数学建模基本模型与算法

合集下载

数学建模方法模型

数学建模方法模型

数学建模方法模型一、统计学方法1 多元回归1、方法概述:在研究变量之间的相互影响关系模型时候用到。

具体地说:其可以定量地描述某一现象和某些因素之间的函数关系,将各变量的已知值带入回归方程可以求出因变量的估计值,从而可以进行预测等相关研究。

2、分类分为两类:多元线性回归和非线性线性回归;其中非线性回归可以通过一定的变化转化为线性回归,比如:y=lnx可以转化为y=u u=lnx来解决;所以这里主要说明多元线性回归应该注意的问题。

3、注意事项在做回归的时候,一定要注意两件事:(1)回归方程的显著性检验(可以通过 sas 和 spss 来解决)(2)回归系数的显著性检验(可以通过 sas 和 spss 来解决)检验是很多学生在建模中不注意的地方,好的检验结果可以体现出你模型的优劣,是完整论文的体现,所以这点大家一定要注意。

4、使用步骤:(1)根据已知条件的数据,通过预处理得出图像的大致趋势或者数据之间的大致关系; (2)选取适当的回归方程;(3)拟合回归参数;(4)回归方程显著性检验及回归系数显著性检验(5)进行后继研究(如:预测等)2 聚类分析1、方法概述该方法说的通俗一点就是,将n个样本,通过适当的方法(选取方法很多,大家可以自行查找,可以在数据挖掘类的书籍中查找到,这里不再阐述)选取m 聚类中心,通过研究各样本和各个聚类中心的距离Xij,选择适当的聚类标准,通常利用最小距离法(一个样本归于一个类也就意味着,该样本距离该类对应的中心距离最近)来聚类,从而可以得到聚类结果,如果利用sas软件或者spss软件来做聚类分析,就可以得到相应的动态聚类图。

这种模型的的特点是直观,容易理解。

2、分类聚类有两种类型:(1)Q型聚类:即对样本聚类;(2)R型聚类:即对变量聚类;通常聚类中衡量标准的选取有两种:(1)相似系数法(2)距离法聚类方法:(1)最短距离法(2)最长距离法(3)中间距离法(4)重心法(5)类平均法(6)可变类平均法(8) 利差平均和法在具体做题中,适当选区方法;3、注意事项在样本量比较大时,要得到聚类结果就显得不是很容易,这时需要根据背景知识和相关的其他方法辅助处理。

数学建模的基本步骤及方法

数学建模的基本步骤及方法

数学建模的基本步骤及方法数学建模是一种应用数学的方法,通过对实际问题进行抽象和建立数学模型,以求解问题或进行预测和模拟。

它在各个领域都有广泛的应用,如物理学、工程学、经济学等。

本文将介绍数学建模的基本步骤及方法。

一、问题理解与建模目标确定在进行数学建模之前,首先需要对问题进行全面的理解,并明确建模的目标。

了解问题的背景、限制条件和需求,明确要解决的主要问题。

确定建模目标是指明建模的最终目的,如是否需要进行预测,求解最优解或模拟系统行为等。

二、问题假设与参数设定在建立数学模型时,为了简化问题和计算,我们常常需要进行一些假设。

假设可以是对某些变量的约束条件,或对系统行为的特定假设。

另外,还需要确定模型中的参数,即直接影响模型行为和计算结果的变量值。

三、模型构建与分析模型构建是指根据问题的特性和建模目标,选择适当的数学方法和公式,将问题转化为数学表达式。

常用的数学方法包括微积分、线性代数、随机过程等。

模型构建后,需要对模型进行分析,检验模型的可行性和有效性,评估模型与实际问题的拟合程度。

四、模型求解与结果验证模型的求解是指通过计算或优化方法,求得模型的解析解或数值解。

求解的方法多种多样,如数值计算、优化算法、模拟仿真等。

求解后,需要对结果进行验证,比较模型求解的结果与实际情况的差异,并分析产生差异的原因。

五、结果分析与报告撰写对模型的结果进行分析是数学建模的重要环节。

通过对结果的解释和分析,了解模型对问题的预测、优化或模拟效果。

在分析过程中,需要注意结果的合理性和稳定性,以及对结果的可靠性和可解释性进行评估。

最后,撰写模型报告,将整个建模过程和结果进行系统化的呈现和总结,并提出进一步改进的建议。

六、模型验证与应用模型验证是指将建立好的数学模型应用于实际问题,并进行实验验证和应用效果评估。

通过与实际数据和实验结果进行比较,验证模型的有效性和适用性。

若模型符合实际要求,则可以将其应用于类似问题的求解和预测。

数学建模常用方法

数学建模常用方法

数学建模常用方法建模常用算法,仅供参考:1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用L i n d o、L i n g o软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理)一、在数学建模中常用的方法:1.类比法2.二分法3.量纲分析法4.差分法5.变分法6.图论法7.层次分析法8.数据拟合法9.回归分析法10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划)11.机理分析12.排队方法13.对策方法14.决策方法15.模糊评判方法、16.时间序列方法17.灰色理论方法18.现代优化算法(禁忌搜索算法、模拟退火算法、遗传算法、神经网络)二、用这些方法可以解下列一些模型:优化模型、微分方程模型、统计模型、概率模型、图论模型、决策模型。

数学建模10种常用算法

数学建模10种常用算法

数学建模10种常用算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问 题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处参数估计C.F.20世纪60年代,随着电子计算机的。

参数估计有多种方法,有最小二乘法、极大似然法、极大验后法、最小风险法和极小化极大熵法等。

数学建模基础知识

数学建模基础知识

数学建模基础知识引言:数学建模是一门以数学为工具、以实际问题为研究对象、以模型为核心的学科。

它通过将实际问题抽象为数学模型,并利用数学方法对模型进行分析和求解,从而得到问题的解决方案。

在数学建模中,有一些基础知识是必不可少的,本文将介绍数学建模的基础知识,包括概率与统计、线性代数、微积分和优化算法。

一、概率与统计概率与统计是数学建模的基础。

概率论用于描述随机现象的规律性,统计学则用于从观测数据中推断总体的特征。

在数学建模中,需要根据实际问题的特点选择合适的概率模型,并利用统计方法对模型进行参数估计。

1.1 概率模型概率模型是概率论的基础,在数学建模中常用的概率模型包括离散型随机变量模型和连续型随机变量模型。

离散型随机变量模型适用于描述离散型随机事件,如投硬币的结果、掷骰子的点数等;连续型随机变量模型适用于描述连续型随机事件,如身高、体重等。

在选择概率模型时,需要根据实际问题的特点进行合理选择。

1.2 统计方法统计方法用于从观测数据中推断总体的特征。

在数学建模中,经常需要根据样本数据对总体参数进行估计。

常用的统计方法包括点估计和区间估计。

点估计用于估计总体参数的具体值,如均值、方差等;区间估计则用于给出总体参数的估计范围。

另外,假设检验和方差分析也是数学建模中常用的统计方法。

二、线性代数线性代数是数学建模的重要工具之一。

它研究线性方程组的解法、向量空间与线性变换等概念。

在线性方程组的求解过程中,常用的方法包括高斯消元法、矩阵的逆和特征值分解等。

线性代数还广泛应用于图论、网络分析等领域。

2.1 线性方程组线性方程组是线性代数的基础,它可以用矩阵和向量的形式来表示。

求解线性方程组的常用方法有高斯消元法、矩阵的逆矩阵和克拉默法则等。

高斯消元法通过矩阵的初等行变换将线性方程组转化为简化行阶梯形式,从而求得方程组的解。

2.2 向量空间与线性变换向量空间是线性代数的核心概念,它由若干个向量组成,并满足一定的运算规则。

数学建模的基本方法与实例

数学建模的基本方法与实例

数学建模的基本方法与实例数学建模是一种通过数学模型来解决实际问题的方法。

它在现代科学研究和工程实践中扮演着重要的角色。

本文将介绍数学建模的基本方法,并通过实例来详细说明。

一、问题分析在进行数学建模之前,首先需要对问题进行分析和理解。

这包括明确问题的背景、确定问题的目标以及收集问题所需数据等。

通过充分了解问题,我们可以更加准确地进行建模和求解。

二、建立模型在问题分析的基础上,我们需要建立适当的数学模型来描述和解决问题。

数学模型是对实际问题的抽象和简化,它包括变量、参数、约束条件和目标函数等要素。

常见的数学模型包括线性规划模型、非线性规划模型、动态规划模型等。

以线性规划模型为例,其数学形式为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙSubject to:a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + aₙ₂x₂ + ... + aₙₙxₙ ≤ bₙ其中,c₁、c₂、...、cₙ分别为模型的目标函数系数,x₁、x₂、...、xₙ为决策变量,a₁₁、a₁₂、...、aₙₙ为约束条件的系数,b₁、b₂、...、bₙ为约束条件的右侧常数。

三、求解模型建立完数学模型后,下一步是求解模型以得到问题的最优解。

对于不同类型的模型,可以使用不同的数学方法和工具来求解。

常见的方法包括线性规划的单纯形法、非线性规划的梯度法、动态规划的最优控制理论等。

四、模型验证与分析求解完模型后,需要对结果进行验证和分析。

这包括检验模型的可行性、灵敏度分析以及结果的解释和实际应用等。

通过对模型结果的分析,可以判断模型的有效性和可靠性。

接下来,让我们通过一个实例来具体说明数学建模的过程。

实例:某物流公司的货物配送问题某物流公司需要合理安排货物的配送路线,以最小化配送时间并满足客户的需求。

假设有n个客户需要送货,每个客户的货物量不同,同时每个客户的配送时间窗口也不同。

数学建模简单13个例子全解

数学建模简单13个例子全解

数学建模简单13个例子全解1. 线性回归模型线性回归是一种基本的数学建模方法,用于预测一个因变量与一个或多个自变量之间的关系。

通过最小化误差平方和来拟合一个直线或平面,使其能够最好地拟合数据。

2. 逻辑回归模型逻辑回归是一种用于分类问题的建模方法。

它通过将线性回归模型的输出变换为一个概率值,从而将输入样本分为两个不同的类别。

3. K-means聚类模型K-means聚类是一种无监督学习算法,用于将样本分为若干个不同的簇。

它根据样本之间的相似性将它们分配到不同的簇中。

4. 决策树模型决策树是一种基于规则的分类模型。

它通过一系列的决策节点和叶节点来对输入样本进行分类。

5. 随机森林模型随机森林是一种集成学习模型,它由多个决策树组成。

它通过对每个决策树的预测结果进行投票来进行分类。

6. 支持向量机模型支持向量机是一种基于最大间隔原则的分类模型。

它通过寻找一个超平面来将数据样本分成不同的类别。

7. 主成分分析模型主成分分析是一种降维技术,它将原始数据投影到一个低维空间中,以便尽可能保留数据的方差。

8. 马尔可夫链模型马尔可夫链是一种离散时间概率模型,它假设过去的状态对于预测未来的状态是有用的。

9. 指数平滑模型指数平滑是一种时间序列预测方法,它使用加权平均法来对下一个时间点的预测值进行估计。

10. 神经网络模型神经网络是一种模拟人类神经系统的方法,它通过多层神经元之间的连接来进行学习和预测。

11. 遗传算法模型遗传算法是一种通过模拟生物进化过程来求解优化问题的方法。

它通过交叉、变异和选择等操作来生成新的解,并逐步优化。

12. 时间序列模型时间序列模型用于分析和预测随时间变化的数据。

常用的时间序列模型包括自回归移动平均模型(ARMA)、自回归整合移动平均模型(ARIMA)等。

13. 蒙特卡洛模拟模型蒙特卡洛模拟是一种概率方法,用于通过随机模拟来解决复杂的数学问题。

它通常通过重复随机抽样和运算来估计问题的解。

数学建模的基本步骤及方法

数学建模的基本步骤及方法

数学建模的基本步骤及方法数学建模是一种应用数学的方法,通过数学模型来描述、解释和预测现实世界中的问题。

它在科学研究、工程技术、经济管理等领域有着广泛的应用。

本文将介绍数学建模的基本步骤及方法,以帮助读者更好地理解和应用数学建模。

一、问题定义数学建模的第一步是明确问题,并对问题进行定义、限定和分析。

要做到具体明确,确保问题的可行性和实际性。

同时,在问题定义阶段,需要理解问题所处的背景和条件,收集所需的数据和信息。

二、建立数学模型在问题定义的基础上,需要选择合适的数学工具和方法,建立数学模型。

数学模型是通过数学符号和方程来描述问题的规律和关系。

常见的数学模型包括线性模型、非线性模型、动态模型等。

根据实际情况,选择适合的模型形式,并进行相关的假设和简化。

三、模型求解通过数学方法,对建立的数学模型进行求解。

求解的过程中,可以运用数值计算、优化算法、数值逼近等方法。

根据问题的具体要求,选择合适的求解方法,并编写相应的程序进行计算。

四、模型验证模型求解完成后,需要对求解结果进行验证。

验证的目的是检验模型的有效性和准确性。

可以通过与实际数据的对比,对模型的预测能力进行评估。

如果模型与实际结果相符合,说明模型具有较好的预测能力。

五、结果分析与应用在模型验证的基础上,对求解结果进行分析和解释。

通过对结果的分析,可以得到对于问题本质的深刻理解。

同时,根据分析结果,可以制定相应的决策和策略,在实际问题中得到应用和推广。

六、模型优化和调整数学建模是一个循环迭代的过程,在实际应用中,可能会遇到新的情况和问题。

为了提高模型的稳定性和预测能力,需要对模型进行优化和调整。

可以通过改变模型的参数、调整模型的结构、增加新的变量等方式来优化模型。

七、模型评价对建立的数学模型进行评价是数学建模的重要环节。

评价的指标包括模型的准确性、稳定性、可靠性等。

通过评价,可以发现模型的不足和改进的空间,并为进一步应用提供指导和参考。

综上所述,数学建模是一个系统而复杂的过程,需要综合运用数学、计算机、统计学、优化算法等多个学科的知识和方法。

数学建模离散优化模型与算法设计

数学建模离散优化模型与算法设计

数学建模离散优化模型与算法设计数学建模在离散优化问题的解决中起着重要的作用。

离散优化问题是指在给定的离散集合上寻找最优解的问题,一般包括整数规划、组合优化、排班优化等。

数学建模则是将实际问题转化为数学模型的过程,在离散优化问题中,需要设计相应的数学模型,并通过算法求解最优解。

离散优化问题的数学模型通常包括目标函数和约束条件两个方面。

目标函数用于衡量解的优劣程度,约束条件则是对解的限制条件。

通过定义合适的目标函数和约束条件,可以将实际问题转化为一个数学优化问题。

在构建数学模型时,需要考虑实际问题的特点。

例如,在排班优化问题中,需要考虑员工的需求以及工作时间的限制,将员工的排班安排转化为一个数学模型。

在整数规划问题中,需要考虑变量的取值范围,将问题转化为整数规划模型。

在数学建模的基础上,需要设计相应的算法来求解离散优化问题。

常见的算法包括贪心算法、动态规划算法、遗传算法等。

选择合适的算法取决于问题的规模和特点。

贪心算法是一种简单而直观的算法,每一步都选择当前最优的解来构建解空间,在一些问题上具有较好的效果。

动态规划算法则通过将问题划分为一系列子问题,并保存子问题的解,从而避免重复计算,提高计算效率。

遗传算法则是一种模拟生物进化的算法,通过遗传、交叉和变异等操作来最优解。

除了算法设计,还需要考虑算法的优化。

例如,在排班优化问题中,可以通过合理的约束条件和目标函数设计,来减少空间,提高算法效率。

此外,还可以使用启发式算法等方法来加速过程。

总之,数学建模在离散优化问题的解决中起着重要的作用。

通过合适的数学模型和算法设计,可以有效地求解离散优化问题,并得到最优解。

在实际应用中,还需要考虑问题的特点来选择合适的算法,并通过优化算法提高求解效率。

数学建模 四大模型总结

数学建模 四大模型总结

四类基本模型1 优化模型1.1 数学规划模型线性规划、整数线性规划、非线性规划、多目标规划、动态规划。

1.2 微分方程组模型阻滞增长模型、SARS 传播模型。

1.3 图论与网络优化问题最短路径问题、网络最大流问题、最小费用最大流问题、最小生成树问题(MST)、旅行商问题(TSP)、图的着色问题。

1.4 概率模型决策模型、随机存储模型、随机人口模型、报童问题、Markov 链模型。

1.5 组合优化经典问题● 多维背包问题(MKP)背包问题:n 个物品,对物品i ,体积为i w ,背包容量为W 。

如何将尽可能多的物品装入背包。

多维背包问题:n 个物品,对物品i ,价值为i p ,体积为i w ,背包容量为W 。

如何选取物品装入背包,是背包中物品的总价值最大。

多维背包问题在实际中的应用有:资源分配、货物装载和存储分配等问题。

该问题属于NP 难问题。

● 二维指派问题(QAP)工作指派问题:n 个工作可以由n 个工人分别完成。

工人i 完成工作j 的时间为ij d 。

如何安排使总工作时间最小。

二维指派问题(常以机器布局问题为例):n 台机器要布置在n 个地方,机器i 与k 之间的物流量为ik f ,位置j 与l 之间的距离为jl d ,如何布置使费用最小。

二维指派问题在实际中的应用有:校园建筑物的布局、医院科室的安排、成组技术中加工中心的组成问题等。

● 旅行商问题(TSP)旅行商问题:有n 个城市,城市i 与j 之间的距离为ij d ,找一条经过n 个城市的巡回(每个城市经过且只经过一次,最后回到出发点),使得总路程最小。

● 车辆路径问题(VRP)车辆路径问题(也称车辆计划):已知n 个客户的位置坐标和货物需求,在可供使用车辆数量及运载能力条件的约束下,每辆车都从起点出发,完成若干客户点的运送任务后再回到起点,要求以最少的车辆数、最小的车辆总行程完成货物的派送任务。

TSP 问题是VRP 问题的特例。

● 车间作业调度问题(JSP)车间调度问题:存在j 个工作和m 台机器,每个工作由一系列操作组成,操作的执行次序遵循严格的串行顺序,在特定的时间每个操作需要一台特定的机器完成,每台机器在同一时刻不能同时完成不同的工作,同一时刻同一工作的各个操作不能并发执行。

数学建模中常见的十大模型

数学建模中常见的十大模型

数学建模中常见的十大模型集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#数学建模常用的十大算法==转(2011-07-24 16:13:14)1. 蒙特卡罗算法。

该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。

2. 数据拟合、参数估计、插值等数据处理算法。

比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MATLAB 作为工具。

3. 线性规划、整数规划、多元规划、二次规划等规划类算法。

建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。

4. 图论算法。

这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。

5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。

这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。

6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。

这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。

7. 网格算法和穷举法。

两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。

8. 一些连续数据离散化方法。

很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。

9. 数值分析算法。

如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。

10. 图象处理算法。

赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MATLAB 进行处理。

2024参加数学建模国赛需要掌握的模型和算法

2024参加数学建模国赛需要掌握的模型和算法

参加数学建模国赛需要掌握的模型和算法目录CONTENCT •模型与算法概述•线性规划与整数规划•非线性规划与最优化方法•概率统计与随机过程模型•图论与网络优化算法•机器学习算法在建模中应用•总结与展望01模型与算法概述数学建模国赛背景与意义背景数学建模国赛作为国内最高级别的数学建模竞赛,旨在提高参赛者的数学建模能力和解决实际问题的能力。

意义通过竞赛,参赛者可以接触到实际问题,学习如何将数学知识应用于实际问题中,培养创新思维和团队合作精神。

预测模型优化模型分类与聚类模型仿真模型常见模型与算法分类如时间序列分析、回归分析等,用于预测未来趋势或结果。

如线性规划、整数规划等,用于求解最优解或满意解。

如决策树、支持向量机、K 均值等,用于数据分类和聚类分析。

如蒙特卡罗模拟等,用于模拟实际系统的运行和结果。

01020304明确问题类型数据特点求解效率模型可解释性选用原则及适用场景对于大规模问题或实时性要求较高的场景,需要选择求解效率较高的模型和算法。

考虑数据的规模、维度、分布等特点,选择适合的模型和算法。

根据问题的性质选择合适的模型和算法,如预测问题可选用预测模型。

对于需要解释模型结果或决策依据的场景,需要选择可解释性较强的模型和算法。

02线性规划与整数规划线性规划基本概念及原理线性规划定义线性规划是一种数学优化技术,用于优化一个或多个线性目标函数,同时满足一系列线性约束条件。

线性规划标准形式将实际问题抽象为数学模型,通常表示为最大化或最小化某个线性函数,同时满足一系列线性等式或不等式约束。

线性规划求解方法包括单纯形法、内点法等,通过迭代计算寻找最优解。

整数规划特点及求解方法整数规划特点整数规划的决策变量全部或部分取整数值,这使得问题求解变得更为复杂。

整数规划求解方法包括分支定界法、割平面法等,通过不断缩小可行域范围来寻找整数最优解。

整数规划与线性规划关系整数规划可以看作是线性规划的扩展,当线性规划中的决策变量取整数值时,即转化为整数规划问题。

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法

数学建模方法详解三种最常用算法数学建模是指将实际问题转化为数学模型,并通过数学方法进行求解和分析的过程。

在数学建模中,常用的算法有很多种,其中最常用的有三种,分别是线性规划、整数规划和动态规划。

一、线性规划线性规划是一种优化方法,用于在给定的约束条件下,寻找目标函数最大或最小值的一种方法。

它的数学形式是以线性约束条件为基础的最优化问题。

线性规划的基本假设是目标函数和约束条件均为线性的。

线性规划通常分为单目标线性规划和多目标线性规划,其中单目标线性规划是指在一个目标函数下找到最优解,而多目标线性规划则是在多个目标函数下找到一组最优解。

线性规划的求解方法主要有两种:单纯形法和内点法。

单纯形法是最常用的求解线性规划问题的方法,它的核心思想是通过不断迭代改进当前解来达到最优解。

内点法是一种相对较新的求解线性规划问题的方法,它的主要思想是通过从可行域的内部最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它在线性规划的基础上增加了变量必须取整数的限制条件。

整数规划具有很强的实际应用性,它能够用于解决很多实际问题,如资源分配、生产优化等。

整数规划的求解方法通常有两种:分支定界法和割平面法。

分支定界法是一种常用的求解整数规划问题的方法,它的基本思想是通过将问题划分为若干个子问题,并通过求解子问题来逐步缩小解空间,最终找到最优解。

割平面法也是一种常用的求解整数规划问题的方法,它的主要思想是通过不断添加线性割平面来修剪解空间,从而找到最优解。

三、动态规划动态规划是一种用于求解多阶段决策问题的数学方法。

多阶段决策问题是指问题的求解过程可以分为若干个阶段,并且每个阶段的决策都受到之前决策的影响。

动态规划的核心思想是将问题划分为若干个相互关联的子问题,并通过求解子问题的最优解来求解原始问题的最优解。

动态规划通常分为两种形式:无后效性和最优子结构。

无后效性是指一个阶段的决策只与之前的状态有关,与之后的状态无关。

最优子结构是指问题的最优解能够由子问题的最优解推导而来。

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法

数学建模竞赛中的数学模型求解方法数学建模竞赛是一项旨在培养学生数学建模能力的竞赛活动。

在竞赛中,参赛者需要利用数学知识和技巧,解决实际问题,并提出相应的数学模型。

然而,数学模型的求解方法却是一个非常关键的环节。

本文将介绍一些常见的数学模型求解方法,帮助参赛者在竞赛中取得好成绩。

一、线性规划线性规划是数学建模中常见的一种模型求解方法。

它的基本思想是将问题转化为一个线性函数的最优化问题。

在线性规划中,参赛者需要确定决策变量、目标函数和约束条件,并利用线性规划模型求解最优解。

常见的线性规划求解方法有单纯形法、内点法等。

这些方法基于数学原理,通过迭代计算,逐步接近最优解。

二、整数规划整数规划是线性规划的一种扩展形式,它要求决策变量取整数值。

整数规划在实际问题中具有广泛的应用,例如货物运输、资源分配等。

在整数规划中,参赛者需要将问题转化为一个整数规划模型,并利用整数规划求解方法求解最优解。

常见的整数规划求解方法有分支定界法、割平面法等。

这些方法通过分解问题、添加约束条件等方式,逐步缩小搜索空间,找到最优解。

三、非线性规划非线性规划是一类目标函数或约束条件中包含非线性项的最优化问题。

在实际问题中,很多情况下目标函数和约束条件都是非线性的。

在非线性规划中,参赛者需要选择适当的数学模型,并利用非线性规划求解方法求解最优解。

常见的非线性规划求解方法有牛顿法、拟牛顿法等。

这些方法通过迭代计算,逐步逼近最优解。

四、动态规划动态规划是一种解决多阶段决策问题的数学方法。

在动态规划中,参赛者需要确定状态、决策和状态转移方程,并利用动态规划求解方法求解最优解。

常见的动态规划求解方法有最优子结构、重叠子问题等。

这些方法通过存储中间结果、利用递推关系等方式,逐步求解最优解。

五、模拟与优化模拟与优化是一种常见的数学模型求解方法。

在模拟与优化中,参赛者需要建立数学模型,并利用计算机模拟和优化算法求解最优解。

常见的模拟与优化方法有蒙特卡洛模拟、遗传算法等。

数学建模的基本方法

数学建模的基本方法

数学建模的基本方法1.类比法数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

2.量纲分析法量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

2解题方法类比法:数学建模的过程就是把实际问题经过分析、抽象、概括后,用数学语言、数学概念和数学符号表述成数学问题,而表述成什么样的问题取决于思索者解决问题的意图。

类比法建模一般在具体分析该实际问题的各个因素的基础上,通过联想、归纳对各因素进行分析,并且与已知模型比较,把未知关系化为已知关系,在不同的对象或完全不相关的对象中找出同样的或相似的关系,用已知模型的某些结论类比得到解决该"类似'问题的数学方法,最终建立起解决问题的模型。

量纲分析法:量纲分析是20世纪初提出的在物理领域中建立数学模型的一种方法,它是在经验和实验的基础上,利用物理定律的量纲齐次性,确定各物理量之间的关系。

它是一种数学分析方法,通过量纲分析,可以正确地分析各变量之间的关系,简化实验和便于成果整理。

3层次结构法1. 递阶层次结构原理:一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2. 测度原理:决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而关于社会、经济系统的决策模型来说,经常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3. 排序原理:层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题4常见方法一、蒙特卡罗算法蒙特卡罗算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法。

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法

数学建模方法详解--三种最常用算法一、层次分析法层次分析法[1] (analytic hierarchy process,AHP)是美国著名的运筹学家T.L.Saaty教授于20世纪70年代初首先提出的一种定性与定量分析相结合的多准则决策方法[2,3,4].该方法是社会、经济系统决策的有效工具,目前在工程计划、资源分配、方案排序、政策制定、冲突问题、性能评价等方面都有广泛的应用.(一) 层次分析法的基本原理层次分析法的核心问题是排序,包括递阶层次结构原理、测度原理和排序原理[5].下面分别予以介绍.1.递阶层次结构原理一个复杂的结构问题可以分解为它的组成部分或因素,即目标、准则、方案等.每一个因素称为元素.按照属性的不同把这些元素分组形成互不相交的层次,上一层的元素对相邻的下一层的全部或部分元素起支配作用,形成按层次自上而下的逐层支配关系.具有这种性质的层次称为递阶层次.2.测度原理决策就是要从一组已知的方案中选择理想方案,而理想方案一般是在一定的准则下通过使效用函数极大化而产生的.然而对于社会、经济系统的决策模型来说,常常难以定量测度.因此,层次分析法的核心是决策模型中各因素的测度化.3.排序原理层次分析法的排序问题,实质上是一组元素两两比较其重要性,计算元素相对重要性的测度问题.(二) 层次分析法的基本步骤层次分析法的基本思路与人对一个复杂的决策问题的思维、判断过程大体上是一致的[1]. 1. 成对比较矩阵和权向量为了能够尽可能地减少性质不同的诸因素相互比较的困难,提高结果的准确度.T .L .Saaty 等人的作法,一是不把所有因素放在一起比较,而是两两相互对比,二是对比时采用相对尺度.假设要比较某一层n 个因素n C C ,,1 对上层一个因素O 的影响,每次取两个因素i C 和j C ,用ij a 表示i C 和j C 对O 的影响之比,全部比较结果可用成对比较阵()1,0,ij ij ji n nijA a a a a ⨯=>=表示,A 称为正互反矩阵. 一般地,如果一个正互反阵A 满足:,ij jk ik a a a ⋅= ,,1,2,,i j k n = (1)则A 称为一致性矩阵,简称一致阵.容易证明n 阶一致阵A 有下列性质: ①A 的秩为1,A 的唯一非零特征根为n ;②A 的任一列向量都是对应于特征根n 的特征向量.如果得到的成对比较阵是一致阵,自然应取对应于特征根n 的、归一化的特征向量(即分量之和为1)表示诸因素n C C ,,1 对上层因素O 的权重,这个向量称为权向量.如果成对比较阵A 不是一致阵,但在不一致的容许范围内,用对应于A 最大特征根(记作λ)的特征向量(归一化后)作为权向量w ,即w 满足:Aw w λ= (2)直观地看,因为矩阵A 的特征根和特征向量连续地依赖于矩阵的元素ij a ,所以当ij a 离一致性的要求不远时,A 的特征根和特征向量也与一致阵的相差不大.(2)式表示的方法称为由成对比较阵求权向量的特征根法.2. 比较尺度当比较两个可能具有不同性质的因素i C 和j C 对于一个上层因素O 的影响时,采用Saaty 等人提出的91-尺度,即ij a 的取值范围是9,,2,1 及其互反数91,,21,1 .3. 一致性检验成对比较阵通常不是一致阵,但是为了能用它的对应于特征根λ的特征向量作为被比较因素的权向量,其不一致程度应在容许范围内.若已经给出n 阶一致阵的特征根是n ,则n 阶正互反阵A 的最大特征根n λ≥,而当n λ=时A 是一致阵.所以λ比n 大得越多,A 的不一致程度越严重,用特征向量作为权向量引起的判断误差越大.因而可以用n λ-数值的大小衡量A 的不一致程度.Saaty将1nCI n λ-=- (3)定义为一致性指标.0CI =时A 为一致阵;CI 越大A 的不一致程度越严重.注意到A 的n 个特征根之和恰好等于n ,所以CI 相当于除λ外其余1n -个特征根的平均值.为了确定A 的不一致程度的容许范围,需要找到衡量A 的一致性指标CI 的标准,又引入所谓随机一致性指标RI ,计算RI 的过程是:对于固定的n ,随机地构造正互反阵A ',然后计算A '的一致性指标CI .n 1 2 3 4 5 6 7 8 9 10 11表1 随机一致性指标RI 的数值表中1,2n =时0RI =,是因为2,1阶的正互反阵总是一致阵.对于3n ≥的成对比较阵A ,将它的一致性指标CI 与同阶(指n 相同)的随机一致性指标RI 之比称为一致性比率CR ,当0.1CICR RI=< (4) 时认为A 的不一致程度在容许范围之内,可用其特征向量作为权向量.对于A 利用(3),(4)式和表1进行检验称为一致性检验.当检验不通过时,要重新进行成对比较,或对已有的A 进行修正. 4. 组合权向量由各准则对目标的权向量和各方案对每一准则的权向量,计算各方案对目标的权向量,称为组合权向量.一般地,若共有s 层,则第k 层对第一层(设只有1个因素)的组合权向量满足:()()()1,3,4,k k k w W w k s -== (5)其中()kW 是以第k 层对第1k -层的权向量为列向量组成的矩阵.于是最下层对最上层的组合权向量为:()()()()()132s s s w W W W w -= (6)5. 组合一致性检验在应用层次分析法作重大决策时,除了对每个成对比较阵进行一致性检验外,还常要进行所谓组合一致性检验,以确定组合权向量是否可以作为最终的决策依据.组合一致性检验可逐层进行.如第p 层的一致性指标为()()p n p CI CI ,,1 (n 是第1-p 层因素的数目),随机一致性指标为RI 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 1.51()()1,,p p nRI RI ,定义 ()()()()11,,P p p p n CI CI CI w -⎡⎤=⎣⎦ ()()()()11,,p p p p n RI RI RI w-⎡⎤=⎣⎦ 则第p 层的组合一致性比率为:()()(),3,4,,p p p CI CRp s RI== (7) 第p 层通过组合一致性检验的条件为()0.1pCR <.定义最下层(第s 层)对第一层的组合一致性比率为:()2*sP p CR CR ==∑ (8)对于重大项目,仅当*CR 适当地小时,才认为整个层次的比较判断通过一致性检验.层次分析法的基本步骤归纳如下:(1) 建立层次结构模型 在深入分析实际问题的基础上,将有关的各个因素按照不同属性自上而下地分解成若干层次.同一层的诸因素从属于上一层的因素或对上层因素有影响,同时又支配下一层的因素或受到下层因素的作用,而同一层的各因素之间尽量相互独立.最上层为目标层,通常只有1个因素,最下层通常为方案或对象层,中间可以有1个或几个层次,通常称为准则或指标层,当准则过多时(比如多于9个)应进一步分解出子准则层.(2) 构造成对比较阵 从层次结构模型的第2层开始,对于从属于上一层每个因素的同一层诸因素,用成对比较法和91-比较尺度构造成对比较阵,直到最下层.(3)计算权向量并做一致性检验对于每一个成对比较阵计算最大特征根及对应特征向量,利用一致性指标,随机一致性指标和一致性比率做一致性检验.若检验通过,特征向量(归一化后)即为权向量;若不通过,重新构造成对比较阵.(4)计算组合权向量并做组合一致性检验利用公式计算最下层对目标的组合权向量,并酌情作组合一致性检验.若检验通过,则可按照组合权向量表示的结果进行决策,否则需重新考虑模型或重新构造那些一致性比率CR较大的成对比较阵.(三) 层次分析法的优点1.系统性层次分析把研究对象作为一个系统,按照分解、比较判断、综合的思维方式进行决策,成为继机理分析、统计分析之后发展起来的系统分析的重要工具.2.实用性层次分析把定性和定量方法结合起来,能处理许多用传统的最优化技术无法着手的实际问题,应用范围很广.同时,这种方法将决策者与决策分析者相互沟通,决策者甚至可以直接应用它,这就增加了决策的有效性.3.简洁性具有中等文化程度的人即可了解层次分析的基本原理和掌握它的基本步骤,计算也非常简便,且所得结果简单明确,容易为决策者了解和掌握.(四) 层次分析法的局限性层次分析法的局限性可以用囿旧、粗略、主观等词来概括.第一,它只能从原有的方案中选优,不能生成新方案;第二,它的比较、判断直到结果都是粗糙的,不适于精度要求很高的问题;第三,从建立层次结构模型到给出成对比较矩阵,人的主观因素的作用很大,这就使得决策结果可能难以为众人接受.当然,采取专家群体判断的方法是克服这个缺点的一种途径.(五) 层次分析法的若干问题层次分析法问世以来不仅得到广泛的应用而且在理论体系、计算方法等方面都有很大发展,下面从应用的角度讨论几个问题. 1. 正互反阵最大特征根和对应特征向量的性质成对比较阵是正互反阵.层次分析法中用对应它的最大特征根的特征向量作为权向量,用最大特征根定义一致性指标进行一致性检验.这里人们碰到的问题是:正互反阵是否存在正的最大特征根和正的特征向量;一致性指标的大小是否反映它接近一致阵的程度,特别,当一致性指标为零时,它是否就为一致阵.下面两个定理可以回答这些问题. 定理1 对于正矩阵A (A 的所有元素为正数) 1)A 的最大特征根是正单根λ;2)λ对应正特征向量w (ω的所有分量为正数);3)w IA I I A k k k =T ∞→lim ,其中()T=1,1,1 I ,w 是对应λ的归一化特征向量.定理2 n 阶正互反阵A 的最大特征根n λ≥;当n λ=时A 是一致阵.定理2和前面所述的一致阵的性质表明,n 阶正互反阵A 是一致阵的充要条件为 A 的最大特征根n λ=.2. 正互反阵最大特征根和特征向量的实用算法众所周知,用定义计算矩阵的特征根和特征向量是相当困难的,特别是矩阵阶数较高时.另一方面,因为成对比较阵是通过定性比较得到的比较粗糙的量化结果,对它精确计算是不必要的,下面介绍几种简单的方法. (1) 幂法 步骤如下:a .任取n 维归一化初始向量()0wb .计算()()1,0,1,2,k k w Aw k +==c .()1k w+ 归一化,即令()()()∑=+++=ni k ik k ww1111~~ωd .对于预先给定的精度ε,当 ()()()1||1,2,,k k i i i n ωωε+-<= 时,()1k w +即为所求的特征向量;否则返回be. 计算最大特征根()()111k n i k i in ωλω+==∑这是求最大特征根对应特征向量的迭代法,()0w 可任选或取下面方法得到的结果.(2) 和法 步骤如下:a. 将A 的每一列向量归一化得1nij ij iji a aω==∑b .对ij ω按行求和得1ni ij j ωω==∑ c .将i ω归一化()*121,,,ni i n i w ωωωωωωT===∑ 即为近似特征向量. d. 计算()11n ii iAw n λω==∑,作为最大特征根的近似值.这个方法实际上是将A 的列向量归一化后取平均值,作为A 的特征向量.(3) 根法 步骤与和法基本相同,只是将步骤b 改为对ij ω按行求积并开n 次方,即11nn i ij j ωω=⎛⎫= ⎪⎝⎭∏ .根法是将和法中求列向量的算术平均值改为求几何平均值.3. 为什么用成对比较阵的特征向量作为权向量当成对比较阵A 是一致阵时,ij a 与权向量()T=n w ωω,,1 的关系满iij ja ωω=,那么当A 不是一致阵时,权向量w 的选择应使得ij a 与ijωω相差尽量小.这样,如果从拟合的角度看确定w 可以化为如下的最小二乘问题: ()21,,11min i nniij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (9) 由(9)式得到的最小二乘权向量一般与特征根法得到的不同.因为(9)式将导致求解关于i ω的非线性方程组,计算复杂,且不能保证得到全局最优解,没有实用价值.如果改为对数最小二乘问题:()21,,11min ln ln i nn iij i n i j j a ωωω===⎛⎫- ⎪ ⎪⎝⎭∑∑ (10) 则化为求解关于ln i ω的线性方程组.可以验证,如此解得的i ω恰是前面根法计算的结果.特征根法解决这个问题的途径可通过对定理2的证明看出. 4. 成对比较阵残缺时的处理专家或有关学者由于某种原因无法或不愿对某两个因素给出相互比较的结果,于是成对比较阵出现残缺.应如何修正,以便继续进行权向量的计算呢?一般地,由残缺阵()ij A a =构造修正阵()ij Aa = 的方法是令,,0,,1,ij ij ij ij i i a a i j a a i jm m i i jθθθ≠≠⎧⎪==≠⎨⎪+=⎩ 为第行的个数, (11)θ表示残缺.已经证明,可以接受的残缺阵A 的充分必要条件是A 为不可约矩阵. (六) 层次分析法的广泛应用层次分析法在正式提出来之后,由于它在处理复杂的决策问题上的实用性和有效性,很快就在世界范围内得到普遍的重视和广泛的应用.从处理问题的类型看,主要是决策、评价、分析、预测等方面. 这个方法在20世纪80年代初引入我国,很快为广大的应用数学工作者和有关领域的技术人员所接受,得到了成功的应用.层次分析法在求解某些优化问题中的应用[5]举例 假设某人在制定食谱时有三类食品可供选择:肉、面包、蔬菜.这三类食品所含的营养成分及单价如表所示表2 肉、面包、蔬菜三类食品所含的营养成分及单价食品 维生素A/(IU/g) 维生素B/(mg/g) 热量/(kJ/g) 单价/(元/g ) 肉 面包 蔬菜0.3527 025 0.0021 0.00060.0020 11.93 11.511.04 0.02750.0060. 0.007该人体重为55kg ,每天对各类营养的最低需求为:维生素A 7500国际单位 (IU)维生素B 1.6338mg热量 R 8548.5kJ考虑应如何制定食谱可使在保证营养需求的前提下支出最小?用层次分析法求解最优化问题可以引入包括偏好等这类因素.具体的求解过程如下:①建立层次结构② 根据偏好建立如下两两比较判断矩阵表3 比较判断矩阵WD ED 13 E311max 2λ=,10CI =,100.1CR =<,主特征向量()0.75,0.25W T=故第二层元素排序总权重为()10.75,0.25W T=每日需求W营养D 蔬菜支出E维生素B 肉 价格F面包 维生素A 热量R表4 比较判断矩阵D ABRA 1 1 2 B112R 5.05.01111max 1113,0,0,0.58CI CR RI λ==== ,主特征向量()0.4,0.4,0.2W T= 故相对权重()210.4,0.4,0.2,0P T=③ 第三层组合一致性检验问题因为()()2111211112120;0.435CI CI CI W RI RI RI W ====,212200.1CR CR CI RI =+=<故第三层所有判断矩阵通过一致性检验,从而得到第三层元素维生素A 、维生素B 、热量Q 及支出E 的总权重为:()()221221120.3,0.3,0.15,0.25W P W P P W T===求第四层元素关于总目标W 的排序权重向量时,用到第三层与第四层元素的排序关系矩阵,可以用原始的营养成分及单价的数据得到.注意到单价对人们来说希望最小,因此应取各单价的倒数,然后归一化.其他营养成分的数据直接进行归一化计算,可得表5表5 各营养成分数据的归一化 食品维生素A维生素B热量R单价F肉 0.0139 0.44680.4872 0.1051 面包 0.0000 0.1277 0.4702 0.4819 蔬菜0.98610.42550.04260.4310则最终的第四层各元素的综合权重向量为:()3320.2376,0.2293,0.5331W P W T==,结果表明,按这个人的偏好,肉、面包和蔬菜的比例取0.2376:0.2293:0.5331较为合适.引入参数变量,令10.2376x k =,20.2293x k =,30.5331x k =,代入()1LP123min 0.02750.0060.007f x x x =++131231231230.352725.075000.00210.00060.002 1.6338..(1)11.930011.5100 1.048548.5,,,0x x x x x s t LP x x x x x x +≥⎧⎪++≥⎪⎨++≥⎪⎪≥⎩则得k f 0116.0min =()13.411375000.0017 1.6338..26.02828548.50k k s t LP k k ≥⎧⎪≥⎪⎨≥⎪⎪≥⎩容易求得1418.1k =,故得最优解()*336.9350,325.1650,755.9767x T=;最优值 *16.4497f =,即肉336.94g ,面325.17g ,蔬菜755.98g ,每日的食品费用为16.45元.总之,对含有主、客观因素以及要求与期望是模糊的优化问题,用层次分析法来处理比较适用.二、模糊数学法模糊数学是1965年美国控制论专家L.A.Zadeh创立的.模糊数学作为一门新兴学科,它已初步应用于模糊控制、模糊识别、模糊聚类分析、模糊决策、模糊评判等各方面.在气象、结构力学、控制、心理学方面已有具体的研究成果.(一) 模糊数学的研究内容第一,研究模糊数学的理论,以及它和精确数学、随机数学的关系;第二,研究模糊语言和模糊逻辑,并能作出正确的识别和判断;第三,研究模糊数学的应用.(二) 模糊数学在数学建模中应用的可行性1.数学建模的意义在于将数学理论应用于实际问题[6].而模糊数学作为一种新的理论,本身就有其巨大的应用背景,国内外每年都有大量的相关论文发表,解决了许多实际问题.目前在数学建模中较少运用模糊数学方法的原因不在于模糊数学理论本身有问题,而在于最新的研究成果没有在第一时间进入数学建模的教科书中,就其理论本身所具有的实用性的特点而言,模糊数学应该有助于我们解决建模过程中的实际问题.2.数学建模的要求是模型与实际问题尽可能相符.对实际问题有这样一种分类方式:白色问题、灰色问题和黑色问题.毫无疑问,引进新的方法对解决这些问题大有裨益.在灰色问题和黑色问题中有很多现象是用“模糊”的自然语言描述的.在这种情况下,用模糊的模型也许更符合实际.3.数学建模活动的目的之一是培养学生的创新精神.用新理论、新方法解题应该受到鼓励.近年来,用神经网络法、层次分析法等新方法建立模型的论文屡有获奖,这也说明了评审者对新方法的重视.我们相信,模糊数学方法应该很好,同样能够写出优秀的论文.(三) 模糊综合评判法中的最大隶属原则有效度在模糊统计综合评判中,如何利用综合评判结果向量()12,,,m b b b b = ,其中, 01j b <<,m 为可能出现的评语个数,提供的信息对被评判对象作出所属等级的判断,目前通用的判别原则是最大隶属原则[7].在实际应用中很少有人注意到最大隶属原则的有效性问题,在模糊综合评判的实例中最大隶属原则无一例外地被到处搬用,然而这个原则并不是普遍适用的.最大隶属原则有效度的测量1. 有效度指标的导出在模糊综合评判中,当11max 1,1njj j nj bb ≤≤===∑时,最大隶属原则最有效;而在()1max 01,jj nbc c ≤≤=<< 1nj j b nc ==∑时,最大隶属原则完全失效,且1max jj nb ≤≤越大(相对于1nj j b =∑而言),最大隶属原则也越有效.由此可认为,最大隶属原则的有效性与1max jj nb ≤≤在1njj b =∑中的比重有关,于是令:11max njjj nj b b β≤≤==∑ (12)显然,当11max 1,1njj j nj bb ≤≤===∑时,则1β=为β的最大值,当()1max 01jj nb c c ≤≤=<<,1njj bnc==∑时,有1n β=为β的最小值,即得到β的取值范围为:11n β≤≤.由于在最大隶属原则完全失效时,1n β=而不为0,所以不宜直接用β值来判断最大隶属原则的有效性.为此设:()()11111n n n n βββ--'==-- (13)则β'可在某种程度上测定最大隶属原则的有效性.而最大隶属原则的有效性还与j nj b ≤≤1sec (jnj b ≤≤1sec 的含义是向量b 各分量中第二大的分量)的大小有很大关系,于是我们定义:11sec njjj nj b bγ≤≤==∑ (14)可见: 当()1,1,0,0,,0b = 时,γ取得最大值12.当()0,1,0,0,,0b = 时,γ取得最小值0.即γ的取值范围为012γ≤≤,设()02120γγγ-'==-.一般地,β'值越大最大隶属原则有效程度越高;而γ'值越大,最大隶属原则的有效程度越低.因此,可以定义测量最大隶属原则有效度的相对指标:()112121n n n n βββαγγγ'--⎛⎫=== ⎪'--⎝⎭ (15) 使用α指标能更准确地表明实施最大隶属原则的有效性.2. α指标的使用从α指标的计算公式看出α与γ成反比,与β成正比.由β与γ的取值范围,可以讨论α的取值范围: 当γ取最大值,β取最小值时,α将取得最小值0;当γ取最小值,β取最大值时,α将取得最大值:因为 0lim γα→=+∞,所以可定义0γ=时,α=+∞.即:0α≤<+∞.由以上讨论,可得如下结论:当α=+∞ 时,可认定施行最大隶属原则完全有效;当1α≤<+∞时,可认为施行最大隶属原则非常有效;当0.51α≤<时,可认为施行最大隶属原则比较有效,其有效程度即为α值;当00.5α<<时可认为施行最大隶属原则是最低效的;而当0α=时,可认定施行最大隶属原则完全无效.有了测量最大隶属原则有效度的指标,不仅可以判断所得可否用最大隶属原则确定所属等级,而且可以说明施行最大隶属原则判断后的相对置信程度,即有多大把握认定被评对象属于某个等级. 讨论a . 在很多情况下,可根据β值的大小来直接判断使用最大隶属原则的有效性而不必计算α值.根据α与β之间的关系,当0.7β≥,且4n >时,一定存在1α>.通常评价等级数取4和9之间,所以4n >这一条件往往可以忽略,只要0.7β≥就可免算α值,直接认定此时采取最大隶属原则确定被评对象的等级是很有效的.b . 如果对()12,,,m b b b b = 进行归一化处理而得到b ',则可直接根据b '进行最大隶属原则的有效度测量. (四) 模糊数学在数学建模中的应用模糊数学有诸多分支,应用广泛.如模糊规划、模糊优化设计、综合评判、模糊聚类分析、模糊排序、模糊层次分析等等.这些方法在工业、军事、管理等诸多领域被广泛应用. 举例 带模糊约束的最小费用流问题[8]问题的提出 最小费用流问题的一般提法是:设(),,,D V A c ω=是一个带出发点s v 和收点t v 的容量-费用网络,对于任意(),ijv v A ∈,ijc表示弧(),i j v v 上的容量,ij ω表示弧(),i j v v 上通过单位流量的费用,0v 是给定的非负数,问怎样制定运输方案使得从s v 到t v 恰好运输流值为0v 的流且总费用最小?如果希望尽可能地节省时间并提高道路的通畅程度,问运输方案应当怎样制定?模型和解法 问题可以归结为:怎样制定满足以下三个条件的最优运输方案?(1)从s v 到t v 运送的流的值恰好为0v ;(2)总运输费用最小;(3)在容量ij c 大的弧(),i j v v 上适当多运输.如果仅考虑条件(1)和(2),易写出其数学模型为:()()()()()()(){}(),0,,0,,,,min()..0,0i j s j j s t j j t i j j i ij ijv v Asj js v v A v v A tj jt v v Av v A ij ji i s t v v A v v A ij ijf f f v f f v M s t f f v V v v f c ω∈∈∈∈∈∈∈⎧-=⎪⎪-=-⎪⎪⎨⎪-=∈⎪⎪≤≤⎪⎩∑∑∑∑∑∑∑ 把条件(3)中的“容量大” 看作A 上的一个模糊子集A ,定义其隶属函数μ:[]0,1A →为:()()00,0,1,ij ij ij i j A d c c v ij c c v v e c cμμ--≤≤⎧⎪==⎨->⎪⎩其中 ()1,i j ij v v c A c -⎡⎤⎢⎥=⎢⎥⎣⎦∑ (平均容量)()()()()()()21,2211,,0,1lg ,1i j i j i j ij v v A ij ij v v A v v A A c c d A c c A c c -∈--∈∈⎧⎡⎤⎪⎢⎥-≤⎪⎢⎥⎣⎦⎪=⎨⎡⎤⎡⎤⎪⎢⎥⎢⎥-->⎪⎢⎥⎢⎥⎪⎣⎦⎣⎦⎩∑∑∑建立ij μ是为了量化“适当多运输”这一模糊概念.对条件(2)作如下处理:对容量ij c 大的弧(),i j v v ,人为地降低运价ij ω,形成“虚拟运价”ij ω,其中ij ω满足:ij c 越大,相应的ij ω的调整幅度也越大.选取ij ω为()1kij ij ij ωωμ=-,(),i j v v A ∈.其中k 是正参数,它反映了条件(2)和条件(3)在决策者心目中的地位.决策者越看重条件(3),k 取值越小;当k 取值足够大时,便可忽略条件(3) .一般情况下,合适的k 值最好通过使用一定数量的实际数据进行模拟、检验和判断来决定.最后,用ij ω代替原模型M 中的ij ω,得到一个新的模型M '.用现有的方法求解这个新的规划问题,可期望得到满足条件(3)的解.模型的评价 此模型在原有的数学规划模型和解法的基础上,增加了模糊约束.新模型比较符合实际,它的解包含了原模型的解,因而它是一个较为理想的模型.隶属度的确定在模糊数学中有多种方法,可以根据不同的实际问题进行调整.同样的思想方法可以处理其他的模糊约束问题.三、灰色系统客观世界的很多实际问题,其内部结构、参数以及特征并未全部被人们了解,对部分信息已知而部分信息未知的系统,我们称之为灰色系统.灰色系统理论是从系统的角度出发来研究信息间的关系,即研究如何利用已知信息去揭示未知信息.灰色系统理论包括系统建模、系统预测、系统分析等方面.(一)灰色关联分析理论及方法灰色系统理论[9]中的灰色关联分析法是在不完全的信息中,对所要分析研究的各因素,通过一定的数据,在随机的因素序列间,找出它们的关联性,找到主要特性和主要影响因素.计算方法与步骤:1.原始数据初值化变换处理分别用时间序列()k的第一个数据去除后面的原始数据,得出新的倍数列,即初始化数列,量纲为一,各值均大于零,且数列有共同的起点.2. 求关联系数 ()()()()()()()()()0000min min ||max max ||||max max ||k i k k i k ikiki k k i k k i k ikx x x x x x x x ρξρ-+-=-+-3. 取分辨系数 01ρ<< 4. 求关联度()()11ni k i k k r n ξ==∑(二) 灰色预测1.灰色预测方法的特点(1)灰色预测需要的原始数据少,最少只需四个数据即可建模;(2)灰色模型计算方法简单,适用于计算机程序运行,可作实时预测;(3)灰色预测一般不需要多因素数据,而只需要预测对象本身的单因素数据,它可以通过数据本身的生成,寻找系统内在的规律;(4) 灰色预测既可做短期预测,也可做长期预测,实践证明,灰色预测精度较高,误差较小.2. 灰色预测GM(1,1)模型的一点改进一些学者为了提高预测精度做出了大量的研究工作,提出了相应的方法.本文将在改善原始离散序列光滑性的基础上,进一步研究GM(1,1)预测模型的理论缺陷及改进方法[10].问题的存在及改进方法如下:传统灰色预测GM(1,1)模型的一般步骤为: (1)1-ADO :对原始数据序列(){}0k x ()1,2,,k n = 进行一次累加生成序列()()101kk i i x x =⎧⎫=⎨⎬⎩⎭∑()1,2,,k n =(2)对0x 数列进行光滑性检验:00,k λ∀>∃,当0k k >时:()()()()0011101k k k k i i x x x x λ--==<∑文献[11]进一步指出只要()()0101k k i i x x -=∑为k 的递减函数即可.(3)对1x 作紧邻生成:()()()()1111*1*,2,3,,k k k Z x x k n αα-=+-=。

数学建模常用算法模型

数学建模常用算法模型

数学模型的分类按模型的数学方法分:几何模型、图论模型、微分方程模型、概率模型、最优控制模型、规划论模型、马氏链模型等按模型的特征分:静态模型和动态模型,确定性模型和随机模型,离散模型和连续性模型,线性模型和非线性模型等按模型的应用领域分:人口模型、交通模型、经济模型、生态模型、资源模型、环境模型等.按建模的目的分:预测模型、优化模型、决策模型、控制模型等一般研究数学建模论文的时候,是按照建模的目的去分类的,并且是算法往往也和建模的目的对应按对模型结构的了解程度分:有白箱模型、灰箱模型、黑箱模型等比赛尽量避免使用,黑箱模型、灰箱模型,以及一些主观性模型.按比赛命题方向分:国赛一般是离散模型和连续模型各一个,2016美赛六个题目离散、连续、运筹学/复杂网络、大数据、环境科学、政策数学建模十大算法1、蒙特卡罗算法该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,比较好用的算法2、数据拟合、参数估计、插值等数据处理算法比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具3、线性规划、整数规划、多元规划、二次规划等规划类问题建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现4、图论算法这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备5、动态规划、回溯搜索、分治算法、分支定界等计算机算法这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用7、网格算法和穷举法当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具8、一些连续离散化方法很多问题都是从实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的9、数值分析算法如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用10、图象处理算法赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的这些图形如何展示,以及如何处理就是需要解决的问题,通常使用Matlab进行处理算法简介1、灰色预测模型必掌握解决预测类型题目.由于属于灰箱模型,一般比赛期间不优先使用.满足两个条件可用:①数据样本点个数少,6-15个②数据呈现指数或曲线的形式2、微分方程预测高大上、备用微分方程预测是方程类模型中最常见的一种算法.近几年比赛都有体现,但其中的要求,不言而喻.学习过程中无法直接找到原始数据之间的关系,但可以找到原始数据变化速度之间的关系,通过公式推导转化为原始数据的关系.3、回归分析预测必掌握求一个因变量与若干自变量之间的关系,若自变量变化后,求因变量如何变化;样本点的个数有要求:①自变量之间协方差比较小,最好趋近于0,自变量间的相关性小;②样本点的个数n>3k+1,k为自变量的个数;③因变量要符合正态分布4、马尔科夫预测备用类似的名词有,马尔科夫链、马尔科夫模型、,马氏链模型等一个序列之间没有信息的传递,前后没联系,数据与数据之间随机性强,相互不影响;今天的温度与昨天、后天没有直接联系,预测后天温度高、中、低的概率,只能得到概率.思考马尔科夫和元胞自动机之间的关系5、时间序列预测必掌握与马尔科夫链预测互补,至少有2个点需要信息的传递,ARMA模型,周期模型,季节模型等6、小波分析预测高大上数据无规律,海量数据,将波进行分离,分离出周期数据、规律性数据;可以做时间序列做不出的数据,应用范围比较广7、神经网络预测备用大量的数据,不需要模型,只需要输入和输出,黑箱处理,建议作为检验的办法8、混沌序列预测高大上比较难掌握,数学功底要求高9、插值与拟合必掌握拟合以及插值还有逼近是数值分析的三大基础工具,通俗意义上它们的区别在于:拟合是已知点列,从整体上靠近它们;插值是已知点列并且完全经过点列;逼近是已知曲线,或者点列,通过逼近使得构造的函数无限靠近它们.10、灰色关联分析法必掌握与灰色预测模型一样,比赛不能优先使用11、模糊综合评判备用评价一个对象优、良、中、差等层次评价,评价一个学校等,不能排序12、主成分分析必掌握评价多个对象的水平并排序,指标间关联性很强13、层次分析法AHP必掌握作决策,去哪旅游,通过指标,综合考虑作决策14、数据包络DEA分析法备用优化问题,对各省发展状况进行评判15、秩和比综合评价法高大上评价各个对象并排序,指标间关联性不强16、优劣解距离法TOPSIS法备用17、投影寻踪综合评价法高大上揉和多种算法,比如遗传算法、最优化理论等18、方差分析、协方差分析等备用方差分析:看几类数据之间有无差异,差异性影响,例如:元素对麦子的产量有无影响,差异量的多少;1992年,作物生长的施肥效果问题协方差分析:有几个因素,我们只考虑一个因素对问题的影响,忽略其他因素,但注意初始数据的量纲及初始情况.2006年,艾滋病疗法的评价及预测问题21、线性规划、整数规划、0-1规划必掌握有约束,确定的目标比较简单,必须掌握22、非线性规划与智能优化算法智能算法至少掌握1-2个,其他的了解即可非线性规划包括:无约束问题、约束极值问题智能优化算法包括:模拟退火算法、遗传算法、改进的遗传算法、禁忌搜索算法、神经网络、粒子群等23、多目标规划和目标规划柔性约束,目标含糊,超过备用24、动态规划备用25、复杂网络优化多因素交错复杂备用,编程好的使用要掌握离散数学中经典的知识点——图论.26、排队论与计算机仿真高大上排队论包括、元胞自动机对编程能来要求较高,一般需要证明其机理符合实际情况,不能作为单独使用这也是大部分队伍使用元胞自动机不获奖的最大原因.27、模糊规划范围约束28、灰色规划难29、图像处理备用MATLAB图像处理,针对特定类型的题目,一般和数值分析的算法有联系.例如2013年国赛B 题,2014网络赛B题.30支持向量机31多元分析1、聚类分析必掌握,参考192、主成分分析必掌握3、因子分析必掌握4、判别分析5、典型相关分析6、对应分析7、多维标度法8、偏最小二乘回归分析32、分类与判别主要包括以下几种方法,1、距离聚类系统聚类常用2、关联性聚类常用3、层次聚类4、密度聚类5、其他聚类6、贝叶斯判别统计判别方法7、费舍尔判别训练的样本比较多8、模糊识别分好类的数据点比较少33、关联与因果1、灰色关联分析方法样本点的个数比较少2、Sperman或kendall等级相关分析3、Person相关样本点的个数比较多4、Copula相关比较难,金融数学,概率密度5、典型相关分析因变量组Y1234,自变量组X1234,各自变量组相关性比较强,问哪一个因变量与哪一个自变量关系比较紧密6、标准化回归分析若干自变量,一个因变量,问哪一个自变量与因变量关系比较紧密7、生存分析事件史分析难数据里面有缺失的数据,哪些因素对因变量有影响8、格兰杰因果检验计量经济学,去年的X对今年的Y有没影响。

数学建模中的模型建立与求解

数学建模中的模型建立与求解

数学建模中的模型建立与求解数学建模是一种通过数学模型描述和解决实际问题的方法,它在各个领域具有重要应用。

在数学建模过程中,模型的建立和求解是关键步骤,决定了最终的分析和预测结果。

本文将探讨数学建模中的模型建立与求解的方法和技巧。

一、模型建立模型建立是数学建模的基础,它要求根据实际问题的特点和背景进行合理的抽象和假设,将复杂的实际问题转化为易于处理的数学形式。

模型的建立需要遵循以下原则:1. 简化与拟合:模型应该尽可能简化实际问题,将其关键特点和变量进行提取和抽象。

同时,模型也需要与实际数据进行拟合,以确保模型的准确性和可靠性。

2. 合理性与可验证性:模型的建立应该基于科学的理论和推理,避免主观臆断和不合理的假设。

模型也需要通过实际数据和实验进行验证,确保其能够准确地描述和预测实际问题。

3. 可操作性与实用性:模型的建立需要考虑其可操作性和实用性,以便能够得到实际问题的解决方案。

模型应该能够提供可行的策略和可靠的结果,帮助决策者做出正确的决策。

二、模型求解模型求解是数学建模的核心,它要求通过数学的方法和工具对模型进行求解,并得到实际问题的答案和解决方案。

在模型求解的过程中,可以采用多种方法和技巧,包括数值方法、优化方法和统计方法等。

1. 数值方法:数值方法是模型求解中常用的方法之一,它通过数值计算和近似算法来求解复杂的数学模型。

数值方法的优点是求解速度快,适用范围广,但精度相对较低。

常用的数值方法包括数值积分、数值逼近和数值解微分方程等。

2. 优化方法:优化方法是模型求解中常用的方法之一,它通过优化算法和数学规划来求解最优化问题。

优化方法的优点是能够得到全局最优解或近似最优解,但求解复杂度较高。

常用的优化方法包括线性规划、非线性规划和整数规划等。

3. 统计方法:统计方法是模型求解中常用的方法之一,它通过数据分析和概率统计来求解和预测实际问题。

统计方法的优点是能够考虑不确定性和随机性因素,但需要依赖大量的实际数据。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档