二次函数的图像PPT教学课件

合集下载

22.1.1 二次函数 课件(共15张PPT)

22.1.1 二次函数  课件(共15张PPT)

新课导入
你 观 察 过 公 园 的 拱 桥 吗?
篮球入框,公 园里的喷泉, 雨后的彩虹都 会形成一条曲 线.这些曲线 能否用函数关 系式表示?
知识讲解
1.二次函数的定义
探究归纳
1 1
1
3
此式表示了种植面积y与边长x之间的关系,对于x的每一个值,y都有唯一 确定的一个对应值,即y是x的函数.
知识讲解
第 二十二章 二次函数
第二十二章 二次函数
22.1 二次函数的图象和性质 22.1.1 二次函数
温故知新
1. 函数的定义 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确 定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.
2. 一次函数与正比例函数
3.一元二次方程的一般形式
30(1+x)2
30(1+x)2
30(1+x)
此式表示了两年后的产量y与计划增产的倍数x之间的关系,对于x的每一个值,y 都有唯一确定的一个对应值,即y是x的函数.
知识讲解
上述三个问题中的函数解析式具有哪些共同特征呢?
知识讲解
归纳总结
二次函数的定义:
注意
知识讲解
2.二次函数的应用 例1
不一定是,缺少 a≠0的条件
中y=0时得到的。
与前面我们学过的一元二 有什么联系和区别?
且a≠0; 可以看成是函数
区别:前者是函数,后者是方程;等式另一边前者是y,后 者是0。
随堂训练
B C
随堂训练
4.矩形的周长为16 cm,它的一边长为x(cm),面积为y(cm2). (1)求y与x之间的函数解析式及自变量x的取值范围; (2)求当x=3时矩形的面积.

2二次函数的图像和性质~22.PPT课件(人教版)

2二次函数的图像和性质~22.PPT课件(人教版)

A.50 m
B.100 m
C.160 m
D.200 m
C
).
22.1 二次函数的图像和性质
分析
建立如图22-1-9所示的平面直角坐标 系, 根据所建平面直角
坐标系的特点可设函数解析 式为y=ax2+c(a≠0). 由题意, 得B(0, 0.5),
C(1, 0), 分别将B, C两点的坐标代入y=ax2+c(a≠0), 得 a=-0.5, c=0.5, ∴函
向下(k<0)平移 |k|个单位长度, 得到的抛物线的函数解析式是
y=a(x-h)2+k.
22.1 二次函数的图像和性质
题型五 二次函数值的大小比较
例题5 已知二次函数y=2(x-1)2+k的图像上 有A(
C(2- , y3)三点, 则y1, y2, y3 的大小关系是(
A.y1>y2>y3
B.y2>y1>y3
数解析式为y=-0.5x2+0.5(-1≤x≤1). 当x=0.2时, y=0.48;当x=0.6时,
y=0.32. ∴B1C1+B2C2+B3C3+B4C4=2×(0.48+0.32)= 1.6(m), ∴所需不锈钢
支柱的总长度至少为1.6×100= 160(m).
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1 二次函数的图像和性质
第二十二章
二次函数
22.1.1 二次函数
2
22.1.2 二次函数y=ax 的图像和性质
2
22.1.3 二次函数y=a(x-h) +k的图像
和性质
考场对接
22.1 二次函数的图像和性质

二次函数的图像_PPT课件

二次函数的图像_PPT课件

2a
o
③当 x b 时,函数有最大值4ac b2 。
2a
4a
y
( b , 4ac b2 ) 2a 4a
x
x b 2a
巩固练习2
已知二次函数 y 2x2 4x 3,当x 为何值时, y 随着x 的增大而增大?当x 为何值时,y 随着x 的增
大而减小?函数有最大值还是最小值,并求出最值。
已知某二次函数的图象过(1,10) ,(1,4) ,(2,7) 三
点,求这个函数的解析式。
解:设所求函数解析式为 y ax2 bx c 由已知函数图象过(1,10) ,(1,4) ,(2,7) 三点得 a b c 10 a b c 4 4a 2b c 7 解这个方程组得a 2 ,b 3,c 5
∴所求得的函数解析式为 y 2x2 3x 5。
巩固练习3
已知某二次函数图象上有(1,3) ,(1,3) ,(2,6)三
个点,求它的函数解析式。
解:设函数解析式为 y ax2 bx c
由已知,函数图象上有(1,3) ,(1,3) ,(2,6)三个点,

a b c 3 a b c 3 4a 2b c 6
二次函数 y ax2 bx c(a 0)
定义
y x b 2a
图象
相关概念
o
性质
二次函数解析式的确定
y ax2 bx c(a 0)
x
(
b
4ac b2
,
)
2a 4a
二次函数的定义
一般地,如果
y ax2 bx c(a b, ,c 是常数,a 0 ) 那么, y 叫做x 的二次函数。
的对称轴是直线 x b , 2a
顶点坐标 b ,4ac b2 。 2a 4a

《二次函数图象》PPT课件

《二次函数图象》PPT课件

-2
-3 -4
-5
-6 -7
y=-x2
-8 -9
-10
5
从图像可以看出,二次函数y=x2和y=-x2的图像都
是一条曲线,它的形状类似于投篮球或投掷铅球时球在
空中所经过的路线. 这样的曲线叫做抛物线.
y=x2的图像叫做抛物线y=x2.
y y=x2
y
o
x
y=-x2的图像叫做抛物线y=-
x2. 实际上,二次函数的图像 o
(2)当a>0时,抛物线的开口向上,顶点是 抛物线的最低点;
y
a>0
当a<0时,抛物线的开口向下,顶点是
抛物线的最高点;
o
x
|a|越大,抛物线的开口越小;
.
a<0
16
请同学们把所学的二次函数图象的知识归纳小结。
(0,0) 最低点 y轴 向上
(0,0) 最高点 y轴 向下
.
增 减增增 大 小大大
增 增增减 大 大大小
17
8
y=x2
7
6
5
4
3
2
接各点,就得到y=x2的
1 -5 -4 -3 -2 -1 o 1 2 3 4 5
x
图像.
.
4
请画函数y=-x2的图像 解:(1) 列表
(2) 描点
(3) 连线
y 1
根据表中x,y的数值在 坐标平面中描点(x,y),
再用平滑曲线顺次连接 各点,就得到y=-x2的图 像.
.
-5 -4 -3 -2 -1-1 o 1 2 3 4 5 x
x
都是抛物线.
它们的开口向上或者向下.
一般地,二次函数y=ax2+bx+c

二次函数初三ppt课件ppt课件ppt课件

二次函数初三ppt课件ppt课件ppt课件
二次函数初三ppt课件ppt 课件ppt课件
contents
目录
• 二次函数的基本概念 • 二次函数的性质 • 二次函数的应用 • 二次函数的解析式 • 二次函数与一元一次方程的关系 • 综合练习与提高
01 二次函数的基本 概念
二次函数的定义
总结词
二次函数是形如$y=ax^2+bx+c$的 函数,其中$a$、$b$、$c$为常数 ,且$a neq 0$。
详细描述
二次函数的一般形式是 $y=ax^2+bx+c$,其中$a$、$b$、 $c$是常数,且$a neq 0$。这个定义 表明二次函数具有一个自变量$x$,一 个因变量$y$,并且$x$的最高次数为 2。
二次函数的表达式
总结词
二次函数的表达式可以因形式多样而变化,但一般包括三个部分:常数项、一 次项和二次项。
02 二次函数的性质
二次函数的开口方向
总结词
二次函数的开口方向取决于二次 项系数a的正负。
详细描述
如果二次项系数a大于0,则抛物 线开口向上;如果二次项系数a小 于0,则抛物线开口向下。
二次函数的顶点
总结词
二次函数的顶点坐标为(-b/2a, c-b^2/4a)。
详细描述
二次函数的顶点是抛物线的最低点或最高点,其坐标为(-b/2a, c-b^2/4a),其中 a、b、c分别为二次项、一次项和常数项的系数。
解一元二次方程的方法包括公式法和 因式分解法等。
利用二次函数解决一元一次方程问题
当一元一次方程有重根时,可以通过构建二次函数来求解。
构建二次函数的方法是将一元一次方程转化为二次函数的形 式,然后利用二次函数的性质找到根。
06 综合练习与提高

二次函数(共26张PPT)

二次函数(共26张PPT)

零点
零点
零点是函数与x轴的交点,对应于抛物线与x轴的交 点。
美丽的桥梁
这张照片是一张桥梁夕阳美景的照片,代表着美丽 与自然的结合。
判别式
二次函数的判别式Δ=b²-4ac表示抛物线与x轴的交点个数。如果Δ>0,则有两个 交点;如果Δ=0,则有一个交点;如果Δ<0,则没有交点。
基本形式
1 标准式
f(x)=ax²
二次函数
二次函数在数学中是一个重要的概念,涉及到图像、最值、应用等方面。本 次26张PPT涵盖了二次函数的各个方面,希望能帮助大家更好地理解这个概念。
定义
二次函数是形如f(x)=ax²+bx+c的函数,其中a、b、c为常数,且a≠0。二次函数的图像是一个开口朝上或朝下的 抛物线。
图像
二次函数图像
2 顶点式
f(x)=a(x-h)²+k
3 一般式
f(x)=ax²+bx+c
标准形式
定义
标准式是二次函数的一种形式, 其中二次项系数a=1,常数项 c=0。
公式
f(x)=x²
图像
开口朝上或下,左右对称
图像美学
蔚蓝海岸线和彩色天空构成完美背景,并营造出温 馨优美的氛围。
对称轴
二次函数的对称轴是过抛物线顶点的一条直线。对称轴可以是水平或垂直线。
顶点
顶点坐标
顶点坐标为(-b/2a, f(-b/2a))
寻找顶点
找到对称轴,然后代入函数公式求得顶点坐标
ห้องสมุดไป่ตู้
美丽的山景
这幅精美的照片展现了一个山丘和群山的自然美景,使我们感叹自然之美。

二次函数说课ppt课件ppt课件ppt课件

二次函数说课ppt课件ppt课件ppt课件

详细描述
二次函数在日常生活中有着广泛的应用,如最优化问题、经济模型、物理学中的抛物线 运动等。通过这些实际应用场景,学生可以更好地理解二次函数的实际意义和重要性。
物理中的二次函数
总结词
运动轨迹、能量变化
VS
详细描述
在物理学中,二次函数经常用于描述物体 的运动轨迹,如抛物线运动。此外,在能 量守恒问题中,二次函数也经常出现,用 于描述能量随时间的变化关系。通过与物 理学的结合,学生可以更深入地理解二次 函数的物理意义。
因式分解法
要点一
总结词
通过因式分解将二次函数转化为两个一次函数的乘积,便 于分析函数的零点、单调性和值域。
要点二
详细描述
因式分解法是将二次函数 $f(x) = ax^2 + bx + c$ 转化为 两个一次函数的乘积,如 $f(x) = (ax + b)(cx + d)$。通 过因式分解,可以方便地找到函数的零点(即 $f(x) = 0$ 的解),分析函数的单调性(根据导数符号判断)和值域 (根据函数图像和定义域判断)。
数学竞赛中的二次函数
总结词
难度高、技巧性强
详细描述
在数学竞赛中,二次函数经常作为压轴题目 出现,难度较高,技巧性强。通过解决这类 问题,学生可以提高自己的数学思维能力和 解决问题的能力,为未来的学习和竞赛打下 坚实的基础。
CHAPTER 04
二次函数的解题策略
配方法
总结词
通过配方将二次函数转化为顶点式,便于分 析函数的开口方向、对称轴和顶点坐标。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个抛物线。当$a > 0$时,抛物线开口向上;当$a < 0$时 ,抛物线开口向下。系数$b$和$c$决定了抛物线的位置和顶点。通过研究二次 函数的图像,我们可以更好地理解其性质和特点。

人教版九年级上册22.二次函数的图像与性质课件(共129张)

人教版九年级上册22.二次函数的图像与性质课件(共129张)
二次函数的图象都是抛物线。
一般地,二次函数 y = ax2 + bx + c(a≠0)的图象叫做抛物线y = ax2 + bx + c
思考:这个二次函数图象有什么特征?
(1)形状是开口向上的抛物线
9
6
(2)图象关于y轴对称
3
(3)有最低点,没有最高点
-3
3
y轴是抛物线y = x 2 的对称轴,抛物线y = x 2 与它的对称 轴的交点(0,0)叫做抛物线y = x2 的顶点,它是抛物线y = x 2 的最低点.
联系(1)等式一边都是ax2+bx+c且 a ≠0 (2)方程ax2+bx+c=0可以看成是 函数y= ax2+bx+c中y=0时得到的. 区分:前者是函数.后者是方程.等式另一 边前者是y,后者是0
知识运用
例1:下列函数中,哪些是二次函数?
(1)y=3x-1 (不是 )
(2)y=3x2 ( 是 )
画形如y=ax2的函数图像: 1、函数y=x2的图像;视察y=x2的表达式,选择适当x值,并计算 相应的y值,完成下表:
x … -3 -2 -1 0 1 2 3 … y=x2 … 9 4 1 0 1 4 9 …
描点,连线 y 10
y=x2
8
6
4
2
?
-4 -3 -2 -1 0 1 2 3 4 x -2
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像
…二次函数的图像和性质…
• y=ax2的函数图像 • y=ax2 +k 的函数图像 • y=a(x-h)2的函数图像 • y=a(x-h)2 +k 的函数图像 • y=ax2+bx+c 的函数图像

二次函数图ppt课件

二次函数图ppt课件

02 二次函数的图像性质
CHAPTER
开口方向
总结词:由二次项系数决定 a>0时,向上开口;a<0时,向下开口。
顶点坐标
01
总结词:由公式 y=ax^2+bx+c(a≠0)直接读
02
顶点的横坐标为x=-b/2a,纵坐 标为y=4ac-b^2/4a。
对称轴
总结词:对称轴是直线x=-b/2a
二次函数图像是轴对称图形,对称轴为直线x=-b/2a,对称轴与y轴平行。
二次函数的表达式由三部分组成,分 别是二次项系数$a$、一次项系数$b$ 和常数项$c$。这些系数可以根据实际 情况进行选择和调整。
二次函数的图像
总结词
二次函数的图像是一个抛物线,其形状由系数$a$决定。
详细描述
二次函数的图像是一个开口方向由系数$a$决定的抛物线。当$a > 0$时,抛物 线开口向上;当$a < 0$时,抛物线开口向下。同时,抛物线的对称轴为直线$x = -frac{b}{2a}$,顶点坐标为$left(-frac{b}{2a}, fleft(-frac{b}{2a}right)right)$ 。
二次函数图PPT课件
目录
CONTENTS
• 二次函数的基本概念 • 二次函数的图像性质 • 二次函数的应用 • 二次函数与其他知识点的联系 • 练习题与答案
01 二次函数的基本概念
CHAPTER
二次函数定义
总结词
二次函数是形如$f(x) = ax^2 + bx + c$的函数,其中$a neq 0$。
详细描述
二次函数是数学中一类重要的函数,其定义形式为$f(x) = ax^2 + bx + c$,其 中$a, b, c$为常数,且$a neq 0$。

二次函数的图像和性质ppt课件

二次函数的图像和性质ppt课件

二次函数与其他数学知识的综合应用
与三角函数的结合
在解决一些复杂的数学问题时,二次函数与三角函数经常需要结合使用,如振 动和波动的问题。
与解析几何的结合
二次函数图像与直线、圆等几何图形结合时,可以形成一些有趣的几何问题, 如切线、相交弦等。
05
习题与解答
基础习题
01
02
03
题目1
请画出二次函数$f(x) = x^2 - 2x$的图像。
题目6
已知二次函数$f(x) = x^2 - 2x$在区间$(1,3)$上有零 点,求该零点的近似值。
答案与解析
题目1答案与解析:答案略,
解析略。
01
题目2答案与解析:答案略,
解析略。
02
题目3答案与解析:答案略,
解析略。
03
题目4答案与解析:答案略,
解析略。
04
题目5答案与解析:答案略,
解析略。
详细描述
对于开口向上的二次函数,其最小值出现在顶点处,可以通过公式x=-b/2a求得顶点的 横坐标,进而求得最小值;对于开口向下的二次函数,其最大值出现在顶点处,同样可
以通过公式x=-b/2a求得顶点的横坐标,进而求得最大值。
二次函数的增减性
总结词
由二次函数的开口方向和对称轴决定,对称轴左边函数值随x增大而减小,对称轴右边函数值随x增大而增大。
05
题目6答案与解析:答案略,
解析略。
06
THANK YOU
感谢聆听
二次函数的图像和性质ppt课 件

CONTENCT

• 二次函数的基本概念 • 二次函数的图像 • 二次函数的性质 • 二次函数的应用 • 习题与解答

《二次函数》ppt课件

《二次函数》ppt课件

判别式意义
当 $Delta > 0$ 时,方程有两个不相等 的实根,抛物线与 $x$ 轴有两个交点。
02
二次函数与一元二次方程 关系
一元二次方程求解方法
01
02
03
公式法
对于一般形式的一元二次 方程,可以使用求根公式 进行求解。
配方法
通过配方将一元二次方程 转化为完全平方形式,从 而求解。
因式分解法
首先,通过配方将二次函数转 化为顶点式f(x) = a(x - h)^2 + k,其中(h, k)为顶点坐标。然后, 根据二次函数的性质,对称轴 为x = h,顶点坐标为(h, k)。最 后,代入具体的a、b、c值求解。
已知二次函数f(x) = x^2 - 2x, 求在区间[-1, 3]上的最值。
首先,将二次函数配方为f(x) = (x - 1)^2 - 1,确定对称轴为x = 1。然后,根据二次函数的单 调性,在区间[-1, 1]上单调递减, 在[1, 3]上单调递增。因此,在x = 1处取得最小值f(1) = -1,在 x = 3处取得最大值f(3) = 3。
04
根的判别式Δ=b²-4ac可 以用于判断二次函数与x 轴交点的个数。
当Δ>0时,二次函数与x 轴有两个不同的交点。
当Δ=0时,二次函数与x 轴有一个重根,即一个 交点。
当Δ<0时,二次函数与x 轴无交点。
03
二次函数图像变换与性质 分析
平移变换对图像影响
平移方向
二次函数图像在平面直角坐标系中可 沿x轴或y轴方向进行平移。
04
二次函数在实际问题中应 用举例
利润最大化问题建模与求解
1 2 3
问题描述
某公司生产一种产品,其成本和销售价格与产量 之间存在一定的关系。公司希望通过调整产量来 实现利润最大化。

《二次函数》PPT优秀课件

《二次函数》PPT优秀课件
说一说以上二次函数解析式的各项系数.
链接中考
1.下列函数解析式中,一定为二次函数的是( C )
A.y=3x-1 C.s=2t2-2t+1
B.y=ax2+bx+c
D.y=x2+
1
2
x
链接中考
2.已知函数 y=(m²﹣m)x²+(m﹣1)x+m+1. (1)若这个函数是一次函数,求m的值; (2)若这个函数是二次函数,则m的值应怎样? 解:(1)根据一次函数的定义,得m2﹣m=0,
探究新知
素养考点 1 二次函数的识别
例1 下列函数中是二次函数的有 ①⑤⑥ .
①√ y= 2x2 2
×③y x2(1 x2 ) 1
最高次数是4
⑤√ y=x( x 1)
×②y 2x2 x(1 2x) a=0
×④y
1 x2
x2
√⑥y
x4 x2 x2 1
=x2
二次函数:y=ax²+bx+c(a,b,c为常数,a≠0)
素养目标
2. 能根据实际问题中的数量关系列出二次函数 解析式,并能指出二次函数的项及各项系数.
1.掌握二次函数的定义,并能判断所给函数 是否是二次函数.
探究新知
知识点 1 二次函数的概念
问题1 正方体的六个面是全等的正方形(如下图),设正方
形的棱长为x,表面积为y,显然对于x的每一个值, y都 有一个对应值,即y是x的函数,它们的具体关系可以表 示为 y=6x2①.
探究新知
方法点拨
运用定义法判断一个函数是否为二次函数的 步骤: (1)将函数解析式右边整理为含自变量的代 数式,左边是函数(因变量)的形式; (2)判断右边含自变量的代数式是否是整式; (3)判断自变量的最高次数是否是2; (4)判断二次项系数是否不等于0.

《二次函数的图像》ppt课件

《二次函数的图像》ppt课件

二次函数的顶点及其性质
顶点坐标
指引如何求解二次函数的顶点坐 标。
凹凸性
讨论二次函数图像的凹凸性及其 与二次函数的系数关系。
图像特点
解释顶点与图像特点的关系,如 开口方向、对称轴和伸缩。
二次函数与判别式
判别式的定义
解释二次函数的判别式及其含义,如何通过判别式判断函数图像的性质。
判别式的示例
提供实际的例子,演示如何使用判别式确定二次函数图像的形状。
二次函数的图像
二次函数的概念。了解二次函数的基本定义和特点,包括函数的二次项、一 次项和常数项。
二次函数的标准式和一般式
1 标准式
介绍二次函数的标准形式,形如y=ax^2释二次函数的一般形式,形如y=ax^2+bx+c。
二次函数图像的基本性质
开口方向
讲解二次函数图像的开口方向, 以及如何通过系数判断。
对称轴
解释二次函数图像的对称轴, 如何确定并绘制。
顶点坐标
介绍二次函数图像的顶点坐标 的求法,以及其意义。
二次函数图像的平移、翻转和伸缩
1
平移
说明二次函数图像的平移,如何改变顶
翻转
2
点的横纵坐标。
讨论二次函数图像的翻转,如何改变函
数的开口方向。
3
伸缩
探讨二次函数图像的伸缩,如何调整二 次函数图像的形状和大小。
二次函数与实际问题的应用
介绍二次函数在实际问题中的应用,如抛物线的运动轨迹、物体的抛体运动 等。

《二次函数》PPT课件

《二次函数》PPT课件

一次函数 y=kx+b(k≠0)
正比例函数
y=kx (k≠0)
一条直线
反比例函数 y k (k 0).
双曲线
x
课时导入
导入新知 正方体的六个面是全等的正方形(如图),设正 方体的棱长为x,表面积为y. 显然,对于x的 每一个值,y都有一个对应值,即y是x的函数, 它们的具体关系可以表示为 y=6x2.
课堂小结
二次函数
(2)确定二次函数的各项系数及常数项时,要把函 数关系式化为一般形式.
(3)二次项系数不为0.
感悟新知
知2-练
方法点拨:在实际问题中建立二次函数模型时,关键 要找出两个变量之间的数量关系,用类似建立一元二 次方程模型的方法,借助方程思想求出二次函数的关 系式.
解:(1) y=300+30 ( 60-x ) =-30x+2 100 ( 40 ≤ x ≤ 60 ). ( 2 ) W= ( x-40 ) ( -30x+2 100 ) =-30x2+3 300x-84 000.
课时导入
这个函数与我们学过的函数不同,其中自变 量x的最高次数是2.
这类函数具有哪些性质呢?这就是本章要学 习的二次函数.
感悟新知
知识点 1 二次函数的定义
问题1
知1-讲
n个球队参加比赛,每两队之间进行一场比赛,
比赛的场次数m与球队数n有什么关系?
比赛的场次数
m= 1 n(n-1),
即m=
1
2 n2-
感悟新知
总结
知2-讲
1. 建立二次函数模型的一般步骤: (1)审清题意:找出问题中的已知量(常量)和
未知量(变量),把问题中的文字或图形语言转化 成数学语言.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学方法 引导分析、讨论法
授课人:青岛开发区六中逄秀荣
复习提问1、二次函数的解析式
有哪几种形式?
(1)、一般式:y=ax2+bx+c
(2)、顶点式: y=a(x-h)2+k
(3)、交点式: y=a(x-x1) (x-x2)
2、二次函数y=ax2+bx+c的顶点坐标、
对称轴是什么?
顶点坐标是( -
词人在惋惜、欣慰, 惆怅之余,独自徘徊在 园中的小路上,对所见 所感所思进行思索、反 省和憧憬。
香径:带着幽香的园中小径。 徘徊:来来回回的走动。
大意:
下片进一步写对生活的感受。对春 花落地感到无可奈何,燕子年年归来 也不觉新奇。人只能在花开花落、燕 去燕来中逐渐衰老,想到此他只有独 自一人在小园花径间不断地徘徊。
在壮的在 检的牛军 阅军肉营 军歌,里 队。各, 。秋种分
高乐赏 气器给 爽演部 ,奏下 战着大 场边块 上塞烤 正雄熟
沙 场 秋 点 兵 。
八 百 里 分 麾 下










“八百里分麾下炙,五十弦翻塞外声”两句,意 气激昂,形象阔大,这应该是具体描绘动员令 下达的情况,部下的官兵们分食烤熟的牛肉, 军队奏起雄壮的战歌。进一步渲染了军中的战 斗生活气息,官兵斗志昂扬。
你是怎样理解“无可奈何花落去,似曾
相识燕归来”这两句的? 其中蕴涵了什么样的 哲理呢?
这两句对仗工整,表现出词人的巧思深情:
花的凋落,春的消逝,时光的流逝,都是不可抗
拒的自然规律,所以说“无可奈何” ;然而在这
暮春天气中,翩翩归来的燕子也有令人欣慰的重
现。
蕴涵着的某种生活哲理:一切必然要消逝的美好事
解方程组
a=c
a=1
a+b+c=-2
得 b=-4
-b/2a=2
c=1
所以能求出题目中二次函数的解析式,且所求解析式 为:y=x2-4x+1
(2)解: 1)满足函数解析式的任一点的坐标 2)与Y轴的交点坐标(0,1) 3)与X轴的交点坐标( )或( ) 4)最值为-3 5)顶点坐标为(2,-3)等等
解得a=-1,b=10,c=0 所以:所求二次函数的解析式为y=-x2+10x (2)抛物线的顶点坐标(5,25),对称轴为直线X=5 (3)当X=5时,Y有最大值为25。
例2:
已知抛物线的顶点坐标为(1,2),
且经过点(2,3).求抛物线的解析式
例2解:
因为抛物线顶点坐标为(1,2) 所以设抛物线的解析式为 y=a(x-1)2+2 又因图象经过点(2,3) 所以3=a(2-1)2+2 所以a=1 所以所求抛物线解析式为y=(x-1)2+2
对花的凋落, 春的消逝,时光的 流逝,虽惋惜留恋 也无济于事,但归 来的燕子象征着美 好的事物,令人欣 慰。在惋惜与欣慰
回年之 去
到似中 ,
旧曾, 似
巢见春 来过花 了的正 。燕在
子凋
曾 相 识 燕
的交织中,词人悟
,归
出了某种生活哲地的小径上惆怅地 徘徊起来。
y=-x2+2x+3
y
.(-1,0) AO
.(3,0) x B
例4:探究题:
已知二次函数y=ax2+bx+c的图象过点A(0,a),B(1,-2)
求证:这个二次函数的对称轴是直线X=2 题目中的矩形框部分是一段被墨水污染了的无法辩
认的文字。 (1)根据现有信息,你能否求出题目中的二次函数的解
Bx
(1)求抛物线的解析式
(2)如果你是设计师,在不计其他因素的条件,水池 的半径至少要多少米?才能使喷出的水流不致于落在
池外?
答案:
(1)解:由题意,结合图形可知抛物线顶点坐标(1, 2.25)
因为设抛物线成解析式为y=(x-1)2+2.25 又因图象经过点A(0,1.5) 所以1.5=a(0-1)2+2.25 所以a=-0.75 所以所求抛物线为y=-0.75(x-1)2+2.25或y=-3/4(x-
晏殊一生身居显位,生活富贵闲逸,喜聚客宴 饮。他的词在内容上多表现诗酒生活和悠闲情致,其 《珠玉词》被视为婉约词派的正宗。《浣溪沙》是其 代表作,也是宋词中被后人广为传诵的名篇。 “无 可奈何花落去,似曾相识燕归来”为千古名句。
一曲新词酒一杯,去年天气旧 亭台。夕阳西下几时回。
无可奈何花落去,似曾相识燕 归来,小园香径独徘徊。
一曲新词酒一杯,去年天气旧亭台。
听一曲以新词谱成的歌,饮一杯酒。 去年这时节的天气、旧亭台依然存在。
词人怀着喜悦、轻松的心 情,在边听边饮时,不期 而然地触发了对“去年” 所经历的类似境界的追忆, 有的东西已经难以返回了, 这便是悠悠流逝的岁月和 与此相关的一系列人和事。 于是词人不由得从心底涌 出这样的喟叹——
_b_ 2a
,
4_a_c_-__ b24a
)
对称轴是直线x=
-
_b_ 2a
二、例题与练习 例1: 已知一个二次函数的图像经过(0,3) (1,4),(-1,6)三点。 求这个二次函数的解析式:
设抛物线的解析式为y=ax2+bx+c由题意得: 3=c 4=a+b+c 6=a-b+c
解得a=2,b=-1,c=3 所以:二次函数的解析式为y=2 x2 -x+3
课题
二次函数解析式的确定 课 型 复习课
教学目标
1. 领会“数”“形”结合的数学思想 2. 会用待定系数法确定二次函数的解析式 3. 学会阅读数学,会从数学情境中抽象出数学模型,从而掌
握由实际问题确定二次函数解析式 4. 培养学生分析问题,解决问题的能力
教学重点 待定系数法求二次函数的解析式
教学难点 将实际问题转化为数学模型
夕阳西下几时回?
眼前的夕阳西下了,不知何时会再回来。
这是一种对岁月流逝、 时光不再的感慨。 。
的大体意思:
作者看见“夕阳西下”想到了岁月在不断 地流逝,时间是不能倒流的。
在这里,作者向我们倾诉的是他所感到 的生活的空虚,同时也有一种对时光流逝的惋 惜之情。



如落无 今。可 又而奈 飞去何
奈 何 花 落
小结
1、利用待定系数法运用二次函数的三种 不同形式确定二次函数的解析式,应视 具体情况灵活选用。一般地,若题目与 顶点有关,选用顶点式,若题目与x轴交 点有关,选用交点式,与顶点、交点无 关,选用一般式。
2、学会阅读实际问题,会从实际问题抽 象出数学模型并解决。
宋词赏析
《浣溪沙》——晏殊 《破阵子——为陈同甫赋壮词以寄之》
一、二句写作者夜里酒 醉后挑亮灯芯观看宝剑; 早晨醒来时听到了众多 军营里传来的号角声。 开头两句是作者曾经历 过而今已失去的生活场 景,表现其念念不忘杀 敌报国 。
“吹角连营”:意味着动员令已经下达, 投入备战,军心振奋,这是诗人的愿望, 也是人民的愿望!
醉:当时作者已经闲居已久,请缨无路,并 受到南宋投降派统治集团的排斥和打击。在 现实生活中,不可能触发他收复失地的雄心 壮志。只有在喝醉酒的时候,使他能暂时忘 却现实,而通过“挑灯看剑”的举动,生动 地表现出来。
物都无法阻止其消逝,但在消逝的同时,仍会有美好的
事物出现。然而,美好的事物并不是原封不动地重现,
它只是“似曾相识”罢了。因此,在有所慰藉的同时又
不觉感到一丝惆怅。
小结:
晏殊《浣溪沙》 情感:对岁月的爱惜和对生 命的珍视。
风格:委婉、含蓄。
《破阵子——为陈同甫赋壮词以寄之》 辛弃疾
辛弃疾(1140—1207),字幼安, 号稼轩,历城(今山东济南)人。 他一生以抗金报国自任,但是他所 提出的抗金建议,均未被采纳,并 遭到主和派的打击,曾长期落职闲 居江西上饶、铅山一带。理想不能 实现,遂将满腔忠愤全寄予词。其 词悲壮雄放,词风慷慨悲壮,有不 可一世之概,抒发爱国精神,而又 题材广泛,风格多样,以豪放为主, 技巧繁复,体备刚柔,千汇万状, 热情洋溢,慷慨悲壮,笔力雄厚, 与苏轼并称为“苏辛”。 代表了 南宋词的最高成就,对后世产生了 深远的影响。有《稼轩长短句》。
1)2+9/4
例3:
已知二次函数的图像与X轴交于A (-1,0)、B(3,0)两点,点C(2,3)也在图象 上。
求二次函数解析式:
例3:
解:设抛物线解析式为y=a(x-x1)(x-x2) 因为x1= -1, x2=3 所以y=a(x+1)(x-3) 又因点C(2,3)在图象上 所以3=a(2+1)(2-3) 所以a=-1 所以抛物线解析式为y=-(x+1)(x-3)即
辛弃疾
词,又称“长短句”。是一种配乐可唱的诗体。 词有词牌,调有定格,句有定数,字有定声。 宋时鼎盛。词按字数可分为小令(少于58字)、 中调(59---91字)、长调(多于91字)。
诗词的欣赏方法: 面,
熟读诗歌懂大意, 关键词句细分析。 发挥联想想画
把握情感知寓意。
晏殊(991-1055),字同叔,北宋临川县文港乡,著名词人。
练习:
如图所示:公园要建造圆形的喷水池,在水池中央垂
直于水面处安装一个柱子OA,O恰在水面中心, OA=1.5米,由柱子顶端A处的喷头向外喷水,水流在
各个方向,沿形状相同的抛物线路线落下。为使水流
形状较为漂亮,要求设计成水流在离OA距离1米处达 到距水面最大高度2.25米。
y
A
A
O
O
建立如图所示的直角坐标系:
马作的卢飞快,弓如霹雳弦惊。
背景材料 这首词写于淳熙十五年(1188)左右,辛
弃疾退居江西上饶时。辛弃疾不只是词人, 还是一位爱国武将,他积极主张抗金北伐, 在任职期间坚持练兵备战,因而不断遭受主 和派的排斥、诬陷。
相关文档
最新文档