函数对称性总结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的对称性
一、 三角函数图像的对称性
1、 )(x f y =与)(x f y -=关于x 轴对称。
换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=y 对称。
2、 )(x f y =与)(x f y -=关于Y 轴对称。
换种说法:)(x f y =与)(x g y =若满足)()(x g x f -=,即它们关于0=x 对称。
3、 )(x f y =与)2(x a f y -=关于直线a x =对称。
换种说法:)(x f y =与)(x g y =若满足)2()(x a g x f -=,即它们关于a x =对称。
4、 )(x f y =与)(2x f a y -=关于直线a y =对称。
换种说法:)(x f y =与)(x g y =若满足a x g x f 2)()(=+,即它们关于a y =对称。
5、 )2(2)(x a f b y x f y --==与关于点(,)a b 对称。
换种说法:)(x f y =与)(x g y =若满足b x a g x f 2)2()(=-+,即它们关于点(,)a b 对称。
6、 )(x a f y -=与)(b x f y -=关于直线2b a x +=
对称。 二、单个函数的对称性
一、函数的轴对称:
定理1:如果函数()x f y =满足()()x b f x a f -=+,则函数()x f y =的图象关于直线2
b a x +=对称. 推论1:如果函数()x f y =满足()()x a f x a f -=+,则函数()x f y =的图象关于直线a x =对称.
推论2:如果函数()x f y =满足()()x f x f -=,则函数()x f y =的图象关于直线0=x (y 轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.
二、函数的点对称:
定理2:如果函数()x f y =满足()()b x a f x a f 2=-++,则函数()x f y =的图象关于点()b a ,对称.
推论3:如果函数()x f y =满足()()0=-++x a f x a f ,则函数()x f y =的图象关于点()0,a 对称.
推论4:如果函数()x f y =满足()()0=-+x f x f ,则函数()x f y =的图象关于原点()0,0对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.
性质5:函数()y f x =满足()()f a x f b x c ++-=时,函数()y f x =的图象关于点(2a b
+,2c
)对称。
(二)两个函数的图象对称性(相互对称)(利用解析几何中的对称曲线轨迹方程理解)
1、曲线)(x f y =与)(x f y -=关于X 轴对称。
2、曲线)(x f y =与)(x f y -=关于Y 轴对称。
3、曲线)(x f y =与)2(x a f y -=关于直线a x =对称。
4、曲线0),(=y x f 关于直线b x =对称曲线为0)2,(=-y b x f 。
5、曲线0),(=y x f 关于直线0=++c y x 对称曲线为0),(=----c x c y f 。
6、曲线0),(=y x f 关于直线0=+-c y x 对称曲线为0),(=+-c x c y f 。
7、曲线0),(=y x f 关于点),(b a P 对称曲线为0)2,2(=--y b x a f 。
例1:定义在R 上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( )
(第十二届希望杯高二 第二试题)
(A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数
(C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数
例2.设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x ≤0时,
f (x) = -21
x ,则f (8.6 ) = _________ (第八届希望杯高二 第一试题)
例3.若函数x x f 2log 3)(+=的图象与)(x g 的图象关于 对称,则函数
)(x g = 。
例4.函数)()(a x f y a x f y +-=-=与函数的图象关于 对称
(2017全国卷 )已知函数211()2(e e )x x f x x x a --+=-++有唯一零点,则a =()
A .1
-2 B .13 C .1
2 D .1
【答案】C
【解析】由条件,211()2(e e )x x f x x x a --+=-++,得:
221(2)1211211(2)(2)2(2)(e e )
4442(e e )2(e e )
x x x x x x f x x x a x x x a x x a ----+----+-=---++=-+-+++=-++
∴(2)()f x f x -=,即1x =为()f x 的对称轴,
由题意,()f x 有唯一零点,
∴()f x 的零点只能为1x =,
即21111
f a--+
=-⋅++=,
(1)121(e e)0解得1
a=.
2