midas施工阶段分析

合集下载

midas例施工阶段联合截面分析 标准形式联合截面

midas例施工阶段联合截面分析 标准形式联合截面

9
APPLICATION TUTORIAL
截面号 (2) ; 名称 (Sect 2) ↵ 截面号 (3) ; 名称 (Sect 3) ↵
图 8. 输入截面对话框 数据库/用户表单
截面号 (4) ; 名称 (CBeam) ; 偏心>中心-中心
截面形状>工字型截面 ; 用户
H (0.84) ; B1 (0.4) ; tw (0.02) ; tf1 (0.02) ↵
10
联合截面施工阶段分析
时间依存材料特性
为了考虑弹性模量变化及收缩、徐变对混凝土强度的影响,需要另外定义时间依 存材料特性值。
本例题时间依存材料特性值采用CEB-FIP标准中的规定。构件理论厚度计算时,桥 面板的厚度假定为25cm。
修改力单位体系为KN。
¾ 28天混凝土抗压强度: 40000 KN/m2
荷载组(Activation)

步骤
DL(BC)1 第一步骤
DL(BC)2 第一步骤
DL(BC)3
第25天 (用户步骤)
DL(BC)4
第25天 (用户步骤)
DL(AC)
第一步骤
持续时间
备注
5
非联合截面
30
CS2区段联合
30
CS3区段联合
10,000 CS4区段联合
组表单
C 组>结构组 鼠标右键 新建… 名称 (SGroup)
内容 H 3200×800×900×20×32/34
H 800×400×20×20/20
备注 联合截面 用的自重是以梁单 元荷载施加,所以为了 在考虑材料自重时防止 重复考虑混凝土的自 重,所以输入为”0”。
模型 /特性值 / 截面 联合截面 截面号 (1) ; 名称 (Sect 1) ; 偏心>中心-中心 截面类型>钢-工字型 ; 板宽度 (12.14) ; 梁数量> (2) ; CTC (6.15) 钢筋混凝土板>Bc (6.07) ; tc (0.25) ; Hh (0.028) 梁 >Hw (3.2) ; tw (0.02) ; B1 (0.8) ; tf1 (0.032) ; B2 (0.9) ; tf1 (0.034) ↵ 材料> 混凝土材料>数据库>JTG(RC) ; 名称>C40 钢材>数据库>GB03(S) ; 名称>Q345 ↵ Ds/Dc (0) ↵

midas例题演示(预应力砼连续梁)

midas例题演示(预应力砼连续梁)
③ 分析选项>考虑时间依存效 果 (开)
完成建模和定义施工阶段后,在施工阶段分析选项中选择是否考虑材料的时
间依存特性和弹性收缩引起的钢束应力损失,并指定分析徐变时的收敛
条件和迭代次数。
2
④ 时间依存效果 ⑤ 徐变 和收缩 (开) ; 类型
>徐变和收缩⑥ 源自变分析时得收敛把握 ⑦ 迭代次数 ( 5 ) ; 收敛误
4
)
5
② 模型 /边界条件 / 一般支

③ 单项选择(节点 : 1)
2
④ 边界组名称>B-G1
⑤ 选择>添加
⑥ 支撑条件类型> Dy, Dz,
6
Rx (开)
⑦ 同上操作
⑧ 单项选择 (节点 : 16) ⑨ 边界组名称>B-G1 ⑩ 选择>添加 ⑪ 支撑条件类型>Dx, Dy,
Dz, Rx (开) ⑫ 单项选择 (节点 : 31) ⑬ 边界组名称>B-G2 ⑭ 选择>添加 ⑮ 支撑条件类型> Dy, Dz,
5 6
7 8
9
步骤 3.1 定义构造组
操作步骤 ① 模型>组>定义构造租 ② 定义构造组>名称( S-G )
; 后缀 ( 1to2 ) ③ 定义构造组>名称 ( All ) ④ 单元号显示 (on) ⑤ 窗口选择 (单元 : 1 to
18)
3
⑥ 组>构造组>S_G1 (拖& 放)
⑦ 同上操作 ⑧ 窗口选择 (单元 : 19 to
(N, R)
⑦ 开头收缩时的混凝土材龄
(3)
23 45 67
步骤 2.3 定义材料的时间依存性并连接
操作步骤 ① 模型 / 材料和截面特性 /

MIDAS 联合截面施工阶段分析方法

MIDAS 联合截面施工阶段分析方法
图 28. 各位置的应力结果表格
21
图 10. 定义施工阶段对话框
图 11. 定义第一个施工阶段 CS1 9
图 12. 定义第二个施工阶段 CS2
图 13 定义第四个施工阶段 CS4 这里将第四个施工阶段的持续时间 1000 天分成了 10 个步骤。另外二期恒载将在该阶段的第 7 天开始施 加。
10
定义联合截面施工阶段 在荷载>施工阶段分析数据>施工阶段联合截面 对话框定义联合截面的施工阶段。
图 22. CS2 first step 的变形形状 17
图 23. CS3 first step 的变形形状
图 24. CS4 first step 的变化形状 18
¾ 内力
图 25. CS4 third step 的变形形状
图 26. CS4 last step 的弯矩图(荷载工况:CS 合计) 19
图 6. 定义联合前各截面的特性值 3 号主梁截面和 4 号桥面板截面可以不必输入,但为了在后面定义联合截面施工阶段时输入各组成 截面特性值的方便,可在这里事先进行定义。
6
赋与时间依存性特性
时间依存性特性采用的是 CEB-FIP code,其内容如图 7、8 所示。
¾ 徐变和收缩
¾ 强度发展
图 7. 定义徐变和收缩对话框
图 15. 定义施工顺序对话框 ¾ 联合阶段
指定各位置的构件产生的施工阶段。 例题中位置 1 是在第一个施工阶段 CS1 产生的,故选择 CS1 或选择激活施工阶段。激活施工阶段是 指在图 14 上方的激活施工阶段栏中所选择的阶段。 位置 2 的形成阶段为 CS3,故选择 CS3。
12
¾ 材料 输入各位置的材龄。初期强度、徐变系数、收缩特性等与这里所输入的材龄有关,所以模型若要考

MIDAS软件常见提问与解答

MIDAS软件常见提问与解答

1)问: 在MIDAS软件中施工阶段分析采用何种模型?答: 施工阶段模拟中的模型概念有两种,一种是累加模型概念,一种是独立模型概念。

累加模型的概念就是下一个阶段模型继承了上一个阶段模型的内容(位移、内力等),累加模型比较容易解决收缩和徐变问题。

但较难解决非线性问题。

举例说,当下一个施工阶段荷载加载时,上一个阶段已发生位移的模型容易发生挠动时(比如悬索桥模型),上一阶段的荷载也应同时参与该施工阶段的非线性分析中,而此时累加模型很难解决该类问题。

独立模型的概念就是每施工阶段均按当前施工阶段的所有荷载、当前模型进行分析,然后作为当前施工阶段的分析结果,两个施工阶段分析结果的差作为累加结果。

此类模型较容易使用于大位移等非线性分析中。

但不能正确反应收缩和徐变。

目前MIDAS的施工阶段模拟实际上隐含了这两种模型的选择。

在分析>施工阶段分析控制中,当选择"考虑非线性分析"选项时,程序按独立模型计算,当没有选择该项时,按累加模型分析。

至于具体的工程,应选择哪种模型,应由用户判断。

MIDAS软件目前正考虑升级的部分:1. 将施工阶段采用模型,由隐式改为用户选择。

这不是单纯的改文字。

2. 在帮助文件中尽量对各种结构的施工阶段模拟提供分析模式。

2)问: 在MIDAS软件中静力荷载工况定义中的类型中包括了所有的荷载,为什么菜单下面还有移动荷载工况和支座荷载工况等内容呢?答: 静力荷载工况中的荷载类型正如它的名字为"静力"类型。

当用户需要分析移动荷载处于某一个位置时的情况,即手动决定移动荷载位置后,再做静力分析时,需要在此定义相应的移动荷载工况,也为后处理中自动生成荷载组合做准备。

支座沉降分析数据中的支座荷载工况其实与移动荷载的概念差不多。

举例说明,当有9个支座时,每个支座都可能发生沉降时,该功能可以由自动计算所有可能的沉降组合,因此提供的也是相当于"动态"的结果。

MIdas_Gen_内部教程:施工阶段分析

MIdas_Gen_内部教程:施工阶段分析

1.时间依存性材料的定义 • 将时间依存性材料特性赋 给之前定义的一般材料
选择之前定义的收缩徐变特性 及强度进展特性;
选择要赋予的材料; 点击“添加”
2. 定义荷载工况和楼面荷载
DC:施工阶段恒荷载; LC: 施工阶段活荷载;
LL: 使用阶段活荷载;
2. 定义荷载工况和楼面荷载
OFFICE1: 施工阶段楼面荷载; DC=-4.3, LC=-1.0 OFFICE2: 施工阶段结束后楼面活荷载; LL=-2.0
Total: Up to +Sub to; 与一般分析结果相同;
8.查看结果
施工阶段分析
北京迈达斯技术有限公司 市场部
主要内容
---施工阶段分析的意义; ---施工阶段在PKPM中的实现; ---Midas Gen中施工阶段分析的特点; ---Midas Gen中假定结构已经完成,然后将 荷载一次性加载到结构上; 不能考虑找平和逐层施工的影响: *下层变形对以上楼层基本无影响; *本层加载对未施工楼层无影响; 会过高估计竖向构件变形的影响,导致构件内力结果 与实际受力状态相差较大;
结构类型 框架-剪力墙结构 层数 高度 材料 地下4层,地上51层; 188.57m 混凝土剪力墙 型钢混凝土柱 钢梁
地面以上先施工框架, 施工特点 全部框架结束后施工 剪力墙
Midas Gen中施工阶段分析的特点

弹性变形:混凝土在龄期(t0)时施加荷载后引起的 瞬时变形; 收缩:混凝土在空气中硬化时由于水分散发而引起的 收缩变形; 徐变:无附加应力情况下产生的变形;
支承条件/弹性支撑位置
变形前:边界条件应用到变形前 的位置;若结构已发生变形,相 当于先施加一到初始位置的强制 位移; 变形后:边界条件应用到变形后 的位置;

midasGen钢结构施工阶段分析

midasGen钢结构施工阶段分析

④ 混合结构
11.3.3 竖向荷载作用计算时,宜考虑钢柱、型钢混凝土(钢管混凝土)柱与钢筋混凝土核心筒竖 向变形差异引起的结构附加内力,计算竖向变形差异时宜考虑混凝土收缩、徐变、沉降及施工调 整等因素的影响。
• 条文说明:外柱与内筒的竖向变形差异宜根据实际的施工工况进行计算。在施工阶段,宜 考虑施工过程中已对这些差异的逐层进行调整的有利因素,也可考虑采取外伸臂桁架延迟封 闭、楼面梁与外周柱及内筒体采用铰接等措施减小差异变形的影响。在伸臂桁架永久封闭以 后,后期的差异变形会对伸臂桁架或楼面梁产生附加内力,伸臂桁架及楼面梁的设计时应考 虑这些不利影响。
不均匀变形引起的附加应力
需要对结构进行加固处理
W
wL2
wL2
12
12
L
+
6EI
L2
6EI
L2
L
16 /13
有限元软件施工模拟的实现
1.2为什么要考虑施工阶段模拟?
施工模拟 实现方法
3D3S
有专门的施工 模拟模块
SAP2000
有专门的施工 模拟模块
优缺点
主要针对钢结构 后处理不够强大
后处理与中国 规范结合不好
4、施工阶段分析控制
最终施工阶段: 选择用哪个施工阶段的结果与其他荷载工况(如地震、风荷载等)进 行组合。 从施工阶段分析结果的恒荷载中分离出的荷载工况 施工阶段的分析结果,除收缩徐变和预应力松弛外,都保存在CS :恒荷载下;在此将特定工况结果从CS:恒荷载中分离出来,保 存在CS:活荷载下; 荷载组合时,施工阶段活载采用与使用阶段活载相同的组合系数;
外伸桁架的上下弦构件和柱的连接
20
拼装工程
① 拼装工程 通过拼装过程的模拟分析,分析构件应力和支座反力的变化。

迈达斯(Midas_civil)建模助手做移动支架法施工阶段分析教程

迈达斯(Midas_civil)建模助手做移动支架法施工阶段分析教程

概要
使用建模助手做移动支架法施工阶段分析
逐跨施工预应力箱型梁桥的的方法有移动支架法(Movable Scaffolding System ; 简称MSS)和满堂支架法(Full Staging Method ; 简称FSM)。移动支架法法的模板设置 在导梁上,因此无需进行水上作业和架设大量的脚手架。另外,移动支架法与满堂支架 法相比,因为不与地面、河流等直接接触,所以施工时可以灵活使用桥梁下空间。
施加预应力初期
f' ca
=
0.55 fci
= 148.5
kgf / cm2
f' ta
= 0.8
fci = 13.1 kgf / cm2
预应力损失之后
fca = 0.4 fck = 160.0 kgf / cm2 fta = 1.6 fck = 32.0 kgf / cm2
¾ 下部结构混凝土 材料强度标准值 : fck = 270 kgf / cm2 弹性模量 : Ec = 2.35 ×105 kgf / cm2
选择桥梁类型为移动支架法,输入桥梁材料、区段组成、曲率半径、固定支撑位 置、施工缝位置、施工缝到钢束锚固端位置距离、施工一跨所需时间(20天)以及预 应力箱型梁的初期材龄。选择桥梁类型为移动支架法时,程序自动计算出施工持续时 间与构件初期材龄的差作为添加步骤,并计算出移动支架自重和混凝土湿重引起的反 力将其加载到悬臂端。
5
高级应用例题
¾ 后横梁的反力 假设因移动支架梁自重引起的后横梁反力的大小和位置如下: - P = 400 tonf - 作用位置 : 从施工缝位置沿已现浇桥梁段方向3m处 正在施工的桥梁跨的混凝土湿重引起的反力由程序自动计算。
6
使用建模助手做移动支架法施工阶段分析

maidas预应力混凝土梁的施工阶段分析

maidas预应力混凝土梁的施工阶段分析

北京迈达斯技术有限公司CONTENTS概要1桥梁概况及一般截面 2 预应力混凝土梁的分析顺序 3 使用的材料及其容许应力 4 荷载5设置操作环境6定义材料和截面7定义截面8 定义材料的时间依存性并连接9建立结构模型12定义结构组、边界条件组和荷载组13 输入边界条件16输入荷载17输入恒荷载18 输入钢束特性值19 输入钢束形状20 输入钢束预应力荷载23定义施工阶段25输入移动荷载数据30运行分析34查看分析结果35通过图形查看应力35 定义荷载组合39 利用荷载组合查看应力40 查看钢束的分析结果44 查看荷载组合条件下的内力475-1概要本例题使用一个简单的两跨连续梁模型(图1)来重点介绍MIDAS/Civil 的施工阶段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。

主要包括分析预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变化特性的步骤和方法。

图1. 分析模型桥梁概况及一般截面分析模型为一个两跨连续梁,其钢束的布置如图2所示,分为两个阶段来施工。

桥梁形式:两跨连续的预应力混凝土梁桥梁长度:L = 2@30 = 60.0 m图2. 立面图和剖面图5-2预应力混凝土梁的分析步骤预应力混凝土梁的分析步骤如下。

1.定义材料和截面2.建立结构模型3.输入荷载恒荷载钢束特性和形状钢束预应力荷载4.定义施工阶段5.输入移动荷载数据6.运行结构分析7.查看结果5-35-4使用的材料及其容许应力❑ 混凝土(c40)设计强度:2/400cm kgf f ck =初期抗压强度:2/270cm kgf f ci =弹性模量:Ec=3,000Wc1.5 √fck+ 70,000 = 3.07×105kgf/cm 2 容许应力:❑ 预应力钢束 (ASTM A416-92低松弛270级,Φ15.2mm (0.6" strand)屈服强度: 2py mm /kgf 160=f →strand /tonf 6.22=P y 抗拉强度: 2pu mm /kgf 190=f →strand /tonf 6.26=P u 截面面积: 2387.1cm A p = 弹性模量: 26p cm /kgf 10×0.2=E 张 拉 力: fpi=0.7fpu=133kgf/mm 2锚固装置滑动: mm s 6=∆ 磨擦系数: rad /30.0=μ m /006.0=k5-5荷载❑ 恒荷载自重在程序中按自重输入❑ 预应力钢束(φ15.2 mm ×31 (φ0.6" - 31))截面面积 : Au = 1.387 × 31 = 42.997 cm 2 孔道直径 : 133 mm 张拉力 : 抗拉强度的70%fpj = 0.7 fpu = 13,300 kgf/cm 2 Pi = Au × fpj = 405.8 tonf 张拉后的瞬间损失(程序自动计算)摩擦损失 :)(0)(kL X eP P +⋅=μα30.0=μ, 006.0=k锚固装置滑动引起的损失 : mm 6=I Δc 弹性收缩引起的损失 : 损失量 SP P E A f P ⋅∆=∆ 最终损失(程序自动计算)钢束的松弛(Relaxation )徐变和收缩引起的损失❑ 徐变和收缩条件水泥 : 普通硅酸盐水泥长期荷载作用时混凝土的材龄 : =o t 5天 混凝土与大气接触时的材龄 : =s t 3天 相对湿度 : %70=RH大气或养护温度 : C T ︒=20 适用规范 : CEB-FIP 徐变系数 : 程序计算混凝土收缩变形率 : 程序计算❑ 活荷载适用规范:城市桥梁设计荷载规范 荷载种类:C-ALC-AD(20)5-6设置操作环境打开新文件(新项目),以 ‘PSC beam ’ 为名保存(保存)。

MIDAS-整体解决方案-桥台基础施工阶段分析

MIDAS-整体解决方案-桥台基础施工阶段分析
Chapter 1.桥台基础施工阶段分析 5
Basic Tutorials
▶表.岩土属性 ▶表.结构属性
名称 属性 材料
风化土
3D 风化土
风化岩
3D 风化岩
软岩
3D 软岩
堆土体
3D 堆土体
桥台
3D 桥台
各结构构件的属性如下表。设置截面形状后自动计算截面刚度。
若采用桩界面单元,可以设置桩端界面上的承载力和弹簧刚度。 使用梁单元作为抗拉压/剪切/扭转的结构构件,并且定义桩界面周围 和桩端上的刚度,以确定桩与相邻土体的摩擦行为和相对位移。桩界面 单元和界面单元的差异在于可以考虑桩与相邻岩土不共享节点(节点不 耦合),这在三维建模时使用较方便。 测量板单元用在实体单元的边界单元面上,用于分析实体构件内力 的情况下。在本例题中,为了研究基础板上作用的轴力/剪力/弯矩等的内 力,在基础板上部单元面上建立测量板单元。 各岩土的属性如下表。
0.3 74 -
桩(界面) 界面和桩界面
桩界面 -
650 50000 500000
桩界面单元行为 可以分为两个 部分:法向 行为和切向 行为。首先 假设法向行 为是 桩界面和岩土单元 进行完全一 致的协同变形 ,并将切向 行为视为非线 性弹性行为 。非 线性弹性行为的定义分为:屈服力的方法和用函数定义的方法。
适用测量板单元(Gauging Shell)(实体单元的剖面的内力研究)
▶分析剖面图
1.2 模型及分析概要
在本例题中,模型由相互不同的 3 个地层和邻接倾斜地基的桥台基础及 桩组成。本例按基于堆土体施工及荷载加载的施工阶段分析。在 6.4x10m 的 基础板上端建立桥台,在堆土体上部把 100(kN/m2)的荷载分成 5 个阶段加 载。在每一阶段中,桥台水平位移及沉降趋势将被分析。同时在基础下部添 加 20 个规格为 600x12mm 的钢管桩,并分析其对基础沉降的影响。生成 2 个 分析工况——使用桩基础前/后进行对比分析,以此来判断桩基础的适用性。

madis gen 施工阶段分析

madis  gen  施工阶段分析

5.定义荷载及边界条件
自重属于施工阶段恒载的范畴; 施工阶段分析时,自重应定义 在第一个施工阶段的荷载组中, 其他施工阶段程序会自动读取。
6. 定义施工阶段
菜单:荷载->施工阶段分析数据->定义施工阶段 添加子步骤:输入子步骤持续 时间; 同一施工阶段结构和边界条件相 同,但各子步骤加载时间可以不 同。 材龄:施工阶段开始时,结 构组已经具备的材龄。 一般为从混凝土浇筑到拆除脚手 架,结构开始工作的时间。
6. 定义施工阶段
菜单:荷载->施工阶段分析数据->定义施工阶段
支承条件/弹性支撑位置 变形前:边界条件应用到变形前 的位置;若结构已发生变形,相 当于先施加一到初始位置的强制 位移; 变形后:边界条件应用到变形后 的位置;
7. 施工阶段分析控制
最终施工阶段:选择用哪个施 工阶段的结果与其他荷载工况(如 地震、风荷载等)进行组合。

会过高估计竖向构件变形的影响,导致构件内力结果
与实际受力状态相差较大;
施工阶段在PKPM中的实现
• • 一次性加载:不考虑施工阶段; 施工模拟1:假定结构已经存在,只不过是荷载逐层 施加;
••施ຫໍສະໝຸດ 模拟2:施工模拟1 + 竖向构件刚度放大10倍; 削弱竖向荷载按刚度的重分配;
施工模拟3:分层计算刚度后分层施加竖向荷载。
累加模型:
每个施工阶段分析时,均继承上 个施工阶段的内力和位移作为初 始状态,同时激活当前施工阶段 的单元,荷载和边界条件进行分 析; 可以考虑混凝土的收缩徐变; 独立模型: 不考虑之前阶段的结果,应用该 阶段及之前的所有单元,荷载和 边界条件进行分析; 主要用于大变形等几何非线性 分析;
8. 查看结果

midas施工阶段分析讲稿

midas施工阶段分析讲稿

四: MIDAS实际工程施工阶段分析介绍
世纪之窗
广东省博物馆新馆——工程概况
广东省博物馆新馆位于广州市珠江新城J5地块,占地约 41027平方米,总建筑面积约66280平方米。外形为“盛满 珍宝的容器”,“盛满珍宝的容器”的方案把博物馆构思 成一个中国古时精雕细琢的容器,如宝盒、铜鼎等,里面 盛满各种珍宝。整个馆的建筑用料主要是金属、石头、木 头,“盒面”采用悬吊钢结构。四周采用凹凸、层次感极 强的玻璃幕墙装饰,建筑总高度为44.5米,地下1层,地面 以上共5层。基础及二层以下采用钢筋混凝土结构,三层 以上是预应力悬挂钢桁架结构,总用钢量近2万吨。
施工阶段分析时,除收缩、徐变、钢 束预应力效应程序可以自动生成CS荷 载工况外,其它的在施工阶段激活的 荷载都自动累加到CS恒荷载中,如果 想查看其中某项或某几项施工荷载的 效应时,可以通过从CS恒中分离出来
荷载工况的方式来实现
三:MIDAS中施工阶段分析详细过程以及具体参数解释
结 果
>


阶 段 柱
广东省博物馆新馆——典型图片
广东省博物馆新馆——典型图片
广东省博物馆新馆——典型图片
广东省博物馆新馆——典型图片
广东省博物馆新馆——典型图片
广东省博物馆新馆——典型图片
介绍完毕 谢 谢!
midas中施工阶段分析详细过程以及具体参数解释postcs采用的施工阶段线性分析程序默认累加模型非线性分析程序可以采用独立模型和累加模型两种方式体内力和体外力是针对桁架单元包力荷载的分析方法体内体外计算方法仅对初拉力荷载工况起作用对其他荷载工况分析没有影响施工阶段分析时除收缩徐变钢束预应力效应程序可以自动生成cs荷载工况外其它的在施工阶段激活的荷载都自动累加到cs恒荷载中如果想查看其中某项或某几项施工荷载的效应时可以通过从cs恒中分离出来荷载工况的方式来实现三

midas施工阶段分析

midas施工阶段分析

目录Q1、施工阶段荷载为什么要定义为施工阶段荷载类型 (2)Q2、 POSTCS阶段的意义 (2)Q3、施工阶段定义时结构组激活材龄的意义 (2)Q4、施工阶段分析独立模型和累加模型的关系 (2)Q5、施工阶段接续分析的用途及使用注意事项 (2)Q6、边界激活选择变形前变形后的区别 (3)Q7、体内力体外力的特点及其影响 (4)Q8、如何考虑对最大悬臂状态的屈曲分析 (4)Q9、需要查看当前步骤结果时的注意事项 (5)Q10、普通钢筋对收缩徐变的影响 (5)Q11、如何考虑混凝土强度发展 (5)Q12、从施工阶段分析荷载工况的含义 (5)Q13、转换最终阶段内力为POSTCS阶段初始内力的意义 (6)Q14、赋予各构件初始切向位移的意义 (6)Q15、如何得到阶段步骤分析结果图形 (6)Q16、施工阶段联合截面分析的注意事项 (6)Q17、如何考虑在发生变形后的钢梁上浇注混凝土板 (7)Q1、施工阶段荷载为什么要定义为施工阶段荷载类型A1.“施工阶段荷载”类型仅用于施工阶段荷载分析,在POSTCS阶段不能进行分析。

如果将在施工阶段作用的荷载定义为其他荷载类型,则该荷载既在施工阶段作用,也在成桥状态作用。

在施工阶段作用的效应累加在CS合计中,在成桥状态作用的荷载效应以“ST荷载工况名称”的形式体现。

因此为了避免相同的荷载重复作用,对于在施工阶段作用的荷载,其荷载类型最好定义为施工阶段荷载。

注:荷载类型“施工荷载”和“恒荷载”一样,都属于既可以在施工阶段作用也可以在POSTCS阶段独立作用的荷载类型。

Q2、P OSTCS阶段的意义A2.POSTCS是以最终分析阶段模型为基础,考虑其他非施工阶段荷载作用的状态。

通常是成桥状态,但如果在施工阶段分析控制数据中定义了分析截止的施工阶段,则那个施工阶段的模型就是POSTCS阶段的基本模型。

沉降、移动荷载、动力荷载(反应谱、时程)都是只能在POSTCS阶段进行分析的荷载类型。

Midas连续梁施工阶段分析及PSC设计例题

Midas连续梁施工阶段分析及PSC设计例题

混凝土湿重(截面特性值计算)
混凝土湿重(荷载计算)
混凝土湿重(荷载施加)
混凝土湿重(荷载施加)
挂蓝荷载(荷载施加)
挂蓝荷载(荷载施加)
施工阶段划分
❖桥墩 (100d/112d) ❖0#块施工(15d/22d) ❖悬臂施工梁段(5d/12d) ❖满堂支架施工梁段(60d/60d) ❖合拢段(10d/30d) ❖长期荷载效应计算(10000d)
1390 Mpa; ❖ 锚固端滑移6mm,松弛系数0.3,摩擦系数
荷载
❖ 二期恒载: ❖ 34.32kN/m。 ❖ 挂篮荷载: ❖ N=800kN,偏心距2.5m,M=2000kNm ❖ 混凝土湿重: ❖ 按实际梁段混凝土重量计算 ❖ 混凝土收缩徐变: ❖ 由程序自动计算
Midas有限元分析步骤
定义箱梁截面(截面修改偏心)
建模
❖ 采用扩展法建立梁单元模型 ❖ 节点直接生成梁单元 ❖ 逐步建立梁单元模型 ❖ 先建点再生成梁单元
建立节点
扩展单元
建立单元模型
建模(满堂支架梁段)
建模(边跨合拢段)
建模(变截面梁段)
建模(变截面梁段)
建模(桥墩支座梁段)
建模(桥墩支座梁段)
建模(镜像生成对称梁段)
施工阶段划分(确定单元组)
施工阶段划分(确定边界组)
施工阶段划分(确定荷载组)
施工阶段划分
施工阶段划分
施工阶段划分
施工阶段划分
定义时间依存材料(收缩徐变)
定义时间依存材料(收缩徐变)
定义时间依存材料(抗压强度)
定义时间依存材料(抗压强度)
定义时间依存材料(材料连接)
修改单元材料依存特性值
Midas连续梁施工阶段分析及 PSC设计例题

midas Gen-钢结构安装过程施工阶段分析

midas Gen-钢结构安装过程施工阶段分析

w w w.M i d a s U s e r.c o m钢结构安装过程施工阶段分析2钢结构安装过程施工阶段分析1、分析背景 (1)2、实际案例 (1)3、建模要点 (2)4、施工过程分析 (3)5、分析结果 (6)钢结构施工过程施工阶段分析钢结构安装过程施工阶段分析1、分析背景合理的施工方案和科学分析是保证结构安全经济的重要手段。

空间结构在世界范围内得到广泛应用的同时,其体系越来越新颖、形式越来越复杂,跨度也越来越大,对施工技术相应提出了越来越高的要求。

空间结构的施工过程是一个伴随结构形态和受力状态不断变化的动态过程,会出现体系转换、施工荷载加载和卸载等情况,这些都会大大影响结构内力,因此结构的最危险状态往往出现在施工过程中,传统的分析设计方法以使用阶段的结构作为研究对象,不考虑施工过程的影响,不能反映施工阶段真实的受力特点。

《网架结构设计与施工规程》JGJ7-91第5.1.7条规定:“安装方法选定后,应分别对网架施工阶段的吊点反力、挠度、杆件内力、提升或顶升时支承柱的稳定性和风载下网架的水平推力等项进行验算,必要时应采取加固措施。

”因此,在实际施工过程,我们对结构施工过程中的内力、挠度进行观测,将实测值与理论仿真分析的结果作比较,如果发现较大偏差可采取有效措施进行调整。

这样才能保证结构施工的安全性,保证结构施工满足设计的要求。

2、实际案例本例中,钢结构大屋盖施工安装采用高空拼装、等标高直线累计滑移技术,其中桁架下弦面设置滑移通道。

工程分6榀桁架逐一拼装,顺次滑移进行安装,主要荷载为自重。

同时考虑千斤顶临时支点的布置和释放对钢结构安装过程进行模拟计算。

1钢结构安装过程施工阶段分析2图1 基本模型3、建模要点:(1)定义结构组图2 施工组1 图3 施工组2图2:第一榀桁架单元赋给一个结构组“施工组1”(自命名); 图3:第二榀桁架单元赋给另一个结构组“施工组2”; 以此类推,6榀桁架单元分别赋给6个结构组;变壁厚水池分析与设计3(2)定义边界组图4 滑移步1 图5 滑移步2图4:第一榀桁架架设在滑道上,将边界约束赋给一个边界组“滑移步1”(一端约束X 、Y 、Z 向位移,另一端约束Z 向位移);图5:第二榀桁架与第一榀桁架对接时,对接节点由千斤顶顶起至设计标高,相应支点约束采用结构变形前的支承位置,约束Z 向位移;以此类推,千斤顶的布置与释放通过边界约束来实现,同时分别赋给不同的边界组。

MIdas_Gen_内部教程:施工阶段分析

MIdas_Gen_内部教程:施工阶段分析
施工阶段分析
北京迈达斯技术有限公司 市场部
主要内容
---施工阶段分析的意义; ---施工阶段在PKPM中的实现; ---Midas Gen中施工阶段分析的特点; ---Midas Gen中施工阶段分析的步骤;
施工阶段分析的意义
不做施工阶段分析,即先假定结构已经完成,然后将 荷载一次性加载到结构上; 不能考虑找平和逐层施工的影响: *下层变形对以上楼层基本无影响; *本层加载对未施工楼层无影响; 会过高估计竖向构件变形的影响,导致构件内力结果 与实际受力状态相差较大;
支承条件/弹性支撑位置
变形前:边界条件应用到变形前 的位置;若结构已发生变形,相 当于先施加一到初始位置的强制 位移; 变形后:边界条件应用到变形后 的位置;
7. 施工阶段分析控制
最终施工阶段:选择用哪个施 工阶段的结果与其他荷载工况(如 地震、风荷载等)进行组合。 从施工阶段分析结果的恒荷载 中分离出的荷载工况 施工阶段的分析结果,除收缩徐 变和预应力松弛外,都保存在C S:恒荷载下;
1.时间依存性材料的定义
• 定义徐变数据 柔度函数:在不变的单位应力作用下的应变 (包含瞬时弹性应变)。
徐变度:在不变的单位应力作用下的应变(不 包含瞬时弹性应变)。
徐变系数:徐变度与弹性模量之比。
1.时间依存性材料的定义 • 混凝土材料抗压强度发展曲线
注:目前还没加入中国规范,包括美国,欧洲, 日本,韩国等规范。
8. 查看结果
CS1~CS6:可查看各施工阶段下结构分析结果; Min/Max:各施工阶段的最大值和最小值; PostCS: 后施工阶段,可查看阶段荷载以外的其 它荷载工况及荷载组合的结果;
8.查看结果
结果->施工阶段柱弹性收缩图形

midas施工阶段联合截面分析大汇总

midas施工阶段联合截面分析大汇总

施工阶段联合截面分析大汇总施工阶段联合截面分析\施工阶段联合建模midas建模\施工阶段联合截面建模\钢混结合梁midas建模一:施工阶段联合截面分析的疑问:(1)不能随施工阶段显示分层截面的逐步形成过程。

(2)同一施工阶段内不能激活多个分层截面.(3)不能同时考虑非线性,PSC设计、梁单元细部分析、温度自应力也有问题。

(4) 各分层截面的理论厚度如何考虑?(5)[截面特征调整系数]与施工阶段联合截面中的[刚度系数]是什么关系?(6) 能否进行PSC设计?使用阶段截面应力验算中的P1~P10对应联合截面的什么位置?您好!现就您提出的几个问题逐一回复如下:1、如果您采用的是标准的联合截面建模,是可以分阶段显示结构形状的,除此以外只能显示建模用截面形状;2、同一阶段只能激活一种截面,如果要激活两种截面,可以另定义一个空阶段;3、PSC设计可以执行,但对于施工过程的应力验算不能做,对于成桥的抗力验算是按建模用截面进行验算的,因此我们始终建议用联合后截面建立模型。

不能给出梁单元细部分析结果,因此施工阶段联合截面的计算结果是分位置输出的,因此结果内容相对于单梁的梁单元内力和应力结果内容要详细。

温度计算时,注意建模截面要采用联合后截面,否则得到的温度计算结果是错误的.(这种情况同样适用于施工阶段联合截面的动力分析中。

)4、构件理论厚度在施工阶段联合截面分析中只能指定一次,因此不同分层的不同构件理论厚度问题现在还不能模拟,建议使用联合后截面的构件理论厚度,毕竟施工过程的持续时间不是很长。

这个问题我们会再做研究.5、两者都用于对所指定截面的特性的调整,不同的是刚度系数仅用于施工阶段联合截面,针对的是当前激活截面的特性的调整;而截面特性调整针对的是该阶段所有的截面,因此如果既在刚度系数中定义了调整系数,也在截面特性值系数中定义了调整系数,这两个系数取叠加作用。

6、可以进行PSC设计,但得到的结果不完整,没有关于施工阶段过程的验算。

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDASCivil中施工阶段分析后自动生成的荷载工况说明

MIDAS/Civil 中施工阶段分析后自动生成的荷载工况说明CS: 恒荷载:除预应力、徐变、收缩之外的在定义施工阶段时激活的所有荷载的作用效应CS: 施工荷载为了查看CS: 恒荷载中部分恒荷载的结果而分离出的荷载的作用效应。

分离荷载在“分析>施工阶段分析控制数据”对话框中指定。

输出结果(对应于输出项部分结果无用-CS:合计内结果才有用) No.荷载工况名称 反力 位移 内力 应力 1CS: 恒荷载 O O O O 2CS: 施工荷载 O O O O 3CS: 钢束一次 O O O O 4CS: 钢束二次 O X O O 5CS: 徐变一次 O O O O 6CS: 徐变二次 O X O O 7CS: 收缩一次 O O O O 8CS: 收缩二次 O X O O 9CS: 合计 O O O O CS: 合计中包含的工况 1+2+4+6+8 1+2+3+5+7 1+2+3+4+6+8 1+2+3+4+6+8CS: 钢束一次反力: 无意义位移: 钢束预应力引起的位移(用计算的等效荷载考虑支座约束计算的实际位移) 内力: 用钢束预应力等效荷载的大小和位置计算的内力(与约束和刚度无关)应力: 用钢束一次内力计算的应力CS: 钢束二次反力: 用钢束预应力等效荷载计算的反力内力: 因超静定引起的钢束预应力等效荷载的内力(用预应力等效节点荷载考虑约束和刚度后计算的内力减去钢束一次内力得到的内力)应力: 由钢束二次内力计算得到的应力CS: 徐变一次反力: 无意义位移: 徐变引起的位移(使用徐变一次内力计算的位移)内力: 引起计算得到的徐变所需的内力(无实际意义---计算徐变一次位移用)应力: 使用徐变一次内力计算的应力(无实际意义)CS: 徐变二次反力: 徐变二次内力引起的反力内力: 徐变引起的实际内力(参见下面例题中收缩二次的内力计算方法)应力: 使用徐变二次内力计算得到的应力CS: 收缩一次反力: 无意义位移: 收缩引起的位移(使用收缩一次内力计算的位移)内力:引起计算得到的收缩所需的内力(无实际意义---计算收缩一次位移用)应力: 使用收缩一次内力计算的应力(无实际意义)CS: 收缩二次反力: 收缩二次内力引起的反力内力: 收缩引起的实际内力(参见下面例题)应力: 使用收缩二次内力计算得到的应力例题1:PR2e sh:收缩应变(Shrinkage strain) (随时间变化)P: 引起收缩应变所需的内力 (CS: 收缩一次)因为用变形量较难直观地表现收缩量,所以MIDAS程序中用内力的表现方式表现收缩应变.∆: 使用P计算(考虑结构刚度和约束)的位移 (CS: 收缩一次)e E:使用∆计算的结构应变F: 收缩引起的实际内力 (CS: 收缩二次)R1, R2: 使用F计算得收缩引起的反力 (CS: 收缩二次)应注意的问题:1.使用阶段的荷载工况后面均有ST符号2.将施工阶段分析结果与使用阶段的荷载效应进行组合时,一定要注意不要重复组合。

midas施工阶段联合截面研究分析大汇总

midas施工阶段联合截面研究分析大汇总

midas施工阶段联合截面分析大汇总————————————————————————————————作者:————————————————————————————————日期:施工阶段联合截面分析大汇总施工阶段联合截面分析\施工阶段联合建模midas建模\施工阶段联合截面建模\钢混结合梁midas建模一:施工阶段联合截面分析的疑问:(1) 不能随施工阶段显示分层截面的逐步形成过程。

(2) 同一施工阶段内不能激活多个分层截面。

(3) 不能同时考虑非线性,PSC设计、梁单元细部分析、温度自应力也有问题。

(4) 各分层截面的理论厚度如何考虑?(5) [截面特征调整系数]与施工阶段联合截面中的[刚度系数]是什么关系?(6) 能否进行PSC设计?使用阶段截面应力验算中的P1~P10对应联合截面的什么位置?您好!现就您提出的几个问题逐一回复如下:1、如果您采用的是标准的联合截面建模,是可以分阶段显示结构形状的,除此以外只能显示建模用截面形状;2、同一阶段只能激活一种截面,如果要激活两种截面,可以另定义一个空阶段;3、PSC设计可以执行,但对于施工过程的应力验算不能做,对于成桥的抗力验算是按建模用截面进行验算的,因此我们始终建议用联合后截面建立模型。

不能给出梁单元细部分析结果,因此施工阶段联合截面的计算结果是分位置输出的,因此结果内容相对于单梁的梁单元内力和应力结果内容要详细。

温度计算时,注意建模截面要采用联合后截面,否则得到的温度计算结果是错误的。

(这种情况同样适用于施工阶段联合截面的动力分析中。

)4、构件理论厚度在施工阶段联合截面分析中只能指定一次,因此不同分层的不同构件理论厚度问题现在还不能模拟,建议使用联合后截面的构件理论厚度,毕竟施工过程的持续时间不是很长。

这个问题我们会再做研究。

5、两者都用于对所指定截面的特性的调整,不同的是刚度系数仅用于施工阶段联合截面,针对的是当前激活截面的特性的调整;而截面特性调整针对的是该阶段所有的截面,因此如果既在刚度系数中定义了调整系数,也在截面特性值系数中定义了调整系数,这两个系数取叠加作用。

MIDAS—GEN施工阶段分析例题

MIDAS—GEN施工阶段分析例题

例题 钢筋混凝土结构施工阶段分析
6.定义边界条件
主菜单选择 模型>边界条件>一般支承: 在模型窗口中选择柱底及墙底嵌固点
注:可以利用面选 的功能对下
部节点进行选择。
图9 输入边界条件
7. 输入施工阶段楼面荷载
1: 主菜单选择 视图>激活>按属性激活: 选择加载楼层 点选按层激活 选择2F层 点选楼板 按
2:主菜单选择 工具>单位体系: 长度 m, 力 kN
随时更改单位。
定义单位体系
3:主菜单选择 模型>材料和截面特性>材料:添加:定义C30混凝土 材料号:1 名称:C30 规范:GB(RC) 混凝土:C30 材料类型:各向同性
定义材料 4
4:主菜单选择 模型>材料和截面特性>截面: 添加:定义梁、柱截面尺寸
注:根据混凝土的 收缩及徐变特性, 定义相关参数
1: 主菜单选择 模型>材料和截面特性>时间依存性材料(徐变/温度收缩): 点添加 名称:creep 设计标准:中国规范 28天材龄抗压强度(标准值):30000kN/m2 相对湿度:70% 构件理论厚度:1m(先假定此值,程序可以自动计算) 开始收缩时混凝土的材龄:3天
此例题的步骤如下:
1. 简要 2. 设定操作环境及定义材料和截面 3. 利用建模助手建立梁框架 4. 建立框架柱及剪力墙 5. 楼层复制及生成层数据文件 6. 定义边界条件 7. 输入楼面及梁单元荷载 8. 输入反应谱分析数据 9. 定义结构类型 10. 定义质量 11. 运行分析 12. 荷载组合 13. 查看结果 14. 配筋设计
图5 定义荷载工况
2:菜单选择 荷载>定义楼面荷载类型: 定义施工阶段楼面荷载 其中OFFICE1为作用在楼面上的施工阶段荷载, OFFICE2为作用在楼面上的使用阶段活荷载 名称 : OFFICE1 荷载工况 : DC ( LC ) 楼面荷载 : -4.3 ( -1.0 ) 按 名称:OFFICE2 荷载工况:LL 楼面荷载:-2.0 按
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本例题使用一个简单的两跨连续梁模型(图 1)来重点介绍MIDAS/Civil 的施工阶
段分析功能、钢束预应力荷载的输入方法以及查看分析结果的方法等。

主要包括分析 预应力混凝土结构时定义钢束特性、钢束形状、输入预应力荷载、定义施工阶段等的 方法,以及在分析结果中查看徐变和收缩、钢束预应力等引起的结构的应力和内力变 化特性的步骤和方法。

图1.
分析模型
桥梁概况及一般截面
分析模型为一个两跨连续梁,其钢束的布置如图
2
所示,分为两个阶段来施工
桥梁形式:两跨连续的预应力混凝土梁
桥梁长度:L = 2@30 = 60.0 m
区分
钢束艮坐标
x (m)0122430364860钢束1z (m) 1.50.2 2.6 1.8
钢束2z (m) 2.0 2.80.2 1.5
图2.立面图和剖面图
——1
mJ
m
3
CS2
6 m 6 m
L=30 m L=30 m m
5
1
CS1
12 m。

相关文档
最新文档