光纤激光器

合集下载

光纤激光器的原理

光纤激光器的原理

光纤激光器的原理
光纤激光器是一种利用光纤作为增益介质的激光器。

它通过将激光器的增益介
质替换为光纤,实现了激光器的小型化、高功率化和高光束质量化。

光纤激光器的原理是基于光纤的增益效应和光的放大过程,下面我们来详细了解一下光纤激光器的原理。

首先,光纤激光器的核心部分是光纤增益介质。

光纤是一种能够传输光信号的
细长光导纤维,其内部材料通常为掺杂有稀土离子的玻璃材料。

当光信号通过光纤时,受到掺杂离子的激发,从而实现光信号的放大。

这种光纤增益介质的特性使得光纤激光器具有高效率、高功率和高光束质量的特点。

其次,光纤激光器的工作原理是基于光的受激辐射放大过程。

当外部能量作用
于光纤增益介质时,掺杂离子被激发并处于激发态,此时若有入射光信号通过光纤,激发态的离子会与入射光信号发生受激辐射,从而使入射光信号得到放大。

这一过程中,光纤增益介质起到了放大光信号的作用,实现了光纤激光器的放大功能。

此外,光纤激光器的原理还涉及到光的反射和共振。

在光纤激光器中,通常会
采用光纤光栅或光纤光学器件来实现光的反射和共振,从而实现激光的输出。

光纤光栅和光学器件可以使光信号在光纤中来回反射,形成光的共振,从而增强激光的输出功率和光束质量。

综上所述,光纤激光器的原理是基于光纤的增益效应和光的放大过程,通过光
纤增益介质、受激辐射放大和光的反射共振来实现激光的输出。

光纤激光器具有高效率、高功率和高光束质量的特点,广泛应用于通信、医疗、材料加工等领域。

希望本文对光纤激光器的原理有所帮助,谢谢阅读!。

光纤激光器计算公式

光纤激光器计算公式

光纤激光器计算公式摘要:1.光纤激光器概述2.光纤激光器的计算公式a.输出功率和转换效率b.光束质量c.增益光纤长度d.系统稳定性e.损耗计算3.新型光纤激光器的研制4.光纤激光器的应用领域5.总结正文:一、光纤激光器概述光纤激光器是一种采用掺稀土元素玻璃光纤作为增益介质的激光器。

它在光纤放大器的基础上开发出来,通过泵浦光的作用下,光纤内极易形成高功率密度,造成激光工作物质的激光能级粒子数反转。

当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

二、光纤激光器的计算公式光纤激光器的计算公式主要包括以下几个方面:1.输出功率和转换效率:光纤激光器的输出功率和转换效率是衡量其性能的重要指标。

输出功率的计算公式为:P_out = P_in * η,其中P_out 为输出功率,P_in 为输入功率,η为转换效率。

2.光束质量:光束质量是描述激光束形状和聚焦能力的重要指标。

光束质量的计算公式为:M^2 = (B_1 / 4π) * (λ/ d_0)^2,其中M^2 为光束质量因子,B_1 为激光束束腰半径,λ为激光波长,d_0 为激光束直径。

3.增益光纤长度:增益光纤长度是指在光纤激光器中,光信号经过光纤放大后的长度。

增益光纤长度的计算公式为:L_gain = P_in / (α* P_out),其中L_gain 为增益光纤长度,α为光纤的衰减系数。

4.系统稳定性:系统稳定性是指光纤激光器在不同工作条件下,输出光功率和光束质量的稳定性。

系统稳定性的计算公式为:ΔP_out / ΔP_in = -β* L_gain / (1 + β* L_gain),其中ΔP_out / ΔP_in 为稳定性因子,β为光纤的反馈系数。

5.损耗计算:光纤损耗是指光信号经光纤传输后,由于吸收、散射等原因引起光功率的减小。

光纤损耗的理论计算公式为:A = 10 * log10 (P_in /P_out),其中A 为光纤损耗,P_in 为输入光功率,P_out 为输出光功率。

什么是光纤激光器

什么是光纤激光器

什么是光纤激光器——激光英才网光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。

光纤激光器的类型按照光纤材料的种类,光纤激光器可分为:1.晶体光纤激光器。

工作物质是激光晶体光纤,主要有红宝石单晶光纤激光器和nd3+:YAG单晶光纤激光器等。

2.非线性光学型光纤激光器。

主要有受激喇曼散射光纤激光器和受激布里渊散射光纤激光器。

3.稀土类掺杂光纤激光器。

光纤的基质材料是玻璃,向光纤中掺杂稀土类元素离子使之激活,而制成光纤激光器。

4.塑料光纤激光器。

向塑料光纤芯部或包层内掺入激光染料而制成光纤激光器。

光纤激光器的优势光纤激光器作为第三代激光技术的代表,具有以下优势:(1)玻璃光纤制造成本低、技术成熟及其光纤的可饶性所带来的小型化、集约化优势。

(2)玻璃光纤对入射泵浦光不需要像晶体那样的严格的相位匹配,这是由于玻璃基质Stark 分裂引起的非均匀展宽造成吸收带较宽的缘故。

(3)玻璃材料具有极低的体积面积比,散热快、损耗低,所以上转换效率较高,激光阈值低。

(4)输出激光波长多:这是因为稀土离子能级非常丰富及其稀土离子种类之多。

(5)可调谐性:由于稀土离子能级宽和玻璃光纤的荧光谱较宽。

(6)由于光纤激光器的谐振腔内无光学镜片,具有免调节、免维护、高稳定性的优点,这是传统激光器无法比拟的。

(7)光纤导出,使得激光器能轻易胜任各种多维任意空间加工应用,使机械系统的设计变得非常简单。

(8)胜任恶劣的工作环境,对灰尘、震荡、冲击、湿度、温度具有很高的容忍度。

(9)不需热电制冷和水冷,只需简单的风冷。

(10)高的电光效率:综合电光效率高达20%以上,大幅度节约工作时的耗电,节约运行成本。

(11)高功率,目前商用化的光纤激光器是六千瓦。

光纤激光器标准

光纤激光器标准

光纤激光器标准
光纤激光器的标准主要涉及输出功率、波长、光束质量和核心部件质量控制等方面。

1. 输出功率(Output Power):指激光器产生的激光功率大小,根据应用需求的不同,输出功率有不同的要求,一般在几瓦到几千瓦之间。

高输出功率可以提供更强的激光能量,适用于需要大功率激光的应用领域。

2. 波长(Wavelength):指激光器所产生激光的波长大小。

光纤激光器通常采用准连续波长,如1064纳米,适用于许多材料的加工和切割。

3. 光束质量(Beam Quality):光束质量主要指光束的空间分布和光束直径的大小。

光纤激光器的光束质量通常采用M²参数来描述,M²值越接近1代表光束质量越好。

光束质量好的激光器可以提供更小的光斑和更高的能量密度,适用于精细加工和高精度测量。

其中,光斑圆度描述光斑在不同方向上能量分布的均匀性,圆度高的光斑各个方向能量分布均匀,做非直线切割时可保证各个方向的切割面光洁度和切割速度的一致性,保证切割产品质量。

4. 核心部件质量控制:核心部件决定了激光器的整体性能和质量,影响激光切割机性能和质量。

核心部件寿命影响激光器的故障率和使用寿命,较高的核心部件寿命决定了激光器的低故障率和长使用寿命,减少了客户的停机时间和维修成本。

5. 激光输出功率稳定度:描述激光输出功率在全功率范围内(10%~
100%)不同输出功率下的稳定度和长期使用的稳定度。

全功率范围的
输出功率稳定度稳定度值越低代表激光器在不同输出功率下的稳定性
越好,可保证在不同厚度切割时的切割面光洁度和切割速度的一致性。

可提高所切割产品的正品率,保证切割产品质量的稳定性。

光纤激光器的原理及应用

光纤激光器的原理及应用

光纤激光器的原理及应用前言光纤激光器是一种利用光纤作为介质传输激光能量的器件,具有高效率、高可靠性和方便布线的特点。

本文将介绍光纤激光器的工作原理以及其在各个领域的应用。

工作原理光纤激光器是通过一系列的光学元件将光线限制在光纤内部,并利用光纤中的光耦合技术将激光能量传输到目标位置的设备。

下面将详细介绍光纤激光器的工作原理。

1.激光器结构光纤激光器一般由泵浦源、光纤增益介质、谐振腔和输出光纤组成。

泵浦源提供能量供给,激发光纤增益介质中的活性离子跃迁发射出光子。

谐振腔用于产生激光的振荡和放大。

2.光纤增益介质光纤增益介质一般采用掺杂了活性离子的光纤,并且活性离子的浓度要足够高以保证放大效果。

常用的增益介质有掺铒光纤、掺镱光纤、掺铥光纤等。

3.泵浦源泵浦源一般采用激光二极管或固体激光器,通过泵浦能量将活性离子兴奋到激发态。

4.谐振腔谐振腔是光纤激光器中光的振荡和放大的地方。

谐振腔通常由两面具有高反射率的光纤光栅组成,形成一个光学腔,使激光在腔内进行反复反射,增强激光的能量。

5.输出光纤输出光纤负责将激光能量从激光器传输到目标位置。

输出光纤一般具有高纯度、低损耗和稳定的特点。

应用领域光纤激光器具有广泛的应用领域,下面将分别介绍光纤激光器在工业、医疗和通信领域的应用。

工业应用•材料加工:光纤激光器可以用于金属切割、焊接、打孔等材料加工工序,具有精确性高、速度快、不产生物理接触等优点。

•雷达测距:光纤激光器可以应用于测距仪器,利用激光器发射一束光线,通过测量光的反射时间来计算距离。

•光纤通信:光纤激光器可在光纤通信中作为信号的光源和放大器,具有高效率、高信号质量和大带宽等特点。

医疗应用•激光手术:光纤激光器可用于激光手术,如激光手术切割、焊接和去除异物等,具有创伤小、出血少、精确性高等优点。

•激光治疗:光纤激光器可用于激光治疗,如激光照射疗法、激光物理疗法和激光穿透疗法等,可以用于肌肤美容、康复和疾病治疗等。

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理

光纤激光器的基本结构和工作原理一、光纤激光器的基本结构光纤激光器是一种利用光纤作为光学谐振腔的激光器。

它由光纤、泵浦光源、谐振腔和输出耦合器件组成。

1. 光纤:光纤作为光传输的介质,具有较高的光学质量和较低的损耗。

它通常由二氧化硅或氟化物等材料制成。

2. 泵浦光源:泵浦光源是提供激发能量的装置,常见的泵浦光源有半导体激光器、氘灯等。

泵浦光源通过能级跃迁将电能转化为光能,将光纤中的掺杂物激发至激发态。

3. 谐振腔:谐振腔是产生激光放大的空间,由两个反射镜构成,其中一个是部分透射的输出耦合镜。

谐振腔中的光纤被反射镜反射多次,形成光学谐振,增强光的幅度。

4. 输出耦合器件:输出耦合器件是将放大的激光从谐振腔中输出的装置,常见的输出耦合器件有反射镜、光栅等。

它通过调节输出耦合器件的透射率,实现激光的输出。

二、光纤激光器的工作原理光纤激光器的工作原理是基于激光的受激辐射过程。

其工作过程主要可以分为三个步骤:泵浦、光放大和激射。

1. 泵浦:泵浦光源产生的高能量光通过耦合装置输入光纤,激发光纤中的掺杂物(如铥、镱、铍等)的原子或离子跃迁到激发态,形成一个能级反转。

2. 光放大:光纤中的激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子经过多次反射,在谐振腔中不断放大,形成光的增强。

3. 激射:当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射。

激射的激光经过输出耦合器件,部分透射出光纤,形成激光输出。

光纤激光器的工作原理可以通过能级图来解释。

在泵浦过程中,泵浦光源提供的能量使得光纤中的掺杂物原子或离子跃迁到激发态。

在光放大过程中,激发态粒子通过受激辐射过程,发射出与泵浦光源相同频率和相干相位的光子。

这些光子通过多次反射,在谐振腔中不断受到增益介质的放大。

当光的增益超过谐振腔的损耗时,光纤激光器开始产生激射,形成激光输出。

光纤激光器具有很多优点,如小型化、高效率、高质量光束、稳定性好等。

光纤激光器的理论与实验研究

光纤激光器的理论与实验研究

光纤激光器的理论与实验研究光纤激光器是一种利用光纤作为工作介质的激光器。

相比于传统激光器,光纤激光器具有结构简单、体积小、功率稳定等优点,因此在光通信、医疗、工业加工等领域得到广泛应用。

本文将介绍光纤激光器的基本原理、结构和性能,并重点探讨了光纤激光器的实验研究进展和应用前景。

一、光纤激光器的基本原理和结构光纤激光器的工作原理基于三个部分:激光介质、激光刺激源和反射器。

光纤激光器与传统激光器最大的不同在于光纤作为激光介质。

激光刺激源可以是电流、光或热等刺激方式,可以通过电子激发将参数转化为光信号,进而在光纤内扩散并被反射器反射形成激光器。

光纤激光器的结构、形式比较多样,但它们一般包括:激光介质、激光刺激源、反射器、光纤耦合器、光学输出部分。

其中,激光介质是光纤,由于光纤的细长、柔性、低价格、可靠性高等特点,提高了光纤激光器的光学特性,比如波导效应,从而实现了实际应用的复杂化程度。

激光刺激源选择与否,一般根据不同应用场合有区别,在医疗领域如SOLED为主流光源,但在工业领域,高压氙或钠灯光源通常采用。

反射器是锥形反射器或圆柱形镜反射器,两者的反射作用都可达到100%。

光纤耦合器主要用于将激光器的输出与其他的光学设备相连,各种传感器、医疗领域、工业领域都可以使用。

光学输出部分是机械永久码和钛焦散镜的组合,多项光学组件共同完成激光输出成型。

二、光纤激光器的性能特点光纤激光器具有很多优点,比如小体积、低噪声、功率稳定等,这些特点使其在各个领域中受到了广泛应用。

(1)大功率输出光纤激光器可以产生1W-100kW持续功率输出,而且功率稳定,颜色较浅。

随着技术不断发展,光纤激光器在功率输出上的性能不断得到提升。

(2)宽波段光纤激光器可以产生宽波段光信号,从紫外线到红外线都可以实现输出,具有很高的信噪比和相干特性。

多种波长的信号可以在同一个光纤内同时传输和操控。

(3)高可靠性由于光纤激光器的光学部件与常规激光器的光学元件相比,具有比较好的机械结构和散热系统,因此在使用时也具有较高的可靠性。

光纤激光器的原理和应用

光纤激光器的原理和应用

光纤激光器的原理和应用光纤激光器是一种以光纤为介质的激光器,其主要原理是利用激光二极管或其他激励源,通过特定的激光工作介质,通过非线性光学效应来产生激光。

光纤激光器的原理和应用广泛,是现代科学技术领域的重要组成部分。

本文将着重探讨光纤激光器的原理和应用。

一、光纤激光器的原理光纤激光器的工作原理基于光纤内部的非线性光学效应。

光纤内部由纯净的石英或玻璃制成,具有高折射率和低损耗的特点。

通过在光纤内部放置激光介质,可以在光纤内部产生激光。

具体而言,光纤激光器主要包括光纤、激光介质、泵浦光源、激光反馈回路、输出光束及功率控制电路等几大部分。

泵浦光源通过激发激光介质的原子或分子转化,激发出粒子之间的能级跃迁,从而实现激光器的起振。

光波被泵浦到光纤内部,通过高折射率的光纤材料逐渐聚焦在光纤核心。

激光介质将泵浦光转化为激发能量,通过非线性光学效应形成激光。

激光反馈回路将激光反馈到泵浦光源中,通过反馈系统反复得到增加,从而提高激光器的输出功率。

输出光束则是将激光发送到需要的地方,功率控制电路则负责控制整个激光器的功率和稳定性。

二、光纤激光器的应用光纤激光器在现代科学技术领域有着广泛的应用,我们仅列举一些比较典型的应用场景:1. 通信领域随着数字化和互联网的发展,通信成为人们日常生活中不可或缺的一部分。

而光纤激光器亦得到了广泛的应用。

光纤激光器的小型化、高可靠性、稳定性以及在通信网络中的低损耗等优点使其成为现代通信传输的主要方式。

2. 材料加工领域光纤激光器可以提供高能量、高亮度和小点位等优质的激光,广泛应用于各种科学和工程领域中。

特别是在材料加工领域,在金属、非金属等材料的切割、焊接、微机械加工等方面具有独特的优势。

光纤激光器在钢管开槽、卷板整平,以及铝、钛、不锈钢等金属加工方面的应用越来越广泛。

3. 医疗领域光纤激光器可以通过光纤导引可见光线照射到身体内部,特别是在泌尿系、胃肠道、喉部等狭窄部位的检查和治疗方面拥有独特优势。

认识光纤激光器

认识光纤激光器

04
光纤激光器优缺点及挑战
优点分析
高效率
01
光纤激光器具有高效率的能量转换,能够将大 部分输入电能转换为激光输出,降低了能源浪
费。
结构紧凑
03
光纤激光器采用光纤作为增益介质,使得整个 激光器的结构非常紧凑,方便集成和应用于各
种场合。
光束质量好
02
输出激光光束质量高,具有较小的发散角和较 高的亮度,使得光纤激光器在精密加工和远距
1 2
3
泵浦源类型
主要包括半导体激光器和光纤耦合激光器等,不同类型的泵 浦源具有不同的输出特性和适用范围。
泵浦方式
分为端面泵浦和侧面泵浦两种方式,端面泵浦效率高、光束 质量好,但热效应显著;侧面泵浦散热效果好、功率可扩展 ,但光束质量相对较差。
泵浦波长
泵浦源的波长需要与增益光纤的吸收峰相匹配,以实现高效 的能量转换。
$number {01} 汇报人:XX
认识光纤激光器
目录
• 光纤激光器基本概念与原理 • 光纤激光器关键技术与参数 • 光纤激光器应用领域与市场现状 • 光纤激光器优缺点及挑战 • 光纤激光器未来发展趋势与前景
01
光纤激光器基本概念与原理
光纤激光器定义及发展历程
光纤激光器定义
光纤激光器是一种利用掺杂稀土元素的光纤作为增益介质, 通过泵浦光的作用实现粒子数反转,进而产生激光输出的光 学器件。
表面处理
光纤激光器可用于金属、 非金属材料的表面处理, 如打标、雕刻、清洗等。
通讯传输领域应用
光纤通信
光纤激光器是光纤通信系统中的 关键器件,用于产生和放大光信 号,实现长距离、大容量的信息 传输。
激光雷达
光纤激光器可用于激光雷达的发 射光源,实现高精度、远距离的 测量和探测。

光纤激光器的特点与应用

光纤激光器的特点与应用

光纤激光器的特点与应用特点:1.高效率:光纤激光器的光电转换效率高,能将大部分的电能转化为光能,较低的功率损耗使其能够工作在较长时间内。

2.高光束质量:光纤激光器通过光纤内部的多次全反射使光线能够沿着光纤轴向传输,从而减少光线的发散。

这使得光纤激光器的光束聚焦度高、光斑质量好,适合用于高精度加工。

3.线性调制:光纤激光器的输出功率与泵浦光功率之间呈线性关系,能够实现根据需要进行连续、快速的功率调节,满足不同加工需求。

4.体积小、重量轻:光纤激光器相比于其他类型的激光器体积小巧、重量轻,便于安装、移动和集成于机械设备中。

5.寿命长:光纤激光器的泵浦光源通常采用半导体激光器,其寿命长达几万小时,因此光纤激光器的工作寿命相对较长。

应用:1.材料加工:光纤激光器在材料加工方面有广泛的应用,如激光焊接、激光切割、激光打标等。

其高光束质量和线性调制特性使其能够实现高精度的加工,应用于金属、塑料、陶瓷等材料的加工。

2.通信:光纤激光器被广泛应用于光纤通信系统中。

其稳定的输出功率、较低的电-光转换损耗和容易调制等特点使其成为高速通信的重要光源。

光纤激光器还可以实现WDM(波分复用)技术,将多路的信号通过一个光纤传输,提高通信带宽。

3.医疗:光纤激光器在医疗领域有广泛的应用,如激光手术、激光治疗等。

其高光束质量和可调节的输出功率使其能够实现精细的目标组织切割和病变区域消融,且对周围组织损伤小。

4.科学研究:光纤激光器的高功率、短脉冲宽度和高重复频率使其成为研究领域的重要工具。

在激光光谱学、激光脉冲探测、精密光谱分析、激光等离子体物理等领域都有重要应用。

5.展示与投影:光纤激光器的高亮度和调制灵活性使其在展示和投影领域有广泛应用。

激光投影仪通过光纤激光器的光线聚束和调制,能够实现高亮度、真彩色和高分辨率的投影效果。

总结起来,光纤激光器具有高效率、高光束质量、线性调制、体积小、重量轻和寿命长等特点。

在材料加工、通信、医疗、科学研究和展示等领域都有广泛的应用。

光纤激光器操作指南

光纤激光器操作指南

光纤激光器操作指南光纤激光器是一种应用广泛的光学设备,被广泛应用于通信、医疗、制造等领域。

本文将为大家介绍光纤激光器的操作指南,帮助大家更好地使用和保养光纤激光器。

1. 安全操作光纤激光器是高能光源,所以在操作过程中需要注意安全。

首先,戴上适当的防护眼镜,以防止激光光束对眼睛造成伤害。

其次,要确保操作区域干净整洁,避免堆放杂物,防止误碰导致意外事故。

最后,在操作前要查看激光器是否处于工作状态,并按照正确的操作步骤进行操作。

2. 激光器启动在启动光纤激光器之前,要仔细检查设备的电源、气路等各项功能,确保设备正常工作。

检查后,打开设备的电源开关,待设备预热一段时间后,可以开始正常的操作。

3. 激光光束调整光纤激光器的激光光束调整是关键的一步。

调整时,首先需要调整激光器的输出功率,根据需要调整到合适的数值。

然后,使用合适的光束偏转器,将激光光束聚焦到所需的位置上。

在调整过程中,可以借助波长计等辅助工具来确保光束的精确聚焦。

4. 激光器参数设置在实际操作过程中,光纤激光器的参数设置也非常重要。

根据实际需求,可以选择合适的光纤长度、输出功率、重复频率等参数。

不同的参数组合可以实现不同的激光作用,所以在操作前需要仔细理解每个参数的含义和影响。

5. 清洁与维护光纤激光器的清洁与维护也是操作指南中不可忽视的一部分。

在操作过程中,要保持光纤激光器的外部干净,避免灰尘等污物的积累。

定期清洁工作可以使用软布或擦拭纸,不要使用有毛边的物品,以免引起损伤。

同时,在操作后也需要关闭设备电源,避免长时间空运行导致设备老化。

6. 故障排除在操作光纤激光器时,难免会遇到一些故障。

例如,激光器无法启动、输出功率不稳定等情况。

当遇到故障时,首先要检查设备的电源、气路等部件是否正常连接,并根据设备的报警提示进行排除。

如果无法解决,应及时联系厂家或专业人员进行维修。

总结:光纤激光器的操作指南涉及多个方面,包括安全操作、激光光束调整、参数设置等。

光纤激光器定义

光纤激光器定义

光纤激光器定义你是否曾经好奇过,为什么我们能够如此快速地传输大量的数据,比如观看高清电影、进行视频通话或者下载大型文件时都能瞬间完成?这背后的功臣之一就是光纤激光器。

让我们先来打个比方,把信息的传输想象成货物的运输。

在过去,我们可能就像是用小马车来运货,速度慢,能运的东西也有限。

而光纤激光器就像是超级高铁,能够以极快的速度、高效地运送大量的“货物”,也就是信息。

那么,到底什么是光纤激光器呢?简单来说,光纤激光器就是一种利用光纤作为增益介质的激光器。

这里面就涉及到一些专业术语啦。

我们可以把光纤想象成一条特殊的通道,而激光就像是在这个通道里奔跑的光粒子。

这些光粒子在光纤里不断地被增强、放大,最终形成了非常强大且集中的光束。

在我们的日常生活中,光纤激光器的应用那可真是无处不在。

比如在通信领域,就像前面说的,它让我们的数据传输变得飞快。

你想想,以前下载一部电影可能要等好久,现在呢,几分钟甚至几十秒就搞定了,这可多亏了光纤激光器的功劳呀。

再看看医疗领域,光纤激光器可以用于各种精准的手术。

医生们就像是拿着一把超级精确的“光刀”,能够非常精细地切除病变组织,减少对周围健康组织的损伤。

这就好像是一个技艺高超的雕刻家,能够准确地雕琢出想要的形状。

工业上也少不了光纤激光器的身影。

它可以用来切割各种材料,不管是坚硬的金属还是其他特殊材料,都能轻松搞定。

想象一下,它就像是一个超级大力士,能够轻松地把各种东西按照我们的要求进行分割。

而且,光纤激光器还有一个很大的优点,就是它的稳定性非常高。

就像一个可靠的伙伴,一直默默地工作,很少出问题。

这使得它在很多对稳定性要求很高的场合都能大显身手。

在科学研究中,光纤激光器同样发挥着重要的作用。

科学家们利用它来进行各种实验和研究,探索未知的领域。

它就像是一把打开科学之门的钥匙,帮助科学家们解开一个又一个谜团。

当然啦,任何技术都不是完美无缺的。

光纤激光器也有它的局限性和挑战。

比如,在一些极端环境下,它的性能可能会受到影响。

认识光纤激光器

认识光纤激光器

谐振腔
谐振腔是光纤激光器中的另一个重要组成部分,它由两个 反射镜或一个反射镜和一个散射腔镜组成,用于形成光的 振荡路径。在谐振腔的作用下,光子在增益介质中不断反 射和放大,最终形成稳定的激光输出。
谐振腔的设计对于光纤激光器的性能至关重要,它决定了 激光的波长、模式和功率等参数。为了获得高质量的激光 输出,需要精确控制谐振腔的长度和反射镜的反射率。
聚焦性能好
光纤激光器的光束质量较好,能够实 现较小的聚焦直径和较高的焦斑能量 密度,有利于提高加工精度和加工效 率。
结构紧凑
体积小
光纤激光器的结构紧凑,体积较小, 能够节省空间,方便集成到各种加工 设备中。
重量轻
光纤激光器的重量较轻,能够降低设 备的整体重量,方便设备的移动和维 护。
易于维护
模块化设计
总结词
随着工业加工和国防科技的发展,高功率光纤激光器在军事、工业、医疗等领域的应用越来越广泛。
详细描述
高功率光纤激光器能够输出更高的激光能量,具有更高的光束质量和更长的使用寿命,是未来激光技术的重要发 展方向之一。
超快光纤激光器
总结词
超快光纤激光器以其独特的脉冲宽度和高峰 值功率,在科学研究、工业生产和医疗领域 具有广泛的应用前景。
输出光
输出光是光纤激光器产生的激光,其波长、功率和模式等参数取决于谐振腔的设计和增益介质的性质 。光纤激光器的输出光通常具有高亮度、高纯度、低发散角等特点,使其在各种领域具有广泛的应用 前景。
为了获得稳定的激光输出,需要对光纤激光器进行精细的调节和控制。这包括对泵浦光和增益介质的 控制、对谐振腔的调整以及对输出光的监测和反馈控制等。
03
光纤激光器的特点与优势
高效稳定
高效

光纤激光器原理

光纤激光器原理

光纤激光器原理
光纤激光器是一种利用光纤作为放大介质的激光器。

光纤激光器的原理是通过激活光纤内部的掺杂物,使其能够在光纤内部产生和放大光信号。

首先,光纤激光器需要一个光源来激活掺杂物。

常见的光源有激光二极管、激光器或其他高能光源。

当光源激活时,会发出光束。

光束经过进入光纤内部后,会被光纤的掺杂物吸收。

掺杂物通常是具有特殊的发射特性的材料,如稀土离子(如铒离子)等。

掺杂物吸收光束后,其电子受激跃迁至高能级,形成电子激发态。

接下来,光纤中的光子与掺杂物中的电子进行相互作用。

这个过程称为受激辐射。

光子与电子发生相互作用后,会导致电子跃迁至较低能级,并释放出新的光子。

这些新的光子与已存在的光子产生相干的干涉效应,并逐渐放大。

在光纤内部,还会安装一个光反射镜,用于反射光信号,使其在光纤内部不断传播,从而得到更多的发射光子。

与此同时,光纤的两端也会安装光束分束器和输出窗口,用于将放大后的光束输出。

光纤激光器的输出光束通常具有高度聚焦的特点,能够实现严格的光束控制。

此外,光纤激光器还具有高功率输出、稳定性好、易于集成和光纤传输等优点,被广泛应用于通信、医疗、材料加工等领域。

光纤激光器的优势

光纤激光器的优势

光纤激光器的优势1.高效能量传输:光纤激光器可将激光能量高效地传输到目标位置。

光纤作为传输媒介,具有低损耗、高承载能力的特点,能够将激光能量稳定可靠地传输到需要加工的地方。

传输效率高,避免了能量损失,提高了加工效率。

2.高质量激光束:光纤激光器发出的激光束质量高,光斑质量好,光束直径小,并且光斑能量分布均匀。

这使得光纤激光器适用于对高精度、高质量加工要求的应用,如激光雕刻、激光切割等。

3.小体积、轻便:光纤激光器采用光纤作为激光介质,与传统的准分子激光器相比,体积小、重量轻。

这使得光纤激光器易于携带和移动,可以满足一些特定场合下对设备便携性的要求。

4.高稳定性:光纤激光器具有较高的稳定性,能够在长时间运行过程中保持稳定的输出性能。

光纤激光器采用了光纤稳定器和温度控制技术,可以减少输出能量的波动,提升激光器的使用寿命。

5.高可靠性:光纤激光器的光学器件(光纤、二极管等)不易受到污染和机械冲击的影响,因此光纤激光器具有较高的可靠性。

由于光纤激光器没有使用任何易损坏的材料,因此能够在恶劣的环境下工作,并能够经受得住工程应用和工业环境的考验。

6.高灵活性:光纤激光器能够根据需要进行灵活控制,可以改变激光器的输出功率和脉冲频率,实现对加工效果的调节。

可以根据材料的不同特性和不同的加工要求,将激光器调整到最佳工作状态,以提高加工质量。

7.低维护成本:光纤激光器由于采用了先进的光学技术和稳定性较强的光纤传输,减少了维护的需要。

相比传统的准分子激光器,光纤激光器的器件寿命更长,无需频繁更换损坏的光学元件,减少了维护成本。

总之,光纤激光器由于其高效的能量传输、高质量的激光束、小体积轻便、高稳定性、高可靠性、高灵活性和低维护成本等优点,已经在多个领域得到广泛应用,如激光切割、激光打标、激光焊接、医疗美容等。

随着光纤激光器技术的不断发展,其优势将进一步得到提升,应用领域也将不断拓宽。

光纤激光器的原理及应用

光纤激光器的原理及应用

光纤激光器的原理及应用光纤激光器是一种利用光纤传输光信号并通过激光作用的设备。

它的工作原理基于光纤的特性和激光的产生原理,广泛应用于通信、医疗、材料加工等领域。

光纤激光器的原理主要包括三个方面:光纤传输、激光产生和激光放大。

光纤传输是光纤激光器的基础。

光纤是一种由高纯度石英玻璃或塑料制成的细长柔软的光传输介质。

它具有低损耗、高带宽和抗干扰等优点,能够将光信号传输到目标位置。

激光产生是光纤激光器的核心。

光纤激光器通常采用半导体激光二极管作为激光源,通过电流注入激活半导体材料,产生激光。

激光二极管的输出波长通常在800纳米至1700纳米之间,可用于可见光和红外光的激发。

激光放大是光纤激光器的关键。

光纤激光器中通常采用光纤放大器对激光进行放大。

光纤放大器是一种利用光纤作为增益介质的器件,能够使激光功率得到显著提升。

光纤放大器通常采用掺铥光纤或掺镱光纤,利用掺杂离子的能级跃迁来实现激光的放大。

光纤激光器的应用非常广泛,主要体现在以下几个方面:光纤激光器在通信领域有着重要的地位。

由于光纤传输具有低损耗和高带宽的特点,光纤激光器可以用于长距离、高速率的光纤通信系统。

它可以实现光纤通信的信号发射、接收和放大,为现代通信技术提供了重要支持。

光纤激光器在医疗领域有广泛的应用。

激光具有高能量、高聚焦和高精度的特点,可以用于医疗器械中的切割、焊接、治疗等操作。

例如,激光手术刀可以用于精确切割组织,激光治疗仪可以用于肿瘤治疗等。

光纤激光器还可以应用于材料加工和制造领域。

激光加工技术可以用于金属切割、焊接、打孔等操作,可以实现高精度、高效率的加工过程。

光纤激光器在汽车制造、航空航天、电子设备等领域的应用越来越广泛。

光纤激光器是一种利用光纤传输光信号并通过激光作用的设备。

它的工作原理基于光纤的特性和激光的产生原理,广泛应用于通信、医疗、材料加工等领域。

随着科技的不断发展,光纤激光器在各个领域的应用将会更加广泛,为人们的生活和工作带来更多便利与创新。

光纤激光器参数

光纤激光器参数

光纤激光器参数光纤激光器是一种利用光纤作为增益介质的激光器,具有高效、稳定、可靠等优点,在多个领域得到广泛应用。

光纤激光器的性能取决于多个参数,下面将详细介绍几个重要的参数。

1. 波长(Wavelength)光纤激光器的波长是指激光器发出的光的波长,通常以纳米(nm)为单位表示。

不同波长的光在不同应用领域有不同的用途。

例如,红光激光器波长通常为635 nm至670 nm,适用于激光指示、光通信等领域;近红外激光器波长通常为770 nm至2000 nm,适用于激光切割、医疗器械等领域。

2. 输出功率(Output Power)光纤激光器的输出功率是指激光器每秒钟发射的激光能量。

输出功率的大小直接影响到激光器的使用效果。

一般来说,输出功率越大,激光器的穿透能力和切割速度就越高。

常见的光纤激光器输出功率范围从几瓦到几百瓦不等。

3. 脉冲宽度(Pulse Width)光纤激光器的脉冲宽度是指激光器每个脉冲的持续时间。

脉冲宽度的选择与应用有关。

例如,对于激光切割,需要较短的脉冲宽度来实现高精度的切割效果;而对于激光雷达,需要较长的脉冲宽度来实现目标检测和距离测量。

4. 光束质量(Beam Quality)光束质量是指激光器输出光的光束直径和发散角度的一个综合指标。

光束质量越好,激光器的光束越集中,功率密度越高,适用于精细加工和高精度测量等领域。

常见的光束质量参数有M²和光束直径。

5. 频率稳定性(Frequency Stability)光纤激光器的频率稳定性是指激光器输出光的频率变化程度。

频率稳定性对于一些精密测量和光学干涉等应用非常重要。

光纤激光器的频率稳定性一般在几千分之一至几百万分之一的范围内。

6. 效率(Efficiency)光纤激光器的效率是指激光器将输入电能转换为激光输出能量的比例。

光纤激光器通常具有较高的电-光转换效率,可以将大部分输入电能转化为激光能量,同时减少能量的损耗。

7. 工作温度范围(Operating Temperature Range)光纤激光器的工作温度范围是指激光器能够正常工作的温度范围。

光纤激光器原理

光纤激光器原理

光纤激光器原理光纤激光器是一种利用光纤作为增益介质的激光器。

它具有体积小、能耗低、输出光束质量好等优点,在通信、医疗、材料加工等领域有着广泛的应用。

要了解光纤激光器的原理,首先需要了解光纤激光器的基本结构和工作原理。

光纤激光器的基本结构包括泵浦光源、光纤增益介质和共振腔。

泵浦光源通常采用半导体激光器或光纤耦合的激光二极管,用来提供能量激发光纤增益介质。

光纤增益介质是光纤激光器的核心部件,它通常由掺铒或掺钬的光纤材料构成,能够实现光放大和激光发射。

共振腔由两个光学镜组成,其中一个镜具有较高的反射率,另一个镜具有较低的透射率,共同构成光学谐振腔,实现光的来回反射和放大。

光纤激光器的工作原理主要包括泵浦光源激发、光纤增益、共振腔放大和输出光束四个步骤。

首先,泵浦光源产生的泵浦光通过耦合光纤输送到光纤增益介质中,激发光纤增益介质中的掺杂离子,使其处于激发态。

随后,光纤增益介质中的激发态掺杂离子经过受激辐射过程,发射出与泵浦光频率相同的光子,实现光的放大。

放大后的光子在共振腔中来回反射,不断受到激发和放大,最终产生高质量的激光输出。

光纤激光器的原理是建立在激光放大的基础上的。

激光的放大是通过受激辐射过程实现的,即受到外部光子的激发后,原子或分子从低能级跃迁到高能级,然后再自发跃迁到较低能级,发射出与外部光子相同频率和相干相位的光子。

这种过程在光纤增益介质中不断发生,从而实现光的放大和激光输出。

总的来说,光纤激光器利用光纤增益介质实现光的放大和激光输出,其工作原理是基于受激辐射过程和光学谐振腔的。

通过合理设计泵浦光源、光纤增益介质和共振腔的结构,可以实现高效、稳定的激光输出。

光纤激光器在通信、医疗、材料加工等领域具有重要的应用价值,对于推动科技进步和社会发展具有重要意义。

光纤激光器

光纤激光器

光纤激光器概述光纤激光器是一种利用光纤将激光能量传输的设备。

它利用光纤作为激光工作介质,通过激光的放大和功率增强,将激光信号传输到目标位置。

光纤激光器具有高能量密度、高光束质量、紧凑轻便和波长多样性等优势,被广泛应用于通信、材料加工、医疗和科学研究等领域。

工作原理光纤激光器的工作原理基于激光的受激辐射效应。

当外部能量输入到光纤中时,光纤中的活性物质(如掺铒离子、掺钕离子等)将吸收能量并跃迁到高能级。

随后,一部分活性物质的粒子将在受激辐射的作用下跃迁到低能级,并辐射出与输入能量相对应的光子。

这些光子首先经过光纤中的光放大介质,不断受到受激辐射的反复作用,形成一束相干的激光。

然后,通过光纤内部的光学元件(如光纤耦合器、准直器等),激光信号被调整为所需的波长和光束质量。

最后,激光信号从光纤的输出端口传输出来,可以用于不同的应用领域。

光纤激光器的特点高能量密度光纤激光器具有高能量密度的特点,能够将大部分的输入能量转化为激光输出能量。

这意味着光纤激光器可以提供高功率的激光,适用于需要大能量密度的应用,如材料加工、激光切割和激光焊接等。

高光束质量光纤激光器的光束质量很高,具有良好的光聚焦特性。

这意味着激光束可以被聚焦到很小的尺寸,从而提高能量密度和加工效果。

高光束质量使得光纤激光器在微细加工、精确切割和高精度测量等领域具有优势。

紧凑轻便光纤激光器相对于其他类型的激光器来说,具有紧凑和轻便的特点。

由于光纤本身具有柔性和可弯曲性,光纤激光器可以设计成各种形状和尺寸,便于安装和集成到不同的设备中。

这使得光纤激光器在便携设备和移动应用中得到广泛应用。

波长多样性光纤激光器可以根据应用需求选择不同的工作波长。

通过调整掺杂物的种类和含量,可以实现不同波长的激光输出。

这使得光纤激光器在通信领域具有应用潜力,并可以适应不同介质的材料加工需求。

应用领域通信由于光纤激光器具有高光束质量和波长多样性的特点,它被广泛应用于光纤通信领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图9-8 DFB光纤光栅激光器基本结构示意图
15
※光波照射在不透明的物体表面时, 一部分被反射,一部分被吸收;不 同材料的反射率和波长有密切的关系;
(1 )2 k 2 R (1 )2 k 2
※设入射到材料表面的光强为I0,材料吸收系数为α,则进入到材料内部 距表面距离为x处的光强为
I I0ex
1
7.1 激光加工的一般原理
7.1 激光加工的一般原理
1.激光加工大都基于光对非透明介质的热作用,也即吸收光能引起的热效应。 因此激光光束特性、材料对光的吸收作用以及导热性等有重大影响;
1)光束特性 例:一个CO2激光器,设聚焦前透镜面上光斑尺寸 10 mm,有效截面输出功 率为200W,透镜焦距f=10mm,求透镜后焦点处光斑有效截面内的平均功率密 度? 2)材料的反射、吸收和导热性
7
7.3 激光打孔
二、激光打孔工艺参数的影响
※ 激光打孔中离焦量对打孔的影响
当激光聚焦于材料上表面时,打出的孔比较深,锥度较小。在焦点处于表面下某一 位置时相同条件下打出的孔最深;而过分的入焦和离焦都会使得激光功率密度大大 降低,以至打成盲孔(图7-15)。
图7-15
离焦量对打孔质量的影响
8
7.3 激光打孔
13
9.1.2 光纤激光器
2.光纤激光器的分类及应用 光纤激光器种类很多,如按光纤结构可分为:单包层光纤激光器和双包层光纤激光 器;按掺杂元素可分为:掺铒、钕、镨、铥、镱、钬等15种;
(1)稀土类掺杂光纤激光器
稀土元素包括15种元素,在元素周期表中位于第五行。目前在比较成熟的有源光纤 中掺入的稀土离子有:铒(Er3+)、钕(Nd3+)、镨(Pr3+)、铥(Tm3+)、镱(Yd3+)。 (2)光纤受激拉曼散射激光器 这类激光器与掺杂光纤激光器相比具有更高的饱和功率,且没有泵浦源限制,在 光纤传感、波分复用(WDM)及相干光通信系统中有着重要应用。一种简单的全光 纤受激拉曼散射激光器见图9-6所示,这是一种单向环形行波腔,耦合器的光强耦 合系数为K。一般典型的受激拉曼分子主要有GeO2、SiO2、P2O5。
3)激光束易于控制的特点使得焊接工作能够更方便的实现自动化和智能化。
二、图7-19所示为一种显象管阴极芯的激光焊接设备原理。
图7-19阴极芯的激光焊接设备原理图 1:光束分束器;2:聚焦透镜;3:阴极芯
3
7.2 激光焊接
三、激光热导焊
1)激光热导焊的原理 热导焊时,激光辐射能量作用于材料表面,激光辐射能在表面转化为热量。表面 热量通过热传导向内部扩散,使材料熔化,在两材料连接区的部分形成溶池。溶 池随着激光束一道向前运动,溶池中的熔融金属并不会向前运动。 2)激光热导焊的工艺以及部分参数 ※ 激光热导焊的连接形式:片状工件的焊接形式有对焊、端焊、中心穿透熔化焊
9
7.4 激光切割
一、激光切割的原理与特点
1、切割过程中激光光束聚焦成很小的光点(最小直径可小于0.1mm)使焦点处 达到很高功率密度(可超过106W/cm2)。如图7-17所示为激光切割头的结构, 除了透镜以外它还有一个喷出辅助气体流的同轴喷嘴。
图7-17
激光切割头的结构示意图
2、激光切割的特点:
※ 激光功率密度:激光功率密度低则熔深浅、焊接速度慢。见图7-20
图7-20 激光热导焊焊接不锈钢时功率与 焊接速度、熔化深度的关系
4
7.2 激光焊接
三、激光热导焊
2)激光热导焊的工艺以及部分参数 ※ 离焦量对焊接质量的影响:因为焦点处激光光斑中心的光功率密度过高,激 光热导焊通常需要一定的离焦量,使得光功率分布相对均匀。 正离焦:焦平面位于工件上方;负离焦:焦平面位于工件下方 ※ 脉冲激光热导焊的脉冲波形:脉冲波形对于焊接质量也有很大的影响
图9-5 光纤激光器原理示意图
(2)特点 耦合效率高基于激光介质本身就是导波介质;光纤纤芯很细,纤内易形成高功率 密度,可方便地与光纤传输系统高效连接。由于光纤具有很高的“表面积/体积” 比,散热效果好,因此光纤激光器具有很高的转换效率,很低的激光阈值,能在 不加强制冷却的情况下连续工作。又由于光纤具有极好的柔绕性,激光器可以设 计得相当小巧灵活,利于光纤通信系统的应用,同时可借助光纤方向耦合器构成 各种柔性谐振腔,使激光器的结构更加紧凑、稳定。光纤还具有相当多的可调谐 参数和选择性,能获得相当宽的调谐范围和相当好的色散性和稳定性。
图9-6 受激拉曼散射光纤激光器示意图
14
9.1.2 光纤激光器
2.光纤激光器的分类及应用 (3)光纤光栅激光器 DBR光纤激光器基本结构如图9-7所示,利用一段稀土掺杂光纤和一对相同谐振 波长的光纤光栅构成谐振腔,它能实现单纵模工作。
图9-7 DBR光纤光栅激光器基本结构示意图
DFB光纤光栅激光器基本结构如图9-8所示,在稀土掺杂光纤上直接写入的光栅 构成谐振腔,其有源区和反馈区同为一体。
四、工业材料的激光切割:金属材料的激光切割和非金属材料的激光切割
12
9.1.2 光纤激光器
1. 光纤激光器的基本原理及其特点 光纤激光器和其他激光器一样,由能产生光子的增益介质、使光子得到反馈并在 增益介质中进行谐振放大的光学谐振腔和激励光子跃迁的泵浦源三部分组成。 (1)基本原理 以纵向泵浦的光纤激光器(如图9-5)为例说明光纤激光器的基本原理
※ 光束在质量、透镜焦距和离焦量:激光器输出光束的模式为基横模时对激光切 割最为有利。光斑大小与聚焦透镜的焦距成正比。短焦距的透镜虽然可以得到较 小光斑,但焦深很小。离焦量对切割速度和切割深度影响较大,切割过程中必须 保持不变,一般离焦量选用负值,即焦点位置置于切割板面下面某一点。 ※ 喷嘴:喷嘴是影响激光切割质量和效率的—个重要部件。激光切割一般采用 同轴(气流与光轴同心)喷嘴,喷嘴出口直径大小应依据板厚加以选择。另外,喷 嘴到工件表面的距离对切割质量也有较大影响,为了保证切割过程稳定,这个距 离必须保持不变。
五、激光焊的优点
图7-21 深熔焊小孔示意图
6
7.3 激光打孔
一、激光打孔原理
激光打孔机的基本结构包括激光器、加工头、冷却系统、数控装置和操作面盘 (图7-13)。
图7-13Leabharlann 激光打孔机的基本结构示意图
二、激光打孔工艺参数的影响
※ 脉冲宽度对打孔的影响 :脉冲宽度对打孔深度、孔径、孔形的影响较大。窄 脉冲能够得到较深而且较大的孔;宽脉冲不仅使孔深度、孔径变小,而且使孔的 表面粗糙度变大,尺寸精度下降。
二、激光打孔工艺参数的影响
※ 脉冲激光的重复频率对打孔的影响 用调Q方法取得巨脉冲时,脉冲的平均功率基本不变,脉宽也不变,重复频率越高 ,脉冲的峰值功率越小,单脉冲的能量也越小。这样打出的孔深度要减小。
※ 被加工材料对打孔的影响
材料对激光的吸收率直接影响到打孔的效率。由于不同材料对不同激光波长有不同 的吸收率,必须根据所加工的材料性质选择激光器。
※脉冲激光热导焊的脉冲宽度:脉冲宽度影响到焊接熔深,热影响区的宽度等 焊接的质量要求。脉宽时间长,焊接熔深热影响区都大,反之则小。因此,要根 据激光功率的大小,要求的焊接熔深和热影响区的宽度大小来适当选择脉冲宽度。
5
7.2 激光焊接
四、激光深熔焊
1)激光深熔焊的原理 当激光功率密度达到106—107W/cm2时,功率输入远大于热传导、对流及辐射 散热的速率,材料表面发生汽化而形成小孔(图7-21),孔内金属蒸汽压力与四 周液体的静力和表面张力形成动态平衡,激光可以通过孔中直射到孔底。 2)激光深熔焊工艺参数 ※ 临界功率密度:深熔焊时,功率密度必须大于某 一数值,才能引起小孔效应。这一数值,称为临界 功率密度 ※ 激光深熔焊的熔深 :激光深熔焊熔深与激光输出 功率密度密切相关,也是功率和光斑直径的函数。 3)激光焊接过程中的几种效应
2)材料的反射、吸收和导热性
※激光正入射,在光点中央的温度上升值ΔT与被吸收的光功率、导热系 P 数之间的关系 T ' 0 K 2.激光加工举例 1)激光焊接 2)激光打孔 3)激光切割
2
7.2 激光焊接
一、激光焊接是一种材料连接,主要是金属材料之间连接的技术。 其优点:
1)用激光很容易对一些普通焊接技术难以加工的如脆性大、硬度高或柔软性强 的材料实施焊接。 2)在激光焊接过程中无机械接触,易保证焊接部位不因热压缩而发生变形
三、激光切割的工艺参数及其规律
※ 激光功率: 激光切割时所需功率的大小,是由材料性质和切割机理决定的。 ※ 切割速度: 在一定功率条件下,板厚越大,切割速度越小。切割速度对切口表 面粗糙度也有较大影响。
11
7.4 激光切割
三、激光切割的工艺参数及其规律
※ 气体的压力:在功率和切割材料板厚一定时,有一最佳切割气体流量,这时切 割速度最快。随着激光功率的增加,切割气体的最佳流量是增大的。
10
7.4 激光切割
二、激光切割分类及其机理
※ 汽化切割:工件在激光作用下快速加热至沸点,部分材料化作蒸汽逸去,部分 材料为喷出物从切割缝底部吹走。这种切割机制所需激光功率密度一般为108W /cm2左右,是无熔化材料的切割方式 ※ 熔化切割: 激光将工件加热至熔化状态,与光束同轴的氩、氦、氮等辅助气流 将熔化材料从切缝中吹掉。熔化切割所需的激光功率密度一般为107W/cm2左右 ※ 氧助熔化切割: 金属被激光迅速加热至燃点以上,与氧发生剧烈的氧化反应 (即燃烧),放出大量的热,又加热下一层金属,金属被继续氧化,并借助气体 压力将氧化物从切缝中吹掉。
相关文档
最新文档