图像分割的定义(精)

合集下载

数字图像处理图像分割课件

数字图像处理图像分割课件

基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。

数字图像处理-第六章图像分割与分析

数字图像处理-第六章图像分割与分析

设平面上有若干点,过每点的直线族分别对应于极坐标上的 一条正弦曲线。若这些正弦曲线有共同的交点(ρ′,θ′),如图 (e),则这些点共线,且对应的直线方程为 ρ′=xcosθ′+ysinθ′
这就是Hough变换检测直线的原理。
y
A 60
B
F E
C
G 60
D 120
x
x-y空间的边缘点
D
120
C
w1 w 2 w3
可以指定模板为:
w
4
w5
w
6
w 7 w 8 w 9
9
模板响应记为: R | w i z i | i1
输出响应R>T时对应孤立点。
888 8 128 8 888
图像
-1 -1 -1 -1 8 -1 -1 -1 -1
模板
R = (-1 * 8 * 8 + 128 * 8) / 9 = (120 * 8) / 9 = 960 / 9 = 106
3、阈值分割法(相似性分割)
根据图像像素灰度值的相似性
通过选择阈值,找到灰度值相似的区域 区域的外轮廓就是对象的边
阈值分割法(thresholding)的基本思想: 确定一个合适的阈值T(阈值选定的好坏是此方法成败 的关键)。 将大于等于阈值的像素作为物体或背景,生成一个二值 图像。
f(x0,y0) T
2h
r2 2 4
exp
r2 2 2
是一个轴对称函数:
2h

σ
0
由图可见,这个函数 在r=±σ处有过零点,在 r │r│<σ时为正,在│r│>σ 时为负。
由于图像的形状,马尔算子有时被称为墨西哥草帽函数。 用▽2h对图像做卷积,等价于先对图像做高斯平滑,然后再用▽2对 图像做卷积。 因为▽2h的平滑性质能减少噪声的影响,所以当边缘模糊或噪声较 大时,利用▽2h检测过零点能提供较可靠的边缘位置。

Dip-6

Dip-6

p( z ) =
P 1 e 2π σ 1

( z − µ1 )2
2 2σ 1
+
P2 e 2π σ 2

( z − µ 2 )2
2 2σ 2
将该方程用于(6-1-1-1)得下列门限T的解:
AT 2 + BT + C = 0
其中
2 A = σ 12 − σ 2 2 B = 2 µ1σ 2 − µ 2σ 12
图像分割—门限法
将一个背景点当作目标点进行分类时,错误概率为:
E 1 (T
) = ∫− ∞
T
p 2 ( z )dz
将一个目标点当作背景点进行分类时,错误概率为:
E 2 (T
) = ∫T

p 1 ( z )dz
出错率的整体概率是:
E (T ) = P2 E1 (T ) + P1 E 2 (T )
对E(T)求导并令导数为0,得
最优门限的选取 多数情况下,目标和背景的灰度分布有重叠。若二者的 灰度分布的概率密度函数已知,则可以选择门限使得错误概 率最小(统计最优)。
背景
图像中两个区域的灰度级概率密 度函数
目标
图像整体灰度级变化的总概率密度函数:
p ( z ) = P1 p 1 ( z ) + P2 p 2 ( z )
(P1和P2是两类象素出现的概率)
P p1 (T ) = P2 p2 (T ) 1
——(6-1-1-1)
解出的T即为最佳门限。如果P1=P2,则最佳门限位于P1(z)和P2(z) 的交点处。
图像分割—门限法
从T的表达式知,为了求取T,需要知道两个概率密度。在现实中 并不是总可以对这两个密度进行估计。通常的做法是利用参数化 模型。例如常考虑使用高斯密度:

医学图像分割介绍说明课件

医学图像分割介绍说明课件
详细描述
图像质量与噪声问题
VS
人体解剖结构复杂且动态变化,对医学图像分割提出了更高的要求。
详细描述
人体不同器官和组织具有不同的形态和结构,且在疾病状态下会发生形态和密度的变化。此外,人体内部各部位之间也存在相互遮挡和干扰的情况,这使得准确识别和分割医学图像变得更为困难。
总结词
复杂的解剖结构与动态变化
早期的医学图像分割主要依靠手工绘制,费时费力且精度不高。
早期阶段
随着计算机技术的发展,开始出现基于阈值、区域生长等简单的自动分割方法。
初级阶段
随着机器学习和深度学习技术的兴起,医学图像分割精度得到大幅提升,成为当前研究的热点领域。
发展阶段
未来医学图像分割技术将朝着更高精度、更自动化、更智能化的方向发展,为医疗健康事业提供更多可能性。
未来展望
医学图像分割的历史与发展
02
CHAPTER
医学图像分割技术
总结词
简单、快速、对图像质量要求高
详细描述
基于阈值的分割方法是最简单的图像分割方法之一,通过设定一个阈值将图像分为前景和背景两部分。该方法计算速度快,但对图像质量要求较高,对于灰度不均匀、噪声较多的医学图像分割效果较差。
基于阈值的分割方法
数据标注与训练样本不足
05
CHAPTER
医学图像分割的未来展望
跨模态医学图像分割是指将不同模态的医学图像进行分割,以提供更全面的医学信息。
随着医学影像技术的不断发展,不同模态的医学图像(如X光、CT、MRI等)被广泛应用于临床诊断和治疗。跨模态医学图像分割技术可以将这些不同模态的图像进行融合,对病变组织和器官进行更精确的分割,为医生提供更全面的医学信息,提高诊断和治疗的准确性和可靠性。

图像分割算法在图像处理中的应用

图像分割算法在图像处理中的应用

图像分割算法在图像处理中的应用一、导言图像分割是图像处理领域中的一项重要技术,指将一副图像分成若干个子区域,将图像中不同的物体或背景区分出来,为下一步的图像分析和图像识别提供重要的前置条件。

图像分割算法的应用广泛,包括医学图像分析、自动驾驶、目标检测等等。

本文将从图像分割的定义、常用算法和应用方面展开讨论,介绍图像分割在图像处理中的重要意义。

二、图像分割的定义图像分割的定义是指将一幅图像分割成若干个子区域,使得每一子区域内的像素具有相似的性质,如颜色、纹理、亮度等等。

通常一幅图像中的前景和背景具有不同的属性,图像分割的目标就是将二者区分开来,使得前景和背景分别成为一个子区域。

而这个过程需要采用一定的算法来实现。

三、常用的图像分割算法1. 基于阈值的图像分割基于阈值的图像分割算法,也是最简单的分割算法。

其基本思路是先确定一个阈值,将图像中所有灰度值大于该阈值的像素点分到一个区域内,将小于该阈值的像素点分到另一个区域内。

基于阈值的图像分割适用于图像中前景和背景的差别明显,对于一些复杂的图像分割任务,其效果则有限制。

2. 区域生长算法区域生长算法是一种基于种子点的图像分割算法。

该算法最初在医学领域得到广泛应用。

医学影像数据中经常需要对感兴趣区域进行计算,这些区域在像素值上通常具有高度的同质性。

基于该性质,区域生长算法可以通过种子点引发对图像的连续增长,从而逐步形成有意义的区域。

3. 区域分裂和合并算法区域分裂和合并算法是一种迭代的区域分割算法。

该算法先将图像划分为若干个相同大小的初始块,然后通过一系列的分裂和合并操作逐步细化或聚合这些块形成我们需要的区域。

4. 基于边缘检测的图像分割基于边缘检测的图像分割算法是目前最为流行的图像分割算法,该算法的基本思路是通过对图像进行边缘检测,将图像分成若干个区域。

这种方法通常需要结合边缘检测算法来处理图像中的过多的噪声和杂点,以达到更好的分割效果。

四、图像分割算法在图像处理中的应用图像分割算法在许多领域中都有广泛的应用,如医学影像分析、自动驾驶、图像识别和机器人视觉等。

图像分割技术

图像分割技术
数可能找不到边界,此时二阶导数就能提供很有用的信
息。二阶导数对噪声也比较敏感,解决的方法是先对图
像进行平滑滤波,消除部分噪声,再进行边缘检测。
✓ 利用二阶导数信息的算法是基于过零检测的,因此得到
的边缘点数比较少,有利于后继的处理和识别工作。
✓ 各种算子的存在就是对这种导数分割原理进行的实例化
计算,是为了在计算过程中直接使用的一种计算单位。
4.1 边缘检测
4.1.5 Log边缘算子
(2)增强:对平滑图像进行拉普拉斯运算,即:
h( x, y ) 2 ( f ( x, y ) G ( x, y ))
(3)检测:边缘检测判据是二阶导数过零交叉点,并对
应一阶导数的较大峰值。
这种方法的特点是:图像首先与高斯滤波器进行卷积,
这样既平滑了图像又降低了噪声,孤立的噪声点和
第四章 图像分割
在对图像的研究和应用中,人们往往仅对图像中的某些
部分感兴趣,这部分常常称为目标或前景(其他部分称为背
景),它们一般对应图像中特定的、具有独特性质的区域。
为了识别和分析图像中的目标,需要将它们从图像中分离、
提取出来。
图像处理过程
图像分割是指把图像分成各具特性的区域并提取出感
兴趣目标的技术和过程。
同的像素具有不同的权值,对算子结果产生的影响也不同。
4.1 边缘检测
4.1.2 Sobel边缘算子
离散性差分算子
计算简单,检测效率高,对噪声具有平滑抑制作用,但是得
到的边缘较粗,且可能出现伪边缘。Sobel算子并没有将图像
的主体与背景严格地区分开来,换言之就是Sobel算子没有基
于图像灰度进行处理,由于Sobel算子没有严格地模拟人的视

计算机视觉中的图像分割

计算机视觉中的图像分割

计算机视觉中的图像分割计算机视觉领域中,图像分割是一项非常重要的任务。

它可以将一张图像分割成多个部分,每个部分包含不同的物体或区域。

这个过程有很多应用,比如目标跟踪、图像识别、自动驾驶等领域都需要用到图像分割技术。

图像分割的定义在计算机视觉中,图像分割的定义是将一张图像划分成不同的部分,每个部分代表一个物体或区域。

这个过程需要将图像的每个像素分配给一个物体或区域,并且保证不同的物体或区域之间的边界是清晰的。

图像分割的分类图像分割可以分为多种不同的类型,按照分割方法可以分为基于像素的分割和基于区域的分割两种类型。

基于像素的分割是将图像的每个像素分配给不同的类别。

这种方法是最简单的分割方法,但是它的数据量非常大,通常需要进行后期的处理和优化。

基于区域的分割是将图像分成若干个连续区域,每个区域代表着一个物体或者是一个区域。

这种方法能够减少处理的数据量,但是需要将一个像素和它邻近的像素一起处理,这样会增加处理的时间。

另外,还可以按照颜色、亮度、纹理等特征对图像进行分割,这样可以更加准确地分割出每个物体或区域。

图像分割的应用图像分割在计算机视觉领域中有着广泛的应用。

下面列举一些常见的应用:1.目标跟踪目标跟踪是指通过摄像机等设备对目标进行实时跟踪。

这个过程需要先对目标进行识别和分割,只有当目标的区域确定后才能进行跟踪操作。

2.图像识别图像识别需要对图像进行分割和分类,并对每个物体或区域进行特征提取,最终判断图片中的物体或区域属于哪个类别。

图像识别可以应用于人脸识别、果蔬识别、红外识别等领域。

3.自动驾驶自动驾驶是指汽车等车辆在没有人类司机的情况下自主行驶。

这个过程需要对环境中的物体和道路进行识别和分割,以便智能车辆做出正确的决策。

4.图像分割图像分割可以帮助人类去除图像中不需要的元素,同时能够为其他任务提供输入数据。

例如,在医学图像中,可以分割出患者的病灶,并对这些病灶进行跟踪和分析;在卫星图像中,可以使用图像分割技术进行全球气候分析等重要任务。

医学图像处理课件15医学图像分割应用

医学图像处理课件15医学图像分割应用
分水岭算法
将图像看作地形地貌,利用水流的模拟过程,寻找局部最小值,实现区域合并, 最终得到分割结果。如:通过模拟水的流动过程实现图像分割。
基于边缘的分割
梯度算子
利用图像边缘的梯度变化较大,通过计算梯度值实现边缘检 测。如:Sobel、Prewitt和Canny算子。
轮廓检测
通过检测图像中的轮廓信息实现分割。如:基于水平集、蛇 模型等算法实现图像分割。
医学图像分割在医学领域应用广泛,包括诊断、治疗和手术 指导等方面。
医学图像分割的应用
病灶检测
手术导航
通过对医学图像进行分割,可以将病灶区域 从图像中提取出来,辅助医生进行诊断和治 疗方案制定。
在手术过程中,医生可以通过医学图像分割 技术,将手术部位与周围组织进行区分,提 高手术的准确性和安全性。
医学研究
医学图像分割的重要性
医学图像分割对于医学研究和诊断具有重要意义,可以帮助医生更好地理解和分 析病变区域,提高诊断准确性和效率。
医学图像分割的挑战ห้องสมุดไป่ตู้
图像质量的差异
01
医学图像存在不同的成像方式、噪声类型和对比度等,这些因
素会影响分割结果的准确性。
器官和病变区域的复杂性
02
人体器官和病变区域具有复杂的形状和纹理,这使得分割过程
医学图像处理课件15-医学 图像分割应用
xx年xx月xx日
目录
• 医学图像分割概述 • 医学图像分割的方法 • 医学图像分割的应用 • 医学图像分割的挑战与未来发展
01
医学图像分割概述
医学图像分割的定义
医学图像分割定义
将医学图像中的不同结构和组织区域划分成独立的部分或对 象,如器官、病变、血管等,以便于进行诊断和治疗。

医学图像分割介绍课件

医学图像分割介绍课件

01
02
阈值分割对噪声较为敏感,噪声的存在可能会影响分割效果。
抗噪性能差
考虑区域特征
基于区域的分割方法考虑了像素间的空间关系和区域内的特征相似性,通过将具有相似性质的像素聚合成一个区域来图像质量的要求较低,适用于目标与背景差异不明显、光照不均匀、噪声较多的情况。
计算复杂度高
基于区域的分割方法通常需要迭代或动态规划来计算最优解,计算复杂度较高,耗时较长。
VS
利用边缘信息
基于边缘的分割方法利用图像中不同区域间的边缘信息进行分割,通过检测和跟踪边缘来实现图像分割。
对噪声敏感
基于边缘的分割方法对噪声较为敏感,噪声的存在可能会干扰边缘检测和跟踪。
对细节保留较好
基于阈值的分割方法
随着技术的发展,基于区域的分割方法逐渐兴起,如区域生长、分裂合并等。
基于区域的分割方法
利用图像中的边缘信息进行分割,如Canny边缘检测等。
基于边缘的分割方法
近年来,基于模型的分割方法成为研究热点,如水平集方法、变分法等。
基于模型的分割方法
02
CHAPTER
医学图像分割的基本原理
由于设备性能、采集参数等因素,医学图像中可能出现伪影。这些伪影可能导致图像分割算法误判,影响分割精度。
伪影
噪声
人体器官会随着呼吸、心跳等生理活动而发生动态变化,这要求图像分割算法能够适应这种变化,并准确地进行分割。
病变组织如肿瘤的生长、扩散等,也会导致图像的动态变化。分割算法需要能够识别并处理这些变化。
动态生理变化
病变组织的动态变化
05
CHAPTER
医学图像分割的未来展望
深度学习技术为医学图像分割提供了强大的工具,通过训练深度神经网络,可以实现高精度的图像分割。

第四章 图像分割

第四章 图像分割

第四章 医学图像分割医学图像分割是高级医学图像分析和解释系统的核心组成部分。

医学图像的分割为目标分离、特征提取和参数的定量测量提供了基础和前提条件,使得更高层的医学图像理解和诊断成为可能。

第一节 分割的概念所谓医学图像分割,就是根据医学图像的某种相似性特征(如亮度、颜色、形状、纹理、面积、位臵、局部统计或频谱特征等)将医学图像划分为若干个互不相交的连通区域的过程。

区域作为图像分割中像素的连通集合和基本分割单位,定义为4连通区域和8连通区域。

在数学上,医学图像分割可以用集合论模型予以描述:已知一幅医学图像I 和一组相似性约束条件i C ( ,2,1=i ),对I 的分割就是求取它的一个划分的过程,即:N j 1= j R =I , ],1[,,,N k j k j R R k j ∈≠∀=φ 其中, j R 为同时满足所有相似性约束条件i C ( ,2,1=i )的连通像素点的集合,即我们所谓的图像区域;N 为不小于2的正整数,表示分割后区域的个数。

医学图像分割方法可以划归为三大类:基于阈值的分割方法、基于边缘的分割方法和基于区域的分割方法。

近年来,新概念、新思想和新方法应用于复杂二维医学图像和高维医学图像或者图像序列的分割,其中包括数学形态学、模糊理论、神经网络、遗传算法、小波分析和变换等。

极大地改善了医学图像的分割效果。

人工分割的精度最高,分割结果难以重现。

半自动方法在很大程度上仍然依赖于操作者的主观经验和知识。

研究高效、实用的全自动分割方法是近年来图像分割方法的研究重点。

到目前为止既不存在一种通用的图像分割方法,也不存在一种准确评价分割成功与否的客观标准。

第二节 阈值分割阈值法是一种常用的将图像中感兴趣目标与图像背景进行分离的图像分割方法,用一个或几个阈值将图像灰度直方图分成两段或多段,而把图像中灰度值在同一段内的所有像素归属为同一个物体。

设原始图像为),(y x I ,阈值法按照一定的规则在),(y x I 中确定若干个门限值,,,,21N T T T 其中1≥N ,利用这些门限值将图像分割为几个部分。

图像分割

图像分割

第8章 知识要点图像分割是图像检索、识别和图像理解的基本前提步骤。

本章主要介绍图像分割的基本原理和主要方法。

图像分割算法一般是基于灰度值的两个基本特性之一:不连续性和相似性。

基于灰度值的不连续性的应用是根据灰度的不连续变化来分割图像,比如基于边缘提取的分割法,先提取区域边界,再确定边界限定的区域。

基于灰度值的相似性的主要应用是根据事先制定的相似性准则将图像分割为相似的区域,比如阈值分割和区域生长。

8.1 本章知识结构8.2 知识要点1. 图像分割在对图像的研究和应用中,人们往往仅对图像中的某些部分感兴趣。

这些部分常称为目标或前景(其它部分称为背景),它们一般对应图像中特定的、具有独特性质的区域。

为了检索、辨识和分析目标,需要将它们分离提取出来,在此基础上才有可能对目标进一步利用。

图像分割就是指把图像分成各具特性的区域并提取出感兴趣目标的技术和过程。

图像分割是由图像处理过渡到图像分析的关键步骤。

一方面,它是目标表达的基础,对特征测量有重要的影响;另一方面,因为图像分割及其基于分割的目标表达、特征提取和参数测量等,能将原始图像转化为更抽象更紧凑的形式,所以使得更高层的图像分析和理解成为可能。

图像分割的应用非常广泛,几乎出现在有关图像处理的所有领域中,并涉及各种类型的图像。

图像分割在基于内容的图像检索和压缩、工业自动化、在线产品检验、遥感图像、医学图像、保安监视、军事、体育、农业工程等方面都有广泛的应用。

例如:在基于内容的图像检索和面向对象的图像压缩中,将图像分割成不同的对象区域等;在遥感图像中,合成孔径雷达图像中目标的分割,遥感云图中不同云系和背景分布的分割等;在医学应用中,脑部图像分割成灰质、白质、脑脊髓等脑组织和其它脑组织区域等;在交通图像分析中,把车辆目标从背景中分割出来等。

在各种图像应用中,只要需要对图像目标进行提取、测量等,就都离不开图像分割。

图像分割的准确性将直接影响后续任务的有效性,因此图像分割具有十分重要的意义。

数字图像处理---图像分割

数字图像处理---图像分割

数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。

图像分割的定义(精)

图像分割的定义(精)
边缘点:
K ( x, y) tH
• Laplace算子
2
2 2 f ( x , y ) f ( x, y) 2 f ( x, y) 2 x y 2
f ( x, y) f ( A1 ) f ( A3 ) f ( A5 ) f ( A7 ) 4 f ( A
| f ( x, y) f ( x, y 1) | | f ( x, y) f ( x 1, yБайду номын сангаас |
二值分割图像:
1,| f ( x, y) | t H G( x, y) 0,| f ( x, y) | t H
微分算子边缘检测
• Roberts 交叉算子
-1 0 0 0 1 2 1 -2 -1
m
n
m=n=1,称作Sobel模板
• Kirsch算子 K ( x, y) max{1, max[5Si 3Ti ]}, i 0 7 其中, Si f ( Ai ) f ( Ai1 ) f ( Ai 2 )
Ti f ( Ai 3 ) f ( Ai 4 ) f ( Ai 5 ) f ( Ai 6 ) f ( Ai 7 )
图像分割的定义
所谓图像分割是指将图像中具有特殊涵义的不 同区域区分开来,这些区域是互相不交叉的,每 一个区域都满足特定区域的一致性。 常见的分割技术: 阈值分割技术, 微分算子边缘检测 区域增长技术, 聚类分割技术
阈值分割技术
• 全局阈值技术
令位于(x , y)点的象素灰度为f( x, y),选择灰度阈值为 则分割的二值图像为:
(1)它将梯度幅值图像看成一幅地形图,而梯度幅值对应 海拔高度,图像中不同梯度值的区域就对应于山峰和山 谷间盆地。 ������ (2)设想在各个局部极小值点的位置打一个洞,然后 将地形图逐渐浸入一个湖中,全局极小值点的盆地先水。 ������ (3)水位逐渐升高漫过盆地,当相邻 两个盆地的水即将合并时,这时在两 个盆地间建坝拦截。 ������ (4)此过程将图像划分为许多个山谷 盆地,分水岭就是分隔这些盆地的堤坝。

第7章图像分割1

第7章图像分割1

-1 1
Grad( x,y ) T 其它
-1
1
为了检测边缘点,选取适当的阈值T,对梯度图像进行二值化,则有:
1 g ( x, y ) 0
这样形成了一幅边缘二值图像g(x,y).
特点:仅计算相邻像素的灰度差,对噪声比较敏感,无法抑止噪声的影响。
2)Roberts算子
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx’Leabharlann fy’-1• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度
算子略好。
3) Prewitt算子
• 公式 f x f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) f ( x 1, y) f ( x 1, y 1)
1
1
1
• 特点:在检测边缘的同时,能抑止噪声的影响.
4)Sobel算子
• 公式
f x f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x 1, y) f ( x 1, y 1) f y f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1) f ( x 1, y 1) 2 f ( x, y 1) f ( x 1, y 1)
3 0
3 3
3 3 3
3 0
3 -5

遥感数字图像处理教程11图像分割PPT课件

遥感数字图像处理教程11图像分割PPT课件

优点
能够准确提取目标的边缘信息 。
缺点
对噪声和细节较为敏感,容易 产生伪边缘。ቤተ መጻሕፍቲ ባይዱ
基于特定理论的分割
基于特定理论或算法的分割
根据特定的理论或算法,如分形理论、小波 变换、遗传算法等,对图像进行分割。
优点
能够针对特定问题提出有效的解决方案。
适用场景
适用于特定领域的图像分割问题。
缺点
实现难度较大,运算量较大。
对复杂场景的应对能力有限
在复杂背景、光照不均、目标遮挡等情况下,现有算法的分割效果不 佳。
未来研究的方向与展望
提升算法泛化能力
研究能够适应不同场景和数据 集的图像分割算法,提高算法 的鲁棒性和泛化能力。
优化算法计算效率
通过算法优化、并行计算等技 术手段,降低计算复杂度,提 高处理速度,满足实时性要求 。
03
遥感数字图像处理中的图像分割
遥感数字图像的特点
数据量大
遥感数字图像通常覆盖大面积区域,产生大量的 数据。
多种波段
多光谱和超光谱遥感图像包含多个波段,提供更 丰富的地物信息。
动态变化
遥感数字图像可以反映地物的动态变化,如城市 扩张、植被生长等。
地理信息丰富
遥感数字图像包含丰富的地理信息,如经纬度、 高程等。
在遥感图像处理中,图像分割 技术尤为重要,因为遥感图像 通常具有较大的尺寸、复杂的 背景和多种类型的目标,需要 采用高效的图像分割方法来提 取有用的信息。
图像分割的应用领域
医学影像分析
在医学领域中,图像分割技术被广泛应用于医学影 像的预处理阶段,如X光片、CT和MRI等影像的分割 ,以便于医生对病变部位的定位和诊断。
算法泛化能力不足

9第九章数字图像处理之图像分割资料

9第九章数字图像处理之图像分割资料
*代表卷积。令r是离原点的径向距离,即r2=x2+y2。
10/29/2018
对图像g(x,y)采用Laplacian算子进行边缘检测,可得:
g h( x, y ) * f ( x, y ) (
2 2
r
2
2

4
)e
e2 2 2
* f ( x, y )
2 h * f ( x, y )
• 模板:可以用多种方式被表示为数字形式。定义数字形式的拉普拉斯 的基本要求是,作用于中心像素的系数是一个负数,而且其周围像素 的系数为正数,系数之和必为0。对于一个3x3的区域,经验上被推荐 最多的形式是:
0
1 0
10/29/2018
1
-4 1
0
1 0
1 1
1 -8
1 1
1
1
1
• 拉普拉斯算子的分析: – 优点: • 各向同性、线性和位移不变的; • 对细线和孤立点检测效果较好。 – 缺点: • 对噪音的敏感,对噪声有双倍加强作用; • 不能检测出边的方向; • 常产生双像素的边缘。
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx

fy’
-1
• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度 算子略好。
10/29/2018
例1:
原始图像
梯度算子
Roberts算子
Prewitt算子
10/29/2018
Sobel算子
Kirsch算子

数字图像处理与应用(MATLAB版)第6章 图像的分割

数字图像处理与应用(MATLAB版)第6章 图像的分割

是边缘;
➢ 使用双阈值算法检测和连接边缘。即使用直方图计
算两个阈值,凡是大于高阈值的一定是边缘;凡是
小于低阈值的一定不是边缘。如果检测结果大于低
阈值但又小于高阈值,那就要看这个像素的邻接像
素中有没有超过高阈值的边缘像素,如果有,则该
像素就是边缘,否则就不是边缘。
0 -1 0 -1 4 -1 0 -1 0
B A
6.1 图像分割的定义和分类
图像分割:是指根据灰度、彩色、纹理等特征把图像 划分成若干个互不相交的区域,使得这些特征在同一区 域内,表现出一致性或相似性,而在不同区域间表现出 明显的不同。
图像分割的作用
图像分割是图像识别和图像理解的前提,图像分 割质量的好坏直接影响后续图像处理的效果。
图像
具体步骤:
➢ 首先用2D高斯滤波模板进行卷积以平滑图像;
➢ 利 用 微 分 算 子 ( 如 Roberts 算 子 、 Prewitt 算 子 和
Sobel算子等),计算梯度的幅值和方向;
➢ 对梯度幅值进行非极大值抑制。即遍历图像,若某
个像素的灰度值与其梯度方向上前后两个像素的灰

度值相比不是最大,那么这个像素值置为0,即不
第六章 图像的分割
内 容 1、图像分割的定义和分类; 提 2、基于边缘的图像分割方法;
要 3、基于区域的分割;
4、基于运动的图像分割 ; 5、图像分割技术的发展。

本 要
通过对图像分割技术的学习,掌
求 握基于边缘、区域、运动的图像

分割技术。

难 点
图像分割的定义、分类 基于边缘的图像分割方法
基于区域、运动的图像分割方法
G(i, j) Px Py
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二值分割图像:
G(x, y) 10,,||ff((xx,,yy))||ttHH
微分算子边缘检测
• Roberts 交叉算子
G(x, y) max(| f (x, y) f (x 1, y 1) |,| f (x 1, y) f (x, y 1) |)
• Sobel模板
Ti f ( Ai3 ) f ( Ai4 ) f ( Ai5 ) f ( Ai6 ) f ( Ai7 )
边缘点: K (x, y) tH
• Laplace算子
2
f
(x,
y)2Fra bibliotekf (x, x2
y)

2
f (x, y 2
y)
2 f (x, y) f ( A1) f ( A3) f ( A5 ) f ( A7 ) 4 f ( A
(1)它将梯度幅值图像看成一幅地形图,而梯度幅值对应 海拔高度,图像中不同梯度值的区域就对应于山峰和山 谷间盆地。
������ (2)设想在各个局部极小值点的位置打一个洞,然后 将地形图逐渐浸入一个湖中,全局极小值点的盆地先水。
������ (3)水位逐渐升高漫过盆地,当相邻 两个盆地的水即将合并时,这时在两
则分割的二值图像为:
1, f (x, y)
g(x, y) 0,其他
• 大津阈值技术
方法:自动寻找阈值,对图像进行分割
步骤:假设图像的灰度为1-m级,灰度值为i的象素数为n i
各灰度值的概率:
pi

ni N
m
(N ni ) i 1
用k将其分两组
C0
{1 k
k} C1 {k 1
g(x, y) max g p (x, y)
mn
g p (x, y) h(k,l) f (x k, j l) km ln
m=n=1,称作Sobel模板
-1
0
1
-2
0
2
-1
0
1
• Kirsch算子 K (x, y) max{1, max[5Si 3Ti ]},i 0 7 其中, Si f ( Ai ) f ( Ai1) f ( Ai2 )
d (x0 , y0 , x, y)
步骤:(1)从局部最大值象素从里向外搜索目标边缘点.遇到最大斜率 值处的点被认为到了边缘点.
(2)以这些边缘点为种子点在一定的约束条件下进行区域增长. 空间约束是朝向局部最大象素值,从外向里,灰度约束是朝向局部最 大象素值方向单调增加
• 分水岭方法(watershed)
统计量服从自由度为 (1, m12 m22 2) 的F分布,如果F 大于某个显著水平,我们就说( i, j),( k ,l)存在边缘
• 登山算法:
条件:待分割的边缘是围绕 在一个局部灰度极大值的已知象素
(x0, y0)周围的闭合轮廓线.对一个象素,斜率值 s(x, y) 定义为
s(x, y) f (x0, y0 ) f (x, y)
图像分割的定义
所谓图像分割是指将图像中具有特殊涵义的不 同区域区分开来,这些区域是互相不交叉的,每 一个区域都满足特定区域的一致性。 常见的分割技术:
阈值分割技术, 微分算子边缘检测 区域增长技术, 聚类分割技术
阈值分割技术
• 全局阈值技术
令位于(x , y)点的象素灰度为f( x, y),选择灰度阈值为
注:Laplace算子对噪声敏感,很少用边缘检测,Marr算子
对图像先进行平滑处理,再运用Laplace算子
拉普拉斯算子
• 拉普拉斯算子与平滑过程一起利用零交
叉找到边缘
r2
h(r) e2 2
r2 x2 y2
2h(r)

[ r2

2
r2
]e2 2
4
上式称为高斯型的拉普拉斯算子LoG
m}
C0 的产生概率: 0 pi (k)
m i 1
C1的产生概率: 1 pi 1 (k)
ik 1
C0 的均值: 0
k ipi
i1 0
(k) (k)
C1的均值:
1

m ipi
ik 1 1
(k) 1 (k )
区域增长技术
目标:求图像中相似的象素的最大连通集合 类别:单一型链结,混合型链结和质心型链结
• 单一型链结的区域增长
选择的p1,p2等性质只于单一象素(i,j)有关,而与其他 象素无关 对噪声的影响反映较大
• 混合型链结的区域增长
假如我们在选择Pm (i ,j)的时候不仅考虑象素(i,j),还综和其周 围邻域的信息,这种方式称为混合型链结的区域增长.
个盆地间建坝拦截。
������ (4)此过程将图像划分为许多个山谷 盆地,分水岭就是分隔这些盆地的堤坝。
分水岭算法图片示例
聚类分割技术
适用:在模式类别数不清楚时,用聚类分析比较好,可 以用相识性和距离量度作为聚类分析准则 原则: 第1步:用适当的相识性准则对图像进行分类 第2步:对第一步分类结果测试,对各簇(子集)进行合并 第3步:反复对生成的结果再分类,测试和合并,知道没有新 的簇(或子集)进行合并
拉普拉斯算子
拉普拉斯算子
• 比较(对比二阶拉普拉斯算子和一阶 Sobel梯度算子)
• Canny算子
对边缘检测质量进行分析,提出三准则 (1)信躁比准则 (2)定位精度准则 (3)单边准则
• Hough变换
在预先知道区域形状的条件下,可以方便地得到边界曲 线而将不连续的边缘象素点连接起来. 优点:受噪声和曲线间断的影响较小.
阈值
k* arg max 2 (k)
( 2 (k) [(k) (k)]2 ) (k)[1 (k)]
微分算子边缘检测
• 灰度梯度
| f (x, y) | (f (x, y))2 (f (x, y))2
x
y
| f (x, y) f (x, y 1) | | f (x, y) f (x 1, y) |
平均灰度值: 方差:
P1(i, j) f (u,v)
(u ,v )Wn
P2(i, j)
[ f (u, v) P1(i, j)]2
(u,v)Wn
F

(m12
m22 2)m12m22 ( p1(i, (m12 m22 )( p22 (i, j)
j) p1(k,l))2 p22 (k,l))
相关文档
最新文档