第九章分布滞后和自回归模型
庞皓版计量经济学课件 (1)
三、阿尔蒙法
目的:消除多重共线性的影响。 基本原理:在有限分布滞后模型滞后长度 s 已
知的情况下,滞后项系数有一取值结构,把它 看成是相应滞后期 i 的函数。在以滞后期 i 为 横轴、滞后系数取值为纵轴的坐标系中,如果 这些滞后系数落在一条光滑曲线上,或近似落 在一条光滑曲线上,则可以由一个关于 i 的次 数较低的 m次多项式很好地逼近,即
,
* β0 = β0
, u t* = u t - λu t -1
则库伊克模型(7.10)式变为
* Yt = α * + β 0 X t + β 1* Y t -1 + u t*
(7.12)
这是一个一阶自回归模型。
7-33
库伊克变换的优点
1.以一个滞后被解释变量代替了大量的滞后解 释变量,使模型结构得到极大简化,最大限度 地保证了自由度,解决了滞后长度难以确定的 问题; 2.滞后一期的被解释变量与 X t 的线性相关程 度将低于 X 的各滞后值之间的相关程度,从而 在很大程度上缓解了多重共线性。
7-28
库伊克假定:
对于如下无限分布滞后模型:
Yt = α + β0 X t + β1 X t-1 + β2 X t- 2 ++ut
(7.6)
可以假定滞后解释变量 X t-i 对被解释变量 Y 的影 响随着滞后期 i 的增加而按几何级数衰减。即滞 后系数的衰减服从某种公比小于1的几何级数:
βi = β0 λi , 0 λ 1 , i 0,1,2,
计量经济学
分布滞后模型与自回归模型
7-1
引子: 货币政策效应的时滞
货币供给的变化对经济影响很大,货币政策总是 备受关注。 货币政策的影响效应存在着时间上的滞后。在货币政策的传 导过程中,货币扩张首先促使利率降低,或者一般价格水平 的上升,这需要一段时间。 这些因素对以GDP为代表的经济增长的影响,更是需要一 段时间才能显示出来。只有经过一段时间以后,支出对利率 的反应增强,投资、进出口和消费才会不断上升,货币政 策才最终促使GDP增加。通常,货币扩张对GDP影响的最 高点可能是在政策实施以后的一到两年间达到。
分布滞后模型
Yt Yt1 ut
(12.18)
Yt1 Yt2 ut1
(12.19)
Yt Y0 ut
(12.20)
E(Yt ) Y0
(12.21)
var(Yt ) var(ut ut1 u) T 2 (12.22)
Yt (Yt Yt1 ) ut
(12.23)
2-10
12.5 随机游走模型
2-15
12.6 分对数模型
2-16
12.1 动态经济模型:自回归和分布滞后模型
动态模型(dynamic models)
Yt A B0 X t B1 X t1 B2 X t2 ut
分布滞后模型(distributed lag models)
Yt 常数 0.4 X t 0.3X t1 0.2 X t2 Yt 常数 0.9X t1
2.零假设为Yt1 的系数 A3 为零,等价于时间序 列是非平稳的,称为单位根假设。
3.为了检验A3 的估计值 a3 为零,通常会使用
熟悉的t 检验。
2-8
12.4 协整时间序列
eˆt 0.2753 et1
t( ) (3.779)
r 2 0.1422
2-9
12.5 随机游走模型
随机游走模型(random walk model): 即根据变量今天的值并不能预测出变量明天的值。
2-11
图12-3 利用随机游走模型进行预测
12.6 分对数模型
分对数模型(logit model)和概率单位模型 (probit model)
逻辑分布函数(logistic distribution function)
2-12
12.6 分对数模型
2-13
12.6 分对数模型
《计量经济分析方法与建模》第二版课件-第09章--向量自回归和向量误差修正模型
例9.1 我国货币政策效应实证分析的VAR模型 为了研究货币供应量和利率的变动对经济波动的长 期影响和短期影响及其贡献度,根据我国1995年1季度~ 2007年4季度的季度数据,设居民消费价格指数为CPI_90 (1990年1季度=1)、居民消费价格指数增长率为CPI 、实 际GDP的对数ln(GDP/CPI_90) 为ln(gdp) 、实际M1的对 数ln(M1/CPI_90) 为ln(m1) 和实际利率rr (一年期存款利 率R-CPI )。
10
利用VAR(p)模型对 ln(gdp) , ln(m1) 和 rr,3个变量之 间的关系进行实证研究,其中实际GDP和实际M1以对数差分 的形式出现在模型中,而实际利率没有取对数。
ln( gdp)t ln( m1)t
rrt
c1 c2 ck
1
ln( gdp) ln( m1)
2 4 6 9 12 12 即为用2―4阶,6―9阶及第12阶滞后变量。
14
(4) 在Endogenous Variables编辑栏中输入相应的内生变量 (5)在Exogenous Variables编辑栏中输入相应的外生变量 EViews允许VAR模型中包含外生变量,
yt Φ1 yt1 Φp yt p Hxt εt
同时,有两类回归统计量出现在VAR对象估计输 出的底标准OLS回归统 计量。根据各自的残差分别计算每个方程的结果,并显示 在对应的列中。
输出的第二部分显示的是VAR模型的回归统计量。
18
残差的协方差的行列式值(自由度调整)由下式得出:
Σˆ
det 1 T m
1
0.21
e3
-0.42 0.21
1
21
从表中可以看到实际利率rr、实际M1的ln(m1) 方程和实际GDP的ln(gdp)方程的残差项之间存在的 同期相关系数比较高,进一步表明实际利率、实际货 币供给量(M1)和实际GDP之间存在着同期的影响关系, 尽管得到的估计量是一致估计量,但是在本例中却无 法刻画它们之间的这种同期影响关系。
第九章 滞后变量模型
Yt * = b0 + b1 X t + ut
( 9.19 )
Yt*不可观测。由于生产条件的波动,生产管理 方面的原因,库存储备Yt的实际变化量只是预期变 化的一部分。
郑州大学商学院
储备按预定水平逐步进行调整,故有如下局部 储备按预定水平逐步进行调整,故有如下局部 调整假设: 调整假设 * Yt − Yt −1 = δ (Yt − Yt −1 ) ( 9.20 )
郑州大学商学院
( 9.25)
(9.25)减去(9.26)得
Yt = γ b0 + γ b1 X t + (1 − γ ) Yt −1 + ut − (1 − γ ) ut −1
( 9.27 )
郑州大学商学院
郑州大学商学院
Yt = a0 + b0 X t + b1 X t −1 + b2 X t − 2 + ⋅⋅⋅ + bs X t − s + ut
( 9.1)
Yt = a0 + b0Yt + b1Yt −1 + b2Yt − 2 + ⋅⋅⋅ + bρ Yt − ρ + ut
( 9.2 )
(9.1)仅含有解释变量的滞后变量,称为外 生滞后变量模型或分布滞后模型; (9.2)仅含有被解释变量的滞后变量,称为 外生滞后变量模型或自回归模型。
Yt = δ Yt * + (1 − δ ) Yt −1
其中,δ为调整系数 调整系数,0≤ δ ≤1 调整系数 将( 9.19)式代入(9.21)
( 9.21)
Yt = δ b0 + δ b1 X t + (1 − δ ) Yt −1 + δ ut
计量经济学名词解释
广义计量经济学:采用经济理论、统计学和数学定量讨论经济现象的经济计量方法的统称,包括回归分析方法、投入产出分析方法、时间序列分析方法等。
狭义计量经济学:以揭示经济现象中的因果关系为目的,在数学上主要应用回归分析方法。
计量经济学:是经济学的一个分支学科,是以揭示经济活动中的客观存在的数量关系为内容的分支学科。
计量经济学模型:揭示经济活动中各种因素之间的定量关系,用随机性的数学方程加以描述。
截面数据:截面数据是很多不同的观看对象在同一时间点上的取值的统计数据集合,可理解为对一个随机变量重复抽样获得的数据。
时间序列数据:把反映某一总体特征的同一指标的数据,依据肯定的时间挨次和时间间隔排列起来,这样的统计数据称为时间序列数据面板数据:指时间序列数据和截面数据相结合的数据。
总体回归函数:指在给定Xi下Y分布的总体均值与Xi所形成的函数关系(或者说总体被解释变量的条件期望表示为解释变量的某种函数)。
样本回归函数:指从总体中抽出的关于Y,X的若干组值形成的样本所建立的回归函数。
随机的总体回归函数:含有随机干扰项的总体回归函数(是相对于条件期望形式而言的)。
线性回归模型:既指对变量是线性的,也指对参数B为线性的,即解释变量与参数B只以他们的1次方消失。
最小二乘法:又称最小平方法,指依据使估量的剩余平方和最小的原则确定样本回归函数的方法。
最大似然法,又称最大或然法,指用生产该样本概率最大的原则去确定样本回归函数的方法。
总离差平方和:用TSS表示,用以度量被解释变量的总变动。
回归平方和,用ESS表示:度量由解释变量变化引起的被解释变量的变化部分。
残差平方和:用RSS表示:度量实际值与拟合值之间的差异,是由除解释变量以外的其他因素引起的被解释变量变化的部分。
协方差:用COV(X,Y)表示,度量X,Y两个变量关联程度的统计量。
拟合优度检验:检验模型对样本观测值的拟合程度,用R2表示,该值越接近1,模型对样本观测值拟合得越好。
09滞后变量模型的基本概念
(表示过去各个时期X每变动一个单位对Y平均变动的影响 )
(或 ) 长期乘数
i 1 i i 1 i
s
(表示X变动一个单位对Y的总影响 )
2、自回归模型:回归模型不仅含解释变量的即期值,
还含被解释变量的若干期滞后值。
Y X Y Y u
t 0 t 1 t 1 q t q
同乘以,得:
Yt 1 0 X t i ut 1
i i 1
(4)
(3)-(4)
二、自适应预期模型
在经济活动中,预期起着决定性作用。人们常根据他们对 某些经济变量未来走势的预期变动来改变自己的行为决策。 例如:生产取决于预期的销售; 投资取决于预期的利润; 长期利率取决于预期的短期利率于预期的通货膨胀 率之和 X 即影响被解释变量的因素不是Xt,而是预期值 t
u ut (1 )ut 1
* t
自适应预期模型特点:
1、以一个滞后因变量代替了预期值。 2、干扰项是一阶自相关,作为解释变量的滞后因 变量与随机干扰项不独立。
三、局部调整模型
局部调整模型是构造滞后变量模型的另一种方法。这种方法 早先是用来研究 物资贮备问题。例如,企业为了保证生产或 供应,必须保持一定的原材料贮备。 * Y 对于一定的产量或销售量Xt ,存在着预期的最佳库存 t
最后得长期货币流通需求量 模型的估计式为
ln Y 0.4669 0.333ln X 1.0781ln X
* t 1t
2t
货币流通量对长期利率的弹性,本期为-0.2401, 长期为-0.333。对工业企业存款的弹性本期为 0.7773,长期为1.0781。说明在经济体制下,工 业企业存款每增长1%,在本期的影响是货币流通 量增长0.773%,长期影响增长1.0781%。
第七章时间序列数据专题
入后,会在当年消费掉8000元,下一年消费 6000元,再下一年又消费4000元,余下2000 元储蓄起来以备不时之需,那么意味着当年收 入一般对当年消费会产生40%的作用,对下年 消费会产生30%的作用,对再下年消费则有 20%的作用。
此外人们有维持消费水平相对稳定的倾向,在 收入很低时也会设法保持基本的生活水平,因 此会有不受收入直接影响的基本消费。
但上述公式反映了滞后效应的主要特征,只要 进一步了解了基本消费,以此为基础就可以对 消费发展的趋势和收入政策效果等作出有效的 预测和分析。
(二)分布滞后模型
已知存在滞后效应以及滞后效应的时间 长度和结构时,对滞后作用的分析预测 是比较简单的。
但现实中的问题常常是只知道可能存在 滞后效应,滞后效应是否确实存在,滞 后效应的持续长度,及其结构模式都是 未知的。
例如消费滞后效应问题可能是:
Ct c0 c1It c2It 1 c3It 2 t
或:Ct c0 c1It c2It 1 c3It 2 cK It K 1 t
第九章 分布滞后和自回归模型
前言
前面各章基本上没有区别所用的数据究竟是时 间序列数据还是截面数据。但这两类数据在计 量经济分析中还是有明显差异的。
时间序列数据是经济运动动态过程的数量记录, 包含不同于横截面数据的特殊信息,可以进行 动态计量分析,但时间序列数据的内在联系也 可能给计量经济分析带来问题和困难。
模型中的c0是反映基本消费的常数,c1 等
是反映滞后效应结构的系数,这些参数 的数值,是否显著都是未知的,需要根 据收入和消费数据通过计量分析估计。
有时反映滞后期长度的K也是未知的,也 需要通过分析确定。
eviews分布滞后模型和自回归模型
i0
i0
i0
定义新变量
s
W1t X ti i0
s
W2t iX ti i0
s
W3t i2 X ti
将原模型转换为:i0
Yt 0W1t 1W2t 2W3t t
第二步,模型的OLS估计 对变换后的模型进行OLS估计,得 ˆ,ˆ1,ˆ2 再计算出:
例
case26是某水库1998年至2000年各旬的流量、 降水量数据。分别建立水库流量与降水量序 列,命名为vol和ra。试对其建立多项式分布 滞后模型。
Eviews操作
在主窗口命令行键入如下命令建立PDL模型:
Ls y x1 x2 pdl(series name, lags, order, options) 其中, lags代表滞后期s, order表示多项式次数m,
比较发现,远端约束模型的调整后的决定系 数略高于无约束模型、AIC和SC信息量略低 于无约束模型,因此认为加入远端约束条件 后的多项式分布滞后模型较优,但二者差异 不大。
系数估计值差异也不大,说明滞后期为3月时 降水量对水库流量的作用本身已衰减接近0
根据需要,可以为模型增加ARMA项,比如对某商 品销售额(sale)、价格 (price)和顾客流量(customer) 建立分布滞后模型的同时,加入AR和MA项。
动项无一阶自相关,模型二和模型三扰动项 存在一阶正相关;在综合判断可决系数、F- 检验值,t检验值,可以认为:最佳的方程尔蒙法
主要思想:针对有限滞后期模型,通过阿尔 蒙变换,定义新变量,以减少解释变量个数, 然后用OLS法估计参数。
阿尔蒙变换要求先验地确定适当阶数k例如取m2得?i?2210iii????????将代入分布滞后模型sy??????0?定义新变量titisitxy?????????0tsiitsiitsiittititxiixxxii??????????????????????????02201002210??i??sittxw01?将原模型转换为
空间自回归模型和空间滞后模型
空间自回归模型和空间滞后模型空间自回归模型和空间滞后模型,这两个名字听起来就像是从数学教室里跑出来的怪兽,但其实它们在分析数据的时候可是大有用处哦。
想象一下,你在一个小镇上,大家的房子都挨得很近,街坊邻里关系那是密不可分。
你的朋友小张如果今天心情好,邻居小李也可能会受到影响。
空间自回归模型就是要把这种“情绪传染”的现象给捉住。
它就像是在说,哎呀,咱们小镇上,如果小张心情好,没准大家的幸福指数也跟着蹭蹭上涨呢。
再说说空间滞后模型。
这家伙有点像是你等了很久的公交车,虽然你在这儿等着,但那辆车的到来还得看其他路上的情况。
空间滞后模型就告诉我们,某个地方的现象,不光是看自己这片区域,还得考虑周围的影响。
比如说,经济发展,某个城市的增长往往跟邻近城市的经济状况息息相关。
一个地方经济繁荣,附近的地方也会跟着水涨船高。
这就好比是,你的小区里开了一家超级火爆的餐厅,周围的店铺也跟着吸引了不少顾客,大家都是捞一把。
再想象一下,如果你在聚会上,大家都在聊最近的电影,你一来就提到那部让你失望的烂片。
可别小看了这个发言,可能会影响其他人的观感哦。
空间自回归模型和空间滞后模型就是在做这种事情,分析区域之间的互动,研究他们是如何影响彼此的,真的是个非常巧妙的想法。
就像是我们日常生活中,朋友圈子里的影响,谁都逃不掉。
听起来可能有点复杂,但其实它们的运用在我们生活中随处可见。
比如说,城市规划、环境监测,甚至是疫情的传播。
这些模型就像是研究人员的秘密武器,帮助他们了解各种现象背后的奥秘。
说到疫情,谁能忘记那段特殊的日子呢?在那时,研究人员就用这些模型来分析病毒的传播路径,看看哪个地方可能会成为“重灾区”,这对公共卫生决策真是至关重要。
哎,空间模型可不是只有学术界的专属。
咱们日常生活中,有时候也得用用这些思维,想想自己的行为会对周围的人造成怎样的影响。
就像你买了新衣服,如果你开心地穿出去,朋友们看到后也可能会去买,时尚就是这样流行开来的。
空间滞后模型和空间自回归模型
空间滞后模型和空间自回归模型空间滞后模型(Spatial Lag Model)和空间自回归模型(Spatial Autoregressive Model)是空间计量经济学中常用的两种模型,用于分析空间数据中的空间依赖性。
空间滞后模型是一种描述因变量与其邻近地区的自变量之间的依赖关系的模型。
它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的特征。
换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。
空间滞后模型可以用以下公式表示:Y = ρWy + Xβ + ε。
其中,Y是因变量,Wy是空间权重矩阵,ρ是空间滞后参数,X是自变量矩阵,β是自变量系数,ε是误差项。
空间滞后模型考虑了空间上的依赖性,可以用来解释因变量的空间聚集现象。
空间自回归模型是一种描述因变量与其邻近地区的因变量之间的依赖关系的模型。
它假设一个地区的因变量取决于该地区的自身特征以及其邻近地区的因变量。
换句话说,该模型认为一个地区的因变量受到其邻近地区因变量的影响。
空间自回归模型可以用以下公式表示:Y = ρWY + Xβ +ε。
其中,Y是因变量,W是空间权重矩阵,ρ是空间自回归参数,X是自变量矩阵,β是自变量系数,ε是误差项。
空间自回归模型考虑了空间上的依赖性,可以用来解释因变量的空间自相关现象。
这两种模型都考虑了空间上的依赖性,但是它们的依赖关系不同。
空间滞后模型是因变量与邻近地区的自变量之间的依赖关系,而空间自回归模型是因变量与邻近地区的因变量之间的依赖关系。
在实际应用中,选择使用哪种模型取决于具体问题和数据的特征。
总结起来,空间滞后模型和空间自回归模型是两种常用的空间计量经济学模型,用于分析空间数据中的空间依赖性。
它们都考虑了因变量与邻近地区之间的依赖关系,但是依赖关系的对象不同,一个是自变量,一个是因变量。
计量经济学第九章分布滞后和自回归模型
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1
将
X
* t
X t
(1
)
X
* t 1
代入
自回归与分布滞后模型
Yt C 0.4xt 0.3xt 1 0.2xt 2 ut
其中Y是消费量,X是收入
(17.1.1)
更一般的,我们可以写成:
Yt 0 xt 1xt 1 2 xt 2
β
k xt k ut
(17.1.2)
0 表示随着X一个单位的变化, Y均值的同期变化,
• 其中 Y = 对货币(实际现金余额)的需求 * X • =均衡、最优、预期的长期或正常利率 u t =误差项 •
• 方程(17.5.1) 设想,货币需求是预期(预测意义的)利 率的函数.
• 由于预期变量 X 不可直接观测,我们对预期的形成做如 下的设想: (17.5.2) • 其中 为 0 1 ,称期望系数(coefficient of expectation)。假设(17.5.2) 称适应性预期(adaptive expectation)或累进式期望(progressive expectation) 或错误中学习假设(error learning hypothesis). • (17.5.2) 表明:人们每期都按变量的现期值 X t与前期期 望值 X t 1* 之间的差距的一个分数 去修改期望值。 .
• 表达式证明
t 1 )/(1- ) 1 长期反应 ( 0 t期反应 0 / (1 ) 2
1 ln 2 2 t ln ln ln
平均滞后 • 假设所有的β
k
都是正的,则平均滞后有相关滞后的加权平均。扼要地 说,它是滞后加权平均时间。(类似于投资学中的久期) 考伊克模型:平均滞后=
*
• 将 (17.5.3) 代入 (17.5.1), 我们得到:
Yt 0 1 X t 1 X t 1 ut
eviews分布滞后模型和自回归模型-PPT课件
因此,使用OLS估计将导致估计量不仅是有
偏的而且非一致的。可以采用工具变量法来 估计,有学者建议用x t 1 作为 y t 1 的工具变量。
例1
table8-1.wf1工作文件中,给出的是1978-2019年北 京市城镇家庭平均每人全年消费性支出(PPCE, 单位元)和城镇家庭平均每人可支配收入(PPDI, 单位元)。由于人们消费习惯等原因,使得收入对 消费支出的影响存在时间滞后,因此建立消费函数 的分布滞后模型。 PPCE 1 PPDI PPC v 本实验打算建立如下模型: 这里以 PPDI 做为滞后解释变量 PPCE 的工具变量。 t 1
点及经验判断,对滞后变量赋予一定的权数, 利用这些权数构成各滞后变量的线性组合, 以形成新的变量,再应用最小二乘法进行估 计。
由于随机误差项与解释变量不相关,从而也与滞后 解释变量的线性组合变量不相关,因此可直接应用 最小二乘法对该模型进行估计。 经验加权法具有简单易行、不损失自由度、避免多 重共线性干扰及参数估计具有一致性等优点。缺陷 是设置权数的主观随意性较大,要求分析者对实际 问题的特征有比较透彻的了解。 通常的做法是,多选几组权数,分别估计多个模型, 然后根据样本决定系数、F检验值、t检验值、估计 标准误差以及DW值,从中选出最佳估计方程。
分别估计如下经验加权模型:
Y Z t k t t
k 1 , 2 , 3
YT = -66.52294932 + 1.071395456*Z1 (-3.662182) (50.96149) R-squared=0.994257 DW=1.439440 F= 2597.074 YT = -133.1722303 + 1.366668187*Z2 (-5.029746) (37.37033) R-squared=0.989373 DW=1.042713 F= 1396.542 YT = -121.7394467 + 2.237930494*Z3 (-4.813143) (38.68578) R-squared=0.990077 DW=1.158530 F= 1496.590
第九章 滞后变量模型
第九章 滞后变量模型一. 单项选择题1.下列属于有限分布滞后模型的是( )。
A. t t t t t u Y b Y b X b Y +++++=-- 22110αB. t t t t u X b X b Y ++++=- 110αC. t k t k t t t t u Y b Y b Y b X b Y ++++++=--- 22110αD.t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α2.消费函数模型211.03.05.0400ˆ--+++=t t t t I I I C ,其中I 为收入,则当期收入I t 对未来消费C t+2的影响是:I 增加1单位,C t+2增加( )。
A. 0.5单位;B. 0.3单位C. 0.1单位;D. 0.9单位3.在分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,长期乘数为( )。
A.0bB. i b (i=1,2,…,k)C.∑=ki ib1D.∑=ki ib4.在分布滞后模型的估计中,使用时间序列资料可能存在的序列相关问题就表现为( )。
A.异方差问题B.自相关问题C.多重共线性问题D.随机解释变量问题5.对于有限分布滞后模型t k t k t t t t u X b X b X b X b Y ++++++=--- 22110α中,如果其参数i b (i=1,2,…, k) 可以近似地用一个关于滞后长度i (i=1,2,…,k) 的多项式表示,则称此模型为( )。
A.有限多项式滞后模型B.无限多项式滞后模型C.考伊克变换模型D.自适应预期模型6.自适应预期模型基于如下的理论假设:影响被解释变量Y t 的因素不是X t,而是关于X 的预期*1+t X ,且预期*1+t X 形成的过程是*1+t X -*t X =)(*1+-t t X X γ,其中0<γ<1,γ被称为( )。
计量经济学教材答案(八、九章)
第八章虚拟变量模型1. 回归模型中引入虚拟变量的作用是什么?答:在模型中引入虚拟变量,主要是为了寻找某(些)定性因素对解释变量的影响。
加法方式与乘法方式是最主要的引入方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
2. 虚拟变量有哪几种基本的引入方式? 它们各适用于什么情况?答:在模型中引入虚拟变量的主要方式有加法方式与乘法方式,前者主要适用于定性因素对截距项产生影响的情况,后者主要适用于定性因素对斜率项产生影响的情况。
除此外,还可以加法与乘法组合的方式引入虚拟变量,这时可测度定性因素对截距项与斜率项同时产生影响的情况。
3.什么是虚拟变量陷阱?答:根据虚拟变量的设置原则,一般情况下,如果定性变量有m个类别,则需在模型中引入m-1个变量。
如果引入了m个变量,就会导致模型解释变量出现完全的共线性问题,从而导致模型无法估计。
这种由于引入虚拟变量个数与类别个数相等导致的模型无法估计的问题,称为“虚拟变量陷阱”。
4.在一项对北京某大学学生月消费支出的研究中,认为学生的消费支出除受其家庭的每月收入水平外,还受在学校中是否得到奖学金,来自农村还是城市,是经济发达地区还是欠发达地区,以及性别等因素的影响。
试设定适当的模型,并导出如下情形下学生消费支出的平均水平:(1) 来自欠发达农村地区的女生,未得到奖学金;(2) 来自欠发达城市地区的男生,得到奖学金;(3) 来自发达地区的农村女生,得到奖学金;(4) 来自发达地区的城市男生,未得到奖学金。
解答: 记学生月消费支出为Y,其家庭月收入水平为X,则在不考虑其他因素的影响时,有如下基本回归模型:Y i=β0+β1X i+μi其他定性因素可用如下虚拟变量表示:有奖学金无奖学金来自发达地区男性来自欠发达地区女性则引入各虚拟变量后的回归模型如下:Y i=β0+β1X i+α1D1i+α2D2i+α3D3i+α4D4i+μi由此回归模型,可得如下各种情形下学生的平均消费支出:(1) 来自欠发达农村地区的女生,未得到奖学金时的月消费支出:E(Y i|= X i, D1i=D2i=D3i=D4i=0)=β0+β1X i(2) 来自欠发达城市地区的男生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D4i=1,D2i=D3i=0)=(β0+α1+α4)+β1X i(3) 来自发达地区的农村女生,得到奖学金时的月消费支出:E(Y i|= X i, D1i=D3i=1,D2i=D4i=0)=(β0+α1+α3)+β1X i(4) 来自发达地区的城市男生,未得到奖学金时的月消费支出:E(Y i|= X i,D2i=D3i=D4i=1, D1i=0)= (β0+α2+α3+α4)+β1X i5. 研究进口消费品的数量Y 与国民收入X 的模型关系时,由数据散点图显示1979年前后Y 对X 的回归关系明显不同,进口消费函数发生了结构性变化:基本消费部分下降了,而边际消费倾向变大了。
自回归分布滞后模型
自回归分布滞后模型自回归分布滞后模型(ARIMA)是一种可用于自回归过程的统计建模技术。
它的主要优点是它能够使用时间序列数据预测未来或者检测和调整自回归过程中可能存在的性质变化。
ARIMA是一种重要的时间序列分析技术,它可以用来预测变量的自回归过程(AR),如动量(MA)和季节性过程(I)。
一、什么是自回归分布滞后模型(ARIMA)自回归分布滞后模型(ARIMA)是一种用于分析和预测时间序列数据的统计学方法。
ARIMA模型可以帮助研究者分析并预测事件的发生情况,以及由事件的发生情况产生的结果。
ARIMA模型的结构可以被定义为简单的一般线性二阶拟合模型。
二、ARIMA模型的有效性ARIMA模型通常证明是有效预测时间序列数据的一种有效方法。
无论是实现和应用于单变量和多变量时间序列上,ARIMA模型都可以为研究者提供可靠的预测结果。
在单变量的时间序列数据分析中,ARIMA 模型可以帮助研究者发现一些未知的趋势,从而判断该变量在未来的运动趋势。
三、ARIMA模型的应用ARIMA模型的应用,可以分为零度模型和非零度模型应用。
它们可以应用于单变量时间序列(零度模型)和多变量时间序列(非零度模型)上。
零度模型可以用来描述和预测单变量时间序列,而非零度模型可以用来描述和预测多变量时间序列中变量之间的关系。
此外,ARIMA模型还可以应用于时间序列平滑、广义线性模型、转换型自回归等领域。
四、ARIMA模型的优缺点ARIMA模型的优点是它能够有效地描述时间序列的差异性,可以使用时间序列数据预测未来或者检测已经发生的变化,进而找出时间序列中可能存在的自回归过程的特征,从而可以有效的预测和预测时间序列的发展趋势。
缺点是在使用自回归过程时,数据分析人员必须对变量进行较小的调整,以保持变量在ARIMA模型中是稳定的,而如果调整失败,将无法得到良好的分析结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K
K
则模型变为: Yt a0 Z0t a1Z1t a2 Z2t t Z1t 和 Z 2t 只是 X t及其各 很显然,上述 Z 0t 、 期滞后的线性组合,因此仍是非随机的 或与误差项无关。 因此可用OLS法对该式进行参数估计,得 到估计值
i 0
i 0
i 0
(二)先验约束估计
分布滞后模型参数估计的另一类方法, 是利用某种先验信息和经验设定分布滞 后模型的滞后模式,从而简化分布滞后 模型的函数形式,方便参数估计。这类 方法称为“参数约束法”。 最重要的参数约束法是阿尔蒙多项式法 和考伊克方法。
1. 阿尔蒙多项式法
适用于已知滞后长度,但滞后长度较长的有限 分布滞后模型。 这类模型的主要困难是参数数量较多,导致估 计困难。 基本思想:以滞后期i 的一个适当次数的多项 式,模拟分布滞后模型的系数。 可分别模拟单调下降、先升后降,以及循环变 化等不同的滞后效应类型。
其次是滞后效应的模式,对应于m,也 必须预先知道,这就很难以避免判断的 主观偏差。 最后上述变量变换会缩短样本长度,因 此并不能完全解决分布滞后模型参数估 计的自由度问题。 当样本容量并不是很大,滞后期长度较 长时,仍然无法得到有效的估计结果。
2. 考伊克方法
考伊克方法在一定程度上可以弥补阿尔蒙多项 式法的不足,解决其部分问题。 考伊克方法形式上是针对无限分布滞后模型: Yt 0 X t 1 X t 1 2 X t 2 t
一般可采用下列标准化表达式分别表示有限分 布滞后模型和无限分布滞后模型: 无限分布滞后模型:有无限多滞后项
Yt 0 X t 1 X t 1 2 X t 2 t
有限分布滞后模型:有限个滞后项
Yt 0 X t 1 X t 1 2 X t 2 K X t K t
(一)现式估计法
现式估计法适用滞后长度不确定的分布滞后模 型。 为了解决滞后长度不定的困难,可以依次估计 有滞后效应变量的一期滞后、两期滞后……, 当发现滞后变量(加入的最多期滞后)的回归 系数在统计上开始变得不显著,或至少有一个 变量的系数改变符号(由正变负或由负变正) 时,就不再增加滞后期,把此前一个模型作为 分布滞后模型的形式,相应参数估计作为模型 的参数估计。
反过来说,当我们通过对具体问题滞后 效应的分析,初步判断滞后效应的变化 模式符合上述线性变化,先增后减二次 曲线变化,或其他高次曲线形态变化时, 就可以选定相应的m和滞后参数多项式。 一般来说,常见的滞后参数变化模式的 m在1到4之间。
确定了滞后参数多项式以后,将这些多 项式代入分布滞后模型进行变换。 以m=2的情况为例。 2 a a i a i 把 i 0 1 2 代入前述分布滞后模 型,可得: K
该模型仍然含有无限多项,但其中的参 数已经只有3个了。只要我们再把模型滞 后一期得: 2 Yt 1 0 X t 1 0X t 2 0 X t 3 t 1
进一步得:
Yt Yt 1 (1 ) 0 X t ( t t 1 )
此外,在考虑一个解释变量对被解释变量的影 响和滞后作用(如收入对消费)以外,还可以 同时考虑其他解释变量对被解释变量的影响, 甚至同时考虑多个解释变量作用的滞后效应等。 分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。 但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。
图9.2 考伊克方法参数衰减模式
k
3/ 4
1/ 4
1/ 2
滞后时间
考伊克方法模型设定的滞后参数模型, 与现实经济中许多滞后效应变化规律确 实是一致的,因此有重要的价值。 有了上述滞后参数变化模式,就可以对 分布滞后模型进行变换。 k 首先作考伊克变换,即把 k 0 代入模 型,得到: Yt 0 X t 0X t 1 02 X t 2 t
为了横向比较方便等原因,滞后效应也可以通 过滞后期长度、短期效应、中期相应、半效应 长度等进行衡量。 例如上述收入对消费滞后效应的滞后期长度, 也就是滞后效应的持续时间,总滞后效应完全 实现的时间,为2年。滞后的短期效应(当年 效果)为4/9,中期效应(当年加次年效果) 为7/9。半效应长度,也就是滞后效应过半的 时间长度,则在1年之内。
第九章 分布滞后和自回归模型
前言
前面各章基本上没有区别所用的数据究竟是时 间序列数据还是截面数据。但这两类数据在计 量经济分析中还是有明显差异的。 时间序列数据是经济运动动态过程的数量记录, 包含不同于横截面数据的特殊信息,可以进行 动态计量分析,但时间序列数据的内在联系也 可能给计量经济分析带来问题和困难。 本章介绍利用时间序列数据进行动态计量分析 的几个专题。下一章我们将对时间序列数据计 量分析的一些问题进行分析。
设一个有限分布滞后模型为: Yt 0 X t 1 X t 1 K X t K t
也可以写成:
Yt i X t i t
i 0 K
阿尔蒙认为可以用如下i 的多项式模拟 i 的变化: i a0 a1i a2i 2 ami m
(二)分布滞后模型
已知存在滞后效应以及滞后效应的时间 长度和结构时,对滞后作用的分析预测 是比较简单的。 但现实中的问题常常是只知道可能存在 滞后效应,滞后效应是否确实存在,滞 后效应的持续长度,及其结构模式都是 未知的。
例如消费滞后效应问题可能是:
Ct c0 c1It c2 It 1 c3It是现式估 计法。这种参数估计方法只是普通最小二乘估 计的重复应用,易于掌握。 但现式估计法也有问题。首先滞后长度的确定 没有明确的标准、根据;其次是引进较多期滞 后会降低自由度,回归分析的有效性会降低; 第三是滞后变量之间的相关性可能引发共线性 问题;此外被认为有数据开采的嫌疑。
本章结构
第一节 分布滞后模型
第二节 自回归模型 第三节 因果关系检验
第一节 分布滞后模型
一、经济中的滞后效应和分布滞后模型 二、分布滞后模型参数估计
(一)经济中的滞后效应
由于信息滞后、交易周期和心理因素等多方面 的原因,经济行为、政策的作用,经济变量之 间相互影响的效果,常常不是立即体现出来, 而是有时间延滞性或持续作用,会在以后一个 时期内逐步体现出来。 这种现象就是滞后效应。滞后效应在经济问题 中是普遍存在的。 例如人们获得后通常不会立即全部花掉,而是 会在以后一个阶段分次花费,因此收入对人们 消费的影响往往有时间滞后和持续的影响。
二、分布滞后模型参数估计
用分布滞后模型研究滞后效应,进行预测分析 和评估政策效果之前,先要估计模型中的未知 参数。 分布滞后模型形式上与一般的多元线性回归相 似,但因为引进多个滞后变量和滞后期长度难 以确定,分布滞后模型的参数估计与一般多元 线性回归模型有所不同。 分布滞后模型的参数估计首先要解决的问题是 滞后长度确定,或者如何在未知滞后长度时估 计参数。
当然,消费者的消费行为一般不可能满足严格 函数关系,必然会因素随机因素干扰而有波动。 此外人们有维持消费水平相对稳定的倾向,在 收入很低时也会设法保持基本的生活水平,因 此会有不受收入直接影响的基本消费。 但上述公式反映了滞后效应的主要特征,只要 进一步了解了基本消费,以此为基础就可以对 消费发展的趋势和收入政策效果等作出有效的 预测和分析。
最后,只需要把这些估计值代入滞后参数多项 式,就可以得到得到各个滞后参数的估计值:
ˆ a ˆ0 0 ˆ a ˆ0 a ˆ1 a ˆ2 1 ˆ a ˆ0 2a ˆ1 4a ˆ2 2
……
2 ˆ a ˆ ˆ ˆ2 K a K a K 0 1
阿尔蒙多项式法可以把需要估计的参数 数量减少到有限的几个,是解决滞后效 应较长的分布滞后模型参数较多困难的 有效方法。 但这种方法也有局限性。首先运用阿尔 蒙多项式法必须先知道分布滞后模型的 滞后长度,因为X变量变换为变量Z时K必 须是已知的。
Ct c0 c1It c2 It 1 c3It 2 cK It K 1 t 或: c1 等 模型中的 c0 是反映基本消费的常数, 是反映滞后效应结构的系数,这些参数 的数值,是否显著都是未知的,需要根 据收入和消费数据通过计量分析估计。 有时反映滞后期长度的K也是未知的,也 需要通过分析确定。
滞后效应对经济问题的影响非常重要。要准确 把握经济关系,特别是长期动态关系,避免预 测和决策偏差,必须重视这种滞后效应。 滞后效应可以直接通过滞后作用的描述来反映。 例如若某地消费者平均来说在获得20000元收 入后,会在当年消费掉8000元,下一年消费 6000元,再下一年又消费4000元,余下2000 元储蓄起来以备不时之需,那么意味着当年收 入一般对当年消费会产生40%的作用,对下年 消费会产生30%的作用,对再下年消费则有 20%的作用。
Yt (a0 a1i a2i 2 ) X t i t
i 0
K K K i 0 i 0
a0 X t i a1 iX t i a2 i 2 X t i t
i 0
2 Z X Z iX Z i 0 t t i 若令 ,1t t i , 2t X t i K