甘肃省武威市铁路中学2014届高三数学(理)专题训练:选择填空限时练(三)Word版含答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(推荐时间:45分钟)
一、选择题
1. 设A ,B 是非空集合,定义A ×B ={x |x ∈(A ∪B )且x ∉(A ∩B )},已知A ={x |0≤x ≤2},B
={y |y ≥0},则A ×B 等于
( )
A .(2,+∞)
B .[0,1]∪[2,+∞)
C .[0,1)∪(2,+∞)
D .[0,1]∪(2,+∞)
答案 A
解析 由题意知,A ∪B =[0,+∞),A ∩B =[0,2]. 所以A ×B =(2,+∞).
2. 命题“对任意的x ∈R ,x 3-x 2+1≤0”的否定是
( )
A .不存在x ∈R ,x 3-x 2+1≤0
B .存在x ∈R ,x 3-x 2+1≥0
C .存在x ∈R ,x 3-x 2+1>0
D .对任意的x ∈R ,x 3-x 2+1>0 答案 C
3. 给出下面四个命题:
①“直线a ∥直线b ”的充要条件是“a 平行于b 所在的平面”; ②“直线l ⊥平面α内所有直线”的充要条件是“l ⊥平面α”;
③“直线a ,b 为异面直线”的充分不必要条件是“直线a ,b 不相交”;
④“平面α∥平面β”的必要不充分条件是“α内存在不共线三点到β的距离相等”. 其中正确命题的序号是
( )
A .①②
B .②③
C .③④
D .②④
答案 D
解析 当a 平行于b 所在平面时,a ,b 可能异面,故①不正确;当a 、b 不相交时,可能a ∥b ,故③不正确;由此可排除A 、B 、C ,故选D.
4. 设向量a =(cos α,sin α),b =(cos β,sin β),其中0<α<β<π,若|2a +b |=|a -2b |,则β
-α等于
( )
A.π2
B .-π
2
C.π4
D .-π4
答案 A
解析 由|2a +b |=|a -2b |得3|a |2-3|b |2+8a·b =0,而|a |=|b |=1,故a·b =0,即cos(α-β)=0,由于0<α<β<π,故-π<α-β<0,故α-β=-π2,即β-α=π
2
.选A.
5. 已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,
则S 10的值为
( )
A .-110
B .-90
C .90
D .110
答案 D
解析 a 7是a 3与a 9的等比中项,公差为-2, 所以a 27=a 3·a 9,所以a 27=(a 7+8)(a 7-4),
所以a 7=8,所以a 1=20,所以S 10=10×20+10×9
2
×(-2)=110.
6. 设双曲线x 2a 2-y 2
b
2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率
等于
( )
A. 3
B .2
C. 5
D. 6
答案 C
解析 设切点P (x 0,y 0),则切线的斜率为y ′|x =x 0=2x 0. 由题意有y 0
x 0
=2x 0,
又y 0=x 20+1,解得x 2
0=1,
所以b
a =2,e =
1+⎝⎛⎭⎫b a 2= 5.
7. 设随机变量ξ服从正态分布N (16,σ2),若P (ξ>17)=0.35,则P (15<ξ<16)=
( )
A .0.35
B .0.85
C .0.3
D .0.15
答案 D
解析 由正态分布的对称性知,P (ξ>16)=0.5, 又P (ξ>17)=0.35,
所以P (16<ξ<17)=0.5-0.35=0.15. 于是P (15<ξ<16)=P (16<ξ<17)=0.15.
8. 若某空间几何体的三视图如图所示,则该几何体的体积是
( )
A .4 2
B .2 2
C.42
3 D.223
答案 B
解析 该几何体是底面是直角三角形的直三棱柱,由三棱柱体积公式V =S
底
h 可得V
=2 2.
9. 设函数f (x )=sin(ωx +φ)+cos(ωx +φ)⎝
⎛⎭⎫ω>0,|φ|<π
2的最小正周期为π,且f (-x )=f (x ),则
( )
A .y =f (x )在⎝⎛⎭⎫0,π
4上单调递减 B .y =f (x )在⎝⎛⎭⎫
π4,3π4上单调递减 C .y =f (x )在⎝⎛⎭⎫0,π
2上单调递增 D .y =f (x )在⎝⎛⎭⎫
π4,3π4上单调递增 答案 A
解析 变形f (x )=sin(ωx +φ)+cos(ωx +φ) =2sin ⎝
⎛⎭⎫ωx +φ+π
4. 又f (-x )=f (x ),得函数为偶函数,故φ+π4=k π+π
2(k ∈Z ).
∴φ=k π+π
4(k ∈Z ).
∵|φ|<π2,∴φ=π4.
又T =π,∴ω=2.
∴f (x )=2sin ⎝⎛⎭⎫2x +π
2=2cos 2x . 结合图象知A 正确.
10.(2013·山东)函数y =x cos x +sin x 的图象大致为
( )
答案 D
解析 函数y =x cos x +sin x 为奇函数,排除B.取x =π
2,排除C ;取x =π,排除A ,故
选D.