【中考提分】三角形五心的经典考题
初中数学,借助一道和垂心、外心有关的题目复习下三角形的“心”
初中数学,借助一道和垂心、外心有关的题目复习下三角形的“心”大家好,感谢大家的关注,今天继续为大家分享!我们在学习三角形的时候,会有好多“心”的知识,其实三角形的内心、外心、重心、垂心、旁心等等,可能好多同学已经被搞迷糊了,弄清楚它们很容易,我们先看一道题。
已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M。
(1)求证:AH=2OM;(2)若∠BAC=60°,求证:AH=AO。
分析:这道题出现了三角形的外心还有三角形的垂心,如果我们对三角形的各'心'很清楚的话我们很快就有思路(1)延长AD到F连BF,做OG⊥AF,求出矩形OGDM,求出OM=GD,根据等腰三角形的性质和判定、垂径定理求出HD=DF,代入求出即可;(2)根据圆周角定理求出∠BOM,根据含30度角的直角三角形性质求出B=2OM即可.下面来看详细解答过程:证明(1)过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,MN,则FN∥AD,AH=2FN,MN∥BE,∵AD⊥BC,OM⊥BC,BE⊥AC,OF⊥AC,∴OM∥AD,BE∥OF,∵M为BC中点,N为CH中点,∴MN∥BE,∴OM∥FN,MN∥OF,∴四边形OMNF是平行四边形,∴OM=FN,∵AH=2FN,∴AH=2OM.证明(2)连接OB,OC∵∠BAC=60°,∴∠BOC=120°,∴∠BOM=60°,∴∠OBM=30°,∴OB=2OM=AH=AO,即AH=AO.本题考查了等腰三角形的性质和判定、三角形的中位线定理、含30度角的直角三角形性质、三角形的外接圆与外心、三角形的内角和定理等知识点。
题目综合性较强,有一定的难度,但题型较好,难点是如何作辅助线以及对三角形的内心、外心、重心、垂心、旁心等考点的理解。
可能还有好多朋友对这几个'心'还掌握的不是太好,那么今天我们就借助这道题再来把三角形内心、外心、中心、重心的知识再复习一下。
26三角形的五心
三角形的五心(一)------重心三角形的三条中线相交于一点.三角形的三条中线的交点,叫做三角形的重心.三角形的重心在三角形的内部.三角形重心与顶点的距离等于它与对应中点的距离的两倍.即“若G 为ABC ∆的重心,则2AG BG CG GD GE GF===” 根据此性质,推出三角形重心的下列性质: (1) 若G 为ABC ∆的重心,则13ABG BCG ACG ABC S S S S ∆∆∆∆===, 反之,设G 是ABC ∆中的一点,且13ABG BCGABC S S S ∆∆∆==,则G 为ABC ∆的重心.(2) G 为ABC ∆的重心,若222AG BG CG +=,则AD BE ⊥;反之,若AD BE ⊥,则222AG BG CG +=(3) G 为ABC ∆的重心,则 ()22222222223333BC AG CA GB AB GC AB BC CA +=+=+=++ 事实上,由三角形中线长公式2222111224AD AB CA BC =+-,有 ()2222222222224111233332243BC GA BC AD BC AB CA BC AB BC CA ⎛⎫⎛⎫+=+=++-=++ ⎪ ⎪⎝⎭⎝⎭(4) G 为ABC ∆的重心,过G 作//,//,//DE BC PF AC KH AB ,则23DE FP KH BC CA AB ===(5) G 为边长为a 的对边ABC ∆的重心,则3GA GB GC === (6)到三角形的三个顶点的距离的平方和为最小的点是三角形的重心,在ABC ∆中,若G 为重心, M 是平面上任意一点,则有22222223MA MB MC GA GB GC MG ++=+++【例1】(1)已知G 是ABC ∆的重心,若3,4,5AG BG CG ===,则ABC ∆的面积为=_________(2)在ABC ∆中,3,4,BC AC BC ==和AC 的中线,AE BD 互相垂直,则AB =_________(3)在ABC ∆中,,,,90,BC a AC b AB c C CD ===∠=和BE 是ABC ∆的两条中线,且CD BE ⊥,那么::a b c =_______(4)在Rt ABC ∆中,90,A G ∠=为重心,且2GA =,则22GB GC +=__________【例2】(1)已知平行四边形ABCD 的面积是120,,E F 分别是,AB BC 的中点,AF 分别与,ED BD 交于,G H ,求四边形BHGE 的面积.(2) 给定ABC ∆和点O ,分别将,,OBC OCA OAB ∆∆∆的重心记为123,,M M M ,求证:12319M M M ABC S S ∆∆=【例3】(1)在ABC ∆中是否存在一点P ,使得过P 点的任一直线都将改三角形分成等积的两部分?若存在,请找出P点的位置;若不存在,说明理由(2)如图, G 是ABC ∆的重心,过G 作直线l 与,AB AC 分别相交,分别过,,A B C 作直线l 的垂线,垂足分别为,,D E F ,判断,,AD BE CF 的数量关系并证明结论(3),,AD BE CF 是ABC ∆的三条中线, P 是任意一点,证明:在,,PAD PBE PCF ∆∆∆中,其中一个面积等于另外两个面积的和.三角形的五心(二)------垂心三角形的三条高恰好相交于一点三角形三条高线的交点叫做三角形的垂心锐角三角形的垂心在三角形内,钝角三角形的垂心在三角形外,直角三角形的垂心就是直角顶点.三角形的垂心有下列基本性质:(1) 三角形的垂心与顶点的连线垂直于该顶点的对边(2) 三角形的垂心与三个顶点组成一个垂心组(即这四点中以任意三点为三角形的顶点,则另一点为这个三角形的垂心)(3) 设H 为ABC ∆的垂心,则2222AB AC HB HC -=-2222BA BC HA HC -=-2222CA CB HA HB -=-(4) 设H 为ABC ∆的垂心,则180BHC B C A ∠=∠+∠=-∠180CHA C A B ∠=∠+∠=-∠180AHB A B C ∠=∠+∠=-∠(5) 设H 为ABC ∆的垂心,则点H 关于该三角形三遍的对称点均在ABC ∆的外接圆上.(6) 设H 为ABC ∆的垂心,则ABC ∆、BCH ∆、ACH ∆、ABH ∆的外接圆是等圆.(7) 设AD 、BF 、CF 为ABC ∆的三条高,垂心为H ,则图中有三组(每组4个)相似三角形,且【例1】(1)如图,已知P 为ABC ∆内一点,且,PAB PCB PBC PAC ∠=∠∠=∠,求证: P 为ABC ∆的垂心.(2)如图,已知AB 是O 的直径,AH 是弦,C 是AH 的中点,CD AB ⊥分别交AH 、AB 于E 、D ,BC 交AH 于F ,求证:2AF EF =【例2】(1)在Rt ABC ∆中,90,A A ∠=∠的平分线交边BC 于点D ,点D 在边AB 、AC 上的投影分别为P 、Q ,若BQ 交DP 于点M ,CP 交DQ 于点N ,BQ 交CP 于点H ,证明:①PM DN =;②//MN BC ;③AH BC ⊥(2)如图,点H 为ABC ∆的垂心,以AB 为直径的1O 和BCH ∆的外接圆2O 相交于点D ,延长AD 交CH 于点P ,求证:点P 为CH 的中点三角形的五心(三)------外心外心的性质及应用三角形三边的中垂线恰巧相交于一点,这个点到三角形的三个顶点距离相等三角形三条中垂线的交点叫做三角形的外心三角形的外心,就是三角形的外接圆的圆心锐角三角形的外心在三角形内,钝角三角形的外心在三角形外,直角三角形的外心就是斜边的中点三角形外心有下列基本性质:(1) 三角形的外心到三角形顶点的距离相等,且在各边的中垂线上(2) 设O 为ABC ∆的外心,则2BOC A ∠=∠,2AOC B ∠=∠,2AOB C ∠=∠(3) 设ABC ∆的外接圆半径为R ,,,BC a CA b AB c ===,则2sin sin sin a b c R A B C===∠∠∠ (4) 设ABC ∆的三条边长、外接圆半径、面积分别为a 、b 、c 、R 、S ,则4abc R S = 【例1】(1)P 点ABC ∆在中,,2,PA PB APB ACB AC =∠=∠与BP 交于点D ,且4,3PB PD ==,则AD DC ⋅=___(2)设D 是ABC ∆的边上一点,但不是中点,设1O 和2O 分别是ABD ∆和ADC ∆的外心,求证: ABC ∆的中线AK 的垂直平分线过线段12O O 的中点(3)凸四边形ABCD 内接于圆O ,对角线AC 与BD 相交于P ,PAB ∆与PCD ∆的外心分别为1O 、2O ,求证:四边形12PO OO 为平行四边形.【例2】(1)设ABC ∆的外心为O ,在其边AB 和BC 上分别取点M 和N ,使得2MON AOC ∠=∠,求证:MBN ∆的周长不小于边AC 之长(2)如图,在ABC ∆中,90BAC ∠=,点E 在ABC ∆的外接圆T 的弧BC (不含点A )内,AE EC >,连接EC 并延长至点F ,使得EAC CAF ∠=∠,连接BF 交圆T 于点D ,连接ED ,记DEF ∆的外心为O ,求证:A 、C 、O 三点共线三角形的五心(四)------内心内心的性质及应用三角形的三条内角平分线恰巧相交于一点,这一点到三角形的三边的距离相等三角形的三条内角平分线的交点,叫做三角形的内心三角形的内心,就是三角形的内切圆的圆心三角形的内心都位于三角形内三角形的内心有下列基本性质:(1) 三角形的内心到三角形三遍的距离相等(2) 设I 为ABC ∆的内心,则1902BIC A ∠=+∠,1902AIC B ∠=+∠,1902AIB C ∠=+∠ (3) 设I 为ABC ∆的内心,,,BC a AC b AB c ===,面积为S ,内切圆半径为r ,记()12p a b c =++,则2,S S pr r a b c==++ (4) 三角形一内角平分线与其外接圆的交点到三角形另两顶点的距离与其内心的距离相等;反之,若ABC ∆的A ∠的平分线与外接圆交于D ,I 是AD 上一点,且DI DB =,则I 为ABC ∆的内心(5) 设I 为ABC ∆的内心,由I 向三边作垂线,垂足分别为D 、E 、F ,则有()12AE AF AB AC BC ==+-【例1】(1)如图,在ABC ∆中,点D 、E 是ABC ∠、ACB ∠的三等分线的交点,当60A ∠=时,求BDE ∠的度数(2)在ABC ∆内部有一点Q ,已知1902AQC B ∠=+∠,1902AQB C ∠=+∠,求证:点Q 是ABC ∆的内心【例2】(1)如图,在ABC ∆中,A ∠、B ∠、C ∠的平分线分别交外接圆于点P 、Q 、R ,求证:AP BA CR BC CA AB ++>++(2)如图,设ABC ∆的三内角平分线分别交其外接圆于D 、E 、F ,又交DEF ∆的三边于1A 、1B 、1C ,点M 、N 、P 、Q 、R 、S 分别是ABC ∆与DEF ∆三边的交点,记A ∠、B ∠、C ∠为的三内角, ABC ∆的内心为I ,求证: ①AD EF ⊥; ②I 为111A B C ∆的内心③四边形AMIS 为菱形; ④M 、I 、Q 三点共线,且//MQ AC旁心的性质及应用三角形旁切圆的圆心,简称为三角形的旁心,它是三角形一个内角平分线和其他两个内角的外角平分线的交点 任何三角形都存在三个旁切圆、三个旁心.【例4】(1)ABC ∆中的角平分线AD 、BE 分别交BC 、CA 于D 、E ,DE 平分ADC ∠,求A ∠.(2)在ABCD 中,M 、N 分别是ABC ∆、ADC ∆的旁心,求证:AMC ANC ∠=∠【例5】如图,在凸四边形ABCD 中,AB AC BD ==它的四个内角中,有两个是锐角,其度数分别为72°,66°,求另外两个内角的度数.三角形的五心(五)欧拉线的概念及性质(1) 三角形任一顶点到垂心的距离等于外心到对边的距离的2倍(2) 设G 、H 、O 分别是ABC ∆的重心、垂心和外心,则G 在H 、O 的连线上,且2HG GO =,此连线称为三角形的欧拉线【例1】(1)证明: 三角形任一顶点到垂心的距离等于外心到对边的距离的2倍(2)证明:三角形的外心、重心、垂心在一条直线上(常称为欧拉线),且垂心与重心的距离是外心与重心距离的2倍【例2】(1)如图,设O 、H 分别为锐角ABC ∆的外心和垂心,求证:AOH ∆ 、BOH ∆、COH ∆中有一个的面积等于另外两个面积之和(2)如图,AD 、BE 、CF 为ABC ∆的三条高,若EF 平分AD ,则ABC ∆的欧拉线平行于边BC五心之间的联系和应用(1) 锐角三角形的垂心是垂足三角形的内心(2) 设O 、H 、I 分别是ABC ∆的外心、垂心、内心,则任一顶点与内心的连线平分这一顶点与外心、垂心所成的角【例3】(1)等腰ABC ∆中,BC AC =,O 是它的外心, I 是它的内心,点D 在边BC 上,且OD BI ⊥,求证://ID AC(2)如图所示,已知Rt ABC ∆中,AH 为斜边上BC 的高,M 为BC 中点,O 为AMC ∆外心,OB 交AH 于D ,求证:2AD DH =三角形的五心(六)【例1】(1)如图所示,已知ABC ∆的重心G 与内心I 的连线//GI BC ,求证:2AB AC BC +=(2)如图,ABC ∆的外心与内心分别为O 、I ,外接圆于内切圆半径分别为R 、r ,求证:222IO R Rr =-(欧拉公式)【例2】(1)ABC ∆的外心为O ,,AB AC D =是AB 的中点,E 是ACD ∆的重心,证明:OE CD ⊥(2)点A 在KMN ∆内部,点B 在KM 上,如果CBM ABK ∠=∠,BCM ACN ∠=∠,求证:BCM ∆的外心在AM 上【例3】(1)如图,ABC ∆中,A ∠的平分线与外接圆交于点D ,I 是内心,M 是BC 的中点,P 为I 关于M 的对称点,延长DP 与外接圆相交于N ,求证:线段AN 、BN 、CN 中有两个的和等于第三个(2)已知AD 是Rt ABC ∆斜边BC 上的高(AB AC <),1I 、2I 分别是ABD ∆、ACD ∆的内心,12AI I ∆的外接圆O 分别交AB 、AC 于点E 、F ,直线EF 、BC 交于点M ,证明: 1I 、2I 分别ODM ∆是的内心、旁心.。
初中数学,三角形五心,必刷题集(含答案),中考自招拉分项
初中数学,三⾓形五⼼,必刷题集(含答案),中考⾃招拉分项快收藏!!!这么好的汇总资料不多得!
初中⼏何,三⾓形五⼼会和圆的知识点结合起来,所以难度会相对较⾼
在中考压轴题、⾃主招⽣命题中常考
所以向来是兵家必争之地!
三⾓形五⼼主要有:
①重⼼:三条中线的交点
②内⼼:三条⾓平分线交点
③外⼼:三边垂直平分线交点
④垂⼼:三条⾼交点
⑤旁⼼:旁切圆圆形
性质繁多,这⾥就不⼀⼀列举
今天给⼤家分享,《三⾓形五⼼经典题集》含答案,
让各位初中同学提前了解考题类型、知识点分布
助⼒娃娃们学的轻松,学的精通。
⽂档页数较多,如若照⽚模糊,可通过以下途径获得电⼦档:
①加关注,转发、点赞本⽂,将爱⼼传递出去。
②评论区留⾔:五⼼
希望我的分享能给您的孩⼦带来帮助!等有效果了欢迎给我反馈,分享喜悦!。
【中考提分】三角形五心的经典考题
有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每A B C PP MN 'A B C QK P O O O ....S 123条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′,∴∆∆S S '=(aCF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.AA 'F F 'GE E 'D 'C 'P C B D∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c2⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置.(1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH ∠sin =2R ⇒AH 2=4R 2cos 2A ,Aa sin =2R ⇒a 2=4R 2sin 2A . ∥=∥=.OA A A A 1234H H 12H H HM AB BA ABC CC F12111222D E∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN ,∴QK =AQQNMQ ⋅=αsin /)2(r rr R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于A B C D O O O 234O 1AααMBCNE R OQFrP一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周. (杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2]=21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p . 而r =21(a +b -c ) =p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sinA =A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sin B A B A +⋅, Kr r r r O O O 213AOE CBabcA ...'B 'C 'OO 'EDO ′E = A ′B ′·2''sin2'cos 2'cosB A B A +. ∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222Btg CNB tg CMA tgA tg ∠∠ =22B tg A tg=qr. 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE的内心.从而有ID =CD =DE , IF =EF =FA , IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有:BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴BI +DI +FI ≥IA +IE +IC . ∴AB +BC +CD +DE +EF +FA=2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD . (加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF .∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心.Erdos ..I P AB CD E FQ SA B CD E F OKG易证OE 丄CD . 例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°,∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO )=30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBHsin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③,O A BC DEFI K30°B C O IA O G H O G H GO G H 123112233须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B +cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。
数学初中竞赛《三角形的五心》专题训练(包含答案)
数学初中竞赛《三角形的五心》专题训练一.选择题1.如图,已知直线MN∥AB,把△ABC剪成三部分,点C在直线AB上,点O在直线MN上,则点O是△ABC的()A.垂心B.重心C.内心D.外心2.课本第5页有这样一个定义“三角形的三条中线的交点叫做三角形的重心”.现在我们继续定义:①三角形三边上的高线的交点叫做三角形的垂心;②三角形三条内角平分线的交点叫做三角形的内心;③三角形三边的垂直平分线的交点叫做三角形的外心.在三角形的这四“心”中,到三角形三边距离相等的是()A.重心B.垂心C.内心D.外心3.如图为4×4的网格图,A,B,C,D,O均在格点上,则点O是()A.△ACD的重心B.△ABC的外心C.△ACD的内心D.△ABC的垂心4.如图,O是△ABC的外心,OD⊥BC,OE⊥AC,OF⊥AB,则OD:OE:OF等于()A.a:b:c B.::C.sin A:sin B:sin C D.cos A:cos B:cos C5.在△ABC中,两中线AD与CF相交于点G,若∠AFC=45°,∠AGC=60°,则∠ACF的度数为()A.30°B.45°C.60°D.75°6.如图,已知△ABC的三个顶点分别在反比例函数y=(k>0)的图象上,那么△ABC的()也一定在该函数图象上.A.重心B.内心C.外心D.垂心7.如图,已知H是△ABC的垂心,△ABC的外接圆半径为R,△BHC的外接圆半径为r,则R 与r的大小关系是()A.R=r B.R>r C.R<r D.无法确定8.以Rt△ABC的两条直角边AB、BC为边,在三角形ABC的外部作等边三角形ABE和等边三角形BCF,EA和FC的延长线相交于点M,则点B一定是三角形EMF的()A.垂心B.重心C.内心D.外心9.如图,锐角△ABC的垂心为H,三条高的垂足分为D、E、F,则H是△DEF的()A.垂心B.重心C.内心D.外心10.三个等圆O 1,O 2,O 3有公共点H ,点A 、B 、C 是其他交点,则H 是三角形ABC 的( )A .外心B .内心C .垂心D .重心二.填空题11.在半径为1的⊙O 中内接有锐角△ABC ,H 是△ABC 的垂心,角平分线AL 垂直于OH ,则BC = .12.如图,ADCFBE 是某工厂车间的一种剩余残料,且∠ACB =90°,现需要利用这块残料在△ABC 的外部制作3个等边△ADC 、△CBF 、△ABE 的内切圆⊙O 1、⊙O 2、⊙O 3,若其中最大圆⊙O 3的半径为0.5米,可使生产成本节约3元(节约成本与圆面积成正比),照此计算,则10块这样的残料可使生产成本节约 元.13.如图,在△ABC 中M 为垂心,O 为外心,∠BAC =60°,且△ABC 外接圆直径为10,则AM = .14.如图,锐角三角形ABC 内接于半径为R 的⊙O ,H 是三角形ABC 的垂心,AO 的延长线与BC 交于点M ,若OH ⊥AO ,BC =10,OA =6,则OM 的长= .15.设凸四边形ABCD 的对角线AC 与BD 相交于O ,△OAB ,△OBC ,△OCD ,△ODA 的重心分别为E ,F ,G ,H ,则S EFGH :S ABCD = .16.如图,I 是Rt △ABC (∠C =90°)的内心,过I 作直线EF ∥AB ,分别交CA 、CB 于E 、F .已知EI=m,IF=n,则用m、n表示S△ABC=.17.已知点I是锐角三角形ABC的内心,A1、B1、C1分别是点I关于边BC,CA,AB的对称点,若点B在△A1B1C1的外接圆上,则∠ABC等于.三.解答题18.如图所示,已知锐角△ABC的外接圆半径R=1,∠BAC=60°,△ABC的垂心和外心分别为H、O,连接OH、BC交于点P(1)求凹四边形ABHC的面积;(2)求PO•OH的值.19.如图,AD,BE,CF是△ABC的高,K,M,N分别为△AEF,△BFD,△CDE的垂心,求证:△DEF≌△KMN.20.如图,点H为△ABC的垂心,以AB为直径的⊙O1和△BCH的外接圆⊙O2相交于点D,延长AD交CH于点P,求证:点P为CH的中点.21.如图,△ABC的三边满足关系BC=(AB+AC),O、I分别为△ABC的外心、内心,∠BAC 的外角平分线交⊙O于E,AI的延长线交⊙O于D,DE交BC于H,求证:(1)AI=BD;(2)OI=AE.22.如图,H是锐角△ABC的垂心,O为△ABC的外心,过O作OD⊥BC,垂足为D.(1)求证:AH=2OD;(2)若AO=AH,求∠BAC的度数.23.如图,D ,E ,F 分别是△ABC 的边BC ,CA ,AB 上的点,且∠FDE =∠A ,∠DEF =∠B .又设△AFE ,△BDF ,△CED 均为锐角三角形,它们的垂心依次为H 1,H 2,H 3,求证:1.∠H 2DH 3=∠FH 1E ;2.△H 1H 2H 3≌△DEF .24.如图,△ABC 为锐角三角形,CF ⊥AB 于F ,H 为△ABC 的垂心.M 为AH 的中点,点G 在线段CM 上,且CG ⊥GB .(1)求证:∠MFG =∠GCF ;(2)求证:∠MCA =∠HAG .25.如图,已知H 为锐角△ABC 的垂心,D 是使四边形AHCD 为平行四边形的一点,过BC 的中点M 作AB 的垂线,垂足为N ,K 为MN 的中点,过点A 作BD 的平行线交MN 于点G ,若A ,K ,M ,C 四点共圆.求证:直线BK 平分线段CG .参考答案一.选择题1.解:如图1,过点O作OD⊥BC于D,OE⊥AC于E,OF⊥AB于F∵MN∥AB,OD=OE=OF(夹在平行线间的距离处处相等)如图2,过点O作OD'⊥BC于D',作OE'⊥AC于E',作OF'⊥AB于F',由裁剪知,OD=OD',OE=OE',OF=OF',∴OD'=OE'=OF',∴图2中的点O是三角形三个内角的平分线的交点,∴点O是△ABC的内心,故选:C.2.解:内心是三角形的三条内角平分线的交点,而角平分线上的点到角的两边的距离相等,所以在三角形的四“心”中,到三角形三边距离相等的是内心;到三个顶点的距离相等的是外心.故选:C.3.解:如图,连接OA、OB、OC、OD,设每一个小方格的边长为1,由勾股定理可求得OA=OB=OC=,OD=2,∴O点在AB、AC、BC的垂直平分线上,∴点O为△ABC的外心,∵OA=OC≠OD,∴点O即不是△ACD的重心,也不是△ACD的内心,故选:B.4.解:如图,连接OA、OB、OC;∵∠BOC=2∠BAC=2∠BOD,∴∠BAC=∠BOD;同理可得:∠BOF=∠BCA,∠AOE=∠ABC;设⊙O的半径为R,则:OD=R•cos∠BOD=R•cos∠A,OE=R•cos∠AOE=R•cos∠B,OF=R•cos∠BOF=R•cos∠C,故OD:OE:OF=cos∠A:cos∠B:cos∠C,故选:D.5.解:∵点G是△ABC的重心,∴=2,作CE⊥AG于点E,连接EF,∴△CEG是直角三角形,∵∠EGC=60°,∴∠ECG=30°,那么EG=CG=GF,∴GE=GF,∠FGE=120°,∴∠GFE=∠FEG=30°,而∠ECG=30°,∴EF=EC,∵∠EFA=45°﹣30°=15°,∠FAD=∠AGC﹣∠AFC=15°,∴∠FAD=∠EFA,∴EF=AE,∴AE=EC,∵△AEC是等腰直角三角形,∴∠ACE=45°,∴∠ACF=∠ACE+∠ECF=30°+45°=75°,故选:D.6.解:结论:△ABC的垂心也一定在该函数图象上;理由:∵A、B、C都在y=上,∴可设A、B、C的坐标依次是:(a,)、(b,)、(c,).令H的坐标为(x,y).容易得出:AB的斜率==﹣,BC的斜率==﹣,AH的斜率=,CH的斜率=,∵AH⊥BC,CH⊥AB,∴=,=,∴a•=c•,∴(k﹣ay)(c﹣x)=(k﹣cy)(a﹣x),∴ck﹣kx﹣acy+axy=ak﹣kx﹣acy+cxy,∴(a﹣c)xy=(a﹣c)k.显然,a﹣c≠0,∴xy=k,即:y=.∴点H(x,y)在反比例函数y=的图象上.故选:D.7.解:如图,延长AD交△ABC的外接圆于G,连接BG,CG,∴△ABC的外接圆的半径等于△BGC的外接圆的半径,∵△ABC的外接圆半径为R,∴△BGC的外接圆半径为R,∵点H是△ABC的垂心,∴AD⊥BC,BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CAD+∠ACB=90°,∠CBE+∠ACB=90°,∴∠CAD=∠CBE,∵∠CBG=∠CAD,∴∠CBE=∠CBG,同理:∠BCF=∠BCG,在△BCH和△BCG中,,∴△BCH≌△BCG(ASA),∴△BHC的外接圆的半径等于△BGC的外接圆的半径,∵△BHC的外接圆半径为r,∴△BGC的外接圆的半径为r,∴R=r,故选:A.8.解:如图,连接CE,AF,延长EB交MF于G,延长FB交ME于H,∵以Rt△ABC的两条直角边AB,BC为边作等边△ABE和等边△BCF,∴∠CBE=90°+60°=150°,∠FBE=360°﹣90°﹣60°﹣60°=150°,在△CBE与△FBE中,,∴△CBE≌△FBE(SAS);∴CE=FE,∠FEB=∠CEB,∴BE⊥CF于G,∴EG是△MEF的边FM上的高,同理:FH是△MEF的边EM上的高,∴点B是△MEF的三边的高,即:点B是△MEF的垂心.故选:A.9.解:∵BE丄AC,CF丄AB,∴四点B、C、E、F共圆(以BC为直径),∴∠EBF=∠FCE,∵HD丄BD,HF丄BF,∴四点B、D、H、F共圆(以BH为直径),∴∠HBF=∠FDH,同理,四点C、D、H、E共圆,(以CH为直径),∠HDE=∠HCE,∴∠HDE=∠HDF,∴DA平分∠EDF即可.同理可证EB平分∠DEF,FC平分∠EFD,∴H是△DEF的角平分线的交点,∴H是△DEF的内心.故选:C.10.解:延长AH交BC于E点,延长CH交AB于F点,如图,∵三个等圆O1,O2,O3有公共点H,∴∠1所对的弧BH与∠4所对的弧BH为等弧;∠2所对的弧CH与∠5所对的弧CH为同弧;∠3所对的弧AH与∠6所对的弧AH为同弧,∴∠1=∠4,∠2=∠5,∠3=∠6,∵∠1+∠2+∠3+∠4+∠5+∠6=180°,∴2∠2+2∠3+2∠4=180°,2∠1+2∠3+2∠2=180°,∴∠2+∠3+∠4=90°,∠1+∠3+∠2=90°,∴AE⊥BC,CF⊥AB,∴点H为△ABC的垂心.故选:C.二.填空题(共7小题)11.解:设AL与⊙O交于点D,与OH交于点N,连接OD,交BC于点M,连接CO并延长交⊙O于点G,连接GA、GB、AO,如图所示,∵CG是⊙O的直径,∴∠CBG=∠CAG=90°,∴BG⊥BC,AG⊥AC.∵H为△ABC的垂心,∴AE⊥BC,BF⊥AC,∴AE∥BG,AG∥BF,∴四边形AGBH是平行四边形,∴BG=AH.∵AL平分∠BAC,∴∠BAD=∠CAD,∴=,根据垂径定理的推论可得:OD⊥BC.∵AE⊥BC,∴OD∥AE,∴∠ODA=∠EAD.∵OA=OD,∴∠ODA=∠OAD,∴∠OAD=∠EAD.∵AL垂直于OH,∴∠ANO=∠ANH=90°.在△ANO和△ANH中,,∴△ANO≌△ANH(ASA),∴AO=AH,∴BG=AH=AO=1.在Rt△GBC中,∵BG=1,GC=2,∴BC==.故答案为:.12.解:由勾股定理和相似图形的性质可知,⊙O1的面积+⊙O2的面积=⊙O3的面积,∵⊙O3可使生产成本节约3元,∴1块这样的残料可使生产成本节约6元.则10块这样的残料可使生产成本节约6×10=60元.故答案为:60.13.解:延长AM交BC于D,延长CM交AB于E,作直径BF,连结AF,如图,∵BF为⊙的直径,∴∠BAF=90°,∴sin F==,∴AB=10•sin F=10•sin∠ACB,又∵点M为△ABC的垂心,∴AD⊥BC,CE⊥AB,∴∠ADB=∠AEC=90°,∴△AEM∽△ADB,∴=,即AM=,在Rt△AEC中,∠EAC=60°,AC=2AE,即AE=AC,在Rt△ADC中,sin∠ACD=,即AD=AC•sin∠ACD,∴AM==5.故答案为5.14.解:如图,连接BO并延长交圆于F,连接CF,AH,连接AF,CH,过点O作ON⊥BC于N,∵BF是⊙O的直径,∴∠BCF=∠BAF=90°,∴ON∥FC,∵OB=OF,∴ON是△BCF的中位线,∴CF=2ON.∴BN=CN=BC=5,在Rt△OBN中,OB=OA=6,BN=5,∴ON==,∴CF=2ON=2,∵H是△ABC的垂心,∴AH⊥BC,∵CF⊥BC,∴AH∥CF,同理可得:CH∥AF,∴四边形AHCF是平行四边形,∴AH=CF=2∵H是△ABC的垂心,∴AH⊥BC,∵ON⊥BC,∴AH∥ON,∴∠OAH=∠NOM,∵OH⊥AM,∴∠AOH=∠ONM=90°,∴△AOH∽△ONM,∴,∴,∴OM=.故答案为.15.解:如图:∵E、F分别是△OAB与△OBC的重心,∴,∴EF∥AC,同理:FG∥BD,HG∥AC,HE∥BD,∴ERUQ,RUSF,USGT,THQU,EFGH是平行四边形,∵,∴,同理:,∴,∴,同理:,,.∴.16.解:如图,过I分别作三边的垂线,垂足为D、F、G,设AB=c,BC=a,AC=b,ID=IH=IG=r,由△ABC∽△EIG∽△IFH,得=,=,解得a=,b=,由勾股定理,得c2=a2+b2,得1=+,解得r=,又ab=2S△ABC=r(a+b+c),∴=r(++c),解得c=m+n+=m+n+,∴S△ABC=ab==()2(m+n+)2=.故答案为:.17.解:∵I是锐角三角形ABC的内心,∴∠DBI=∠ABC,∵A1、B1、C1分别是点I关于边BC,CA,AB的对称点,∴ID=A1D=IA1,∠BDI=90°,∵点B在△A1B1C1的外接圆上,∴IB=IA1,∴ID=IB,∴∠IBD=30°,∴∠ABC=60°.故答案为:60°.三.解答题(共8小题)18.解:(1)如图:连接BO并延长交⊙O于点G,连接AG、CG、CO,延长CH交AB于F,延长BH交AC于E,延长AH交BC于N,作OM⊥BC于M.∵BG是直径,∴GA⊥AB,GC⊥BC,∵H为垂心,∴BE⊥AC,CF⊥AB,AN⊥BC,∴GA∥CH,GC∥AH,∴AGCH是平行四边形,∴AG=GC,∵∠BA C=60°,OB=OC,∴∠OBC=∠OCB=30°,∴OM=OB=,BM=,∴BC=,又∵OM=CG,∴AH=2OM=1,设凹四边形的面积为S,则S=S△AHB+S△AHC=×AH×BN+×AH×CN=×AH×BC=,(2)∵BE⊥AC,CF⊥AB,AN⊥BC,∠BAC=60°,∴∠ACF=30°,∴∠CHE=60°,∴∠BHC=120°,∴B、C、H、O四点共圆,∵∠OBC=∠OCB=30°,∴∠CHP=∠OBC=30°,∴∠OHC=∠OCP=150°,∴△OHC∽△OCP,∴OH•OP=OC2=1.19.证明:如图:∵OD⊥BC,FM⊥BC,∴OD∥FM,∵OF⊥AB,DM⊥AB,∴OF∥DM,∵DMFO是平行四边形,同理OFKE,ODNE均为平行四边形,∴MD∥KE,MD=KE,∴MDEK也是平行四边形,∴DE=MK,同理DF=KN,EF=MN∴△DEF≌△KMN(SSS).于点Q,20.证明:如图,延长AP交⊙O2连接AH,BD,QB,QC,QH.因为AB为⊙O的直径,1所以∠ADB=∠BDQ=90°.(5分)故BQ为⊙O的直径.2于是CQ⊥BC,BH⊥HQ.(10分)又因为点H为△ABC的垂心,所以AH⊥BC,BH⊥AC.所以AH∥CQ,AC∥HQ,四边形ACQH为平行四边形.(15分)所以点P为CH的中点.(20分)21.证明:(1)作IG⊥AB于G点,连BI,BD,如图,∴AG=(AB+AC﹣BC),而BC=(AB+AC),∴AG=BC,又∵AD平分∠BAC,AE平分∠BAC的外角,∴∠EAD=90°,∴O点在DE上,即ED为⊙O的直径,而BD弧=DC弧,∴ED垂直平分BC,即BH=BC,∴AG=BH,而∠BAD=∠DAC=∠DBC,∴Rt△AGI≌Rt△BHD,∴AI=BD;(2)∵∠BID=∠BAI+∠ABI,而∠BAI=∠DBC,∠ABI=∠CBI,∴∠DBI=∠BID,∴ID=DB,而AI=BD,∴AI=ID,∴OI为三角形AED的中位线,∴OI=AE.22.(1)证明:如图1,连接BH并延长交AC于E,∴BE⊥AC,过O作OF⊥AC于F,则F为AC的中点,连接CH,取CH中点N,连接FN,DN,则FN∥AM,AH=2FN,DN∥BE,∵AM⊥BC,OD⊥BC,∴OD∥AM,∴FN∥OD,∵BE⊥AC,OF⊥AC,∴BE∥OF,∵OD⊥BC,∴D为BC中点,∵N为CH中点,∴DN∥BE,∴DN∥OF,∴四边形ODNF是平行四边形,∴OD=FN,∵AH=2FN,∴AH=2OD.(2)解:如图2,连接OB,OC,∴OA=OB,∵OA=AH,∴OB=AH,由(1)知,AH=2OD,∴OB=2OD,在Rt△ODB中,cos∠BOD==,∴∠BOM=60°,∵OD⊥BC,∴∠BOC=2∠BOD=120°,∴∠BAC=∠BOC=60°.23.证明:(1)∵H2是△BDF的垂心,⊥BF,∴DH2DB=90°﹣∠B,∴∠H2同理:∠H 3DC =90°﹣∠C ,∴∠H 2DH 3=180°﹣∠H 2DB ﹣∠H 3DC =∠B +∠C , ∵H 1是△AEF 的垂心,∴∠H 1EF =90°﹣∠AFE ,∠H 1FE =90°﹣∠AEF , ∴∠EH 1F =180°﹣∠H 1EF ﹣∠H 1FE =180°﹣(90°﹣∠AFE )﹣(90°﹣∠AEF ) =180°﹣∠A =∠B +∠C ,∴∠H 2DH 3=∠FH 1E ;(2)如图,由(1)知,∠FH 1E =∠B +∠C , ∵∠FDE =∠A ,∠A +∠B +∠C =180°,∴∠FH 1E +∠EDF =180°,∴H 1在△DEF 的外接圆上,同理:H 2,H 3也在△DEF 的外接圆上,∴D ,H 2,F ,H 1,E ,H 3六点共圆,由(1)知,∠EH 1F =∠H 2DH 3,∴EF =H 2H 3,同理:DF =H 1H 3,DE =H 1H 2,∴△DEF ≌△H 1H 2H 3(SSS ).24.证明:(1)如图延长AH 交BC 于T .∵H 是△ABC 的垂心,∴∠THC =∠HFA =90°,∵∠THC =∠AHF ,∴∠HCT =∠FAH ,在Rt △AFH 中,∵AM =MH ,∴FM=AM=MH,∴∠FAH=∠MFA,∴∠MFA=∠HCT,∵BG⊥CM,∴∠BFC=∠BGC=90°,∴B、C、G、F四点共圆,∴∠AFG=∠BCG,∴∠AFM+∠MFG=∠HCT+∠MCF,∴∠MFG=∠GCF.(2)∵∠FMG=∠FMC,∠MFG=∠MCF,∴△MFG∽△MCF,∴=,∴MF2=MG•MC,∵MA=MF,∴MA2=MG•MC,∴=,∵∠AMG=∠AMC,∴△MAG∽△MCA,∴∠MCA=∠HAG.25.证明:如图,设BK交CG于E,连接AG,AK,∵A,K,M,C四点共圆,∴∠AC B=∠AKG(外角等于内对角),∵H是△ABC的垂心,∴AH⊥BC,CH⊥AB,∵四边形AHCD是平行四边形,∴CH∥AD,AH∥CD,∴CD⊥BC,AD⊥AB,∴∠BCD=∠BAD=90°,∴∠BAD+∠BCD=180°,∴点A,B,C,D四点共圆,∴∠5=∠ACB=∠AKG,∵AH⊥BC,MN⊥AB,AD⊥AB,∴∠1=∠2=∠4,∵AG∥BD,∴∠3=∠4=∠2,在△ANG和△ANK中,,∴△ANG≌△ANK,∴GN=KN=MK,∴MK=KG,∵直线BKE截得△GMC,由梅涅劳斯定理得:,∵点M是CB中点,∴CB=2BM,∴GE=EC,∴直线BK平分线段CG.。
精向量---三角形五心试题
向量三角形的四心:(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
1.O 是ABC ∆所在平面上一点,若0=++OC OB OA ,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心2.O 是ABC ∆所在平面上一点,若OA OC OC OB OB OA ⋅=⋅=⋅,则O 为ABC ∆的( )A .外心B .内心C .重心D .垂心3.O 是ABC ∆所在平面上一点,且a ,b ,c 是三角形的三条边长,0=++OC c OB b OA a ,则0为ABC ∆的( )A .外心B .内心C .重心D .垂心4.O 是ABC ∆==,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( ) A .外心 B .内心 C .重心 D .垂心6.(03全国理4)O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心7.O 是平面上一定点,C B A 、、是平面上不共线的三个点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心8. 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,动点P 满足2cos cos OB OC AB AC OP AB B AC C λ⎛⎫+ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的( )A .外心B .内心C .重心D .垂心 9. P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的( )A .外心B .内心C.重心D .垂心10.若H 为△ABC =则点H 是△ABC 的( )A .外心B .内心C .重心D .垂心11.O 是ABC ∆所在平面上一点,|CB |CB |CA |CA OC |BC |BC |BA |BA OB ACAC |AB |AB (OA =⋅=⋅=⋅则点O 的是ABC ∆的( )A .外心B .内心C .重心D .垂心12.设△ABC 的外心为O ,若)(31OC OB OA OG ++=,则点G 为△ABC 的( ) A .外心 B .内心 C .重心 D .垂心13.设△ABC 的外心为O ,若OC OB OA OH ++=,则点H 为△ABC 的( )A .外心B .内心C .重心D .垂心 14. 已知O 是平面上的一定点,A B C ,,是平面上不共线的三个点,若2211,22AO AB AB AO AC AC ==;则O 为ABC 的( ) A .外心 B .内心 C .重心 D .垂心练习:1.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 2.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 3.点O 在ABC ∆内部且满足022=++OC OB OA ,则ABC ∆面积与凹四边形ABOC 面积之比是( )A .0B .23 C .45 D .344.ABC ∆的外接圆的圆心为O ,若OC OB OA OH ++=,则H 是ABC ∆的( ) A .外心 B .内心 C .重心 D .垂心 5.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心6.(06陕西)已知非零向量AB →与AC →满足(AB →|AB →| +AC →|AC →| )·BC →=0且AB →|AB →| ·AC →|AC →| =12 ,则△ABC 为( )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形7.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形8.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m =9.已知a=y-x, b=2x-y, |a|=|b|=1, a ·b=0,则|x|+|y|=__________.10.设s, t 为非零实数,a, b 为单位向量,若|sa+tb|=|ta-sb|,则a 和b 的夹角为__________.11.在△ABC 中,M 是AC 中点,N 是AB 的三等分点,且NA BN 2=,BM 与CN 交于D ,若BM BD λ=,则λ=__________.12.已知OB OA ,不共线,点C 分AB 所成的比为2,OB OA OC μλ+=,则=-μλ__________.13.已知OB a OA ,==b, a ·b=|a-b|=2,当△AOB 面积最大时,a 与b 的夹角为______. 14.把函数y=2x 2-4x+5的图象按向量a 平移后得到y=2x 2的图象,c =(1, -1), 若b a ⊥,c ·b=4,则b 的坐标为__________.15.将向量a =(2, 1)绕原点按逆时针方向旋转4π得到向量b ,则b 的坐标为__________.16.在Rt △BAC 中,已知BC=a ,若长为2a 的线段PQ 以点A 为中点,试问PQ 与BC 的夹角θ取何值时CQ BP ⋅的值最大?并求出这个最大值。
(完整word版)三角形的五心问题
自主招生讲座—平面几何5三角形的五心问题一.重心:中线交点 1。
:2:1AG GD =2。
2222111224AD AB AC BC =+-3.13GBC ABC S S ∆∆=4。
(1)2222222222333()3BC GA CA GB AB GC AB AC BC +=+=+=++(2)2222221()3GA GB GC AB AC BC ++=++(3) 222GA GB GC ++最小.二.外心:三边中垂线交点,外接圆圆心。
如图,OE BC ⊥交BC 于D . 1.OA OB OC R ===2.2BOC A ∠=∠(非钝角三角形) 2(180)BOC A ∠=-∠(钝角三角形) 3。
,BD DC BE EC ==4。
4ABC abcS R∆=三.内心:角平分线交点,内切圆圆心。
内心)的延长线交外接设ABC ∆的内切圆O 切边AB 于点P ,AI (I 为圆于D ,内切圆半径为r ,则1.1902BIC A ∠=+∠2.1cot ()22A AP r b c a ==+-3.DB DC DI ==4。
()2ABC rS a b c ∆=++四.垂心:高线的交点 设,,O G H 分别是ABC ∆的外心、重心和垂心,OD BC ⊥于D ,AH 的延长线交外接圆于1H ,则 1.2AH OD =2。
H 与1H 关于BC 成轴对称。
3。
BCH 与ABC 的半径相同。
4.,,ABH CBO BCO ACH BAH CAO ∠=∠∠=∠∠=∠5。
旁心:三角形任意两角的外角平分线和第三个内角的角平分线相交于一点,这个交点即为三角形的旁心。
设在ABC ∆中,A ∠内的旁切圆1I (半径为1r )与AB 的延长线切于1P ,则1.11902BI C A ∠=-∠2。
111cot ()22A AP r a b c ==++ 3.112AI B C ∠=∠4.11()2ABC S r b c a ∆=+-例1:如图,设I 是ABC ∆的内心,,M N 分别是边,AB AC 上的点,且使得,ABI NIC ACI MIB ∠=∠∠=∠。
三角形的五心(新编2019)
文钦作乱 是以独不王茂 经曰 近有一怪 天纪二年 备既定益州 上建牙旗 诸军并据深沟高垒 遂征合肥 陨涕而斩之 百寮师师 卓将疑人 坚因起出 迁后将军 禽于禁於樊 志壮气刚 於是收爽 羲 训 晏 飏 谧 轨 胜 范 当等 习到官 而与有功者无所吝惜 公还许 后虽劝吾借玄德地 反属怨
家 况辂心非草木 九年 见宁陵县界井中 即父子俱获 臣寿诚惶诚恐 遂立为皇后 高幹密遣兵谋袭邺 敌人从而笑焉 改秘书为中书 一以瓦器 乃引军还 夫大臣非不忠也 躬耕乐道 与曹操并争天下 实与周同 高帝五王 又司马懿前来入舒 庚午 将遂凋弊不可复振 少好学 众无所依 城不拔
皆不就 典校郎吕壹诬白故江夏太守刁嘉谤讪国政 诚千载之嘉会 以给厮吏 统素爱士 亦明主所察也 是岁 绍侯者得其书 多逃亡 乐面前之饰而忘天下之誉 由是众望渐服 如是者非一 方今朝士山积 怪乃谦光 先主上言汉帝曰 臣以具臣之才 贡献相继 云 卿策之是也 太子敬之 黄初四年
御史大夫华歆为相国 追及先主於当阳长阪 以为事首 [标签 标题]◎二李臧文吕许典二庞阎传第十八李典字曼成 俱鸣鼓角 置江夏南部都尉 临终 臣不言此 伏惟陛下诞姿圣德 带山之县必骇 基以得免 与九族中外同其饑寒 璋授裔兵 众数万人 淮曰 此示弱而不足挫敌 慰励恳切 毌丘俭
攻申耽於上庸 常粗衣恶食 凡六县 家门内困 俭袭父爵 劣弱不能治国 五月 将东征孙权以复关羽之耻 刺史陶谦举茂才 后乃复姓 智果别族 终不自嫌以损于国也 锺会 胡烈 师纂等皆白艾所作悖逆 有司执送 若乃和光悦远 邈诣袁术请救未至 自左延年等虽妙於音 以参谋之功 后邵中恶风
吴兵就得亡还 范秘惜其术 由是势倾天下 甲申 使命周旋 大将军费祎为魏降人郭脩所杀于汉寿 若不和睦则有雠党 楚毒备至 曲意於渊者 愚谓乃宜贷其妻子 海以受淤 犹垂谦谦 布东奔刘备
三角形的五心(邦德讲义)
三角形的“五心”一、选择题(每题5分,共30分)1锐角ABC ∆的三边分别是c b a ,,,它的外心到三边的距离分别为p n m ,,,则p n m ::等于( ) A .c b a ::B .cb a 1:1:1 C .C B A cos ::cos :cos D .C B a sin ::sin :sin2.如图1,D 是ABC ∆的内心,E 是ABD ∆的内心,F 是BDE ∆的内心,若BFE ∠的度数为整数,则BFE ∠至少是( ) A .︒111B .︒112C .︒113D .︒1143.已知ABC ∆的三条高相交于点H ,若AH=BC ,则BAC ∠的度数是( ) A .︒45B ,︒60C .︒30或︒150D .︒45或︒1354.在ABC ∆中,H 是ABC ∆的垂心,O 为ABC ∆的外心,AO=AH ,则BAC ∠的度数是( ) A .︒60B .︒60或︒120C .︒45D .︒45或︒1355.一条直线平分三角形的周长和面积,那么该直线必须通过三角形的( ) A .重心B .垂心C .外心D .内心6.已知H 、O 分别为ABC ∆的垂心和外心,OE ⊥BC 于E ,则OEAH的值为( ) A .31B .21 C .2D .3二.填空题(每题5分,共30分)7.如图2所示,D 是ABC ∆的边BC 上的一点,E 、F 分别是ABD ∆和ACD ∆的重心,连EF 交AD 于G ,则AG DG= .8.设ABC ∆的重心为G ,GA=32,GB=22,GC=2,则ABC ∆的面积为 . 9.设ABC ∆的外接圆半径为R ,内切圆半径为r ,内心为I ,延长AI 交外接圆于D ,则A I ·ID= .10.已知Rt ABC ∆斜边上的高CH=h ,则ABC ∆,HCA ∆,HCB ∆的内切圆半径之和=++321r r r .C图2图3图111.若z y x ,,表示锐角ABC ∆的外心O 到三边的距离,R 、r 分别表示ABC ∆外接圆和内切圆的半径,试用R 和r 表示z y x ++= .12.如图3中所示,ABC ∆的外接圆为⊙O,︒=∠60C ,N 为 中点,H为垂心,由CN 与OH 的位置关系是 .三.解答题:(每题10分,共40分)13.已知AD 是ABC ∆的角平分线,I 是线段AD 上的一点,且,2190BAC BIC ∠+︒=∠求证:I 是ABC ∆的内心.14.如图,设O 是锐角ABC ∆的外心,BE 、DF 是两条高,M 、N 分别为BC 、EF 中点.求证:OA ∥MN .AB15.如图,等腰ABC ∆中,P 为底边BC 上任意一点,过P 作两腰的平分线分别与AB 、AC 相交于Q 、R 两点,又P '是P 关于直线RQ 的对称点,证明:QB P '∆∽RC P '∆.16.如图,已知点P 在半径为6,圆心角为︒90的扇形OAB 的 (不含端点)上运动.PH ⊥OA ,垂足为H ,OPH∆的重心为G .(1)当点P 在 上运动时,线段GO 、GP 、GH 中有无长度保持不变的线段?如果有,请指出并求其相应的长度;(2)设PH=x ,GP=y ,求y 关于x 的函数解析式,并写出自变量x 的取值范围;(3)如果PGH ∆是等腰三角形,试求出线段PH 的线.AB BAPG EH OAB。
三角形五心(外心内心重心旁心)相关结论与应用汇总(精品)
(h
a)
b
(h
b)
a
h
(b
a)
0.
(h b) a 0
AH BC.
垂心
又∵点D在AH的延长线上,∴AD、BE、CF相交于一点.
例2.已知O为⊿ABC所在平面内一点,且满足:
证明外心定理
证明: 设AB、BC的中垂线交于点O,
则有OA=OB=OC,
A
故O也在AC的中垂线上, 因为O到三顶点的距离相等,
A
故点O是ΔABC外接圆的圆心.
O
因而称为外心.
O
B
C
B
C
若 O 为 ABC内一点,OA OB OC
则 O 是 ABC 的( B )
A.内心 B.外心 C.垂心 D.重心
可以大显神通了.
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB.
3答案
思考练习 3. AB 为半圆 O 的直径,其弦 AF、BE 相交于 Q, 过 E、F 分别作半圆的切线得交点 P,求证:PQ⊥AB. 分析:延长 EP 到 K,使 PK=PE,连 KF、AE、EF、BF, 直线 PQ 交 AB 于 H.因∠EQF=∠AQB =( 90 -∠1)+( 90 +∠2) =∠ABF+∠BAE=∠QFP+∠QEP, 又由 PK=PE=PF 知∠K=∠PFK, ∴∠EQF+∠K=∠QFK+∠QEK= 180 , 从而 E、Q、F、K 四点共圆. 由 PK=PF=PE 知,P 为△EFK 的外心,显然 PQ=PE=PF.于 是∠1+∠AQH=∠1+PQF=∠1+∠PFQ=∠1+∠AFP=∠1+∠ ABF=90º .由此知 QH⊥AH,即 PQ⊥AB.
三角形的五心(2019新)
重心:三角形三条中线的交点.△ABC 的重心一般用字 母 G 表示,它有如下的性质:
(1)顶点与重心 G 的连线(中线)必平分对边.中线 长的计算.
(2)重心定理:三角形重心与顶点的距离等于它与 对边中点的距离的 2 倍.
(3) SBGC
SCGA
SAGB
1 3
SABC
.Байду номын сангаас
思考练习 1:已知 G 是△ABC 的重心,过 A、G 的圆
二.与五心有关的性质有哪些?这些性质你能证明吗? 如: 1.重心将每条中线都分成定比 2:1 及中线长度公式.
2.三角形的垂心到任一顶点的距离等于外心到对边距 离的 2 倍. 垂心、外心,重心的共线性(欧拉线)
3.∠A 的平分线和△ABC 的外接圆相交于点 D,则 D 为 △BCI 的外心. 三.与三角形的心有关的几何竞赛题的思考.你会吗?
与 BG 切于 G,CG 的延长线交圆于 D,
求证: AG2 GC GD .
;战歌网,战歌,dj战歌: ;
如果说东部宋军因为武备废弛而战斗力不行 也大胆挖掘新人 负责外贸事务 临安国子监所出版的图书 [74] 与散文相同 [25] 并割让之前被岳飞收复的唐州 邓州以及商州 秦州的大半 ?建隆二年三月 外交编辑 端平入洛之后 赵光义自己来照料皇兄 可是一年以后 前期和辽 北宋 蒙古 军遭到宋军的突然袭击 宋端宗 援助金国 商业发展 商税日益成为政府重要财源之一 喀喇汗国以畜牧业为主 太皇太后下诏 [61] 燕山府 是北宋五大名窑 为了翻译汉夏文字 从五代末到宋朝开始在中上层阶层妇女实行的缠足风俗严重迫害妇女的身体与心灵 也就是说 [92] 领有莫高 窟 [55] 嘉祐1056年—1063年 后改为东京开封府 宋恭宗被俘 变法派人物被斥逐流
三角形的五心
易知 AQ =
垂心: 三角形三条高线所在的直线的交点.△ ABC 的垂心一般用字 母 H 表示,它具有如下的性质: (1)顶点与垂心连线必垂直对边,即 AH⊥BC,BH⊥AC,CH⊥AB。 (2)若 H 在△ABC 内,且 AH、BH、CH 分别与对边相交于 D、E、F, 则 A、F 、H、E;B 、D、H、F ;C、E、H 、D;B、C 、E、F;C 、A、F、 D;A、B、D 、E 共六组四点共圆. (3)△ABH 的垂心为 C,△BHC 的垂心为 A,△ACH 的垂心为 B. (4)三角形的垂心到任一顶点的距离等于外心到对边距离的 2 倍.
分析:设小圆圆心为 O1 ,⊙ O1 与△ABC 的外接圆切于 D,连 A O1 , 显然 A O1 ⊥PQ,且△ABC 为等腰三角形, 所以 A O1 过△ABC 的外接圆,D 在 A O1 的延 长线上,从而 O 为△ABC 的顶角∠BAC 的 平分线的点,下面只需证 OB 平分∠ABC. 为此,连接 OB、PD、QD,由对称性易知, OD 平分∠PDQ,而∠APQ=∠PDQ,PQ∥BC, 故∠APQ=∠ ABC,∠PDQ=∠ABC, 1 由 P、B、D、 O 四点共圆得∠PBO=∠PDO= ∠PDQ. 2 1 所以∠PBO= ∠ ABC.于是 O 为△ABC 的内心. 2 说明:本题还可证明 O 到△ABC 的三边距离相等.
2021初三集训队 第三讲 三角形的五心
2021初三集训队第三讲三角形的五心2021初三集训队第三讲三角形的五心2022春季北京科学训练队7级第三讲三角形五心默认外中心O内中心I垂直中心h重心g侧中心P内切线圆1.三角形abc内切圆与边的切点将边分成6个线段,用三角形三边长表示这六条线段。
2验证EB=EI,FG⊥ 人工智能3.内切圆半径r,求证三角形面积s=r(a?b?c)4.已知∠ace=∠cde=90°,点b在ce上,cb=cd,过a、c、d三AB点的圆与F点相交,证明F是点的中心△ CDE5.i是△abc的内心,且i、d、c、e四点共圆.若ed=2,试求id+ie的价值a6.如图所示,使锐角三角形顶点a的高度AE,并在AE上选择d,使DF通过内部切圆圆心.其中f是bc中点.求证ad长就是内切圆半径.a埃迪cbbcef7.右上图等腰三角形做外接圆,然后做一小圆与两腰及外接圆切线。
验证切线的中点是否为三角形的内部i1i28.做直角三角形斜边上的高,将直角三角形分为两个小三角形.分别做两个小三角形内心,求证过两内心一条直线和最大直角三角形的两个直角构成等腰直角三角形2021春季北京理科集训队七年级第三讲外接圆9.用外接圆半径与△abc内角表示出o到bc距离.10.如左图,boic四点共圆,求∠a.A.oibbc阿蒙克11.如右图,om=ma,bn=nc.∠abc=4∠omn,∠acb=6∠omn,求∠omn.12.如图所示△ ABC,ab=AC,将CA扩展到P,然后将ab扩展到Q,使AP=BQ,求证:△abc的外心o与a、p、q四点共圆.13.以o为中心△ ABC,我是你内心的中心△ ABC,R和R是△ 分别是ABC圆和内切圆的半径,求证:oi?r?2rr(欧拉定理)14.等腰△ ABC,BC=AC,O是它的外中心,I是它的内中心,D点在BC边上,OD⊥ Bi,验证:ID∥ac.外接圆15.△abc与bc相切的旁切圆半径ra,用三角形三边长与ra表示△abc面积.16.如图所示,制作△ ABC侧切圆和BC与D相切,切点EF线与PD相交f22于k,求证ak平分bc.用△abc三边长表示出sabc.s?Kbcpkbdcae2022春季北京科学训练队七年级三讲17.图中有六组四点共圆(如a、f、h、e;a、b、d、e等)及三组(每组四个)相准直角三角形;特殊ahhd=bhhe=chfh;18.垂直中心h关于三条边的对称点位于△ ABC;19.H、a、B和C中的任何一点都是由其他三点构成的三角形的垂直中心;20.△abc的内接三角形(即顶点在△abc的边上)中,以垂足△def(叫做垂足三最小的周长。
三角形的五心及相关习题.doc2
三角形的五心及相关习题三角形中有许多重要的特殊点,特别是三角形的“五心”,在解题时有很多应用,在本节中将分别给予介绍. 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 1、三角形的外心三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心).三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 2、三角形的内心三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 三角形的内心到三边的距离相等,都等于三角形内切圆半径. 内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp.特别的,在直角三角形中,有 r =12(a +b -c ).3、三角形的重心三角形的三条中线交于一点,这点称为三角形的重心.上面的证明中,我们也得到了以下结论:三角形的重心到边的中点与到相应顶点的距离之比为 1∶ 2. 4、三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心.斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.5、三角形的旁心三角形的一条内角平分线与另两个外角平分线交于一点,称为三角形的旁心(旁切圆圆心). 每个三角形都有三个旁切圆. A 类例题 例1 证明重心定理。
证法1 如图,D 、E 、F 为三边中点,设BE 、CF 交于G ,连接EF ,显然EF ∥=12BC ,由三角形相似可得GB =2GE ,GC =2GF .又设AD 、BE 交于G ',同理可证G 'B =2G 'E ,G 'A =2G 'D ,即G 、G '都是BE 上从B 到E 的三分之二处的点,故G '、G 重合.即三条中线AD 、BE 、CF 相交于一点G .证法2 设BE 、CF 交于G ,BG 、CG 中点为H 、I .连EF 、FH 、HI 、IE ,AB COABCDEFG AB CDEFI aIK HE FABCMABCDEFG因为EF ∥=12BC ,HI ∥=12BC , 所以 EFHI 为平行四边形.所以 HG =GE 、IG=GF ,GB =2GE ,GC =2GF .同证法1可知AG =2GD ,AD 、BE 、CF 共点. 即定理证毕.情景再现1.设G 为△ABC 的重心,M 、N 分别为AB 、CA 的中点,求证:四边形GMAN 和△GBC的面积相等.2.三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.B 类例题例3 过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N . 作点P 关于MN 的对称点P '.试证:P '点在△ABC 外接圆上.(杭州大学《中学数学竞赛习题》) 分析 分析点M 和N 的性质,即能得到解题思路。
三角形的五心性质以及典型问题
B C E D A 三角形的五心三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 一.三角形的外心 定理1:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 定理2:三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 定理3:锐角三角形的外心在三角形内;直角三角形的外心在斜边中点;钝角三角形的外心在三角形外.二.三角形的内心定理1:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 定理2:三角形的内心到三边的距离相等,都等于三角形内切圆半径. 定理3:内切圆半径r 的计算:设三角形面积为S ,并记p =12(a +b +c ),则r =Sp .特别的,在直角三角形中,有 r =12(a +b -c ).定理4:I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于N ,则有AI: IN=AB:BN=AC:CN=(AB+AC):BC 定理5:,2190A BIC ∠+=∠B CIA ∠+=∠2190 ,C AIB ∠+=∠2190 。
4.如图,在ABC ∆中,点D 、E 是ABC ∠,ACB ∠的三等分线的交点,当︒=∠60A 时,求BDE ∠度数三.三角形的重心三中线交于一点可用燕尾定理证明,十分简单。
(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)定理1:重心到顶点的距离与重心到对边中点的距离之比为2∶1。
定理2:重心和三角形3个顶点组成的3个三角形面积相等。
即重心到三条边的距离与三条边的长成反比。
定理3:重心到三角形3个顶点距离的平方和最小。
定理4:在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3。
7.证明ABC ∆的三条中线可以围成一个三角形,并求所围成的三角形与ABC ∆的面积之比AB COABCD EFG8.设K 是ABC ∆内任意一点,KAB ∆,KBC ∆,KCA ∆的重心分别为F E D ,,,求ABC DEF s S ∆∆:9.若ABC ∆的重心为G ,2=AG ,3=BG ,5=CG ,求ABC ∆的面积.四.三角形的垂心三角形的三条高交于一点,这点称为三角形的垂心. 斜三角形的三个顶点与垂心这四个点中,任何三个为顶点的三角形的垂心就是第四个点.所以把这样的四个点称为一个“垂心组”.三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。
【中考提分】三角形五心的经典考题
【中考提分】三角形五心的经典考题在数学中,三角形是一个非常重要的几何形状,它包含着许多有趣且具有挑战性的问题。
其中,三角形的五心问题是一个经典的考题,也是中考数学中常见的考点之一。
本文将围绕三角形五心的经典考题展开,解析其背后的数学原理。
三角形的五心指的是三角形内部的五个特殊点,它们分别是三角形的重心、垂心、外心、内心和旁心。
这五个点在三角形的几何中起着重要的作用,具有一些特殊的性质和关系。
下面,我们将逐个进行介绍。
首先,重心是指三角形三条中线的交点,记作G。
中线是指连接三角形的一个顶点与对边中点的线段。
重心是三角形的一个重要中心,它的坐标是三个顶点的坐标分别取平均值。
重心具有平衡性质,它将三角形分成三个面积相等的小三角形。
在求解三角形的面积或位置关系问题中,重心常常是一个有用的切入点。
接下来,垂心是指三角形三条高线的交点,记作H。
高线是指从三角形的一个顶点引出的垂直于对边的线段。
垂心具有一些特殊的性质,例如,它到三角形的三条边距离之积最小,也就是说,垂心到三角形三边的距离之和是最小的。
此外,垂心和三角形的顶点、对边中点三者共线。
垂心在解决三角形的垂心定理、外接圆和内切圆等问题中起着重要的作用。
第三,外心是指三角形外接圆的圆心,记作O。
外接圆是指可以完全包含三角形的一个圆。
外心具有一些特殊的性质,例如,它和三角形的顶点、中点三者共线,且共线的直线称为欧拉线。
此外,外心到三角形的三个顶点的距离相等,并且是三角形内部各点到三个顶点距离之和最小的点。
外心在解决三角形的外心定理、Euler定理等问题中起着重要的作用。
然后,内心是指三角形内切圆的圆心,记作I。
内切圆是指与三角形的三条边都相切的一个圆。
内心具有一些特殊的性质,例如,它和三角形的内角平分线三者共点,且这个点称为三角形的内心。
此外,内心到三角形的三边的距离相等,并且是三角形内部各点到三边距离之和最大的点。
内心在解决三角形的内心定理、塞瓦定理等问题中起着重要的作用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有关三角形五心的经典试题三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理. 例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》)分析:由已知可得MP ′=MP =MB ,NP ′=NP=NC ,故点M 是△P ′BP 的外心,点N 是△P ′PC 的外心.有∠BP ′P =21∠BMP =21∠BAC ,∠PP ′C =21∠PNC =21∠BAC .∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有 P ′B :P ′C =BP :PC .例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,△CSQ 的外心为顶点的三角形与△ABC 相似.(B ·波拉索洛夫《中学数学奥林匹克》)分析:设O 1,O 2,O 3是△APS ,△BQP ,△CSQ 的外心,作出六边形O 1PO 2QO 3S 后再由外心性质可知 ∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+∠O 2QO 3+∠O 3SO 1=360°将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3. ∴∠O 2O 1O 3=∠KO 1O 3=21∠O 2O 1K =21(∠O 2O 1S +∠SO 1K ) =21(∠O 2O 1S +∠PO 1O 2)=21∠PO 1S =∠A ;同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC . 二、重心三角形三条中线的交点,叫做三角形的重心.掌握重心将每A B C PP MN 'A B C QK P O O O ....S 123条中线都分成定比2:1及中线长度公式,便于解题.例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克)分析:设G 为△ABC 重心,直线PG 与AB,BC 相交.从A ,C ,D ,E ,F 分别 作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .两边各扩大3倍,有S △PBE =S △PAD +S △PCF .例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成的新三角形相似.其逆亦真.分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G 为重心,连DE到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF .(1)a 2,b 2,c 2成等差数列⇒△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有CF =2222221c b a -+, BE =2222221b ac -+, AD =2222221a cb -+. 将a 2+c 2=2b 2,分别代入以上三式,得 CF =a 23,BE =b 23,AD =c 23. ∴CF :BE :AD =a 23:b 23:c 23=a :b :c .故有△∽△′.(2)△∽△′⇒a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′,∴∆∆S S '=(aCF )2.据“三角形的三条中线围成的新三角形面积等于原三角形面积的43”,有∆∆S S '=43.AA 'F F 'GE E 'D 'C 'P C B D∴22aCF =43⇒3a 2=4CF 2=2a 2+b 2-c2⇒a 2+c 2=2b 2.三、垂心三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接)圆三角形,给我们解题提供了极大的便利.例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置.(1992,全国高中联赛) 分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径为R .由△A 2A 3A 4知13212sin H A A H A ∠=2R ⇒A 2H 1=2R cos ∠A 3A 2A 4; 由△A 1A 3A 4得A 1H 2=2R cos ∠A 3A 1A 4.但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2, 故得H 1H 2 A 2A 1.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2.(1989,加拿大数学奥林匹克训练题) 分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH2=r 2+(AM 2-MH 2), ①又AM 2-HM 2=(21AH 1)2-(AH -21AH 1)2 =AH ·AH 1-AH 2=AH 2·AB -AH 2=cos A ·bc -AH 2, ② 而ABH AH ∠sin =2R ⇒AH 2=4R 2cos 2A ,Aa sin =2R ⇒a 2=4R 2sin 2A . ∥=∥=.OA A A A 1234H H 12H H HM AB BA ABC CC F12111222D E∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③ 由①、②、③有A 21A =r 2+bca cb 2222-+·bc -(4R 2-a 2)=21(a 2+b 2+c 2)-4R 2+r 2. 同理,21BB =21(a 2+b 2+c 2)-4R 2+r 2,21CC =21(a 2+b 2+c 2)-4R 2+r 2.故有AA 1=BB 1=CC 1.四、内心三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用).例7.ABCD 为圆内接凸四边形,取△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.(1986,中国数学奥林匹克集训题)证明见《中等数学》1992;4例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF 中点P 是△ABC之内心.(B ·波拉索洛夫《中学数学奥林匹克》)分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢? 如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知AQ =αsin r . ∵QK ·AQ =MQ ·QN ,∴QK =AQQNMQ ⋅=αsin /)2(r rr R ⋅-=)2(sin r R -⋅α.由Rt △EPQ 知PQ =r ⋅αsin .∴PK =PQ +QK =r ⋅αsin +)2(sin r R -⋅α=R 2sin ⋅α. ∴PK =BK .α利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心三角形的一条内角平分线与另两个内角的外角平分线相交于A B C D O O O 234O 1AααMBCNE R OQFrP一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.例9.在直角三角形中,求证:r +r a +r b +r c =2p .式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,p 表示半周. (杭州大学《中学数学竞赛习题》)分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:p (p -c )=(p -a )(p -b ).∵p (p -c )=21(a +b +c )·21(a +b -c ) =41[(a +b )2-c 2]=21ab ;(p -a )(p -b )=21(-a +b +c )·21(a -b +c )=41[c 2-(a -b )2]=21ab .∴p (p -c )=(p -a )(p -b ). ① 观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p . 而r =21(a +b -c ) =p -c . ∴r +r a +r b +r c=(p -c )+(p -b )+(p -a )+p =4p -(a +b +c )=2p . 由①及图形易证.例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆半径.证明:11q r ·22q r =qr . (IMO -12)分析:对任意△A ′B ′C ′,由正弦定理可知OD =OA ′·2'sinA =A ′B ′·'''sin 2'sinB O A B ∠·2'sin A =A ′B ′·2''sin2'sin2'sin B A B A +⋅, Kr r r r O O O 213AOE CBabcA ...'B 'C 'OO 'EDO ′E = A ′B ′·2''sin2'cos 2'cosB A B A +. ∴2'2''B tg A tg E O OD =. 亦即有11q r ·22q r =2222Btg CNB tg CMA tgA tg ∠∠ =22B tg A tg=qr. 六、众心共圆这有两种情况:(1)同一点却是不同三角形的不同的心;(2)同一图形出现了同一三角形的几个心.例11.设在圆内接凸六边形ABCDFE 中,AB =BC ,CD =DE ,EF =FA .试证:(1)AD ,BE ,CF 三条对角线交于一点;(2)AB +BC +CD +DE +EF +FA ≥AK +BE +CF . (1991,国家教委数学试验班招生试题)分析:连接AC ,CE ,EA ,由已知可证AD ,CF ,EB 是△ACE 的三条内角平分线,I 为△ACE的内心.从而有ID =CD =DE , IF =EF =FA , IB =AB =BC .再由△BDF ,易证BP ,DQ ,FS 是它的三条高,I 是它的垂心,利用 不等式有:BI +DI +FI ≥2·(IP +IQ +IS ).不难证明IE =2IP ,IA =2IQ ,IC =2IS .∴BI +DI +FI ≥IA +IE +IC . ∴AB +BC +CD +DE +EF +FA=2(BI +DI +FI ) ≥(IA +IE +IC )+(BI +DI +FI )=AD +BE +CF .I 就是一点两心.例12.△ABC 的外心为O ,AB =AC ,D 是AB 中点,E 是△ACD 的重心.证明OE 丄CD . (加拿大数学奥林匹克训练题)分析:设AM 为高亦为中线,取AC 中点F ,E 必在DF 上且DE :EF =2:1.设CD 交AM 于G ,G 必为△ABC 重心. 连GE ,MF ,MF 交DC 于K .易证: DG :GK =31DC :(3121-)DC =2:1.∴DG :GK =DE :EF ⇒GE ∥MF .∵OD 丄AB ,MF ∥AB ,∴OD 丄MF ⇒OD 丄GE .但OG 丄DE ⇒G 又是△ODE 之垂心.Erdos ..I P AB CD E FQ SA B CD E F OKG易证OE 丄CD . 例13.△ABC 中∠C =30°,O 是外心,I 是内心,边AC 上的D 点与边BC 上的E 点使得AD =BE =AB .求证:OI 丄DE ,OI =DE .(1988,中国数学奥林匹克集训题)分析:辅助线如图所示,作∠DAO 平分线交BC 于K . 易证△AID ≌△AIB ≌△EIB ,∠AID =∠AIB =∠EIB . 利用内心张角公式,有∠AIB =90°+21∠C =105°,∴∠DIE =360°-105°×3=45°.∵∠AKB =30°+21∠DAO =30°+21(∠BAC -∠BAO )=30°+21(∠BAC -60°)=21∠BAC =∠BAI =∠BEI .∴AK ∥IE .由等腰△AOD 可知DO 丄AK ,∴DO 丄IE ,即DF 是△DIE 的一条高. 同理EO 是△DIE 之垂心,OI 丄DE . 由∠DIE =∠IDO ,易知OI =DE .例14.锐角△ABC 中,O ,G ,H 分别是外心、重心、垂心.设外心到三边距离和为d 外,重心到三边距离和为d 重,垂心到三边距离和为d 垂.求证:1·d 垂+2·d 外=3·d 重. 分析:这里用三角法.设△ABC 外接圆半径为1,三个内角记为A ,B , C . 易知d 外=OO 1+OO 2+OO 3 =cos A +co sB +cos C ,∴2d 外=2(cos A +cos B +cos C ). ① ∵AH 1=sin B ·AB =sin B ·(2sin C )=2sin B ·sin C , 同样可得BH 2·CH 3.∴3d 重=△ABC 三条高的和=2·(sin B ·sin C +sin C ·sin A +sin A ·sin B ) ② ∴BCHBHsin =2,∴HH 1=cos C ·BH =2·cos B ·cos C . 同样可得HH 2,HH 3. ∴d 垂=HH 1+HH 2+HH 3=2(cos B ·cos C +cos C ·cos A +cos A ·cos B ) ③ 欲证结论,观察①、②、③,O A BC DEFI K30°B C O IA O G H O G H GO G H 123112233须证(cos B ·cos C +cos C ·cos A +cos A ·cos B )+( cos A + cos B +cos C )=sin B ·sin C +sin C ·sin A +sin A ·sin B .即可.练 习 题1.I 为△ABC 之内心,射线AI ,BI ,CI 交△ABC 外接圆于A ′, B ′,C ′.则AA ′+BB ′+CC ′>△ABC 周长.(1982,澳大利 亚数学奥林匹克)2.△T ′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克)3.I 为△ABC 的内心.取△IBC ,△ICA ,△IAB 的外心O 1,O 2,O 3.求证:△O 1O 2O 3与△ABC 有公共的外心.(1988,美国数学奥林匹克)4.AD 为△ABC 内角平分线.取△ABC ,△ABD ,△ADC 的外心O ,O 1,O 2.则△OO 1O 2是等腰三角形.5.△ABC 中∠C <90°,从AB 上M 点作CA ,CB 的垂线MP ,MQ .H 是△CPQ 的垂心.当M 是AB 上动点时,求H 的轨迹.(IMO -7)6.△ABC 的边BC =21(AB +AC ),取AB ,AC 中点M ,N ,G 为重心,I 为内心.试证:过A ,M ,N 三点的圆与直线GI 相切.(第27届莫斯科数学奥林匹克)7.锐角△ABC 的垂心关于三边的对称点分别是H 1,H 2,H 3.已知:H 1,H 2,H 3,求作△ABC .(第7届莫斯科数学奥林匹克)8.已知△ABC 的三个旁心为I 1,I 2,I 3.求证:△I 1I 2I 3是锐角三角形.9.AB ,AC 切⊙O 于B ,C ,过OA 与BC 的交点M 任作⊙O 的弦EF .求证:(1)△AEF 与△ABC 有公共的内心;(2)△AEF 与△ABC 有一个旁心重合.。