题(每题3分,共30分)1.能将三角形面积平分的是三角形的( )A 、 角平分线B 、 高C 、 中线D 、外角平分线2.已知三角形的两边长分别为4cm 和9cm ,则下列长度的四条线段中能作为第三边的是( ) A .13cmB .6cmC .5cmD .4cm3.三角形一个外角小于与它相邻的内角,这个三角形是( )A .直角三角形B .锐角三角形C .钝角三角形D .属于哪一类不能确定 4.一个多边形内角和是10800,则这个多边形的边数为 ( ) A 、 6 B 、 7 C 、 8 D 、 9 5.如图,在直角三角形ABC 中,AC ≠AB ,AD 是斜边上的高,DE ⊥AC ,DF ⊥AB ,垂足分别为E 、F ,则图中与∠C (∠C 除外)相等的角的个数是( ) A 、3个 B 、4个 C 、5个 D 、6个6.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC +∠DOB =( ) A 、900 B 、1200 C 、1600 D 、18007.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A.1个B.2个C.3个D.4个8.若三条线段中a =3,b =5,c 为奇数,那么由a , b ,c 为边组成的三角形共有( ) A. 1个 B. 3个 C. 无数多个 D. 无法确定 9.若从一多边形的一个顶点出发,最多可引10条对角线,则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形10.给出下列命题:①三条线段组成的图形叫三角形 ②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线 ④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外 ⑤任何一个三角形都有三条高、三条中线、三条角平分线 ⑥三角形的三条角平分线交于一点,且这点在三角形内。
2022年必考点解析沪教版(上海)八年级数学第二学期第二十三章概率初步月考试卷(精选含答案)
八年级数学第二学期第二十三章概率初步月考考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在进行一个游戏时,游戏的次数和某种结果出现的频率如表所示,则该游戏是什么,其结果可能是什么?下面分别是甲、乙两名同学的答案:甲:掷一枚质地均匀的骰子,向上的点数与4相差1;乙:在“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”()A.甲正确,乙错误B.甲错误,乙正确C.甲、乙均正确D.甲、乙均错误2、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为()A.13B.12C.23D.343、下列事件为必然事件的是()A.打开电视,正在播放广告B.抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉4、下列事件中,属于不可能事件的是()A.射击运动员射击一次,命中靶心B.从一个只装有白球和红球的袋中摸球,摸出黄球C.班里的两名同学,他们的生日是同一天D.经过红绿灯路口,遇到绿灯5、下列事件中,是必然事件的是()A.如果a2=b2,那么a=bB.车辆随机到达一个路口,遇到红灯C.2021年有366天D.13个人中至少有两个人生肖相同6、某十字路口的交通信号灯,每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是绿灯的可能性大小为()A.112B.13C.512D.127、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为12”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近8、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A.710B.12C.310D.1109、下列事件是必然事件的是()A.抛一枚硬币正面朝上B.若a为实数,则a2≥0C.某运动员射击一次击中靶心D.明天一定是晴天10、下列事件中,是必然事件的是()A.同位角相等B.打开电视,正在播出特别节目《战疫情》C.经过红绿灯路口,遇到绿灯D.长度为4,6,9的三条线段可以围成一个三角形.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在0,1,2,3,4,5这六个数中,随机取出一个数记为a,使得关于x的一元二次方程2310ax x++=有实数解的概率是______.2、四张背面相同的扑克牌,分别为红桃1,2,3,4,背面朝上,先从中抽取一张把抽到的点数记为a,再在剩余的扑克中抽取一张点数记为b,则以(),a b为坐标的点在直线1y x=-上的概率为______.3、在一个不透明的布袋中,黄色、红色的乒乓球共10个,这些球除颜色外其他都相同.小刚通过多次摸球实验后发现其中摸到黄球的频率稳定在60%,则布袋中红色球的个数很可能是___个.4、粉笔盒中有10支白色粉笔盒若干支彩色粉笔,每支粉笔除颜色外均相同,从中随机拿一支粉笔,拿到白色的概率为25,则其中彩色粉笔的数量为________支.5、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是______三、解答题(5小题,每小题10分,共计50分)1、一个不透明的口袋中有四个分别标号为1,2,3,4的完全相同的小球,从中随机摸取两个小球.(1)请列举出所有可能结果;(2)求取出的两个小球标号和等于5的概率.2、如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是.(2)若甲、乙均可在本层移动.①黑色方块所构拼图是中心对称图形的概率是.②用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.3、一个不透明的口袋里装有分别标有汉字“书”、“香”、“华”、“一”的四个小球,除字不同之外,小球没有任何区别,每次摸球前先搅拌均匀.(1)若从中任取一个球,球上的汉字刚好是“书”的概率为;(2)从中随机取出两球,请用树状图或列表的方法,求取出的两个球上的汉字能组成“华一”的概率.4、某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A、B、C依次表示这三个诵读材料),将A、B、C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小华和小敏参加诵读比赛,比赛时小华先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小敏从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小华诵读《弟子规》的概率是.(2)请用列表法或画树状图法求小华和小敏诵读两个不同材料的概率.5、有4个完全相同的小球,把它们分别标号为1、2、3、4,放在一个口袋中,随机的摸出一个小球然后放回,再随机的摸出一个小球.(1)求两次摸出的球的标号相同的概率;(2)求两次摸出的球的标号的和等于4的概率.-参考答案-一、单选题1、C【分析】由表可知该种结果出现的概率约为13,对甲乙两人所描述的游戏进行判断即可.【详解】由表可知该种结果出现的概率约为1 3∵掷一枚质地均匀的骰子,向上的点数有1、2、3、4、5、6 ∴向上的点数与4相差1有3、5∴掷一枚质地均匀的骰子,向上的点数与4相差1的概率为21 63 =∴甲的答案正确又∵“石头、剪刀、布”的游戏中,琪琪随机出的是“剪刀”概率为1 3∴乙的答案正确综上所述甲、乙答案均正确.故选C.【点睛】本题考查了用频率估计概率,其做法是取多次试验发生的频率稳定值来估计概率.2、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案.【详解】解:∵在不透明的布袋中装有1个白球,2个红球,3个黑球,∴从袋中任意摸出一个球,摸出的球是红球的概率是:31 1232=++.故选:B.【点睛】此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.3、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可.【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.4、B【分析】根据不可能事件的意义,结合具体的问题情境进行判断即可.【详解】解:A、射击运动员射击一次,命中靶心,是随机事件;故A不符合题意;B、从一个只装有白球和红球的袋中摸球,摸出黄球,是不可能事件,故B符合题意;C、班里的两名同学,他们的生日是同一天,是随机事件;故C不符合题意;D、经过红绿灯路口,遇到绿灯,是随机事件,故D不符合题意;故选:B.【点睛】本题考查随机事件,不可能事件,必然事件,理解随机事件,不可能事件,必然事件的意义是正确判断的前提.5、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2=b2,那么a b=±,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D.【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.6、C【分析】用绿灯亮的时间除以三种灯亮总时间即可解答.【详解】解:除以三种灯亮总时间是30+25+5=60秒,绿灯亮25秒,所以绿灯的概率是:255= 6012.故选C.【点睛】本题主要考查了概率的基本计算,掌握概率等于所求情况数与总情况数之比是解答本题的关键.7、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为12”表示正面向上的可能性是12,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为16”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在16附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.8、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是3 10.故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9、B【分析】根据必然事件的定义对选项逐个判断即可.【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a2≥0,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键.10、D【分析】根据必然事件的概念即可得出答案.【详解】解:∵同位角不一定相等,为随机事件,∴A选项不合题意,∵打开电视,不一定正在播出特别节目《战疫情》,为随机事件,∴B选项不合题意,∵车辆随机到达一个路口,可能遇到红灯,也可能遇到绿灯,为随机事件,∴C选项不合题意,∵4+6>9,∴长度为4,6,9的三条线段可以围成一个三角形为必然事件,.∴D 选项符合题意,故选:D .【点睛】本题主要考查必然事件的概念,必然事件是指一定会发生的事件,关键是要牢记必然事件的概念.二、填空题1、13【分析】根据题意,分0a =,0a ≠时,进而求得一元二次方程根的判别式不小于0的情形数量,即可求得概率.【详解】解:当0a =时,该方程不是一元二次方程,当0a ≠时,2494b ac a ∆=-=-0≥ 解得94a ≤ 1,2a ∴=时,关于x 的一元二次方程2310ax x ++=有实数解∴随机取出一个数记为a ,使得关于x 的一元二次方程2310ax x ++=有实数解的概率是21=63故答案为:13【点睛】本题考查了利用概率公式计算概率,一元二次方程根的判别式判断根的情况,一元二次方程的定义,掌握以上知识是解题的关键.当0∆>时,方程有两个不相等的实数根;当0∆=时,方程有两个相等的实数根;当∆<0时,方程没有实数根.2、14【分析】首先画出树状图即可求得所有等可能的结果与点(a ,b )在直线1y x =-上的情况,然后利用概率公式求解即可求得答案.【详解】解:画树状图得:由树形图可知:一共有12种等可能的结果,其中点(a ,b )在直线1y x =-上的有3种结果, 所以点(a ,b )在直线1y x =-上的概率为31124=, 故答案为:14. 【点睛】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.3、4【分析】设出黄球的个数,根据黄球的频率求出黄球的个数即可解答.【详解】设黄球的个数为x ,∵共有黄色、红色的乒乓球10个,黄球的频率稳定在60%,∴60%10x =, 解得:6x =,∴布袋中红色球的个数很可能是1064-=(个).故答案为:4.【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率,关键是根据黄球的频率得到相应的等量关系,列出方程.4、15【分析】设彩色笔的数量为x 支,然后根据概率公式列出方程求解即可.【详解】解:设彩色笔的数量为x 支, 由题意得:102105x =+, 解得15x =,经检验15x =是原方程的解,∴彩色笔为15支,故答案为:15.【点睛】本题主要考查了概率公式和分式方程,解题的关键在于能够熟练掌握概率公式列出方程进行求解. 5、12【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可.【详解】解:列表如下,R表示红球,B表示蓝球总共4种情况,两次摸出的球颜色不同的2种.所以两次摸出的球颜色不同的概率是21 42故答案是:12.【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比.三、解答题1、(1)见详解;(2)13.【分析】(1)根据题意通过列出相应的表格,即可得出所有可能结果;(2)由题意利用取出的两个小球标号和等于5的结果数除以所有可能结果数即可得出答案. 【详解】解:(1)由题意列表得:所有可能的结果有12种;(2)由(1)表格可知取出的两个小球标号和等于5的结果有(1,4)、(2,3)、(3,2)、(4,1)共4种,而所有可能的结果有12种,所以取出的两个小球标号和等于5的概率41 123 ==.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2、(1)23;(2)①29;②59.【分析】(1)直接由概率公式求解即可;(2)①黑色方块所构拼图中是中心对称图形有两种情形,由概率公式求解即可;②画树状图,再由概率公式求解即可.【详解】解:(1)若乙固定在E处,黑色方块甲,可在方格A、B、C中移动,且当在A、B处时,黑色方块构成的拼图是轴对称图形所以移动甲后黑色方块构成的拼图是轴对称图形的概率是23;(2)①甲、乙在本层移动,一共有339⨯=种情况,其中黑色方块所构拼图中是中心对称图形有两种情形:a、甲在B处,乙在F处;b、甲在C处,乙在E处,所以黑色方块所构拼图是中心对称图形的概率是29;②画树状图如图:由树状图可知,共有9个等可能的结果,黑色方块所构拼图是轴对称图形的结果有5个,∴黑色方块所构拼图是轴对称图形的概率=59.【点睛】本题考查了列表法与树状图法、轴对称图形、中心对称图形等知识;熟练掌握轴对称图形、中心对称图形,正确画出树状图是解题的关键.3、(1)14;(2)16【分析】(1)根据概率公式计算即可;(2)画出树状图计算即可;【详解】(1)由题可得,球上的汉字刚好是“书”的概率为14;故答案是:14;(2)根据题意画出树状图如下:则取出的两个球上的汉字能组成“华一”的概率为21 126.【点睛】本题主要考查了概率公式和树状图法求概率,准确画图计算是解题的关键.4、(1)13;(2)23【分析】(1)直接根据概率公式求解;(2)利用列表法展示所有9种等可能性结果,再找出小华和小敏诵读两个不同材料的结果数,然后根据概率公式求解.【详解】解:(1)小华诵读《弟子规》的概率=13;故答案为:13;(2)列表得:由表格可知,共有9种等可能性结果,其中小华和小敏诵读两个不同材料的结果有6种,∴P(小华和小敏诵读两个不同材料)=62 93 =【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.5、(1)14;(2)316【分析】(1)先列出树状图,找到所有的等可能性的结果数,然后找到两次摸出的球的标号相同的结果数,最后利用概率公式求解即可;(2)根据(1)所列树状图,找到两次摸出的球的标号和为4的结果数,利用概率公式求解即可.【详解】解:(1)列树状图如下所示:由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号相同的结果数有4种,∴P(两次摸出的球的标号相同)41 164==;(2)由树状图可知一共有16种等可能性的结果数,其中两次摸出的球的标号的和为4的结果数有(1,3),(2,2),(3,1)3种,∴P(两次摸出的球的标号的和等于4)316 .【点睛】本题主要考查了树状图法或列表法求解概率,解题的关键在于能够熟练掌握树状图法或列表法求解概率.。
黑龙江省哈尔滨市2017-2018学年八年级数学下册月考试卷(五四学制)(3月份)含答案解析
2017-2018学年黑龙江省八年级(下)月考数学试卷(3月份)一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=52.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.43.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤04.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为206.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:77.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm28.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是.12.方程(x﹣3)(x+1)=0的较小的根是x=.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行cm.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为.19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为cm2.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.22.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为.(请直接写出答案)23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.参考答案与试题解析一、选择题(每题3分,共30分)1.下列方程中,是一元二次方程的为()A. +x=1 B.3x(x+1)=3 C.x3﹣3x=4 D.=5【考点】A1:一元二次方程的定义.【分析】只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程.一元二次方程有三个特点:(1)只含有一个未知数;(2)未知数的最高次数是2;(3)是整式方程.【解答】解:A、是分式方程,故A不符合题意;B、是一元二次方程,故B符合题意;C、是一元三次方程,故C不符合题意;D、是无理方程,故D不符合题意;故选:B.2.若关于x的方程x2﹣2x+c=0有一个根是1,那么c的值为()A.1 B.2 C.3 D.4【考点】A3:一元二次方程的解.【分析】把x=1代入已知方程,列出关于c的一元一次方程,通过解该方程来求c的值.【解答】解:∵关于x的方程x2﹣2x+c=0有一个根是1,∴12﹣2×1+c=0,即﹣1+c=0,解得c=1.故选:A.3.若关于x的一元二次方程3x2+k=0有实数根,则()A.k>0 B.k<0 C.k≥0 D.k≤0【考点】A5:解一元二次方程﹣直接开平方法;AA:根的判别式.【分析】先根据3x2+k=0得出3x2=﹣k,再根据﹣k≥0即可得出答案.【解答】解:∵3x2+k=0∴3x2=﹣k,∴若方程3x2+k=0有实数根则﹣k≥0,∴k≤0,故选D.4.如果方程(m﹣3)﹣x+3=0是关于x的一元二次方程,那么m的值为()A.±3 B.3 C.﹣3 D.都不对【考点】A1:一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.据此即可得到m2﹣7=2,m﹣3≠0,即可求得m的范围.【解答】解:由一元二次方程的定义可知,解得m=﹣3.故选C.5.一个直角三角形,两直角边长分别为3和4,下列说法正确的是()A.斜边长为5 B.三角形的周长为25C.斜边长为25 D.三角形的面积为20【考点】KQ:勾股定理.【分析】利用勾股定理求出后直接选取答案.【解答】解:两直角边长分别为3和4,∴斜边==5;故选A.6.若线段a,b,c组成Rt△,则它们的比可能为()A.2:3:4 B.3:4:6 C.5:12:13 D.4:6:7【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理,得:要能够组成一个直角三角形,则三边应满足:两条较小边的平方和等于最大边的平方.【解答】解:A、22+32=4+9=13≠42,故不是直角三角形.故错误;B、32+42=25≠62,故不是直角三角形.故错误;C、52+122=169=132,故是直角三角形,故正确;D、42+62=52≠72,故不是直角三角形.故错误.故选C.7.已知Rt△ABC中,∠C=90°,若a+b=14cm,c=10cm,则Rt△ABC的面积是()A.24cm2B.36cm2C.48cm2D.60cm2【考点】KQ:勾股定理;4C:完全平方公式.【分析】要求Rt△ABC的面积,只需求出两条直角边的乘积.根据勾股定理,得a2+b2=c2=100.根据勾股定理就可以求出ab的值,进而得到三角形的面积.【解答】解:∵a+b=14∴(a+b)2=196∴2ab=196﹣(a2+b2)=96∴ab=24.故选A.8.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,则△ABC为()A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形【考点】AA:根的判别式;KS:勾股定理的逆定理.【分析】方程a(1+x2)+2bx﹣c(1﹣x2)=0的两根相等,即△=0,结合直角三角形的判定和性质确定三角形的形状.【解答】解:原方程整理得(a+c)x2+2bx+a﹣c=0,因为两根相等,所以△=b2﹣4ac=(2b)2﹣4×(a+c)×(a﹣c)=4b2+4c2﹣4a2=0,即b2+c2=a2,所以△ABC是直角三角形.故选C9.如图,分别以直角△ABC的三边AB、BC、CA为直径向外作半圆,设直线AB左边阴影部分面积为S1,右边阴影部分面积为S2,则()A.S1=S2B.S1<S2C.S1>S2D.无法确定【考点】KQ:勾股定理.【分析】因为是直角三角形,所以可以直接运用勾股定理,然后运用圆的面积公式来求解.【解答】解:∵△ABC为直角三角形,∴AB2=AC2+BC2又∵∴S1=π=π•,=()=π•=S1∴S1=S2,故选A.10.如图,△ABC中AD⊥BC于D,AB=3,BD=2,DC=1,则AC等于()A.6 B.C.D.4【考点】KQ:勾股定理.【分析】利用两次勾股定理即可解答.【解答】解:∵AD⊥BC∴∠ADC=∠ADB=90°∵AB=3,BD=2,∴AD==∵DC=1∴AC==.故选B.二、填空题(每题3分,共30分)11.方程2x2﹣1=x的二次项系数是2.【考点】A2:一元二次方程的一般形式.【分析】先移项,即可得出答案.【解答】解:2x2﹣1=x,2x2﹣x﹣1=0,所以方程2x2﹣1=x的二次项系数是2,故答案为:2.12.方程(x﹣3)(x+1)=0的较小的根是x=﹣1.【考点】A8:解一元二次方程﹣因式分解法.【分析】根据方程即可得出两个一元一次方程,求出方程的解即可.【解答】解:(x﹣3)(x+1)=0,x﹣3=0,x+1=0,x1=3,x2=﹣1,所以方程较小的根是﹣1,故答案为:﹣1.13.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是12.【考点】A8:解一元二次方程﹣因式分解法;K6:三角形三边关系;KH:等腰三角形的性质.【分析】首先利用因式分解法解方程,再利用三角形三边关系得出各边长,进而得出答案.【解答】解:x2﹣7x+10=0(x﹣2)(x﹣5)=0,解得:x1=2(不合题意舍去),x2=5,故等腰三角形的腰长只能为5,5,底边长为2,则其周长为:5+5+2=12.故答案为:12.14.直角三角形两直角边长分别为5和12,则它斜边上的高为.【考点】KQ:勾股定理.【分析】本题可先用勾股定理求出斜边长,然后再根据直角三角形面积的两种公式求解即可.【解答】解:由勾股定理可得:斜边长2=52+122,则斜边长=13,直角三角形面积S=×5×12=×13×斜边的高,可得:斜边的高=.故答案为:.15.如图,有一块直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿着直线AD折叠,使它落在斜边AB上,且与AE重合,则CD的长为3cm.【考点】PB:翻折变换(折叠问题).【分析】由折叠的性质知CD=DE,AC=AE.根据题意在Rt△BDE中运用勾股定理求DE.【解答】解:由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2即CD2+42=(8﹣CD)2,解得:CD=3cm.16.如图,一个圆柱,底圆周长6cm,高4cm,一只蚂蚁沿外壁爬行,要从A 点爬到B点,则最少要爬行5cm.【考点】KV:平面展开﹣最短路径问题.【分析】要求蚂蚁爬行的最短距离,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果.【解答】解:将圆柱展开,侧面为矩形,如图所示:∵底面⊙O的周长为6cm,∴AC=3cm,∵高BC=4cm,∴AB==5cm.故答案为:5.17.△ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是32或42.【考点】KQ:勾股定理.【分析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9﹣5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.18.在平面直角坐标系中,已知点A的坐标为(2,1),点B的坐标为(5,2),在x轴上找一点P,满足AP=BP,则P点的坐标为(4,0).【考点】D5:坐标与图形性质.【分析】设点P(x,0),由AP=BP可得=,解之得出x的值即可.【解答】解:设点P(x,0),∵点A的坐标为(2,1),点B的坐标为(5,2),∴由AP=BP可得=,解得:x=4,∴点P的坐标为(4,0),故答案为:(4,0).19.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为10cm,则图中标记为正方形A,B,C,D的面积之和为100 cm2.【考点】KQ:勾股定理.【分析】根据正方形的性质和勾股定理的几何意义解答即可.【解答】解:如图,根据勾股定理的几何意义,可知:S E=S F+S G=S A+S B+S C+S D=10×10=100(cm2).即四个正方形A,B,C,D的面积之和为100cm2.故答案为:100.20.四边形ABCD中,∠BAC=∠BDC=90°,AB=AC,BD=2,DC=4,则AD=3.【考点】KD:全等三角形的判定与性质.【分析】过B作BF⊥AD于F,过C作CE⊥AD于E,得到∠AEC=∠AFB=90°,根据余角的性质得到∠BAF=∠ACE,推出△ABF≌△ACE,根据全等三角形的性质得到CE=AF,AE=BF,由∠BAC=∠BDC=90°,得到A,B,C,D四点共圆,根据圆周角定理得到∠ADB=∠ADC=45°,解直角三角形即可得到结论.【解答】解:过B作BF⊥AD于F,过C作CE⊥AD于E,∴∠AEC=∠AFB=90°,∵∠BAC=90°,∴∠BAF+∠CAE=∠CAE+∠ACE=90°,∴∠BAF=∠ACE,在△ABF与△ACE中,,∴△ABF≌△ACE,∴CE=AF,AE=BF,∵∠BAC=∠BDC=90°,∴A,B,C,D四点共圆,∴∠ADB=∠ADC=45°,∴BF=DF=BD=,CE=DE=CD=2,∴AD=AE+DE=BF+CE=3.故答案为:3.三、解答题(其中21、22、23、24、25题各8分,26题10分,27题10分,共计60分)21.解方程:(1)(x+5)2=25(2)x2+10x+16=0(3)x2+4x+8=2x+11(4)(2x﹣1)2=(3﹣x)2.【考点】A8:解一元二次方程﹣因式分解法;A5:解一元二次方程﹣直接开平方法.【分析】(1)直接开方即可求出x的值(2)利用十字相乘法即可求出x的值(3)先将原方程化为一般式,然后利用十字相乘法即可求出x的值(4)两边直接开方即可求出x的值.【解答】解:(1)x+5=±5∴x=0或x=﹣10(2)(x+2)(x+8)=0∴x=﹣2或x=﹣8(3)x2+2x﹣3=0(x+3)(x﹣1)=0∴x=1或x=﹣3(4)2x﹣1=±(3﹣x)∴x=或x=﹣222.图1、图2分别是10×6的网格,网格中每个小正方形的边长均为1,线段AB的端点在小正方形的顶点上,请在图1、图2中各取一点C(点C必须在小正方形的顶点上),使以A、B、C为顶点的三角形的面积为10,且分别满足以下要求:(1)在图1中画一个直角三角形ABC;(2)在图2中画一个钝角等腰三角形ABC;(3)图2中△ABC的周长为10+4.(请直接写出答案)【考点】KQ:勾股定理;KH:等腰三角形的性质.【分析】(1)在图1中画出直角边为5和4的直角三角形即为所求;(2)在图2中画出腰长为5的钝角等腰三角形ABC即为所求;(3)先根据勾股定理得到AC的长,再根据周长的定义求解即可.【解答】解:(1)如图1所示:(2)如图2所示:(3)AC==4,△ABC的周长为5+5+4=10+4.故答案为:10+4.23.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,求海岛C到航线AB的距离CD.【考点】KU:勾股定理的应用;IH:方向角.【分析】根据方向角的定义及余角的性质求出∠CAD=30°,∠CBD=60°,再由三角形外角的性质得到∠CAD=30°=∠ACB,根据等角对等边得出AB=BC=20,然后解Rt△BCD,求出CD的长即可.【解答】解:根据题意可知∠CAD=30°,∠CBD=60°,∵∠CBD=∠CAD+∠ACB,∴∠CAD=30°=∠ACB,∴AB=BC=20海里,在Rt△CBD中,∠BDC=90°,∠DBC=60°,sin∠DBC=,∴sin60°=,∴CD=12×sin60°=20×=10(海里).答:海岛C到航线AB的距离CD长为10海里.24.如图所示的一块地,已知AD=4m,CD=3m,AD⊥DC,AB=13m,BC=12m,求这块地的面积.【考点】KS:勾股定理的逆定理.【分析】根据勾股定理求得AC的长,再根据勾股定理的逆定理判定△ABC为直角三角形,从而不难求得这块地的面积.【解答】解:连接AC.∵AD=4m,CD=3m,AD⊥DC∴AC=5m∵122+52=132∴△ACB为直角三角形∴S△ACB=×AC×BC=×5×12=30m2,S△ACD=AD•CD=×4×3=6m2,∴这块地的面积=S△ACB ﹣S△ACD=30﹣6=24m2.25.如图,∠ABD=∠C=90°,AD=9,AC=BC,∠DAB=30°,求BC的长.【考点】KQ:勾股定理;KO:含30度角的直角三角形;KW:等腰直角三角形.【分析】在直角△ABD中,先根据30°角所对的直角边等于斜边的一半得出BD=AD=4.5,再根据勾股定理求出AB=,然后解等腰直角△ABC就可以求出BC的长.【解答】解:在直角△ABD中,∵∠ABD=90°,∠DAB=30°,AD=9,∴BD=AD=4.5,∴AB==.在直角△ABC中,∵∠C=90°,CA=CB,∴BC=AB=×=.26.已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF,连接EF(1)如图1,求证:∠BED=∠AFD;(2)求证:BE2+CF2=EF2;(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.【考点】KY:三角形综合题.【分析】(1)利用四边形AEDF的内角和为360°,可求得∠AFD+∠AED=180°,再利用邻补角可得∠BED+∠AED=180°,根据等角的补角相等可求得∠BED=∠AFD;(2)延长ED到P,使DP=DE,连接FP,CP,利用SAS得到三角形BED与三角形CPD全等,利用全等三角形对应边相等得到BE=CP,再利用SAS得到撒尿性EDF和三角形PDF全等,利用全等三角形对应边相等得到EF=FP,利用等角的余角相等得到∠FCP为直角,在直角三角形FCP中,利用勾股定理列出关系式,等量代换即可得证;(3)连接AD,由AB=AC,且D为BC的中点,利用三线合一得到AD垂直于BC,AD为角平分线,再由三角形ABC为等腰直角三角形,得到一对角相等,利用同角的余角相等得到一对角相等,再由AD=CD,利用ASA得到三角形AED 与三角形CFD全等,利用全等三角形对应边相等得到AE=CF=5,DE=DF,由AE+EB求出AB的长,即为AC的长,再由AC﹣CF求出AF的长,在直角三角形AEF中,利用勾股定理求出EF的长,再根据三角形DEF为等腰直角三角形求出DE与DF的长,即可确定出三角形DEF的面积.【解答】(1)证明:∵DE⊥DF,∴∠EDF=90°,∵∠BAC=90°,∴∠AFD+∠AED=180°,∵∠BED+∠AED=180°,∴∠BED=∠AFD;(2)证明:如图1,延长ED到P,使DP=DE,连接FP,CP,在△BED和△CPD中,,∴△BED≌△CPD(SAS),∴BE=CP,∠B=∠CPD,在△EDF和△PDF中,∴△EDF≌△PDF(SAS),∴EF=FP,∵∠B=∠DCP,∠A=90°,∴∠B+∠ACB=90°,∴∠ACB+∠DCP=90°,即∠FCP=90°,在Rt△FCP中,根据勾股定理得:CF2+CP2=PF2,∵BE=CP,PF=EF,∴EF2=BE2+CF2;(3)如图2,连接AD,∵△ABC为等腰直角三角形,D为BC的中点,∴∠BAD=∠FCD=45°,AD=BD=CD,AD⊥BC,∵ED⊥FD,∴∠EDA+∠ADF=90°,∠ADF+∠FDC=90°,∴∠EDA=∠FDC,在△AED和△CFD中,,∴△AED≌△CFD(ASA),∴AE=CF=5,DE=DF,即△EDF为等腰直角三角形,∴AB=AE+EB=5+12=17,∴AF=AC﹣FC=AB﹣CF=17﹣5=12,在Rt△EAF中,根据勾股定理得:EF==13,设DE=DF=x,根据勾股定理得:x2+x2=132,解得:x=,即DE=DF=,=DE•DF=.则S△DEF27.如图,在平面直角坐标系中,等边△OAB的顶点O为坐标原点,B点坐标为(4,0),且△OAB的面积为4.点P从A点出发沿着射线AB运动,点Q从B点出发沿X轴正半轴运动,点P、点Q同时出发,速度均为每秒2个单位长度,运动时间为x秒,过点P作PH⊥X轴于点H,设HQ的长度为y个单位长度.(1)求A点的坐标;(2)当点P在线段AB上运动时,取BQ的中点M,求HM的长度;(3)在点P、点Q的运动过程中,当∠PQB=30°时,求点P、点Q运动时间x 的值,并直接写出此时H点的坐标.【考点】KY:三角形综合题.【分析】(1)作AH⊥OB于H,根据等边三角形的性质求出OH、AH,确定A 点的坐标;(2)作AE⊥OB于E,证明△BPH∽△BAE,根据相似三角形的性质计算即可;(3)当点P在线段AB上时,由△ABO是等边三角形,得到∠ABO=60°,推出△PBQ是等腰三角形,根据等腰三角形的性质列方程即可得到结论;当P在射线AB上时,连接PQ,由△ABO是等边三角形,得到∠PBQ=∠ABO=60°,推出△PQB是直角三角形,由直角三角形的性质列方程即可得到结论.【解答】解:(1)作AH⊥OB于H,∵△OAB是等边三角形,OB=4,∴OH=2,AH=2,∴A点的坐标为(2,2);(2)作AE⊥OB于E,则PH∥AE,∴△BPH∽△BAE,∴=,即=,解得,BH=2﹣t,∴HM=BH+BM=2﹣t+t=2;(3)当点P在线段AB上时,如图3,∵△ABO是等边三角形,∴∠ABO=60°,∵∠PQB=30°,∴∠BPQ=30°,∴∠PQB=∠BPQ,∴PB=BQ,即4﹣2t=2t,∴t=1,当P在射线AB上时,如图4,连接PQ,∵△ABO是等边三角形,∴∠ABO=60°,∴∠PBQ=∠ABO=60°,∵∠PQB=30°,∴∠BPQ=90°,∴BQ=2PB,即2t=2(2t﹣4),∴t=4,∴当t=1或4时,∠PQB=30°.2017年5月25日。
江苏省南通市南通田家炳中学2022-2023学年八年级第二次月考数学试题(含答案)
初二数学集中作业八一、选择题(每小题3分,共30分) 1.下列运算正确的是( ) A.236a a a ⋅=B.()2236x x -=C.220a a ÷=D.326a b ab ⋅=2.若()()232215x x m x nx +-=+-,则( ) A.5m =-,1n =B.5m =-,1n =-C.5m =,1n =D.5m =,1n =-3.若多项式2249x mxy y ++是完全平方式,则m 的值为( ) A.6或6-B.12或12-C.12D.12-4.下列各式从左到右的变形正确的是( ) A.220.220.33a a a a a a --=-- B.11x x x y x y+--=-- C.22b a a b a b-=-+D.116321623aa a a --=++ 5.把分式22xyx y-中的x 、y 的值都扩大到原来的2倍,则分式的值( ) A.不变B.扩大到原来的2倍C.扩大到原来的4倍D.缩小到原来的126.已知a ,b 满足()210a -+=,则a b +的值是( ) A.2-B.2C.1-D.07.已知5a b -=,则2210a b b --的值为( ) A.30B.25C.15D.108.关于x 的方程211x ax -=-的解是正数,则a 的取值范围是( ) A.1a >- B.1a <-且2a ≠- C.1a <- D.1a >且2a ≠9.已知:1132x y -=,则22356x xy yx xy y--+-的值是( ) A.813 B.138C.813-D.138- 10.已知实数a ,b ,c 满足10a b c ++=,且1111417a b b c c a ++=+++,则a b cb c c a a b+++++的值是( )A.8917B.1317C.2D.117二、填空题(第11-12题每空3分,第13-18题每空4分) 11.用科学记数法表示0.0000028,结果是__________. 12.当x =____________时,分式2x x-的值为0. 13.若()20221a =-,2202120232022b =⨯-,()2023202280.125c =⨯-,则a 、b 、c 的大小关系是___________(用“>”连接). 14.三个分式:22y x,13yz ,15xy 的最简公分母是_____________. 15.若关于x 的方程2213m x x x+-=-无解,则m 的值是____________. 16.已知:6413a m n =-+,22b m n =--,且a b ≤,则n m 的值等于_____________.17.设0a b >>,223a b ab +=,则22a b ab-=_____________.18.若x y ≠,且240x x y -+=,240y y x -+=,则332x xy y ++=____________. 三、解答题(共90分) 19.(16分)计算:(1)()10133π-⎛⎫-+- ⎪⎝⎭(2)()64342635a b a b a a ÷+⋅-;(3)222222y xy xy x x xyx -⎛⎫⋅-÷ ⎪⎝⎭; (4)221441122a a a a a a --+⎛⎫--÷⎪++⎝⎭20.(16分)因式分解: (1)33315ab a b +;(2)()()131m m --+. (3)322363x x y xy -+;(4)()()2294ax y b y x -+-21.(8分)解方程:(1)2217111x x x +=-+-(2)12233xx x --=-- 22.(7分)先化简分式211122a a a a a a -⎛⎫-÷- ⎪++⎝⎭,然后在22a -≤≤中选择一个你喜欢的整数代入求值. 23.(7分)已知:2y >53x +-的值.24.(8分)某校为了进一步开展“阳光体育”活动,计划用2000元购买后乒乓球拍,用2800元购买羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵14元.该校购买的乒乓球拍与羽毛球拍的数量能相同吗?请说明理由.25.(14分)如图,“丰收1号”小麦的试验田是边长为a 米(1)a >的正方形去掉一个边长为1米的正方形蓄水池后余下的部分,“丰收2号”小麦的试验田是边长为()1a -米的正方形,两块试验田的小麦都收获了500kg .(1)①“丰收1号”单位面积产量为__________2kg/m ,“丰收2号”单位面积产量为___________2kg /m (以上结果均用含a 的式子表示); ②由图可知,_____________(填“1号”或“2号”)小麦的单位面积产量高; (2)若高的单位面积产量比低的单位面积产量的多()2240kg/m 1a -,求a 的值;(3)某农户试种“丰收1号”、“丰收2号”两种小麦种子,两种小麦试种的单位面积产量与实验田一致,“丰收1号”小麦种植面积为n 平方米(n 为整数),“丰收2号”小麦种植面积比“丰收1号”少55平方米.若两种小麦种植后,收获的产量相同,当8a <且a 为整数时,符合条件的n 的值为___________(直接写出结果). 26.(14分)我们己经学习了整式、分式和二次根式,当被除数是一个二次根式,除数是一个整式时,求得的商就会出现类似a a(1x 的取值范围__________(直接写出答案)(2)已知两个根分式M =N =. ①是否存在x 的值使得221N M -=,若存在,请求出x 的值,若不存在,请说明理由; ②当22M N +是一个整数时,求无理数x 的值.(31=时,采用了下面的方法:2=①()()2224816x x=-=---=8=②①+②,可得53==5=两边平方可解得1x=-,经检验:1x=-是原方程的解.∴原方程的解为:1x=-请你学习小明的方法,解下面的方程:①方程11818+=的解是_____________;(直接写出答案)②方程144x x+=的解是_____________;(直接写出答案)集中作业8参考答案一、选择题二、填空:11-12:3分,13-18:4分11.62.810-⨯12.213.a c b>>14.230x yz15.12-或32-16.918.60。
2024年新科版八年级数学下册月考试卷含答案
2024年新科版八年级数学下册月考试卷含答案考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共8题,共16分)1、二次函数的对称轴为与轴的一个交点在(2,0)和(3,0)之间,其部分图象如图,则下列结论正确的是().A. <B.C.D. <2、【题文】若关于x的方程产生增根,则m是 ( )A. -1B. 1C. -2D. 23、下列函数中,属于反比例函数的是( )A. y=−x3B. y=12xC. y=2x+3D. y=x24、如果一条直线l经过平面内三个不同的点A(m,n)B(−n,−m)C(m+n,m+n)那么直线l不经过()A. 第二、四象限B. 第一、三象限C. 第一象限D. 第三象限5、已知点1(a−1,4)和2(2,b)关于x轴对称,则(a+b)2013的值为()A. 72013B. −1C. 1D. (−3)20136、下列计算正确的是()A. x5-x4=xB. 23=6C. -(2x+3)=2x-3D. -x3+3x3=2x37、若△ABC∽△DEF;它们的面积比为4:1,则△ABC与△DEF的相似比为()A. 2:1B. 1:2C. 4:1D. 1:48、用反证法证明命题:如果AB∥CD,AB∥EF,那么CD∥EF.证明的第一步应是()A. 假设CD∥EFB. 假设CD不平行于EFC. 假设AB∥EFD. 假设AB不平行于EF评卷人得分二、填空题(共8题,共16分)9、已知一次函数y=kx+b与反比例函数y=的图象交于点(-1,-1),则此一次函数的解析式为____,反比例函数的解析式为____.10、(2012秋•英德市期末)如图是一个被分成6等分的转盘,任意转动两次,转出最大两位数的可能性是____.11、(2012•南岗区校级二模)已知:BD为△ABC边AC上的高,E为BC上一点,CE=2BE,∠CAE=30°,若EF=3,BF=4,则AF的长为____.12、【题文】我们道:那么利用上面的规律计算:13、如图1;在△ABC中,CD;CE分别是△ABC的高和角平分线,∠BAC=α,∠B=β(α>β).(1)若∠BAC=70°;∠B=40°,求∠DCE的度数;(2)若∠BAC=α,∠B=β(α>β),则∠DCE=____(用α;β的代数式表示);(3)若将△ABC换成钝角三角形;如图2,其他条件不变,试用α;β的代数式表示∠DCE的度数并说明理由;(4)如图3,若CE是△ABC外角∠ACF的平分线,交BA延长线于点E.且α-β=30°,则∠DCE=____.(直接写出结果)14、数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x、y的方程组的正确解与乙求关于x、y的方程组的正确的解相同,则的值为______.15、(2014•南宁模拟)如图,已知在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.则∠B的度数是____.16、甲;乙两家批发商出售同样品牌的茶壶和茶杯;定价相同,茶壶每把30元,茶杯每只5元.两家都在进行优惠销售:甲店买一送一大酬宾(买一把茶壶赠送茶杯一只);乙店全场9折优惠(按实际价格的90%收费).某茶具店需茶壶5把,茶杯若干只(不少于5只).(1)若设购买茶杯x只x>5),则在甲店购买需付____元,在乙店购买需付____元;(用含x的代数式表示)(2)当茶具店需购买10只茶杯时;到哪家商店购买较便宜?试加以说明;(3)试求出当茶具店购买多少只茶杯时,在两家商店购买所需付的款一样多?评卷人得分三、判断题(共5题,共10分)17、绝对值等于它的相反数的数是负数.____.(判断对错)18、下列说法中;正确的在题后打“√”,错误的在题后打“×”(1)正整数和负整数统称整数;____(判断对错)(2)0既可以看成正整数,也可以看成负整数;____(判断对错)(3)分数包括正分数、负分数.____(判断对错)(4)-0.102%既是负数也是分数.____(判断对错)(5)8844.43是正数,但不是分数.____(判断对错)19、如果两个数互为相反数,那么它们的商是-1.____.(判断对错)20、过直线外一点可以作无数条直线与已知直线平行.(____)21、判断对错:关于中心对称的两个图形全等。
2024年沪教新版八年级数学下册月考试卷246
2024年沪教新版八年级数学下册月考试卷246考试试卷考试范围:全部知识点;考试时间:120分钟学校:______ 姓名:______ 班级:______ 考号:______总分栏题号一二三四五六总分得分评卷人得分一、选择题(共8题,共16分)1、下列说法中错误的是()A. 对角线互相平分的四边形是平行四边形B. 对角线相等的四边形是矩形C. 对角线互相垂直平分的四边形是菱形D. 对角线互相垂直平分且相等的四边形是正方形2、下列代数式中:①3x2y和3a2b;②-2a3b和-a3b;③4xyz和21yz;④2.5x2y和0.5xy2;⑤6x2y和-yx2;⑥-1和3,其中是同类项的有()A. ①②③B. ②④⑤⑥C. ④⑤⑥D. ②⑤⑥3、【题文】下列二次根式中,最简二次根式是()A.B.C.D.4、【题文】如图;已知CD是RT⊿ABC斜边上的高,AD=3,BD=8则CD的长为()A 11 B. C. 24 D. 55、下列各数①②③④⑤⑥⑦⑧中,无理数有( )个。
A. 1B. 2C. 3D. 46、初中毕业时,张老师买了一些纪念品准备分发给学生.若这些纪念品可以平均分给班级的(n+3)名学生,也可以平均分给班级的(n-2)名学生(n为大于3的正整数),则用代数式表示这些纪念品的数量不可能是()A. n2+n-6B. 2n2+2n-12C. n2-n-6D. n3+n2-6n7、如图,将一个长为20cm,宽为16cm的矩形纸片对折两次后,沿所得矩形两邻边中点的连线(虚线)剪下,再打开,得到的菱形的面积为()A. 10cm2B. 20cm2C. 40cm2D. 80cm28、下列函数中,一次函数是()A. y=x3B. y=2x2+1C. y=D. y=+3评卷人得分二、填空题(共8题,共16分)9、一个两位数的十位数字是4,如果把十位数字与个位数字对调,那么所得新数与原数的比为,则原来的数为____.10、如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,则△ABC的面积是.11、【题文】写出点M(-2,3)关于x轴对称的点N的坐标___________.12、如图,在Rt鈻�ABC中,隆脧C=90鈭�以顶点A为圆心,适当长为半径画弧,分别交ACAB于点MN再分别以点MN为圆心,大于12MN的长为半径画弧,两弧交于点P作射线AB交边BC于点D若CD=4AB=15则鈻�ABD的面积是 ______ .13、直线y=-3x+5不经过的象限为____.14、不等式组的解集是.15、= ____;16、一个实数的两个平方根分别是a+2和2a-5,则a= ______ .评卷人得分三、判断题(共5题,共10分)17、3m2-6m=m(3m-6)____.(判断对错)18、判断:只要是分式方程,一定出现增根. ()19、-0.01是0.1的平方根.( )20、(m≠0)()21、有理数与无理数的积一定是无理数.评卷人得分四、其他(共1题,共5分)22、红星中学某班前年暑假将勤工俭学挣得的班费2000元按一年定期存入银行.去年暑假到期后取出1000元寄往灾区,将剩下的1000元和利息继续按一年定期存入银行,待今年毕业后全部捐给母校.若今年到期后取得人民币(本息和)1155,问银行一年定期存款的年利率(假定利率不变)是多少?评卷人得分五、计算题(共1题,共6分)23、如果|a|=3,|b|=5,那么|a+b|=8吗?为什么?评卷人得分六、证明题(共2题,共14分)24、如图;正方形CEFG的对角线CF在正方形ABCD的边BC的延长线上(CE>BC),点M在CF上,且MF=AB,线段AF与DM交于点N.(1)求证:DN=MN(2)探究线段NG、MD的数量和位置关系,并加以证明.25、在如图菱形ABCD中,对角线AC、BD相交于O,E、F分别是AB、BC的中点.求证:OE=OF.参考答案一、选择题(共8题,共16分)1、B【分析】【分析】根据平行四边形的判定,矩形的判定,菱形的判定,正方形的判定即可求解.【解析】【解答】解:A;对角线互相平分的四边形是平行四边形;不符合题意;B;对角线相等的四边形不一定是矩形;符合题意;C;对角线互相垂直平分的四边形是菱形;不符合题意;D;对角线互相垂直平分且相等的四边形是正方形;不符合题意.故选:B.2、D【分析】【分析】根据同类项的定义:所含字母相同,相同字母的指数相同,可得出正确答案.【解析】【解答】解:①所含字母不同;故本选项错误;②符合同类项的定义;故本选项正确;③所含字母不同;故本选项错误;④所含相同字母的指数不同;故本选项错误;⑤符合同类项的定义;故本选项正确;⑥符合同类项的定义;故本选项正确;综上可得②⑤⑥正确.故选D.3、D【分析】【解析】解:而无法化简,故选D。
江西省宜春市上高县锦阳中学2022-2023学年八年级下学期月考数学试题(含答案解析)
江西省宜春市上高县锦阳中学2022-2023学年八年级下学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.3cm B.6cm5.为了方便体温监测,某学校在大门入口的正上方所示),测温仪离地面的距离测温并报告人体体温.当身高为BC=米),测温仪自动显示体温,此时小明头顶到测温仪的距离1.2A.0.5米B.1.2列结论:DM DA =①;EB ②平分AEC ∠;ABE ADE S S = ③;23.BE AE EC =⋅④其中结论正确的个数是()A .1B .2C .3D .4二、填空题三、解答题(1)求证:FP FB =.(2)如图2,当90BEC ∠=︒时,点F 与点C 刚好重合.求此时AP 的长.(3)如图3,连接CP ,在点P 运动过程中,当PBE △和PCE 面积相等时,则AP ______.(直接写出答案)参考答案:BE EF DF EF ∴+=+,即BF DE =.【点睛】本题考查平行四边形的性质、全等三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.15.(1)直角三角形,见解析(2)3.5【分析】(1)由勾股定理的逆定理进行证明即可;(2)由勾股定理得222AB AP BP +=,设AP x =,列出方程求解即可.【详解】(1)ABC 是直角三角形,理由如下:在 ABC中,12,16,20AB AC BC ===,∵222121640020+==,∴222AB AC BC +=,∴ ABC是直角三角形,(2)设AP x =,则16BP CP x ==-.在Rt ABP 中,∵222AB AP BP +=,∴()2221216x x +=-,解得 3.5x =,∴AP 的长为3.5.【点睛】本题考查了勾股定理及其逆定理,解决本题的关键是熟练掌握勾股定理及其逆定理.16.(1)见解析(2)见解析【分析】(1)连接AC 交BD 于点O ,作直线OP 交CD 于点Q ,点Q 即为所求作;(2)连接AC 交BD 于点O ,连接AP 并延长,交BC 于点E ,作直线OE 交AD 于点F ,连接CF 交BD 于点Q ,点Q 即为所求作.【详解】(1)解:如图,点Q 即为所求作的点.∵四边形ABCD ,∴AO CO =,AB CD ,∴PAO QCO ∠=∠,∵=POA QOC ∠∠,∴PAO QCO ≌,∴AP CQ =;(2)解:点Q 即为所求作.∵四边形ABCD ,∴BO DO =,AD BC ∥,AO CO =,∴OFD OEB ∠=∠,∵DOF BOE ∠=∠,∴DOF BOE ≌△△,∴DF BE =,OE OF =,∵AO CO =,OE OF =,∴四边形AECF 为平行四边形,∴AE CF ,∴DFC DAE ∠=∠,∵AD BC ∥,∴DAE BEP =∠∠,∴DFQ BEP =∠∠,∵AD BC ∥,BPE PEC S S = ,BE CH ∴=,将ABP 翻折得EBP △,90A BEP ∴∠=∠=︒,AP 90BEF CHF ∴∠=∠=︒,BFE CFH ∠=∠ ,()AAS BEF CHF ∴ ≌,52BF CF ∴==,又2BE = ,225(2EF BF BE ∴=-=过点P 作PG BF ⊥于点G 222PG GF PF += ,。
江苏省南通市崇川区 2023-2024学年八年级下学期第二次月考模拟试题(含答案)
南通市八年级下册2023-2024第二次月考模拟测试一、单项选择1.()—Would you please not speak so loudly in _________ public?—Sorry. I will remember to speak in _________ lower voice.A. the; aB. /; aC. the; theD. /; /2. ( ) — Was it necessary _______ Mike ________ some pictures before helping the old?— I think so. In this way, he could help himself later.A. of; takingB. for; takingC. of; to takeD. for; to take3. ( ) — Mum,I feel like ______ some milk.— Oh,dear,there is none _______. What about some water?A. drinking; to leaveB. to drink; left;B. drinking;left D. to drink;to be left4. ( ) — I find _______ difficult to learn a foreign language. I want to drop it.— Never _______.A. that; give up itB. that ; give it upB. it; give up it D. it; give it up5. ( ) — Wow,a HUAWEI Mate 60 pro , ______ big surprise! Thanks, Darling!— It's your birthday present. But please read the ______ carefully before you use it.A. what a;instructionB. what a;informationC.how; invitationD. how; instrument6. ( )The students came_______and stopped to look at the exhibits _______.A.close;closelyB.closely;closeC.close;closeD.closely;closely7. ( ) —How long did you stay outside last night?—_______the concert in the square was over.A.Not untilB.SinceC.WhenD.Till8. ( )Jack’s father is too busy _______housework_______him with his homework.A.doing;to helpB.to do;to helpC.doing;helpingD.to do;helping9. ( )Tommy was ill two days ago. But he is ________to go to work today.A.well enoughB.enough wellC.enough goodD.good enough10. ( )—Let's do more exercises for the coming Chinese examination.—Good idea. Just as an old saying goes,“________.”A.Many hands make light workB.The early bird catches the wormC.Practice makes perfectD.It's never too old to learn二、完形填空A group of tourists walked into a local pub.One of the tourists said in a loud voice, “I 1 you locals think you're great drinkers. I’ll bet 5,000 euros that 2 here can drink 40 cups in 30 minutes.”The bar was 3 . The tourist 4 one small local slipping out(溜出去) of the bar, but no one 5 the bet. Nobody said anything.About 40 minutes later the local man who left 6 and said, “Hey, is the bet still7 ?” “ 8 ,”said the tourist.“Great!" replied the local. “Pour the wine and 9 the clock.”It was very 10 but the local finished the last drop with 30 seconds left.“OK, 11 ,”said the local.“Tm 12 to pay. Here's your money,”said the tourist.“But tell me, when I first 13 the wager (赌注) I noticed you left. Where did you go?”The local replied, “Well sir, 5,000 euros 14 be a lot of money to a man like me, 15 I went to the pub across the road to make sure I could do it first.”( )1.A.sound B.look C.sense D.hear( )2.A.no one B.some one C.any one D.every one( )3.A.silent B.excited C.noisy D.burning( )4.A.remembered B.noticed C.followed D.searched( )5.A.looked up B.gave up C.kept up D.took up( )6.A.recalled B.happened C.returned D.expressed( )7.A.in B.within C.on D.off( )8.A.Of course B.Not yet C.Bless you D.No worries( )9.A.open B.set C.fix D.put( )10.A.far B.deep C.free D.close( )11.A.pay up B.knock ou C.show up D.die out( )12.A.angry B.afraid C.happy D.sick( )13.A.won B.lost C.accepted D.offered( )14.A.should B.have to C.would D.need to( )15.A.as B.so C.for D.or三、阅读理解AOur bodies use energy all the time.We use energy as we work and as we play.We even use energy as we sleep. As you sleep, your body may look still from the outside. But inside, your heart, brain and lungs are working.When you run and play, your body uses more energy than when you are at rest.Your bones and muscles help you move.Your heart beats faster.We get energy from the things we eat. Fruits and vegetables give us energy. Bread and pasta give us energy too. Dairy food can give us energy and also help our teeth and bones grow strong. Eggs, meats, and nuts give us energy and also help our bodies grow. When we eat healthy food, we have a healthy energy level.Foods such as cookies and cake are loaded with sugar. They may give us a quick energy boost, but leave us feeling tired and worn out within an hour.Try to eat healthy food so you have enough energy to enjoy your day!()1.We use energy _______.A.as we playB.as we workC.as we sleepD.all of the above( )2.Foods such as cookies and cake_______.A.are loaded with sugarB.help our teeth grow strongC.give us energy that lasts all dayD.none of the above( )3.Dairy foods can_______.A.help our bones growB.give us energyC.help our teeth grow strongD.all of the above( )4.The author wrote this mainly to_______.A.help kids swim fasterB.make us laughC.help us understand our need for energyD.tell us where to buy good foodBMany years ago, the Pandetti family lived in the mountains. Grandpa Pandetti traveled into the village to trade his goods. While he was there, he looked for a special gift for his family. After a long search, he found a lovely mirror. No one in his family had ever seen a mirror. Grandpa Pandetti bought the mirror and hurried home to his family.It was late when Grandpa arrived home. He hung the mirror on the wall and then fell fast asleep. Early in the morning, little Paul Pandetti awoke. As he walked into the room, he saw a young boy looking back at him."Papa, Papa, someone has broken into our house," Paul cried.Papa hurried down. He glanced at the mirror and saw a strong man looking back at him. He glared at the man.The man glared back. He pounded his hand on the table and watched as the man pounded his hand on the table. Mama Pandetti came into the room. She stopped in her tracks when she saw a young woman looking at her. Mama Pandetti smiled and waved at the woman. The woman smiled and waved back at Mama.Papa watched her with curiosity and then stepped up to themirror with a smile.The strong man appeared once again in the mirror,but this time he wore a smile upon his face. From that day forward, the Pandetti family smiled as they walked through the room. They were always greeted by a smile in return.( )5. Why did Grandpa Pandetti go to town?A.To learn about mirrorsB.To trade his goodsC.To visit his familyD.All of the above( )6.What did Grandpa Pandetti do when he got home?A.He told his family about the mirror.B.He hung the mirror on the wall.C.He made dinner for himself.D.None of the above.( )7. The author most likely wrote this story to______.A.teach the reader about mirrorsB.teach the reader about life in the mountainsC.teach the reader to smile at lifeD.show the reader how to hang a mirror( )8. How did the Pandettis solve the problem in this story?A.They took the mirror off the wall.B.They smiled whenever they looked in the mirror.C.They made friends with their visitors.D.All of the above.CToday let me tell you a true story. Last July, my 12-year-old car died on California's Santa Ana Freeway. It was an hour before sunset, and I was 25 miles from home. Icouldn't reach anyone to pick me up, so I decided to take a bus. Not knowing the routes, Ifigured I'd just head east.A bus pulled up, and I asked the driver how far she was going. "Four more lights,"she said. There was another bus I could take from here. This clearly was going to be along night.She dropped me off at the end of her route and told me which bus to look for. After waiting 30minutes, I began to think about a very expensive taxi ride home. Then a buspulled up. There was no lighted number above its windshield. It was out of service. Butthe door opened, and I was surprised to find that it was the same driver.“I just can't leave you here," she said. "This isn't the nicest place. I'll give you a ridehome.” “You'll drive me home on the bus?” I asked, puzzled. “No, I'll take you in my car,” she said with a smile. “It's a long way from here,” I protested.“Come on,” she said. “I have nothing else to do now.”As we drove from the station in her car, she began telling me a story. A few days earlier, her brother had run out of gas. A good Samaritan(善人) picked him up, took him to a services and then back to his car. “I'm just passing the favor along,” she said.When I offered her money as a thank-you, she wouldn't hear of it. "That wouldn't make it a favor," she said. “Just do something nice for somebody. Pass it along."( )9.Why did the writer say that he would have a long night?A.No driver would give him a ride.B.He wondered how long he had to wait for the next bus.C.He didn't know the routes.D.He perhaps would have to take a taxi.( )10.Judging from the passage the place where the writer waited for the second bus may be______.A.very quiet and peacefulB.dark without street lightsC.neither clean nor beautifulD.a little unsafe( )11.The writer changed his mind after waiting for 30 minutes at the end of the route because________.A.no bus would come at the timeB.a taxi ride would be more comfortableC.he became impatient and a bit worriedD.he knew the driver would never return( )12.The bus driver drove the writer home later because_______.A.she happened to go in the same directionB.she wanted to do something good for other peopleC.her brother told her to do soD.she wanted to earn more money( )13.The bus driver hoped that the writer_______.A.would do as she didB.would keep her in memoryC.would give the money to othersD.would do her a favorDLong ago, three rascals tricked Simon out of his family's only cow. The very next day, Simon and his Mama set out to teach those rascals a lesson. In the morning, Mama walked to town to set the stage. Then she returned home, gave Simon a tarnished old ring, and told him exactly what to do. Simon set out for town that afternoon. He arrived at an inn where the three rascals were planning their next heist .Simon joined them and offered to buy their drinks. When it came time to pay the bill, Simon held up his hand and slowlytwisted the ring on his finger three times. Then he asked the innkeeper, "How much do l owe?""Nothing,"said the innkeeper. "It's taken care of."The three rascals looked at one another, but said nothing. They walked with Simon to the next inn, where Simon offered to treat them to a fine dinner. After dinner, Simon held up his hand and slowly twisted the ring three times. The innkeeper came to the table, thanked them for coming and announced that the bill was covered.The rascals asked Simon where the ring had come from.Simon replied, "Mama found it buried in the sand.She said it is worth a fortune.""We'll give you one hundred silver coins for it!" said the first rascal."It's a deal," Simon replied. He took the coins straight home.Mama was pleased."Now we have one hundred silver coins," she said. "Fifty coins will pay for the cow. Twenty coins will cover the food and drink and the final thirty coins will teach those rascals a lesson."The three rascals never bothered Simon again.( )14.Why did Mama want to teach the rascals a lesson?A.The rascals did not pay for their dinner.B.The rascals tricked Simon out of his family's cow.C.The rascals took Simon's horse.D.She was very helpful.( )15.Why did Mama most likely go to town?A.To find the rascals.B.To give the innkeepers money for the food and drinks.C.To find the cow Simon sold and get it back.D.To pay for the cow.( )16.What happened before the rascals bought the ring?A.The rascals tricked Simon out of his family's cow.B.Simon held up his hand and slowly twisted the ring.C.Simon offered to treat the rascals to dinner.D.All of the above.( )17. How many silver coins did Simon and his Mama teach those rascals a lesson?A. One hundred.B. Fifty.C. Thirty.D. Twenty.( )18.The author most likely wrote this story to______.A.teach the reader about HollandB.teach the reader about magic ringsC.entertain the readerD.help the reader make money四、信息还原(六选五)Frogs can breathe both in water and on land. When they are underwater, they breathe through their skin.1. Tadpoles hatch from the eggs. When they first hatch, tadpoles have tails and look a lot like tiny fish. As they get bigger, they grow legs and their tails disappear.Frogs eat insects, spiders and worms. 2.Many frogs are green, but they can also be other colors. Tree frogs can be red, blue or yellow. 3.Toads are a type of frog. Most toads are gray or brown. Unlike other frogs, most toads have bumpy skin. Some frogs, such as the Little Grass Frog, are less than an inch long. 4. The Goliath Frog is the largest frog in the world. It can grow up to 13 inches long and can weigh as much as 8 pounds.A. Other frogs can be very large.B. Frogs lay their eggs in the water.Many snakes eat frogs. Little frogs jump as far as they can to try to get away from snakes.The Goliath frog is so big that it can eat little snakes. 5.五、语法填空Pantone chose Peach Fuzz (柔和桃) as the color of the Year for 2024. It's 1 soft peachy shade between pink and orange. It can make people 2 (feel ) kindness and togetherness. With different 3 (time ) in the past year, we all need a break and some peace. Peach Fuzz can bring us 5 (warm ). It 5 (help )us think 6 soft peaches, bird feathers and silk. Pantone's specialist,Leatrice Eiseman, says it's cozy and tactile 7 that is very important. It means we should care for 8 (we). Time magazine says Peach Fuzz brings a mix of the past and modernity. Although we usually see peach as a nostalgic (怀旧的), 9 (girl ) color, it's breaking into 10 (man )clothes, showing its modernness.1. ________2.________3.________4.________5.________6._________7.________8.________9._______ 10._______六、首字母填空How do we know about things that happened thousands of years ago, when there were no videos or photos? One answer is written records. The earliest written records of Chinese civilization (文明) are known a 1 oracle bone inscriptions (甲骨文).More than 3,000 years ago, people in the Shang Dynasty (16th – 11th century BC) l 2 to ask fortune tellers (占卜师) about the future. For example, what will the weather be like next week? Where should I go to make money? W 3 my wife give birth to a boy or a girl? From work to love, people asked questions about many t 4 . The fortune teller would write theC. Frogs are important to human beings.D.Most frogs have smooth skin.E.They only like to eat animals that are alive.F.Little snakes slither away from the Goliath frog as fast as they can!question on an oracle bone, heat it up, and then read the cracks (裂纹) in it to f 5 an answer.Tens of thousands of oracle bones have been found so far. They can tell us a great deal about how people lived during the Shang Dynasty. “They help us understand the origins of Chinese philosophy (哲学) and thought, and figure out w 6 our culture comes from,” Song Zhenhao, a leading oracle bone expert.In addition to telling us about ancient Chinese culture, the oracle bones are also key to u 7 the growth and development of the written form of the Chinese language. Many of the characters we use today are similar to t 8 that were used 3,000 years ago. “The oracle bone inscriptions, as the earliest-known mature (成熟的) form of Chinese c 9 , represent the beauty and uniqueness of a language that has been passed down consistently (持续地),” said Chen Nan, a professor at Tsinghua University.In 2017, UNESCO added oracle bone inscriptions to its Memory of the World Register (“世界记忆”名录). They are indeed a v 10 memory of ancient China.1. ________2.________3.________4.________5.________6._________7.________8.________9._______ 10._______七、任务型阅读In need of some rest? You can now climb down 419 meters to have the deepest sleep below ground. The hotel called Deep Sleep, located beneath the mountains of Snowdonia in Wales, is officially the world's deepest hotel. Guests must journey down through a slate mine(板岩矿)to reach the hotel.The hotel has four private twin-bed cabins(小木屋) and a romantic grotto(洞穴) with a double bed. A single night stay for two in a private cabin costs £350 while the price for two in the grotto is £550. And if you're a single guest, you will have to pay the price of two, too.You can only book the hotel for a Saturday night through to Sunday morning and getting to your room is far from relaxing. You will have to complete a 45-minute walk into the mountains and at the end you'll get a helmet, light, harness (安全带) and boots before going into the world's largest and deepest slate mine.The trip down into the mine includes ancient miner stairwells(楼梯井), old bridges and ascramble(攀爬). It takes about 60 minutes, and once you complete the trip, you'll arrive at a set of large steel doors. Welcome to Deep Sleep!Then, try and relax for the evening with a free meal to enjoy at the picnic table. After that just head off to bed.It's also important to note it's not exactly warm down there. It's about 10℃, so it will feel the same as if you were camping outside. Be sure to pack warm clothes.All guests must get up before 8 am for a hot drink and breakfast before starting the trip back up to ground level. And going up is always harder than coming down. Whatever, it certainly sounds unique.1. Where is the hotel called Deep Sleep?__________________________________________________________2 How much do you have to pay if you sleep in the grotto for one night?__________________________________________________________3.How long will it take you to get to the hotel?_________________________________________________________4. What should you bring before going into the mine?__________________________________________________________5. What do you think of the trip to the Deep Sleep?__________________________________________________________八、句子翻译1. 你最好把门开着。
八年级数学第二次月考试卷(含答案)
2017~2018学年度八年级第一学期第二次月考数学科试卷一、填空题(每题3分,共30分)1.下列实数中,无理数是()A.2 B.﹣2 C . D .2.下列各组数,可以作为直角三角形的三边长的是()A.2,3,4 B.7,24,25 C.8,12,20 D.5,13,15 3.下列计算正确的是()A.()﹣2=9 B .=﹣2 C.(﹣2)0=﹣1 D.|﹣5﹣3|=24. 在平面直角坐标系中,点P(2,﹣3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.要使有意义,则x的取值范围是()A.x<1 B.x≥1 C.x≤﹣1 D.x<﹣16. 在平面直角坐标系中,将点A(1,-2)向上平移3个单位长度,再向左平移2个单位长度,得到点A′,则点A′的坐标是()A.(-1,1) B.(-1,-2) C.(-1,2) D.(1,2)7. 下列式子中,属于最简二次根式的是()A.B . C .D .8.中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,“炮”所在位置的坐标为(﹣3,1),“相”所在位置的坐标为(2,﹣1),那么,“帅”所在位置的坐标为()A.(0,1) B.(4,0)C.(﹣1,0)D.(0,﹣1)第8题图第9题图9.如图,等腰直角三角形ABC的直角顶点C与平面直角坐标系的坐标原点O重合,AC,BC分别在坐标轴上,AC=BC=1,△ABC在x轴正半轴上沿顺时针方向作无滑动的滚动,在滚动过程中,当点C第一次落在x轴正半轴上时,点A的对应点A1的横坐标是()A.2 B.3 C.1+2 D.2+210. 我校后勤部对我二校区校园内的一块直角三角形的花园进行改造,测得两直角边长分别为a=6米,b=8米.现要将其扩建成等腰三角形,且扩充部分是以b为直角边的直角三角形,则扩建后的等腰三角形花圃的周长为()米.A.32或20+ B.32或36或C.32或或20+ D.32或36或或20+二、填空题(每题4分,共24分)11.81的平方根为 .12.若+213.3米处折断,树的米处,那么这棵树折断之前的高度是米.14.已知点P(3,﹣1)关于y轴的对称点Q的坐标是(a+b,1﹣b),则a b的值为.15. 如图,2×2的方格中,小正方形的边长是1,点A、B、C都在格点上,则△ABC 中AB 边上的高长为.16.设,,,…,.设,则S=(用含n的代数式表示,其中n为正整数).第13题图第15题图三、解答题(一)(每题6分,共18分)17. 计算:()().27-1--1-221-16320171-+⨯⎪⎭⎫⎝⎛18. 已知7﹣2a的平方根是±,2是b的算术平方根,求ab的立方根.19. 如图,在平面直角坐标系中,△ABC各顶点的坐标分别为:A(4,0),B(-1,4),C(-3,1)(1)在图中作△A′B′C′,使△A′B′C′和△ABC关于x轴对称;(2)写出点A′B′C′的坐标.四、解答题(二)(每题7分,共21分)20. 如图,将正方体剪开.(1)以所给的正方形ABCD为基础,画出它的展开图(只需画一种);(2)若正方体的棱长为4,在正方体的顶点A处有一只小虫沿着正方体的表面爬行到顶点E处,结合图形求出小虫爬行的最短距离.21. 如图,四边形草坪ABCD中,∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m,连接AC.(1)判断∠D是否是直角,并说明理由.(2)求四边形草坪ABCD的面积.22. 如图,在直角坐标系中,△ABC满足,∠C=90°,AC=4,BC=2,点A、C分别在x、y轴上,当A点从原点开始在x轴正半轴上运动时,点C随着在y轴正半轴上运动.(1)当A点在原点时,求原点O到点B的距离OB;(2)当OA=OC时,求原点O到点B的距离OB.五、解答题(三)(每题9分,共27分)23. 观察下列计算:==;==;==;…则:(1)=,=;(2)从计算结果找出规律:;(3)利用这一规律计算:(+++…+)×()的值.24.如图,长方形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD上的E点处,折痕的一端G点在边BC上.(1)如图(1),当折痕的另一端F在AB边上且AE=4时,求AF的长(2)如图(2),当折痕的另一端F在AD边上且BG=10时,试说明EF=EG.(3)如图(2),当折痕的另一端F在AD边上且BG=10时,求折痕GF的长.25. 在平面直角坐标系中如图,已知点A(0,2),点P是x轴上一动点,以线段AP为一边,在其右侧作等边三角形APQ,当点P运动到原点O处时,记Q的位置为B,已知在直角三角形中两直角边的平方和等于斜边的平方,即直角三角形两直角边长为a,b,斜边长为c,则a2+b2=c2.(1)求点B的坐标;(2)在坐标轴是否存在一点G,△GOB为等腰三角形,若存在,请直接写出G点坐标,若不存在,请说明理由.(3)当点P在x轴上运动(P不与O重合)时,∠ABQ的值会发生怎样的变化,证明你的结论.(注:在直角三角形中,30度角所对的直角边等于斜边的一半)参考答案: 1-5:DBADB 6-10:AADDC11.3± 12.-1 13.8 14.25 15.55316.3-1--12-4:17=+⨯=)()(原式解18.解:∵7﹣2a 的平方根是±,2是b的算术平方根,∴,b=22=4,解得,a=2,b=4,∴,19.解:(1)如图,(2)点A′的坐标为(4,0),点B′的坐标为(-1,-4),点C′的坐标为(-3,-1).20.(1)解:展开图如图所示:(2)解:在上图中连接AE,则线段AE的长就是小虫爬行的最短距离.在Rt△ADE中,根据勾股定理,得.答:小虫爬行的最短距离是cm.21.解:(1)∠D是直角,理由如下:连接AC,∵∠B=90°,AB=24m,BC=7m,∴AC2=AB2+BC2=242+72=625,∴AC=25(m).又∵CD=15m,AD=20m,152+202=252,即AD2+DC2=AC2,∴△ACD是直角三角形,或∠D是直角;(2)S四边形ABCD=S△ABC+S△ADC =•AB•BC+•AD•DC=234(m2).22.解:当A点在原点时,AC在y轴上,BC⊥y轴,所以OB=AB==2;(2)当OA=OC时,△OAC是等腰直角三角形AC=4,OA=OC=2.过点B作BE⊥OA于E,过点C作CD⊥OC,且CD与BE交于点D,∵∠2+∠ACD=90°,∠3+∠ACD=90°,∴∠2=∠3,∵∠1=∠2=45°,∴∠3=45°,∴△CDB是等腰直角三角形,∵CD=BD,BC=2,CD=BD=.BE=BD+DE=BD+OC=3,OB==2.23. (1),(2)=(n是正整数)(3)解:(+++…+)()=[()+()++…+()]()=(+++)()=(﹣1)()=2006﹣1=200524.(1)解:如图1,∵纸片折叠后顶点B落在边AD上的E点处,∴BF=EF,∵AB=8,∴EF=8﹣AF,在Rt△AEF中,AE2+AF2=EF2,即42+AF2=(8﹣AF)2,解得AF=3;(2)如图2,∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴∠BGF=∠EGF ,∵长方形纸片ABCD 的边AD ∥BC , ∴∠BGF=∠EFG , ∴∠EGF=∠EFG , ∴EF=EG ;(3)∵纸片折叠后顶点B 落在边AD 上的E 点处, ∴EG=BG=10,HE=AB=8,FH=AF , ∴EF=EG=10, 在Rt △EFH 中,FH===6,∴AF=FH=6.如图(2),过点G 作GM ⊥AD 于点M , ∴GM =AB =8,AM=BG=10,FM=AM-AF=4, ∴GF=22GM FM =45.25. 解:(1)如图,过点B 作BC ⊥x 轴于点C , ∵△AOB 为等边三角形,且OA=2, ∴∠AOB=60°,OB=OA=2, ∴∠BOC=30°,而∠OCB=90°, ∴BC=OB=1,OC=, ∴点B 的坐标为B(,1);(2)当点G 位于x 轴上时,①OG=OB ,此时G 点的坐标为(±2,0); ②OB=BG ,此时点G 的坐标为(2,0); ③OG=BG ,此时点G 的坐标为(,0);当点G 位于y 轴上时,①OG=OB ,此时G 点的坐标为(0,±2);②OB=BG ,此时点G 的坐标为(0,2); ③OG=BG ,此时点G 的坐标为(0,2);综上所述,符合条件的点G 的坐标为:(±2,0)或(2,0)或(,0)或(0,±2);(3)∠ABQ=90°,始终不变.理由如下: ∵△APQ 、△AOB 均为等边三角形, ∴AP=AQ 、AO=AB 、∠PAQ=∠OAB , ∴∠PAO=∠QAB , 在△APO 与△AQB 中,,∴△APO ≌△AQB (SAS ), ∴∠ABQ=∠AOP=90°.M。
平项山市第四十一中学2018-2019学年第二学期第二次月考八年级数学试卷(含答案)
平项山市第四十一中学2018-2019学年第二学期第二次月考八年级数学试卷(时间:90分钟满分:120分)一、选择题(每小题3分,共30分)1、下列几个图案是中国电信、移动、联通、通信信息的标志,其中既是轴对称图形又是中心对称图形的有几个()A .0个B .3个C .2个D .1个2、若a >b ,下列论不一定成立的是()a b D.a <b 22A.a -1>b -1B.2a >2bC .-<-333.下列各式从左到右的变形中,是因式分解的为()222A.x (a +2b )=ax +2bx C 、ax +bx =x (a -b )B 、x -1+4y =(x -1)(x +1)(x +4y )22D 、x -4y =(x +2y )(x -2y )4.一个多边形的内角和于其外角和的3倍,则该多边形的边数为(A.7B.8C.9D.105.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点)E ,交BC 于点D ,CD =2,则BC 的长为(A.6B.63C.9D.33)2x −1>16.关于x 的不等式组无解,那么a 的取值范围为()a −x >0A.a >1B.a <1C.a ≥1D a ≤17.已知在四边形ABCD 中,AB ∥CD ,添加下列一个条件后,一定能判定四边形ABCD 是平行四边形的是(A.∠A =∠BB.AD =BC8如图,AB ∥CD ,BP 和CP 分别平分∠ABC 和∠DCB ,AD 过点P ,且与AB 垂直,若AD =4,则点P 到BC 的距离是(A.8B.6C.2D.1)C.AC =BDD .∠A =∠C)9.如图,△ABC 中,AB =4,BC =6,∠B =60°・将△ABC 沿射线BC 的方向平移,得到△A 'B 'C ,再将△A 'B 'C 绕点A ’逆时针旋转一定角度后,点B ’好与点C 重合,则平移的距离和旋转角的度数分别为(A.4,30°B.2,60°C.1,30°)D.3,60°10.在Rt △ABC 中,AC =BC ,点D 为AB 中点,∠GDH =90,∠GDH 绕点D 旋转,DG 、DH 分别与边AC 、BC 交于E ,F 两点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中八年级数学试题
一、选择题(每小题4分,共32分) 1.在代数式a
4,
532y x -,)(31n m +,y x y x -+,x
2
中,分式个数是( )
A. 1个
B. 2个
C. 3个
D. 4个 2.下列等式成立的是( )
A. 932-=-
B. 9
1
32=
- C. 14212)(a a = D. 21018.60618.0-⨯=-
3.2x ,……,10x 的平均数为a ,11x ,12x ,……,50x 的平均数为b ,则1x ,2x ,……,50x 的平均数为( ) A 、b a + B 、
2b a + C 、605010b a + D 、50
4010b
a + x y 2-=与y 3
-=在同一坐标系内的图象大致是( )
A B C
D
5.如图,一棵大树在离地面9米高的B 处断裂,树顶A 落在离树底部C 的12米处,则大树数断裂之前的高度为( ) A 、9米 B 、15米 C 、21米 D 、24米
A
B
6.如图,□ABCD 的对角线相交于点O ,AB =6cm ,两条对角线长的和
为24cm ,则△COD 的周长为( )
A 、30cm
B 、24cm
C 、18cm
D 、15cm 7.如图,在矩形ABCD 中,
E 、
F 、
G 、
H 分别是四条边的中点,AB =2,
BC =4,则四边形EFGH 的面积为( )
A 、4
B 、6
C 、3
D 、8 8.如图,一只蚂蚁沿边长为1的正方体的表面从顶点A 爬到顶点B ,则它
走过的最短路程为( )
A. 3
B. 21+
C. 3
D. 5 二、填空题(每小题4分,共20分)
9.点P (-2,3)在反比例函数的图象上,则该函数的解析式为 . 10. 函数y=
x 3
-中自变量的取值范围是 . 11.三角形三个内角之比为1:2:3,它的最大边为8,那么它的最小的边长___________..
12.已知一组数据9,9,x ,7的平均数与众数恰好相等,
B
D
第6题B
A C
D E F
G
第7题
则这组数据的中位数是 。
13.如图所示,在菱形ABCD 中,AB =2,∠BAD =120°,M 为BC 上一
点,N 为CD 上一点,∠MAN =60°,则四边形AMCN 的面积为 .
三、解答题(每小题7分,共35分) 14.解分式方程: 4
8
2222
-=-+-+x x x x x .
15.化简求值:1112414222--++-÷--x x x x x x x ,其中2
1
-=x
16.已知函数2
(1)m y m x
-=-是反比例函数.
(1)求m 的值; (2)求当x =3时,y 的值.
17.如图,在Rt △ABC 中,∠CAB = 90°,AD ⊥BC ,
AB = 6,AC = 8,求BC , AD 和CD 的长.
18.如图,□ABCD 中,AE 、CF 分别是∠DAB 、∠BCD 的角平分线,你认为四边形AFCE 是平行四边形吗?如果是,请说明理由。
第13题
A B
C
E F
四、解答题(每小题9分,共27分)
19.某工厂有220名员工,财务科要了解员工收入情况。
现在抽测了10名员工的本月收入,结果如下:(单位:元)。
1660 1540 1510 1670 1620 1580 1580 1600 1620 1620
(1)这组数据的中位数和众数分别是多少? (2)员工的月平均收入是多少?
(3)估算一下,财务科本月应准备多少钱发工资?
20.如图,正方形网格中的每个小正方形边长都为1,每个小正方形的顶点叫格点,以格点为顶点分别按下列要求画三角形和平行四边形。
(1)使三角形三边长为3,225
(2)使平行四边形有一锐角为45°,且面积为4。
(1) (2)
21.如图,在正方形ABCD ,F 为DC 的中点,E 为BC 上一点,且14
EC BC .
(1)求证:AF⊥EF.
(2)若△AEF的面积为5,求正方形ABCD的边长。
五、解答题(每小题12分,共36分)
22.近几年我省高速公路的建设有了较大的发展,有力地促进了我省的经济建设,正在修建中的某段高速公路要招标,现有甲、乙两个工程队,若甲、乙两队合做,24天可以完成,需费用120万元;
若甲单独做20天后,剩下的工程由乙做,还需40天才能完成,这样需费用110万元,问:
(1)甲、乙两队单独完成此项工程,各需多少天?
(2)甲、乙两队单独完成此项工程,各需费用多少万元?
23.已知:如图,在梯形ABCD中,AD∥BC,AB= DC,
点E、F、G分别在边AB、BC、CD上,AE= GF= GC.
(1)求证:四边形AEFG是平行四边形;
(2)当∠FGC= 2∠EFB时,求证:四边形AEFG
是矩形.
24.如图所示,梯形ABCD,AD∥BC,AB在y轴上,B在原点,BC在x轴上。
(1)若A(0,8),AD长20cm,BC长26cm,求梯形的一腰CD的长度。
(2)若动点P从点A开始沿AD边向点D以1 cm/s的速度运动,动点Q从点C开始沿CB边向点B以3 cm/s的速度运动,P、Q分别从A、C同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t(单位:s)。
○
2当t 为何值时,四边形PQCD 为平行四边形。
○3当t 为何值时,四边形PQCD 为等腰梯形。
(3)用t 表示四边形PQCD 的面积S ,并求出S 的最大值。
答题卷
一、选择题(每小题4分,共32分)
二、填空题(每空4分,共20分)
9、 10、 11、 12、 13、 三、解答题(每小题7分,共35分) 14、解分式方程:
4
8
2222
-=-+-+x x x x x .
15.化简求值:1112414222--++-÷--x x x x x x x ,其中2
1
-=x
16、
17、 18、
A B
C
E F
四、解答题(每小题9分,共27分)
19、
20、
21、
五、解答题(每小题12分,共36分)
22、
23、
24、(1)
(3)。