电磁感应双杆模型(最新整理)

合集下载

高考物理复习 电磁感应杆模型

高考物理复习 电磁感应杆模型

5.最大速度vm 电容器充电量: Q0 CE
放电结束时电量: Q CU CBlvm
电容器放电电量: Q Q0 Q CE CBlvm
对杆应用动量定理:mvm BIl t BlQ
vm

m
BlCE B2l2C
题型五 电容放电式:
6.达最大速度过程中 的两个关系
v1=0时:电流最大,
Im

Blv0 R1 R2
v2=v1时:电流 I=0
3.两棒的运动情况
安培力大小:
两棒的相对速度变小,感应电 流变小,安培力变小.棒1做加 速度变小的加速运动,棒2做
加速度变小的减速运动,最 终两棒具有共同速度。
随着棒2的减速、棒1的加速,两棒 的相对速度v2-v1变小,回路中电流 也变小。
4.变化
(1)两棒都受外力作用
(2)外力提供方式变化
题型五 电容放电式:
4.最终特征:匀速运 动,但此时电容器带 电量不为零
1.电路特点 电容器放电,相当于电源;导体棒受安 培力而运动。
2.电流的特点 电容器放电时,导体棒在安培力作用下
开始运动,同时产生阻碍放电的反电动
势,导致电流减小,直至电流为零,此 时UC=Blv 3.运动特点 a渐小的加速运动,最终做匀速运动。
1.电路特点:导体棒相当于电源。
6、三个规律
2.安培力的特点:安培力为阻力, 并随速度减小而减小。
(1)能量关系:
1 2
mv02

0

Q,
QR Qr
F BIL B2l2v Rr
(2)动量关系:BIl t 0 mv0 q n Bl s

R r

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型

电磁感应中的“杆+导轨”模型电磁感应中的“杆+导轨”模型一、单棒模型阻尼式:在单棒模型中,导体棒相当于电源,根据洛伦兹力的公式,可以得到安培力的特点为阻力,并随速度减小而减小,加速度随速度减小而减小,最终状态为静止。

根据能量关系、动量关系和瞬时加速度,可以得到公式B2l2v R rF和q mv/Bl,其中q表示流过导体棒的电荷量。

需要注意的是,当有摩擦或者磁场方向不沿竖直方向时,模型的变化会受到影响。

举例来说,如果在电阻不计的光滑平行金属导轨固定在水平面上,间距为L、导轨左端连接一阻值为R的电阻,整个导轨平面处于竖直向下的磁感应强度大小为B的匀强磁场中,一质量为m的导体棒垂直于导轨放置,a、b之间的导体棒阻值为2R,零时刻沿导轨方向给导体棒一个初速度v,一段时间后导体棒静止,则零时刻导体棒的加速度为0,零时刻导体棒ab两端的电压为BLv,全过程中流过电阻R的电荷量为mv/Bl,全过程中导体棒上产生的焦耳热为0.二、发电式在发电式中,导体棒同样相当于电源,当速度为v时,电动势E=Blv。

根据安培力的特点,可以得到公式22Blv/l=Blv/(R+r)。

加速度随速度增大而减小,最终特征为匀速运动。

在稳定后的能量转化规律中,F-BIl-μmg=m*a,根据公式可以得到a=-(F-μmg)/m、v=0时,有最大加速度,a=0时,有最大速度。

需要注意的是,当电路中产生的焦耳热为mgh时,电阻R中产生的焦耳热也为mgh。

1.如图所示,相距为L的两条足够长的光滑平行金属导轨MN、PQ与水平面的夹角为θ,N、Q两点间接有阻值为R的电阻。

整个装置处于磁感应强度为B的匀强磁场中,磁场方向垂直导轨平面向下。

将质量为m、阻值也为R的金属杆cd垂直放在导轨上,杆cd由静止释放,下滑距离x时达到最大速度。

重力加速度为g,导轨电阻不计,杆与导轨接触良好。

求:1)杆cd下滑的最大加速度和最大速度;2)上述过程中,杆上产生的热量。

电磁感应应中的双杆模型

电磁感应应中的双杆模型

双杆金属棒在磁场中滑轨上运动归类例析:一、问题分析这类问题常规的要用到能量观点,求解能的转化,常见的有机械能能间转移,机械能向电能转化,电能向内能即系统内能转化。

常用到一种平衡一一回路中的1=0,而不是两棒的速度相等。

当两导轨平行时,系统动量守恒,稳定态为两棒速度相等;若两导轨不平行,系统(两棒)受合力不为0,动量不守恒,这时稳定态为两棒运动通过的①相同,即1=0( △①=0),两棒的速度比与两棒对应有效长成反比关系,这一点有些学生受思维定势影响,套用结论,从而导致错误•二、问题分类A.两根棒,无其它力:例1.如图所示,光滑水平导轨间距为L,电阻不计,处在竖直方向的匀强磁场中,磁感应强度为B,质量均为m,电阻均为R的导体棒ab和cd静止于导轨上,若给 ab棒一个水平向右的瞬时冲量I,求两导体棒最终的运动速度。

例2.如图所示,固定于同一水平面内的光滑平行金属导轨分为两段且相连,AB段的宽为CD段宽的2倍,BC两侧两段导轨足够长且处在竖直方向的同一匀强磁场B中,两质量均为m的直金属棒a、b分别放在AB、CD段且均与导轨垂直。

现给 a施以作用时间极短的冲击,使其获得大小为V。

的初速度。

求;(1)若a、b距离两端导轨的连接处 BC足够远,则a在AB段上,b在CD段上的最终速度各为多大?(2)从a获得的初速度 V0到a和b达到上述最终速度的过程中,系统中产生的热量是多少?(3)如果a和b分别在AB段和CD段上达到上述最终速度后进入同一段导轨AB或CD 上且永不相碰,则 a和b在AB或CD上的最终速度各为多大?B.两根棒,受其它力:(3) ab 杆和cd 杆的瞬时速度 V ab 与V cd 大小关系怎样?练习:1.杆平行的金属导轨,固定在同一水平面上,磁感强度B = 0.50T 的匀强磁场与导轨所在平 面垂直,导轨的电阻很小,可不计。

导轨间的距离I = 0.20m 。

两根质量均为 m = 0.10kg的平行杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电 阻R=0.50 Q, t = 0时刻,两杆都处于静止状态。

电磁感应中的双杆问题

电磁感应中的双杆问题

匀速运动,v
m=m
gRsin B2L2
α
(2)双杆模型 ①模型特点 a.一杆切割时,分析同单杆类似。 b.两杆同时切割时,回路中的感应电动势由两杆共同决定,E=ΔΔΦt =Bl(v1-v2)。
a.初速度不为零,不受其他水平外力的作用 光滑的平行导轨
光滑不等距导轨
示意图
质量m1=m2电阻r1=r2长度L1= L2
第四章 电磁感应
电磁感应中的双杆问题
模型一(v0≠0) 模型二(v0=0) 模型三(v0=0) 模型四(v0=0)
示 意 图
单 杆 ab 以 一 定 初速度 v0 在光 滑水平轨道上
轨道水平光 滑,单杆 ab 质 量为 m,电阻
轨道水平光 滑,单杆 ab 质 量为 m,电阻 不计,两导轨
轨道水平光 滑 , 单 杆 aห้องสมุดไป่ตู้ 质量为 m,电 阻不计,两导
E = BLv↑ ⇒ I↑⇒安培力 F 安=BIL↑,由 F -F 安=ma 知 a↓ ,当 a = 0
⇒感应电动势 E=BLv↑, 经过 Δt 速度为 v+Δv,此时 感 应 电 动 势 E′ = BL(v + Δv),Δt 时间内流入电容器的 电荷量 Δq=CΔU=C(E′-
E)=CBLΔv,电流 I=ΔΔqt = CBLΔΔvt =CBLa,安培力 F 安
⑵整个运动过程中感应电流
最多产生了多少热量;
⑶当杆A2与杆A1的速度比为 1∶3时,A2受到的安培力大小。
3.如图所示,两根平行的金属导轨,固定在同一水平面上, 磁感应强度B=0.50T的匀强磁场与导轨所在平面垂直,导 轨的电阻很小,可忽略不计。导轨间的距离l=0.20m。两 根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无 摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆 的电阻为R=0.50Ω。在t=0时刻,两杆都处于静止状态。 现有一与导轨平行、大小为0.20N的恒力F作用于金属杆 甲上,使金属杆在导轨上滑动。经过t=5.0s,金属杆甲的 加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?

电磁感应中的双导体棒和线框模型(解析版)-2024届新课标高中物理模型与方法

电磁感应中的双导体棒和线框模型(解析版)-2024届新课标高中物理模型与方法

2024版新课标高中物理模型与方法电磁感应中的双导体棒和线框模型目录一.无外力等距双导体棒模型二.有外力等距双导体棒模型三.不等距导轨双导体棒模型四.线框模型一.无外力等距双导体棒模型【模型如图】1.电路特点棒2相当于电源;棒1受安培力而加速起动,运动后产生反电动势.2.电流特点:I =Blv 2−BLv 1R 1+R 2=Bl (v 2−v 1)R 1+R 2随着棒2的减速、棒1的加速,两棒的相对速度v 2−v 1变小,回路中电流也变小。

v 1=0时:电流最大,I =Blv 0R 1+R 2。

v 1=v 2时:电流 I =03.两棒的运动情况安培力大小:F 安=BIl =B 2L 2(v 2−v 1)R 1+R 2两棒的相对速度变小,感应电流变小,安培力变小.棒1做加速度变小的加速运动,棒2做加速度变小的减速运动,最终两棒具有共同速度。

4.两个规律(1)动量规律:两棒受到安培力大小相等方向相反,系统合外力为零,系统动量守恒.m 2v 0=(m 1+m 2)v 共(2)能量转化规律:系统机械能的减小量等于内能的增加量.(类似于完全非弹性碰撞)Q =12m 2v 20−12(m 1+m 2)v 2共两棒产生焦耳热之比:Q 1Q 2=R 1R 2;Q =Q 1+Q 25.几种变化:(1)初速度的提供方式不同(2)磁场方向与导轨不垂直(3)两棒都有初速度(两棒动量守恒吗?)(4)两棒位于不同磁场中(两棒动量守恒吗?)1(2023春·江西赣州·高三兴国平川中学校联考阶段练习)如图所示,MN 、PQ 是相距为0.5m 的两平行光滑金属轨道,倾斜轨道MC 、PD 分别与足够长的水平直轨道CN 、DQ 平滑相接。

水平轨道CN 、DQ 处于方向竖直向下、磁感应强度大小为B =1T 的匀强磁场中。

质量m =0.1kg 、电阻R =1Ω、长度L =0.5m 的导体棒a 静置在水平轨道上,与a 完全相同的导体棒b 从距水平轨道高度h =0.2m 的倾斜轨道上由静止释放,最后恰好不与a 相撞,运动过程中导体棒a 、b 始终与导轨垂直且接触良好,导轨电阻不计,重力加速度g 取10m/s 2。

第四章电磁感应专题5—电磁感应双杆模型

第四章电磁感应专题5—电磁感应双杆模型

第四章电磁感应专题(五)一电磁感应双杆模型课堂探究练•班级:_______ 姓名:_________________示意图规律分析光滑的平行导轨不光滑平行导轨Z摩擦力F fi = F f2质量m i = m2长度L1= L电阻r i= 3长度L i = L开始时,若F <2F f,则PQ杆先变加速后匀速运开始时,两杆做变加速运动;稳定质量m i= m2电阻时,两杆以相同的加速度做匀加速动;MN杆静止.若F>2F f, PQ杆先变加速后匀加运动速运动,MN杆先静止后变加速最后和PQ杆同时做匀加速运动,且加速度相同例1 •间距为L=2m的足够长的金属直角导轨如图3所示放置,它们各有一边在同一水平面内,另一边垂直于水平面•质量均为m= 0.1 kg的金属细杆ab、cd与导轨垂直放置形成闭合回路•细杆与导轨之间的动摩擦因数均为尸0.5,导轨的电阻不计,细杆ab、cd接入电路的电阻分别为R1= 0.6 Q, R = 0.4 Q整个装置处于磁感应强度大小为B= 0.50 T、方向竖直向上的匀强磁场中(图中未画出).当ab杆在平行于水平导轨的拉力F作用下从静止开始沿导轨匀加速运动时,cd杆也同时从静止开始沿导轨向下运动,且t= 0时,F = 1.5 N. g= 10 m/s2.(1) 求ab杆的加速度a的大小;(2) 求当cd杆达到最大速度时ab杆的速度大小;(3) 若从开始到cd杆达到最大速度的过程中拉力F做的功为5.2 J,求该过程中ab杆所产生的焦耳热例2•如图所示,平行倾斜光滑导轨与足够长的平行水平光滑导轨平滑连接,导轨电阻不计。

质量分别为生碰撞。

重力加速度为 g ,求:绝缘棒a 与金属棒b 发生弹性正碰后分离时两棒的速度大小; 金属棒b 进入磁场后,其加速度为其最大加速度的一半时的速度大小;例3•两根足够长的固定的平行金属导轨位于同一水平面内, 两导轨间的距离为I 。

导轨上面横放着两根导体棒ab 和cd ,构成矩形回路,如图所示。

(完整版)电磁感应中双杆模型问题答案

(完整版)电磁感应中双杆模型问题答案

电磁感应中双杆模型问题一、在竖直导轨上的“双杆滑动”问题1.等间距型如图1所示,竖直放置的两光滑平行金属导轨置于垂直导轨向里的匀强磁场中,两根质量相同的金属棒a 和b 和导轨紧密接触且可自由滑动,先固定a ,释放b ,当b 速度达到10m/s 时,再释放a ,经1s 时间a 的速度达到12m/s ,则:A 、 当va=12m/s 时,vb=18m/sB 、当va=12m/s 时,vb=22m/sC 、若导轨很长,它们最终速度必相同D 、它们最终速度不相同,但速度差恒定【解析】因先释放b ,后释放a ,所以a 、b 一开始速度是不相等的,而且b 的速度要大于a 的速度,这就使a 、b 和导轨所围的线框面积增大,使穿过这个线圈的磁通量发生变化,使线圈中有感应电流产生,利用楞次定律和安培定则判断所围线框中的感应电流的方向如图所示。

再用左手定则判断两杆所受的安培力,对两杆进行受力分析如图1。

开始两者的速度都增大,因安培力作用使a 的速度增大的快,b 的速度增大的慢,线圈所围的面积越来越小,在线圈中产生了感应电流;当二者的速度相等时,没有感应电流产生,此时的安培力也为零,所以最终它们以相同的速度都在重力作用下向下做加速度为g 的匀加速直线运动。

在释放a 后的1s 内对a 、b 使用动量定理,这里安培力是个变力,但两杆所受安培力总是大小相等、方向相反的,设在1s 内它的冲量大小都为I ,选向下的方向为正方向。

当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者大小相等。

释放棒后,经过时间t ,分别以和为研究对象,根据动量定理,则有:对a 有:( mg + I ) · t = m v a0, 对b 有:( mg - I ) · t = m v b -m v b0联立二式解得:v b = 18 m/s ,正确答案为:A 、C 。

在、棒向下运动的过程中,棒产生的加速度,棒产生的加速度。

电磁感应之双杆模型

电磁感应之双杆模型

在释放a后的1s内对a、b使用动量定理,这里安培力是个变力,
但两杆所受安培力总是大小相等、方向相反的,设在1s内它的冲
量大小都为I,选向下的方向为正方向。
当棒先向下运动时,在和以及导轨所组成的闭合回路中产生感应
电流,于是棒受到向下的安培力,棒受到向上的安培力,且二者
大小相等。释放棒后,经过时间t,分别以和为研究对象,根据

加速运动 加速运动
速 度 图 象
解 动量守恒定律, 动量定理,能量 动量定理,能量 动量定理,能
题 能量守恒定律及 守恒定律及电磁 守恒定律及电 量守恒定律及
策 电磁学、运动学 学、运动学知识 磁学、运动学 电磁学、运动

知识
知识
学知识
问电 题磁
单棒问题
感 应 受力情况分析 动力学观点

动量观点
两 个 极
最大电流
当v1=0时:
Im
Blv0 R1 R2
值 最小电流 当v2=v1时: I=0
3.两棒的运动情况特点
v0
安培力大小:FB
BIl
B2l 2( v2 v1 R1 R2
)
1
2
两棒的相对速度变小,感应电流变小,安培力变小.
棒1做加速度变小的加速运动
棒2做加速度变小的减速运动
v
最终两棒具有共同速度
5、特别提醒:一定不要忘记画出速度图象, 可以很好的分析其中的过程。
类 水平导轨,无水 不等间距导轨无 水平导轨,受 竖直导轨
型 平外力
水平外力
水平外力
终 两导体棒以相同 两导体棒以不同 两导体棒以不 两导体棒以相
态 的速度做匀速运 的速度做匀速运 同的速度做加 同的速度做加

高考物理电磁感应双杆模型(答案)

高考物理电磁感应双杆模型(答案)

1、双杆所在轨道宽度相同一一常用动量守恒求稳定速度1.两根足够长的固定的平行金属导轨位于同一水平面内,两 导轨间的距离为L 。

导轨上面横放着两根导体棒 ab 和cd ,构 成矩形回路,如图所示•两根导体棒的质量皆为m 电阻皆为R,回路中其余部分的电阻可不计•在整个导轨平面内都有竖 直向上的匀强磁场,磁感应强度为B.设两导体棒均可沿导轨 无摩擦地滑行•开始时,棒cd 静止,棒ab 有指向棒cd 的初速度V o .若两导体棒在运动中始终不接触,求: (1 )在运动中产生的焦耳热最多是多少.(2)当ab 棒的速度变为初速度的 3/4时,cd 棒的加速度是 多少?解析:ab 棒向cd 棒运动时,磁通量变小,产生感应电流. ab 棒受到与运动方向相反的安培力作用作减速运动, cd 棒则在安培力作用下作加速运动.在ab 棒的速度大于cd 棒的速度时,回路总有感应电流, ab 棒继续减速,cd 棒继续加速.临 界状态下:两棒速度达到相同后,回路面积保持不变,磁通 量不变化,不产生感应电流,两棒以相同的速度 v 作匀速运动. (1)从初始至两棒达到速度相同的过程中, 两棒总动量守恒,有mv ° =2mv根据能量守恒,整个过程中产生的总热量 Q = —mv (2 - —(2m)v^ —mv 22 2 4(2) 设ab 棒的速度变为初速度的 3/4时,cd 棒的速度为V 1, 则由动量守恒可知:3mv 0二m —v 0 mv 1。

此时回路中的感应电动势和感应电流43 E分别为:E =( v 0「vJBL , | 。

此时cd 棒所受的安4 2R培力:F = IBL ,所以cd 棒的加速度为 a=Fm【解析】丄一下滑进入磁场后切割磁感线,在 C L ;电路中产 生感应电流,一二'、二'各受不同的磁场力作用而分别作变减 速、变加速运动,电路中感应电流逐渐减小,当感应电流为 零时,"、J不再受磁场力作用,各自以不同的速度匀速 滑动。

2025高考物理总复习电磁感应中的“杆—轨道”模型

2025高考物理总复习电磁感应中的“杆—轨道”模型
图2
解析 设导轨间距为 L,释放后电容器充电,电路中有充电电 流 i,棒受到向上的安培力,设瞬时加速度为 a,根据牛顿第二 定律得 mg-iLB=ma,i=ΔΔQt =C·ΔΔtU=C·BΔLtΔv=CBLa,由此 得 mg-BL·CBLa=ma,解得 a=m+mBg2L2C,可见棒的加速度 不变,做匀加速直线运动,v=at,Uab=BLv=BLat,故 A、C 错误;Ek=21mv2=12m×2ax,故 B 正确;q=CUab=BCLat,与时间成正比,而 棒做匀加速运动,故与位移不是正比关系,故 D 错误。
加速运动,稳定时,两杆的加速 变加速运动,稳定时,两杆的
度均为零,以相等的速度做匀速 加速度均为零,两杆的速度之
运动
比为1∶2
2.初速度为零,一杆受到恒定水平外力 光滑的平行导轨
不光滑平行导轨
示 意 质量m1=m2 图 电阻r1=r2
长度L1=L2
摩擦力Ff1=Ff2 质量m1=m2 电阻r1=r2 长度L1=L2
析 v↓⇒F↓⇒a↓,当 v=0 速度 a↓,当 E 感= -F 安=ma 知 a↓, 安培力 F 安=ILB=CB2L2a
时,F=0,a=0,杆保 持静止
E 时,v 最大,且 vm =BEL
当 a=0 时,v 最大, F-F
vm=BF2RL2
安=ma,a=m+BF2L2C,所以杆
以恒定的加速度做匀加速运动
第十一章 电磁感应
增分微点10 电磁感应中的“杆—轨道”模型
一、“单杆+导轨”模型 “单杆+导轨”模型的四种典型情况(不计单杆的电阻)
v0≠0、 轨道水平光滑
示 意 图
v0=0、轨道水平光滑
运 动 分
导体杆以速度 v 切割磁

电磁感应单双杆模型总结表格

电磁感应单双杆模型总结表格
5
双杆模型(两金属杆垂直且等长)
感应电流I
I=Bdv/R
6
双杆模型(两金属杆垂直且不等长)
感应电流I
I=B(d1v1-d2v2)/R
以上为电磁感应单双杆模型的总结表格,涵盖了各种不同的情况下的物理量和表达式。这些模型在物理教学中具有重要意义,有助于学生深入理解电磁感应现象和相关物理规律。
电磁感应单双杆模型总结表格
序号
模型名称
物理量
表达式
1
单杆模型(闭合电路切割磁感线)
感应电动势E
E=BLv
2
单杆模型(部分导体切割磁感线)
感应电动势E
E)
感应电流I
I=BLv/R
4
双杆模型(两金属杆平行且不等长)
感应电流I
I=B(L1v1-L2v2)/R

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”

高中物理-电磁感应中的“双杆模型”“双杆”模型分为两类:一类是“一动一静”,甲杆静止不动,乙杆运动,其实质是单杆问题,不过要注意问题包含着一个条件:甲杆静止、受力平衡.另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减.一、平行导轨:不受其他外力作用光滑平行导轨光滑不等距导轨示意图质量m1=m2 电阻r1=r2 长度L1=L2质量m1=m2电阻r1=r2长度L1=2L2规律分析杆MN做变减速运动,杆PQ做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动稳定时,两杆的加速度均为零,两杆的速度之比为1∶2(2015·高考四川卷)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef 棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触,不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.[解析](1)设ab棒的初动能为E k,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=E k①且W=W1②由题意有E k=12m v21③得W=14m v21.④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势平均值为E,ab棒中的电流为I,通过ab棒某横截面的电荷量为q,则甲E=ΔΦΔt⑤且ΔΦ=BΔS⑥I=qΔt⑦又有I=2ER⑧由图甲所示ΔS=d(L-d cot θ)⑨联立⑤~⑨,解得q=2Bd(L-d cot θ)R.⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长L x为L x=L-2x cot θ⑪此时,ab棒产生的电动势E x为E x=B v2L x⑫流过ef棒的电流I x为I x=E xR⑬ef棒所受安培力F x为F x=BI x L⑭联立⑪~⑭,解得F x=B2v2LR(L-2x cot θ)⑮由⑮式可得,F x在x=0和B为最大值B m时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图乙所示,图中f m为最大静摩擦力,有F1cos α=mg sin α+μ(mg cos α+F1sin α)⑯联立⑮⑯,得B m=1Lmg(sin α+μcos α)R(cos α-μsin α)v2⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也可竖直向下.乙丙由⑮式可知,B为B m时,F x随x增大而减小,x为最大x m时,F x为最小值F2,如图丙可知F2cos α+μ(mg cos α+F2sin α)=mg sin α⑱联立⑮⑰⑱,得x m =μL tan θ(1+μ2)sin αcos α+μ.[答案]见解析二、平行导轨:一杆受恒定水平外力作用光滑平行导轨不光滑平行导轨示意图质量m1=m2电阻r1=r2长度L1=L2摩擦力F f1=F f2=F f 质量m1=m2电阻r1=r2长度L1=L2规律分析开始时,两杆做变加速运动;稳定时,两杆以相同的加速度做匀变速运动开始时,若F f<F≤2F f,则PQ杆先变加速后匀速,MN杆一直静止;若F>2F f,PQ杆先变加速,MN后做变加速最后两杆做匀速运动如图所示,两条平行的金属导轨相距L=1 m,水平部分处在竖直向下的匀强磁场B1中,倾斜部分与水平方向的夹角为37°,处于垂直于斜面的匀强磁场B1中,B1=B2=0.5 T.金属棒MN和PQ的质量均为m=0.2 kg,电阻R MN=0.5 Ω、R PQ=1.5 Ω.MN置于水平导轨上,PQ置于倾斜导轨上,刚好不下滑.两根金属棒均与导轨垂直且接触良好.从t=0时刻起,MN棒在水平外力F的作用下由静止开始向右运动,MN棒的速度v与位移x满足关系v=0.4x.不计导轨的电阻,MN始终在水平导轨上运动,MN与水平导轨间的动摩擦因数μ=0.5.(1)问当MN棒运动的位移为多少时PQ刚要滑动?(2)求从t=0到PQ刚要滑动的过程中通过PQ棒的电荷量;(3)定性画出MN受的安培力随位移变化的图象,并求出MN从开始到位移x1=5 m的过程中外力F做的功.[解析](1)开始PQ刚好不下滑时,PQ受沿倾斜导轨向上的最大静摩擦力F fm,则F fm=mg sin 37°设PQ刚好要向上滑动时,MN棒的感应电动势为E,由法拉第电磁感应定律E=B1L v设电路中的感应电流为I,由闭合电路的欧姆定律得I=ER MN+R PQ设PQ所受安培力为F A,有F A=B2IL此时PQ受沿倾斜导轨向下的最大静摩擦力,由力的平衡条件有:F A=F fm+mg sin 37°又由v=0.4x,联立解得x=48 m.(2)在从t=0到PQ刚要滑动的过程中,穿过回路MNQP的磁通量的变化量ΔΦ=B1Lx=0.5×1×48 Wb=24 Wb通过PQ棒的电荷量q=I·t=ER MN+R PQ·t=ΔΦR MN+R PQ=240.5+1.5C=12 C.(3)回路中的电流I=B1L vR MN+R PQ,MN受到的安培力F A=B1IL,又v=0.4x,故推出F A=0.4xB21L2R MN+R PQ因此MN受的安培力与位移x成正比,故画出如图所示的安培力—位移图象.考虑到MN受的安培力与位移方向相反,故安培力与位移图象包围的面积等于克服安培力做的功,故安培力对MN做功W A=-12·0.4x1B21L2R MN+R PQx1=-0.625 J当x1=5 m时,速度v1=0.4x1=0.4×5 m/s=2 m/s对MN棒由动能定理:W F-μmgx1+W A=12m v21-0故W F=12m v21+μmgx1-W A=⎝⎛⎭⎫12×0.2×22+0.5×0.2×10×5+0.625J=6.025 J.[答案](1)48 m(2)12 C(3)6.025 J三、倾斜导轨:两杆不受外力作用注意双杆之间的制约关系,即“主动杆”与“被动杆”之间的关系,因为两杆都有可能产生感应电动势,相当于两个电源,并且最终两杆的收尾状态的确定是分析问题的关键.(2014·高考天津卷)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2.问:(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.[审题点睛] (1)ab 刚好不下滑,隐含F fm =mg sin θ,方向沿斜面向上,ab 刚要向上滑动时,隐含F 安=F fm +mg sin θ,摩擦力方向沿斜面向下.(2)由于ab 中的电流变化,产生的热量要用功能关系(能量守恒)结合电路知识求解.[解析] (1)由右手定则可判断出cd 中的电流方向为由d 到c ,则ab 中电流方向为由a 流向b . (2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大静摩擦力,设其为F max ,有F max =m 1g sin θ① 设ab 刚要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BL v ② 设电路中的感应电流为I ,由闭合电路欧姆定律有 I =ER 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大静摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤ 综合①②③④⑤式,代入数据解得v =5 m/s.(3)设cd 棒运动过程中在电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2又Q =R 1R 1+R 2Q 总解得Q =1.3 J.[答案] (1)由a 流向b (2)5 m/s (3)1.3 J 四、倾斜导轨:一杆受到外力作用(2016·浙江金华高三质检)如图所示,两根足够长的光滑平行金属导轨MN 、PQ 间距为l =0.5 m ,其电阻不计,两导轨及其构成的平面均与水平面成30°角.完全相同的两金属棒ab 、cd 分别垂直导轨放置,每棒两端都与导轨始终有良好接触,已知两棒质量均为m =0.02 kg ,电阻均为R =0.1 Ω,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度B =0.2 T ,棒ab 在平行于导轨向上的力F 作用下,沿导轨向上匀速运动,而棒cd 恰好能够保持静止,取g =10 m/s 2,问:(1)通过棒cd 的电流I 是多少,方向如何? (2)棒ab 受到的力F 多大?(3)棒cd 每产生Q =0.1 J 的热量,力F 做的功W 是多少?[解析] (1)棒cd 受到的安培力F cd =IlB棒cd 在共点力作用下受力平衡,则F cd =mg sin 30° 代入数据解得I =1 A根据楞次定律可知,棒cd 中的电流方向由d 至c . (2)棒ab 与棒cd 受到的安培力大小相等,F ab =F cd 对棒ab ,由受力平衡知F =mg sin 30°+IlB 代入数据解得F =0.2 N.(3)设在时间t 内棒cd 产生Q =0.1 J 的热量,由焦耳定律知Q =I 2Rt设棒ab 匀速运动的速度大小为v ,其产生的感应电动势E =Bl v ,由闭合电路欧姆定律知,I =E2R由运动学公式知在时间t 内,棒ab 沿导轨的位移 x =v t力F 做的功W =Fx综合上述各式,代入数据解得W =0.4 J. [答案] (1)1 A 方向由d 至c (2)0.2 N (3)0.4 J 五、竖直导轨如图是一种电磁驱动电梯的原理图,竖直平面上有两根很长的平行竖直轨道,轨道间有垂直轨道平面的匀强磁场B 1和B 2,B 1=B 2=1 T ,且B 1和B 2的方向相反,两磁场始终竖直向上做匀速运动.电梯桥厢(未在图中画出)固定在一个用超导材料制成的金属框abdc 内,并且与之绝缘.电梯载人时的总质量为5×103 kg ,所受阻力f =500 N ,金属框垂直轨道的边长L cd =2m ,两磁场沿轨道的宽度均与金属框的竖直边长L ac 相同,金属框整个回路的电阻R =9.5×10-4Ω,若设计要求电梯以v 1=10 m/s 的速度向上匀速运动,取g =10 m/s 2,那么 (1)磁场向上运动速度v 0应该为多大?(2)在电梯向上做匀速运动时,为维持它的运动,外界对系统提供的总功率为多少?(保留三位有效数字)[解析] (1)当电梯向上做匀速运动时,安培力等于重力和阻力之和,所以 F A =mg +f =50 500 N金属框中感应电流大小为 I =2B 1L cd (v 0-v 1)R金属框所受安培力F A =2B 1IL cd 解得v 0=13 m/s.(2)当电梯向上做匀速运动时,由第(1)问中的I =2B 1L cd (v 0-v 1)R ,求出金属框中感应电流I =1.263×104 A金属框中的焦耳热功率P 1=I 2R =1.51×105 W 有用功率为克服电梯重力的功率 P 2=mg v 1=5×105 W阻力的功率为P 3=f v 1=5×103W电梯向上运动时,外界提供的能量,一部分转变为金属框内的焦耳热,另一部分克服电梯的重力和阻力做功.因而外界对系统提供的总功率P 总=P 1+P 2+P 3=6.56×105W. [答案] (1)13 m/s (2)6.56×105 W1.(多选)如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F /3D .两金属棒间距离保持不变解析:选BC.对两金属棒ab 、cd 进行受力分析和运动分析可知,两金属棒最终将做加速度相同的匀加速直线运动,且金属棒ab 速度小于金属棒cd 速度,所以两金属棒间距离是变大的,由楞次定律判断金属棒ab 上的电流方向由b 到a ,A 、D 错误,B 正确;以两金属棒整体为研究对象有:F =3ma ,隔离金属棒cd 分析其受力,则有:F -F 安=ma ,可求得金属棒cd 所受安培力的大小F 安=23F ,C 正确.2.(多选)(2016·唐山模拟)如图所示,水平传送带带动两金属杆a 、b 匀速向右运动,传送带右侧与两光滑平行金属导轨平滑连接,导轨与水平面间夹角为30°,两虚线EF 、GH 之间有垂直导轨平面向下的匀强磁场,磁感应强度为B ,磁场宽度为L ,两金属杆的长度和两导轨的间距均为d ,两金属杆质量均为m ,两杆与导轨接触良好.当金属杆a 进入磁场后恰好做匀速直线运动,当金属杆a 离开磁场时,金属杆b 恰好进入磁场,则( )A .金属杆b 进入磁场后做加速运动B .金属杆b 进入磁场后做匀速运动C .两杆在穿过磁场的过程中,回路中产生的总热量为mgLD .两杆在穿过磁场的过程中,回路中产生的总热量为mgL2解析:选BC.两杆从导轨顶端进入磁场过程中,均只有重力做功,故进入磁场时速度大小相等,金属杆a 进入磁场后匀速运动,b 进入磁场后,a 离开磁场,金属杆b 受力与金属杆a 受力情况相同,故也做匀速运动,A 项错,B 项正确;两杆匀速穿过磁场,减少的重力势能转化为回路的电热,即Q =2mgL sin 30°=mgL ,C 项正确,D 项错.3.(多选)如图所示,光滑平行的金属导轨宽度为L ,与水平方向成θ角倾斜固定,导轨之间充满了垂直于导轨平面的足够大的匀强磁场,磁感应强度为B ,在导轨上垂直导轨放置着质量均为m 、电阻均为R 的金属棒a 、b ,二者都被垂直于导轨的挡板挡住保持静止,金属导轨电阻不计,现对b 棒施加一垂直于棒且平行于导轨平面向上的牵引力F ,并在极短的时间内将牵引力的功率从零调为恒定的功率P .为了使a 棒沿导轨向上运动,P 的取值可能为(重力加速度为g )( )A.2m 2g 2RB 2L 2·sin 2θB .3m 2g 2RB 2L 2·sin 2θC.7m 2g 2RB 2L2·sin 2θ D .5m 2g 2RB 2L2·sin 2θ解析:选CD.以b 棒为研究对象,由牛顿第二定律可知F -mg sin θ-BL v2R BL =ma ,以a 棒为研究对象,由牛顿第二定律可知BL v 2R BL -mg sin θ=ma ′,则F >2mg sin θ,v >2Rmg sin θB 2L 2,故P =F v >4m 2g 2R B 2L 2sin 2θ,由此可得选项C 、D 正确,选项A 、B 错误.4.如图所示,竖直平面内有平行放置的光滑导轨,导轨间距为l =0.2 m ,电阻不计,导轨间有水平方向的匀强磁场,磁感应强度大小为B =2 T ,方向如图所示,有两根质量均为m =0.1 kg ,长度均为l =0.2 m ,电阻均为R =0.4 Ω的导体棒ab 和cd 与导轨接触良好,当用竖直向上的力F 使ab 棒向上做匀速运动时,cd 棒刚好能静止不动,则下列说法正确的是(g 取10m/s 2)( )A .ab 棒运动的速度是5 m/sB .力F 的大小为1 NC .在1 s 内,力F 做的功为5 JD .在1 s 内,cd 棒产生的电热为5 J解析:选A.对导体棒cd 由B Bl v2R l =mg ,得到v =5 m/s ,选项A 正确;再由F =mg +F 安=2 N 知选项B 错误;在1 s 内,力F 做的功W =F v t =10 J ,选项C 错误;在1 s 内,cd 棒产生的电热Q =⎝⎛⎭⎫Bl v2R 2Rt =2.5 J ,选项D 错误.5.(2016·合肥一中高三检测)如图所示,间距l =0.3 m 的平行金属导轨a 1b 1c 1和a 2b 2c 2分别固定在两个竖直面内.在水平面a 1b 1b 2a 2区域内和倾角θ=37°的斜面c 1b 1b 2c 2区域内分别有磁感应强度B 1=0.4 T 、方向竖直向上和B 2=1 T 、方向垂直于斜面向上的匀强磁场.电阻R =0.3 Ω、质量m 1=0.1 kg 、长为l 的相同导体杆K 、S 、Q 分别放置在导轨上,S 杆的两端固定在b 1、b 2点,K 、Q 杆可沿导轨无摩擦滑动且始终接触良好.一端系于K 杆中点的轻绳平行于导轨绕过轻质定滑轮自然下垂,绳上穿有质量m 2=0.05 kg 的小环.已知小环以a =6 m/s 2的加速度沿绳下滑.K 杆保持静止,Q 杆在垂直于杆且沿斜面向下的拉力F 作用下匀速运动.不计导轨电阻和滑轮摩擦,绳不可伸长.取g =10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)小环所受摩擦力的大小; (2)Q 杆所受拉力的瞬时功率.解析:(1)设小环受到的摩擦力大小为F f ,由牛顿第二定律,有m 2g -F f =m 2a 代入数据,得F f =0.2 N.(2)设通过K 杆的电流为I 1,K 杆受力平衡, 有F f =B 1I 1l设回路总电流为I ,总电阻为R 总,有I =2I 1 R 总=32R设Q 杆下滑速度大小为v ,产生的感应电动势为E ,有I =ER 总E =B 2l vF +m 1g sin θ=B 2Il拉力的瞬时功率为P =F v联立以上方程,代入数据得P =2 W. 答案:(1)0.2 N (2)2 W6.如图所示,两根足够长且平行的光滑金属导轨与水平面成53°角固定放置,导轨间连接一阻值为6 Ω的电阻R ,导轨电阻忽略不计.在两平行虚线m 、n 间有一方向垂直于导轨所在平面向下、磁感应强度为B 的匀强磁场.导体棒a 的质量为m a =0.4 kg ,电阻R a =3 Ω;导体棒b 的质量为m b =0.1 kg ,电阻R b =6 Ω.导体棒a 、b 分别垂直导轨放置并始终与导轨接触良好.a 、b从开始相距L 0=0.5 m 处同时由静止释放,运动过程中它们都能匀速穿过磁场区域,当b 刚穿出磁场时,a 正好进入磁场,g 取10 m/s 2,不计a 、b 之间电流的相互作用,sin 53°=0.8,cos 53°=0.6.求:(1)在a 、b 分别穿越磁场的过程中,通过R 的电荷量之比;(2)在穿越磁场的过程中,a 、b 两导体棒匀速运动的速度大小之比; (3)磁场区域沿导轨方向的宽度d ; (4)在整个运动过程中,产生的总焦耳热. 解析:(1)由q 总=I Δt ,I =E R 总,E =ΔΦΔt ,得q 总=ΔΦR 总在b 穿越磁场的过程中,b 是电源,a 与R 是外电路,电路的总电阻R 总1=8 Ω 通过R 的电荷量为q Rb =13q 总1=13·ΔΦR 总1同理,a 在磁场中匀速运动时,R 总2=6 Ω,通过R 的电荷量为q Ra =12q 总2=12·ΔΦR 总2,可得q Ra ∶q Rb =2∶1.(2)设a 、b 穿越磁场的过程中的速度分别为v a 和v b ,则b 中的电流I b =BL v bR 总1由平衡条件得B 2L 2v bR 总1=m b g sin 53°同理,a 在磁场中匀速运动时有 B 2L 2v aR 总2=m a g sin 53°, 解得v a ∶v b =3∶1.(3)设b 在磁场中穿越的时间为t ,由题意得: v a =v b +gt sin 53°,d =v b t因为v 2a -v 2b =2gL 0sin 53°,v a ∶v b =3∶1所以d =0.25 m.(4)a 穿越磁场时所受安培力F 安=m a g sin 53° 克服安培力所做的功W a =m a gd sin 53°=0.8 J 同理,b 穿越磁场时克服安培力所做的功 W b =m b gd sin 53°=0.2 J由功能关系得,在整个过程中,电路中产生的总焦耳热Q =W a +W b =1 J. 答案:(1)2∶1 (2)3∶1 (3)0.25 m (4)1 J。

电磁场中的双杆模型

电磁场中的双杆模型
应用提供理论支持。
03 双杆模型的实验验证
实验设备与实验方法
实验设备
双杆模型、磁场测量仪、电场测 量仪、数据采集系统。
实验方法
在双杆模型中设置不同的电磁场 参数,使用磁场测量仪和电场测 量仪分别测量磁场和电场强度, 通过数据采集系统记录数据。
实验数据与结果分析
实验数据
在双杆模型中,测量得到的磁场和电 场强度随时间的变化曲线。
涉等现象。
双杆模型的物理意义
01
双杆模型是一种理想化的物理模型,通过它可以深 入理解电磁场的本质和规律。
02
双杆模型可以用来解释和预测电磁场中的一些实验 现象,为实际应用提供理论支持。
03
双杆模型还可以用于研究和设计电磁器件,如天线、 滤波器和微波器件等。
02 双杆模型的数学描述
双杆模型的电场分布
考虑将双杆模型与其他物理场(如流体场、热力 学场)进行耦合,以模拟更复杂的物理系统。
双杆模型在新型电磁材料中的应用
研究新型电磁材料的电磁特性
01
利用双杆模型模拟新型电磁材料的电磁响应,为材料设计和优
化提供理论支持。
探索新型电磁材料的潜在应用
02
通过双杆模型模拟,预测新型电磁材料在通信、雷达、探测等
双杆模型的磁场分布
总结词
双杆模型中的磁场分布与电场分布相互耦合,呈现出复杂的空间变化。
详细描述
在电磁场中,双杆模型不仅存在电场分布,还伴随着磁场分布。磁场的方向和强 度受到电场的影响,呈现出特定的空间变化规律。通过求解磁场方程,可以获得 双杆模型中磁场的详细分布情况,进一步揭示电磁场的相互作用机制。
散射与透射研究
通过双杆模型,可以模拟电磁波与障 碍物的相互作用,研究散射和透射现 象,为雷达和通信系统设计提供依据。

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)

高中物理高频考点《电磁感应中的双杆模型问题分析与强化训练》(附详细参考答案)电磁感应中的双杆模型问题与强化训练一、双杆模型问题分析及例题讲解:1.模型分类:双杆类题目可分为两种情况:一类是“一动一静”,即“假双杆”,甲杆静止不动,乙杆运动。

其实质是单杆问题,但要注意问题包含着一个条件:甲杆静止,受力平衡。

另一种情况是两杆都在运动,对于这种情况,要注意两杆切割磁感线产生的感应电动势是相加还是相减。

2.分析方法:通过受力分析,确定运动状态,一般会有收尾状态。

对于收尾状态,有恒定的速度或者加速度等,再结合运动学规律、牛顿运动定律和能量观点分析求解。

题型一:一杆静止,一杆运动题1】如图所示,电阻不计的平行金属导轨固定在一绝缘斜面上,两相同的金属导体棒a、b垂直于导轨静止放置,且与导轨接触良好,匀强磁场垂直穿过导轨平面。

现用一平行于导轨的恒力F作用在a的中点,使其向上运动。

若b始终保持静止,则它所受摩擦力可能为A。

变为B。

先减小后不变C。

等于F D。

先增大再减小答案】AB解析:由于b静止不动,所以它所受的摩擦力只有在a运动时才会产生。

当a向上运动时,b所受的摩擦力会逐渐减小,直到a停止运动时,b所受的摩擦力为0.因此,选项A和B是正确的。

题2】如图所示,两条平行的金属导轨相距L=1m,金属导轨的倾斜部分与水平方向的夹角为37°,整个装置处在竖直向下的匀强磁场中。

金属棒MN和PQ的质量均为m=0.2kg,电阻分别为RMN=1Ω和RPQ=2Ω。

MN置于水平导轨上,与水平导轨间的动摩擦因数μ=0.5,PQ置于光滑的倾斜导轨上,两根金属棒均与导轨垂直且接触良好。

从t=时刻起,MN棒在水平外力F1的作用下由静止开始以a=1m/s²的加速度向右做匀加速直线运动,PQ则在平行于斜面方向的力F2作用下保持静止状态。

t=3s时,PQ棒消耗的电功率为8W,不计导轨的电阻,水平导轨足够长,XXX始终在水平导轨上运动。

(完整版)电磁感应双杆模型

(完整版)电磁感应双杆模型

bac d BRM N P Q L应用动量定理与动量守恒定律解决双导体棒切割磁感线问题1.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

求: (1)开始时,导体棒ab 中电流的大小和方向;(2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热; (3)当ab 棒速度变为43v 0时,cd 棒加速度的大小。

2.如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .忽略摩擦(1)求:ab 到达圆弧底端时对轨道的压力大小(2)在图中标出ab 刚进入磁场时cd 棒中的电流方向 (3)若cd 离开磁场时的速度是此刻ab 速度的一半, 求:cd 离开磁场瞬间,ab 受到的安培力大小3.(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。

请问: (1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少?(2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少?4.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

应用动量定理与动量守恒定律解决双导体棒切割磁感线问题1.(12丰台期末12分)如图所示,两根足够长的平行金属导轨固定于同一水平面内,导轨间的距离为L ,导轨上平行放置两根导体棒ab 和cd ,构成矩形回路。

已知两根导体棒的质量均为m 、电阻均为R ,其它电阻忽略不计,整个导轨处于竖直向上的匀强磁场中,磁感应强度为B ,导体棒均可沿导轨无摩擦的滑行。

开始时,导体棒cd 静止、ab 有水平向右的初速度v 0,两导体棒在运动中始终不接触。

求:(1)开始时,导体棒ab 中电流的大小和方向;(2)从开始到导体棒cd 达到最大速度的过程中,矩形回路产生的焦耳热;(3)当ab 棒速度变为v 0时,cd 棒加速度的大小。

432.如图,相距L 的光滑金属导轨,半径为R 的1/4圆弧部分竖直放置、直的部分固定于水平地面,MNQP 范围内有方向竖直向下、磁感应强度为B 的匀强磁场.金属棒ab 和cd 垂直导轨且接触良好,cd 静止在磁场中,ab 从圆弧导轨的顶端由静止释放,进入磁场后与cd 没有接触.已知ab 的质量为m 、电阻为r ,cd 的质量为3m 、电阻为r .金属导轨电阻不计,重力加速度为g .忽略摩擦(1)求:ab 到达圆弧底端时对轨道的压力大小(2)在图中标出ab 刚进入磁场时cd 棒中的电流方向(3)若cd 离开磁场时的速度是此刻ab 速度的一半,求:cd 离开磁场瞬间,ab 受到的安培力大小3.(20分)如图所示,电阻均为R 的金属棒a .b ,a 棒的质量为m ,b 棒的质量为M ,放在如图所示光滑的轨道的水平部分,水平部分有如图所示竖直向下的匀强磁场,圆弧部分无磁场,且轨道足够长;开始给a 棒一水平向左的的初速度v 0,金属棒a .b 与轨道始终接触良好.且a 棒与b 棒始终不相碰。

请问:(1)当a .b 在水平部分稳定后,速度分别为多少?损失的机械能多少?(2)设b 棒在水平部分稳定后,冲上圆弧轨道,返回到水平轨道前,a 棒已静止在水平轨道上,且b 棒与a 棒不相碰,然后达到新的稳定状态,最后a ,b 的末速度为多少? (3)整个过程中产生的内能是多少?4.(18分)如图所示,电阻不计的两光滑金属导轨相距L ,放在水平绝缘桌面上,半径为R 的1/4圆弧部分处在竖直平面内,水平直导轨部分处在磁感应强度为B ,方向竖直向下的匀强磁场中,末端与桌面边缘平齐。

两金属棒ab 、cd 垂直于两导轨且与导轨接触良好。

棒ab 质量为2 m ,电阻为r ,棒cd 的质量为m ,电阻为r 。

重力加速度为g 。

开始棒cd 静止在水平直导轨上,棒ab 从圆弧顶端无初速度释放,进入水平直导轨后与棒cd 始终没有接触并一直向右运动,最后两棒都离开导轨落到地面上。

棒ab 与棒cd 落地点到桌面边缘的水平距离之比为3: 1。

求:(1)棒ab 和棒cd 离开导轨时的速度大小;(2)棒cd 在水平导轨上的最大加速度;(3)两棒在导轨上运动过程中产生的焦耳热。

P5.(20分)如图所示,宽度为L 的平行光滑的金属轨道,左端为半径为r 1的四分之一圆弧轨道,右端为半径为r 2的半圆轨道,中部为与它们相切的水平轨道。

水平轨道所在的区域有磁感应强度为B 的竖直向上的匀强磁场。

一根质量为m 的金属杆a 置于水平轨道上,另一根质量为M 的金属杆b 由静止开始自左端轨道最高点滑下,当b 滑入水平轨道某位置时,a 就滑上了右端半圆轨道最高点(b 始终运动且a 、b 未相撞),并且a 在最高点对轨道的压力大小为mg ,此过程中通过a 的电荷量为q ,a 、b 棒的电阻分别为R 1、R 2,其余部分电阻不计。

在b 由静止释放到a 运动到右端半圆轨道最高点过程中,求:(1)在水平轨道上运动时b 的最大加速度是多大?(2)自b 释放到a 到达右端半圆轨道最高点过程中系统产生的焦耳热是多少?(3)a 刚到达右端半圆轨道最低点时b 的速度是多大?6.两足够长且不计其电阻的光滑金属轨道,如图所示放置,间距为d=100cm ,在左端斜轨道部分高h=1.25m 处放置一金属杆a ,斜轨道与平直轨道以光滑圆弧连接,在平直轨道右端放置另一金属杆b ,杆A .b 电阻R a =2Ω,R b =5Ω,在平直轨道区域有竖直向上的匀强磁场,磁感强度B=2T 。

现杆b 以初速度v 0=5m/s 开始向左滑动,同时由静止释放杆a ,杆a 滑到水平轨道过程中,通过杆b 的平均电流为0.3A ;a 下滑到水平轨道后,以a 下滑到水平轨道时开始计时,A .b 运动图象如图所示(a 运动方向为正),其中m a =2kg ,m b =1kg ,g=10m/s 2,求(1)杆a 落到水平轨道瞬间杆a 的速度v ;(2)杆a 在斜轨道上运动的时间;(3)在整个运动过程中杆b 产生的焦耳热。

7.(12分)如图所示,两根间距为L 的金属导轨MN 和PQ ,电阻不计,左端向上弯曲,其余水平,水平导轨左端有宽度为d 、方向竖直向上的匀强磁场I ,右端有另一磁场II ,其宽度也为d ,但方向竖直向下,磁场的磁感强度大小均为B 。

有两根质量均为m 、电阻均为R 的金属棒a 和b 与导轨垂直放置,b 棒置于磁场II 中点C 、D 处,导轨除C 、D 两处(对应的距离极短)外其余均光滑,两处对棒可产生总的最大静摩擦力为棒重力的K 倍,a 棒从弯曲导轨某处由静止释放。

当只有一根棒作切割磁感线运动时,它速度的减小量与它在磁场中通过的距离成正比,即。

求:v x ∆∝∆(1)若a 棒释放的高度大于h 0,则a 棒进入磁场I 时会使b 棒运动,判断b 棒的运动方向并求出h 0为多少? (2)若将a 棒从高度小于h 0的某处释放,使其以速度v 0进入磁场I ,结果a 棒以的速度从磁场I 中穿出,02v 求在a 棒穿过磁场I 过程中通过b 棒的电量q 和两棒即将相碰时b 棒上的电功率P b 为多少?8.(2014届海淀期末10分)如图21所示,两根金属平行导轨MN 和PQ 放在水平面上,左端向上弯曲且光滑,导轨间距为L ,电阻不计。

水平段导轨所处空间有两个有界匀强磁场,相距一段距离不重叠,磁场Ⅰ左边界在水平段导轨的最左端,磁感强度大小为B ,方向竖直向上;磁场Ⅱ的磁感应强度大小为2B ,方向竖直向下。

质量均为m 、电阻均为R 的金属棒a 和b 垂直导轨放置在其上,金属棒b 置于磁场Ⅱ的右边界CD 处。

现将金属棒a 从图21应用动量定理与动量守恒定律解决双导体棒切割磁感线问题答案1.【解析】:(12丰台期末12分)(1)ab 棒产生的感应电动势 ,(1分)0=BLv E ab ab 棒中电流 ,(1分)RBLv R E I ab 2=2=方向由 (1分)b a →(2)当ab 棒与cd 棒速度相同时,cd 棒的速度最大,设最大速度为v由动量守恒定律 (1分)mv mv 2=0∴ (1分)012v v =由能量守恒关系 Q =mv -(2m )v (1 分)2120212∴ Q =mv (1分)4120(3)设ab 棒的速度为时, cd 棒的速度为034v v ′由动量守恒定律:(1分)v m v m mv ′+43=00。

041=′∴v v ;043=v BL E ab ;041=v BL E cd I == R E E cdab 2-Rv v BL 2)4143(00-∴I=(2分)RBLv 40cd 棒受力为 (1分);2204B L v F IBL R==此时cd 棒加速度为 (1分)2204B L v F a m Rm==2. 【解析】:(1)设ab 到达圆弧底端时受到的支持力大小为N ,ab 下滑机械能守恒,有: …① 221mv mgR ⨯=由牛顿第二定律:…②;Rmvmg N 2=-联立①②得:…③mg N 3=由牛顿第三定律知:对轨道压力大小为…④mg N 3='(2)如图(2分)(如用文字表达,正确的照样给分。

如:d 到c ,或d →c )(3)设cd 离开磁场时ab 在磁场中的速度v ab ,则cd 此时的速度为,ab v 21ab 、cd 组成的系统动量守恒,有:…⑤ab ab v m v m mv 213⨯+⨯=ab 、cd 构成的闭合回路:由法拉第电磁感应定律:…⑥ab BLv E =闭合电路欧姆定律:…⑦rEI 2=安培力公式:…⑧联立①④⑤⑥⑦得…⑨BIL F ab =rgRL B F ab 5222=3. 【解析】(1)对a .b 棒水平轨道分析,动量守恒;1v 是稳定时a .b 棒共同速度10)(v M m mv += ①--3分,解得)(01M m mv v +=②-1分,损失的机械能为2120)(2121v M m mv E +-=∆)(220m M Mmv += ③-4分(2)由于b 棒在冲上又返回过程中,机械能守恒,返回时速度大小不变12v v = ④--2分b 棒与a 棒向右运动过程中,直到稳定,动量守恒:32)(v m M Mv += ⑤-3分达到新的稳定状态a ,b 的末速度:203)(m M Mmv v += ⑥-2分(3)整个过程中产生的内能等于系统机械能的减少量2320)(2121v m M mv Q +-=⑦---3分解得:))(1(213220m M m M mv Q +-= ⑧--2分4. 【解析】:(1)设ab 棒进入水平导轨的速度为,ab 棒从圆弧导轨滑下机械能守恒:①( 2分)1v 212212mv mgR ⨯=离开导轨时,设ab 棒的速度为,cd 棒的速度为,ab 棒与cd 棒在水平导轨上运动,动量守恒,/1v /2v ② ( 2分) /2/1122mv mv mv +=依题意>,两棒离开导轨做平抛运动的时间相等,由平抛运动水平位移可知/1v /2v vt x =:=x 1:x 2=3:1 ③( 2分),联立①②③解得 , ( 2分)/1v /2v gR v 276/1=gR v 272/2=(2)ab 棒刚进入水平导轨时,cd 棒受到的安培力最大,此时它的加速度最大,设此时回路的感应电动势为,ε ④ ( 1分), ⑤ ( 1分)BLv =εrI 2ε=cd 棒受到的安培力为: ⑥ ( 1分)BIL F cd =根据牛顿第二定律,cd 棒的最大加速度为: ⑦( 1分)mF a cd=联立④⑤⑥⑦解得: ( 2分)mrgRL B a 2222=(3)根据能量守恒,两棒在轨道上运动过程产生的焦耳热为:⑧( 2分))21221(2212/22/121mv mv mv Q +⨯-⨯=5.解析:(20分)(1)由机械能守恒定律:∴-4分12121Mgr Mv b =112gr v b = b 刚滑到水平轨道时加速度最大,E=BLv b1,,21R R EI +=由牛顿第二定律有:F 安=BIL=Ma ∴ -4分)(221122R R M gr L B a +=(2)由动量定理有: -BILt=Mv b2–Mv b1, 即:-BLq=Mv b2–Mv b1 ∴MBLq gr v b -=122根据牛顿第三定律得:N=N ΄=mg , ∴221r v m N mga=+212gr v a =∵ ∴-6分Q r mg mv Mv Mgr a b +++=22122122121M q L B mgr BLq gr Q 23222221--=(3)∵能量守恒有 ∴ 3分 2122221212a a mv mv mgr -=226gr v a =∵动量守恒定律 ∴3分231a b b mv Mv Mv +=21362gr Mmgr vb -=联立①⑧并代入和解得: ( 2分)/1v /2v mgR Q 4922=6. 【解析】:(1)5m/s v ==,(2)b 棒,()20-=∆v m t I Bd b ,得5t s ∆=(3)共产生的焦耳热为22011161()226a b a b Q m gh m v m m v J '=+⨯-+=B 棒中产生的焦耳热为5115J 19J256Q Q '==≈+7. 【解析】(12分):(1)根据左手定则判断知b 棒向左运动。

相关文档
最新文档