蒸发器选型
蒸发器选型

什么是蒸发器
蒸发器是制冷系统四大部件之一,是专门 供液态制冷剂在其中沸腾蒸发的部件或设 备。 蒸发是吸热过程,蒸发器是制冷系统制冷 能力和作用的最终体现。
衡量蒸发器的指标 1.传热系数 提高传热系数的关键在于改善制冷剂与传 热管壁间的对流换热。由于制冷剂沸腾时 的表面传热系数远大于其蒸气与管壁间的 传热系数,所以蒸发器中液体与管壁的接 触面要大,并要将沸腾时产生的蒸气快速 排走。 2.增大传热面 增加传热管的数量 采用翅片管
5.折流挡板
换热器安装折流挡板是为了提高壳程对流传热系数,为了 获得良好的效果,折流挡板的尺寸和间距必须适当。对常 用的圆缺形挡板,弓形切口过大或过小,都会产生流动 “死区”,均不利于传热,见P431图6-30。一般弓形缺 口高度与壳体内径之比为0.15~0.45,常采用0.20和0.25 两种。 挡板的间距过大,就不能保证流体垂直流过管束,使流速 减小,管外对流传热系数下降;间距过小不便于检修,流 动阻力也大。一般取挡板间距为壳体内径的0.2~1.0倍, 我国系列标准中采用的挡板间距为:固定管板式有150, 300和600mm三种;浮头式有150,200,300,480和 600mm五种。
8流体通过换热器压强降的计算
(1)管程压强降 管程产生的阻力可按一般摩擦阻力公式计 算,对于多程换热器,管程压强降Σ∆pi为各程直管压强降 ∆p1和局部阻力产生压强降∆p2之和,因而: Σ∆pi=(∆p1+∆p2)FtNpNs 式中: Ft —— 结垢校正系数,无量纲,对Φ25×2.5mm 管取为1.4,对于Φ19×2mm管取为1.5; Np —— 管程数; Ns —— 串联的壳程数。 其中: L ρu i2 ∆p1 = λ di 2
3冷却剂或加热剂出口温度的选择
三效蒸发

一、蒸发器选型三效逆流强制循环式结晶蒸发器1、2、3效强制循环,一效带结晶釜二、蒸发器特点1 采用热泵技术、降低蒸汽消耗量。
2分离器顶部配置高效除沫装置,避免物料泡沫夹带导致跑料。
3采用强制循环,具有传热系数高、蒸发强度大、防止结焦及堵管等优点,尤其适用于蒸发过程中可能产生晶体的物料。
4出料旋流装置:可最大限度提高出料液固含量、减少母液回流量、提高蒸发效率。
5末效蒸汽用于预热原料、加喷淋系统、降低能耗。
6采用液位自动化控制、自动进料、冷凝水自动排放,节省人力资源。
三、工艺流程及控制系统简述1、物料走向:(1)原料通过进料泵进入三效分离器,然后通过大流量强制循环泵将物料不停循环,达到蒸发部分水分的目的。
(2)末效物料经3-2效循环泵进入二效分离器、然后通过大流量强制循环泵将物料不停循环,达到蒸发部分水分的目的。
(3)二效物料经2-1效循环泵进入一效分离器,然后通过大流量强制循环泵将物料不停循环,达到蒸发部分水分的目的,浓液进入结晶釜,经过冷却结晶、离心分离后,母液打到三效分离器继续蒸发。
2、蒸汽走向:锅炉来生蒸汽,在分气缸中生蒸汽的压力采用蒸汽自动调节阀来调节至0.4-0.6mpa,进入第一效加热器作为热源,第二效分离器产生的二次蒸汽进入第三效加热器作为热源,第三效产生的二次蒸汽进入预热器、冷凝器后冷凝成水排出。
各效加热器、分离器的压力由冷凝器串联的真空泵来控制。
3、冷凝水走向:生蒸汽进入第一效蒸发器放热后冷凝成冷凝水,由于冷凝水温度还比较高,为了回收显热,将第一效冷凝水经一U形管进入第二效加热器,经过闪蒸,回收潜热。
将第二效蒸汽产生的冷凝水经一U形管进入第三效加热器,经过闪蒸,回收潜热。
第三效加热器加热夹套中的冷凝水经一U形管进入冷凝器经冷凝器水泵排出、U形管的作用是动态密封、三台加热器及冷凝器中的冷凝水由一台冷凝水泵排出。
4、不凝气走向:二次蒸汽中往往带有少量的不可凝气体,不可凝气体来源有二:(1)料液中带入的(2)负压操作下外界渗漏进入的。
蒸发器冷凝器选型参数.doc

选型参数计算表蒸发器简易选型 ( 仅供参考)压缩机输RT 104kcal/h 输入功率制冷量 KW 蒸发器片数 ( 冷冻水进 12°出 7°)入功率备注(kW)(COP3.33)(Hp)EATB25 EATB55 EATB85小1 0.62 0.124 0.65 2.17 16 2°蒸发1 0.7 0.22 0.75 2.5 18 2°蒸发1.5 1.05 0.33 1.13 3.76 22 2°蒸发2 1.4 0.43 1.50 5 26 2°蒸发3 2.1 0.65 2.25 7.5 34 18 2°蒸发4 2.8 0.86 3.00 10 44 22 2°蒸发5 3.5 1.1 3.75 12.5 54 26 2°蒸发6 4.2 1.29 4.50 15 30 2°蒸发7 5 1.5 5.25 17.5 32 2°蒸发8 5.7 1.7 6.00 20 36 2°蒸发9 6.4 1.9 6.75 22.5 40 2°蒸发10 7.1 2.1 7.50 25 46 2°蒸发11 7.9 2.4 8.25 27.5 50 2°蒸发12 8.5 2.6 9.00 30 56 36 2°蒸发13 9.4 2.8 9.75 32.5 60 40 2°蒸发14 10 3 10.50 35 64 42 2°蒸发15 11 3.26 11.25 37.5 70 46 2°蒸发16 11.3 3.44 12.00 40 74 48 2°蒸发17 12.2 3.7 12.75 42.5 78 52 2°蒸发18 12.7 3.87 13.50 45 84 56 2°蒸发19 13.6 4.13 14.25 47.5 60 2°蒸发20 14.2 4.3 15.00 50 64 2°蒸发21 15 4.5 15.75 52.5 68 2°蒸发22 15.6 4.7 16.50 55 74 2°蒸发23 16.5 5 17.25 57.5 80 2°蒸发24 17 5.16 18.00 60 84 2°蒸发25 18 5.6 18.25 62.5 90 2°蒸发26 20 6 19.00 65 98 2°蒸发选型参数计算表冷凝器简易选型一 ( 仅供参考)压缩机输104kcal/h 输入功率制冷量 KW×冷凝器片数( 进30°出 35°)备注入功率RT(kW) 1.25(Hp) EATB25 EATB55/50 EATB85 (COP3.33) 小1 0.62 0.124 0.65 2.70830625 10 40°冷凝1 0.7 0.22 0.75 3.125 12 40°冷凝2 1.4 0.43 1.50 6.25 20 40°冷凝3 2.1 0.65 2.25 9.375 28 40°冷凝4 2.8 0.86 3.00 12.5 36 40°冷凝5 3.5 1.1 3.75 15.625 46 20 40°冷凝6 4.2 1.29 4.50 18.75 54 22 40°冷凝7 5 1.5 5.25 21.875 62 26 40°冷凝8 5.7 1.7 6.00 25 30 40°冷凝9 6.4 1.9 6.75 28.125 32 40°冷凝10 7.1 2.1 7.50 31.25 36 40°冷凝11 7.9 2.4 8.25 34.375 40 40°冷凝12 8.5 2.6 9.00 37.5 42 40°冷凝13 9.4 2.8 9.75 40.625 46 40°冷凝14 10 3 10.50 43.75 48 40°冷凝15 11 3.26 11.25 46.875 52 40°冷凝16 11.3 3.44 12.00 50 56 40°冷凝17 12.2 3.7 12.75 53.125 58 40°冷凝18 12.7 3.87 13.50 56.25 62 40°冷凝19 13.6 4.13 14.25 59.375 66 40 40°冷凝20 14.2 4.3 15.00 62.5 68 42 40°冷凝21 15 4.5 15.75 65.625 72 44 40°冷凝22 15.6 4.7 16.50 68.75 74 46 40°冷凝23 16.5 5 17.25 71.875 78 48 40°冷凝24 17 5.16 18.00 75 82 50 40°冷凝25 18 5.6 18.25 78.125 84 52 40°冷凝26 20 6 19.00 81.25 88 54 40°冷凝27 20.25 84.375 90 56 40°冷凝28 21.00 87.5 94 58 40°冷凝29 21.75 90.625 96 62 40°冷凝30 22.50 93.75 100 64 40°冷凝35 26.25 109.375 74 40°冷凝40 29.98 125 86 40°冷凝50 37.47 156.25 108 40°冷凝60 44.96 187.5 130 40°冷凝选型参数计算表冷凝器简易选型二 ( 仅供参考)压缩机输104kcal/h 输入功率输入功率冷凝器片数( 进50°出 55°)备注入功率RT ( kW)×能(kW)(Hp) 效比 4.5 ×1.25 EATB25 EATB55/50 EATB85 (COP4.5) 小1 0.62 0.124 0.65 3.65625 18 60°冷凝1 0.7 0.22 0.75 4.21875 22 60°冷凝1.5 1.05 0.33 1.13 6.3563 26 60°冷凝2 1.4 0.43 1.50 8.4375 30 60°冷凝3 2.1 0.65 2.25 12.65625 42 20 60°冷凝4 2.8 0.86 3.00 16.875 54 26 60°冷凝5 3.5 1.1 3.75 21.09375 64 32 60°冷凝6 4.2 1.29 4.50 25.3125 74 38 60°冷凝7 5 1.5 5.25 29.53125 84 42 60°冷凝8 5.7 1.7 6.00 33.75 96 48 60°冷凝9 6.4 1.9 6.75 37.96875 54 60°冷凝10 7.1 2.1 7.50 42.1875 60 60°冷凝11 7.9 2.4 8.25 46.40625 66 60°冷凝12 8.5 2.6 9.00 50.625 72 42 60°冷凝13 9.4 2.8 9.75 54.84375 78 44 60°冷凝14 10 3 10.50 59.0625 82 48 60°冷凝15 11 3.26 11.25 63.28125 88 52 60°冷凝16 11.3 3.44 12.00 67.5 94 56 60°冷凝17 12.2 3.7 12.75 71.71875 100 62 60°冷凝18 12.7 3.87 13.50 75.9375 68 60°冷凝19 13.6 4.13 14.25 80.15625 72 60°冷凝20 14.2 4.3 15.00 84.375 76 60°冷凝21 15 4.5 15.75 88.59375 82 60°冷凝22 15.6 4.7 16.50 92.8125 86 60°冷凝23 16.5 5 17.25 97.03125 92 60°冷凝24 17 5.16 18.00 101.25 98 60°冷凝25 18 5.6 18.25 102.65625 104 60°冷凝26 20 6 19.00 106.875 110 60°冷凝27 20.25 113.90625 116 60°冷凝28 21.00 118.125 122 60°冷凝29 21.75 122.34375 130 60°冷凝30 22.50 126.5625 140 60°冷凝。
薄膜蒸发器的分类比较与选型建议

薄膜蒸发器的分类比较与选型建议薄膜蒸发器是属于单程型蒸发器的一种,即物料在蒸发器内沿管壁加热成膜状流动,一次通过加热室即实现要求的浓度,而停留时间仅数秒或十几秒钟,具有传热效率高,蒸发速度快,物料停留时间短等优势,特别适合于热敏性物料的蒸发。
那么薄膜蒸发器有哪些种类?是怎么分类的呢?我们又该如何选择合适的薄膜蒸发器呢?首先,薄膜蒸发器依照物料在蒸发器内的流动方向及成膜原因的不同分为:升膜蒸发器、降膜蒸发器、升—降膜蒸发器、刮膜蒸发器四种类型。
薄膜蒸发器分类及比较类别物料流动方向成膜原因适用范围升膜蒸发器自下而上受热蒸发流动稀溶液、热敏性及易起泡的溶液降膜蒸发器自上而下重力作用浓度较高、粘度较大的物料,易结晶结垢的溶液不适用升—降膜蒸发器先升后降蒸发流动重力作用粘度更改很大,水分蒸发量不大的物料刮膜蒸发器自上而下旋转刮片刮带成膜高粘度、热敏性和易结晶、结垢的物料一、升膜蒸发器升膜蒸发器原材料子液经预热后由蒸发器的底部进入,加热蒸汽在管外冷凝。
当溶液受热沸腾后快速汽化,所生成的二次蒸汽在管内高速上升,带动液体沿管内壁成膜状向上流动,上升的液膜因受热而连续蒸发。
故溶液自蒸发器底部上升至顶部的过程中渐渐被蒸浓,浓溶液进入分别室与二次蒸汽分别后由分别器底部排出。
升膜蒸发器适用于蒸发量较大(即稀溶液)、热敏性及易起泡沫的溶液,但不适于高粘度、有晶体析出或易结垢的溶液。
二、降膜蒸发器降膜蒸发器的原材料子液由加热管的顶部加入。
溶液在自身重力作用下沿管内壁呈膜状下流,并被蒸发浓缩,汽液混合物由加热管底部进入分别室,经气液分别后,完成液由分别器的底部排出。
为使溶液能在壁上均匀成膜,在每根加热管的顶部均需设置液体布膜器。
布膜器的型式有多种。
降膜蒸发器可以蒸发浓度较高的溶液,对于粘度较大的物料也能适用。
但对于易结晶或易结垢的溶液不适用。
另外,由于液膜在管内分布不易均匀,与升膜蒸发器相比,其传热系数较小。
三、升—降膜蒸发器将升膜和降膜蒸发器装在一个外壳中,即构成升—降膜蒸发器,原材料子液经预热后先由升膜加热室上升,然后由降膜加热器下降,再在分别室中和二次蒸汽分别后即得完成液。
MVR蒸发器的选型介绍

MVR蒸发器的选型介绍概述MVR蒸发器是一种高效能、牢靠性高的蒸发器设备,它将环境空气压缩成鼓风机,使其在换热器内的流动形成高速的气流,从而实现了蒸发过程的快速完成。
由于其具有结构简单、工作稳定、耗能低等优点,已经被广泛应用于化工、制药、食品制造等行业。
但是,MVR蒸发器的选择并不是一件简单的事情。
针对不同的行业、工艺条件,需要不同的型号、规格的MVR蒸发器来完成特定的工作任务。
本文将针对MVR蒸发器的选型问题进行认真的介绍。
选型原则1.确定蒸发器的工作本领和用途:对于不同工艺过程,需要确定蒸发器的蒸发量、蒸发温度和蒸发物料的性质等要素。
只有充分特定的工作要求,才能保证设备真正发挥出最佳的蒸发效果。
2.确定蒸发器的材质和结构:由于蒸发过程涉及到化学反应、高温、高压等多而杂的环境,因此蒸发器的材质和结构必需具备耐腐蚀、耐高温、强度高的特点。
常用的材质包括不锈钢、钛合金等。
3.确定蒸发器的掌控系统:蒸发器的掌控系统对于设备的稳定性和牢靠性至关紧要。
考虑到设备的安全性、操作性和维护难度等因素,需要选择掌控系统功能完善、操作简单、维护便捷的设备。
4.确定蒸发器的厂家和售后服务:蒸发器是一种大型设备,通常需要专业的厂家进行设计、制造和安装。
售后服务也是选择蒸发器厂家时需要考虑的因素之一、需要选择声誉好、供应完善的售后服务的厂家。
选型步骤1.确定工艺参数和蒸发量:依据生产工艺和要求,确定需要蒸发的物料性质、蒸发量、蒸发温度等参数。
2.确认物料材质和特性:物料的特性是选择蒸发器的关键,需要了解其酸碱性、粘度、比重、腐蚀性等属性。
3.确定蒸发器的结构和规格:依据物料的特性和工艺参数,选择适合的蒸发器结构和规格。
4.选择掌控系统和配套设备:选择适当的掌控系统和配套设备,对设备的正常运行和维护都有确定影响。
5.确认厂家和售后服务:选择声誉好、供应完善的售后服务的厂家。
常见型号介绍1.XYY型MVR蒸发器:该型号蒸发器适用于化工、制药等行业中高度腐蚀性、高稠固体物料的蒸发,具有效率高、稳定性强、操作简单等特点。
了解蒸发器的结构及选型55

6
7
5)强制循环蒸发器 循环速度高达2.0~5.0m/s。 处理粘度大、易结沟或易结晶的溶液。
8
9
2.膜式式(单程型)蒸发器
1)升膜蒸发器: 加热管长径比为100~150,管径为25~50mm。二
次蒸汽在加热管内的速度为20~50m/s,减压下为: 100~160m/s。
处理蒸发量较大的稀溶液以及热敏性或生泡的溶 液。不适合处理易结晶、易结垢或粘度特大的溶液。
7
8
1.基本关系
1)物料衡算 对整个蒸发系统作溶质衡算,可得:
Fx0 F W xn
W
Fxn
xn
x0
F1
x0 xn
W W1 W2 Wn
9
对任一效作溶质衡算,可得:
Fx0 F W1 W2 Wi xi i 2
xi
F
W1
Fx0 W2
Wi
0
2)焓衡算
以00C的液体为基准,忽略热损失,可得: 第一效:
Fh0
D1 H1
hw
F
W1 h1
W1
H
1 1
若溶液的稀释热,且加热蒸汽的冷凝液在饱和温度
下排出,可得:
Q1 D1r1 Fc p0 t1 t0 W1r11
1
第i效:
Qi Di ri
Fc p0 W1c pw W2c pw Wi1c pw ti ti1 Wi ri1
H hw
0
若加热蒸汽的冷凝液在蒸汽的饱和温度下 排除,则:
D WH F W h1 Fh0 QL
r
1
2
2)溶液的稀释热可以忽略时
溶液的焓可以由比热算出,则:
h0 c p0 t0 0 c p0t0 h1 c p1 t1 0 c p1t1 hw c pw T 0 c pwT
菲加邦蒸发器参数与机组选型

菲加邦蒸发器参数与机组选型菲加邦吊顶蒸发器技术参数与机组配套选型表制冷机组制冷系统配套设备组成一套完整的制冷机组制冷系统,除压缩机、冷凝器、膨胀阀,蒸发器和控制系统五个主件外,为了保证系统正常、经济和安全的运行,还需设置一定数量的其它辅助设备。
辅助设备的种类很多,按照它们的作用,基本上可以分为两大类:(1)维持制冷循环正常工作的设备,如两级压缩的中间冷却器等;(2)改善运行指标及运行条件的设备,如油分离器、集油器、气液分离器、空气分离器以及各种贮液器,电磁阀,压力控制器等。
此外,在制冷系统中还配有用以调节、控制与保证安全运行所需的器件、压力仪表和连接管道的附件等。
制冷系统中的辅助设备一、油分离器与集油器(一)油分离器的作用在蒸汽压缩式制冷系统中,经压缩后的氨蒸汽(或氟利昂蒸汽),是处于高压高温的过热状态。
由于它排出时的流速快、温度高。
汽缸壁上的部份润滑油,由于受高温的作用难免成油蒸汽及油滴微粒与制冷剂蒸汽一同排出。
且排汽温度越高、流速越快,则排出的润滑油越多。
对于氨制冷系统来说,由于氨与油不相互溶,所以当润滑油随制冷剂一起进入冷凝器和蒸发器时会在传热壁面上凝成一层油膜,使热阻增大,从而会使冷凝器和蒸发器的传热效果降低,降低制冷效果。
据有关资料介绍在蒸发表面上附有0.1mm油膜时,将使蒸发温度降低2.5℃,多耗电11~12%。
所以必须在压缩机与冷凝器之间设置油分离器,以便将混合在制冷剂蒸汽中的润滑油分离出来。
(二)油分离器的工作原理大家都知道,汽流所能带动的液体微粒的尺寸是与汽流的速度有关。
若把汽流垂直向上运动产生的升力与微粒的重量相平衡时的汽流速度称为平衡速度,并用符号ω表示。
则显然当汽流速度等于平衡速度时,则微粒在汽流中保持不动;如果汽流速度大于平衡速度时则将微粒带走;而当汽流速度小于平衡速度,微粒就会跌落下来,从而使油滴微粒制冷剂汽流中分离出来。
油分离器的基本工作原理主要就是利用润滑油和制冷剂蒸气的密度不同;以及通道截面突然扩大,气流速度骤降(油分离器的筒径比高压排气管的管径大3~15倍,使进入油分离器后蒸气的流速从原先的10~25m/s下降至0.8~1m/s);同时改变流向,使密度较大的润滑油分离出来沉积在油分离器的底部。
三效蒸发器选型计算

三效蒸发器选型计算三效蒸发器是一种高效的蒸馏设备,可以实现液体的高效分离和浓缩。
选型计算是确定设备技术参数和操作条件的重要步骤,下面将介绍三效蒸发器选型计算的相关内容。
一、设备选型三效蒸发器的选型主要涉及以下几个方面:1. 设备类型:根据物料的性质和要求,选择适合的三效蒸发器类型,常见的有下凝点、上凝点和平衡点三种。
2. 设备结构:根据物料的特性,确定三效蒸发器的结构类型,包括单效、多效、多段等。
3. 仪表选择:选择适合的仪表和传感器,保证设备的稳定运行和精确控制。
二、计算参数三效蒸发器的选型计算包括以下参数:1. 物料流量:根据生产需求和物料特性,确定处理量和流速。
2. 蒸发温度:根据物料的性质和浓度要求,确定蒸发温度。
3. 蒸汽压力:根据蒸发温度和热力学性质,确定所需蒸汽压力。
4. 冷却水温度:根据蒸发器中的冷却器要求,确定冷却水温度。
5. 真空度:根据物料的挥发性和蒸发器类型,确定所需真空度。
三、计算公式三效蒸发器的选型计算需要使用一些基本公式,包括:1. 蒸发量= 物料流量×蒸发浓度差2. 蒸汽量= 蒸发量/ 蒸发效率3. 蒸汽压力= 蒸发温度对应的饱和蒸汽压力4. 真空度= 大气压- 蒸汽压力5. 冷却水量= 蒸汽量×冷却水温度差/ 冷凝水热值四、实例计算例如,对于一种含有5%浓度的盐水,需要将其蒸发至40%浓度,物料流量为5000kg/h,蒸发效率为0.9,大气压为101.3kPa,冷却水温度为20℃。
根据上述公式,可以计算出蒸汽量为3516.67kg/h,蒸汽压力为36.16kPa,真空度为65.14kPa,冷却水量为4.77t/h。
以上就是关于三效蒸发器选型计算的相关内容的介绍,希望对您有所帮助。
蒸发器冷凝器选型参数

EATB25EATB55EATB85小10.620.1240.65 2.17162°蒸发10.70.220.75 2.5182°蒸发1.5 1.050.33 1.13 3.76222°蒸发2 1.40.43 1.505262°蒸发3 2.10.65 2.257.534182°蒸发4 2.80.86 3.001044222°蒸发5 3.5 1.1 3.7512.554262°蒸发6 4.2 1.29 4.5015302°蒸发75 1.5 5.2517.5322°蒸发8 5.7 1.7 6.0020362°蒸发9 6.4 1.9 6.7522.5402°蒸发107.1 2.17.5025462°蒸发117.9 2.48.2527.5502°蒸发128.5 2.69.003056362°蒸发139.4 2.89.7532.560402°蒸发1410310.503564422°蒸发1511 3.2611.2537.570462°蒸发1611.3 3.4412.004074482°蒸发1712.2 3.712.7542.578522°蒸发1812.7 3.8713.504584562°蒸发1913.6 4.1314.2547.5602°蒸发2014.2 4.315.0050642°蒸发2115 4.515.7552.5682°蒸发2215.6 4.716.5055742°蒸发2316.5517.2557.5802°蒸发2417 5.1618.0060842°蒸发2518 5.618.2562.5902°蒸发2620619.0065982°蒸发选型参数计算表选型参数计算表蒸发器片数(冷冻水进12°出7°)压缩机输入功率(Hp)RT 104kcal/h 输入功率(kW)备注蒸发器简易选型(仅供参考)制冷量KW (COP3.33)备注EATB25EATB55/50EATB85(COP3.33)小10.620.1240.652.708306251040°冷凝10.70.220.75 3.1251240°冷凝2 1.40.43 1.50 6.252040°冷凝3 2.10.65 2.259.3752840°冷凝4 2.80.86 3.0012.53640°冷凝5 3.5 1.1 3.7515.625462040°冷凝6 4.2 1.29 4.5018.75542240°冷凝75 1.5 5.2521.875622640°冷凝8 5.7 1.7 6.00253040°冷凝9 6.4 1.9 6.7528.1253240°冷凝107.1 2.17.5031.253640°冷凝117.9 2.48.2534.3754040°冷凝128.5 2.69.0037.54240°冷凝139.4 2.89.7540.6254640°冷凝1410310.5043.754840°冷凝1511 3.2611.2546.8755240°冷凝1611.3 3.4412.00505640°冷凝1712.2 3.712.7553.1255840°冷凝1812.7 3.8713.5056.256240°冷凝1913.6 4.1314.2559.375664040°冷凝2014.2 4.315.0062.5684240°冷凝2115 4.515.7565.625724440°冷凝2215.6 4.716.5068.75744640°冷凝2316.5517.2571.875784840°冷凝2417 5.1618.0075825040°冷凝2518 5.618.2578.125845240°冷凝2620619.0081.25885440°冷凝2720.2584.375905640°冷凝2821.0087.5945840°冷凝2921.7590.625966240°冷凝3022.5093.751006440°冷凝3526.25109.3757440°冷凝4029.981258640°冷凝5037.47156.2510840°冷凝6044.96187.513040°冷凝RT 104kcal/h输入功率(kW)制冷量KW×1.25冷凝器片数 (进30°出35°)冷凝器简易选型一(仅供参考)压缩机输入功率(Hp)选型参数计算表冷凝器简易选型二(仅供参考)。
蒸发器冷凝器选型参数

EATB25EATB55EATB85小10.620.1240.65 2.17162°蒸发10.70.220.75 2.5182°蒸发1.5 1.050.33 1.13 3.76222°蒸发2 1.40.43 1.505262°蒸发3 2.10.65 2.257.534182°蒸发4 2.80.86 3.001044222°蒸发5 3.5 1.1 3.7512.554262°蒸发6 4.2 1.29 4.5015302°蒸发75 1.5 5.2517.5322°蒸发8 5.7 1.7 6.0020362°蒸发9 6.4 1.9 6.7522.5402°蒸发107.1 2.17.5025462°蒸发117.9 2.48.2527.5502°蒸发128.5 2.69.003056362°蒸发139.4 2.89.7532.560402°蒸发1410310.503564422°蒸发1511 3.2611.2537.570462°蒸发1611.3 3.4412.004074482°蒸发1712.2 3.712.7542.578522°蒸发1812.7 3.8713.504584562°蒸发1913.6 4.1314.2547.5602°蒸发2014.2 4.315.0050642°蒸发2115 4.515.7552.5682°蒸发2215.6 4.716.5055742°蒸发2316.5517.2557.5802°蒸发2417 5.1618.0060842°蒸发2518 5.618.2562.5902°蒸发2620619.0065982°蒸发选型参数计算表选型参数计算表蒸发器片数(冷冻水进12°出7°)压缩机输入功率(Hp)RT 104kcal/h 输入功率(kW)备注蒸发器简易选型(仅供参考)制冷量KW (COP3.33)备注EATB25EATB55/50EATB85(COP3.33)小10.620.1240.652.708306251040°冷凝10.70.220.75 3.1251240°冷凝2 1.40.43 1.50 6.252040°冷凝3 2.10.65 2.259.3752840°冷凝4 2.80.86 3.0012.53640°冷凝5 3.5 1.1 3.7515.625462040°冷凝6 4.2 1.29 4.5018.75542240°冷凝75 1.5 5.2521.875622640°冷凝8 5.7 1.7 6.00253040°冷凝9 6.4 1.9 6.7528.1253240°冷凝107.1 2.17.5031.253640°冷凝117.9 2.48.2534.3754040°冷凝128.5 2.69.0037.54240°冷凝139.4 2.89.7540.6254640°冷凝1410310.5043.754840°冷凝1511 3.2611.2546.8755240°冷凝1611.3 3.4412.00505640°冷凝1712.2 3.712.7553.1255840°冷凝1812.7 3.8713.5056.256240°冷凝1913.6 4.1314.2559.375664040°冷凝2014.2 4.315.0062.5684240°冷凝2115 4.515.7565.625724440°冷凝2215.6 4.716.5068.75744640°冷凝2316.5517.2571.875784840°冷凝2417 5.1618.0075825040°冷凝2518 5.618.2578.125845240°冷凝2620619.0081.25885440°冷凝2720.2584.375905640°冷凝2821.0087.5945840°冷凝2921.7590.625966240°冷凝3022.5093.751006440°冷凝3526.25109.3757440°冷凝4029.981258640°冷凝5037.47156.2510840°冷凝6044.96187.513040°冷凝RT 104kcal/h输入功率(kW)制冷量KW×1.25冷凝器片数 (进30°出35°)冷凝器简易选型一(仅供参考)压缩机输入功率(Hp)选型参数计算表备注EATB25EATB55/50EATB85(COP4.5)小10.620.1240.65 3.656251860°冷凝10.70.220.75 4.218752260°冷凝1.5 1.050.33 1.13 6.35632660°冷凝2 1.40.43 1.508.43753060°冷凝3 2.10.65 2.2512.65625422060°冷凝4 2.80.86 3.0016.875542660°冷凝5 3.5 1.1 3.7521.0937*******°冷凝6 4.2 1.29 4.5025.3125743860°冷凝75 1.5 5.2529.53125844260°冷凝8 5.7 1.7 6.0033.75964860°冷凝9 6.4 1.9 6.7537.968755460°冷凝107.1 2.17.5042.18756060°冷凝117.9 2.48.2546.406256660°冷凝128.5 2.69.0050.625724260°冷凝139.4 2.89.7554.84375784460°冷凝1410310.5059.0625824860°冷凝1511 3.2611.2563.28125885260°冷凝1611.3 3.4412.0067.5945660°冷凝1712.2 3.712.7571.718751006260°冷凝1812.7 3.8713.5075.93756860°冷凝1913.6 4.1314.2580.156257260°冷凝2014.2 4.315.0084.3757660°冷凝2115 4.515.7588.593758260°冷凝2215.6 4.716.5092.81258660°冷凝2316.5517.2597.031259260°冷凝2417 5.1618.00101.259860°冷凝2518 5.618.25102.6562510460°冷凝2620619.00106.87511060°冷凝2720.25113.9062511660°冷凝2821.00118.12512260°冷凝2921.75122.3437513060°冷凝3022.50126.562514060°冷凝输入功率(kW ) × 能效比4.5×1.25冷凝器片数 (进50°出55°)冷凝器简易选型二(仅供参考)压缩机输入功率(Hp)RT 104kcal/h 输入功率(kW)。
制冷技术:蒸发器的选择计算

蒸发器的选择计算一、蒸发器选择计算的方法蒸发器的选择计算首先选择蒸发器的形式,然后计算所需的传热面积、被冷却介质的流量和流动阻力。
对于冷却液体的蒸发器,其计算方法与水冷式冷凝器相同。
1、蒸发器型式的选择开式冷水系统采用冷水箱式蒸发器(如制冰)。
冷藏库中根据各类冷间的要求不同,采用冷却排管和冷风机。
1.蒸发器传热面积的计算 蒸发器传热面积F 的计算式为F =Fq Qt K Q 00=∆⋅(m 2) (6-1) 式中 Q 0——制冷装置的制冷量,即蒸发器的负荷。
它等于制冷量与制冷装置的冷量损失之和(kW );K ——蒸发器的传热系数(W /m 2·℃); t ∆——平均传热温差(℃);F q ——蒸发器的单位面积热负荷,即热流密度(W /m 2); 平均传热温差:t ∆=)()(ln ln 020121min max min max t t t t t t t t t t ---=∆∆∆-∆ (6-2)t 1——被冷却介质进入蒸发器的温度(℃); t 2——被冷却介质出蒸发器的温度(℃); t 0——蒸发温度(℃);蒸发器选型计算时,蒸发器的传热系数K 按经验选取,对排管有相应的计算公式。
对于冷却液体的蒸发器,蒸发温度一般比被冷却水的出口温度低3~5℃。
被冷却液体的进出口温差取5℃左右,这样,平均传热温差为5~6℃。
对于冷却空气的蒸发器,由于空气侧的放热系数很低而使传热系数很低,为了设备的初投资,选取较大的平均传热温差,一般蒸发温度比空气的出口温度低10℃左右,平均传热温差为15℃左右。
各种蒸发器的传热系数K 值等参数见表6-7。
3、 被冷却介质(水或空气)流量的计算与冷凝器中冷却介质流量的计算方法相同,不再重复。
蒸发器的传热系数和单位面积热负荷 表6-7二、冷风机选型计算(一)根据冷间冷却设备负荷,按公式(6-1)计算所需冷风机的冷却面积; 注意△t 取冷间温度与制冷剂温度差。
传热系数K 见表6-8。
蒸发器冷凝器选型计算

Fz=
148.50020 必须满足校核值
冷凝器换热面积m2 热流密度W/m2 热风比m3/h:KW 迎面风速m/s 空气侧阻力Pa
F=
vy= △Pk=
594.00079 309.59555 477.61194
2.59889 80.79957
584.3806113 290-320 ≥320 2.0-3.0
风冷冷凝器换热参数计算
压缩机型号 制冷量KW 压缩机输入功率KW 压缩机排气量kg/h 冷凝温度℃ 蒸发温度℃ 过热度℃ 过冷度℃ 室外环境干球温度℃ 室外环境湿球温度℃ 冷凝温度℃ 蒸发温度℃ 传热温差℃ 冷凝空气进风温度℃ 冷凝空气进风温度℃ 空气进出口风温差℃ 传热系数W/m2℃ 最高冷凝温度℃
D=
0.01000
D1=
0.00930
d=
0.00200
输入
Fd=
0.53572
Fn=
0.02920
Fds=
0.00007
τ=
18.34515
二、换热器物理参数计算
N=
4
输入
N1=
42
输入
N2=
3
输入
L=
2.20
输入
N3=
10
输入
n=
12.60
计算值应为整数
Fy=
2.34696
Fsz=
0.00086
35.00000
输入
t2=
44.00000
输入
△t=
9.00000
K=
33.00000
输入
tkmax=
60.00000
二、冷凝器热力计算求解
Qk=183.90000来自F=567.35982
MVR蒸发器的选型

MVR蒸发器的选型
1、压缩机材质选择
MVR蒸发器选型主要是针对MVR蒸发系统核心部件,蒸汽压缩机的选型。
在选择MVR压缩机时,根据原液的流量和沸点升高的值等特性,可以选择罗茨或离心压缩机,对于沸点升高值较大的原液,压缩机可以多级串联使用。
罗茨风机转子材质选择,碳钢材质腐蚀现象比较明显,MVR蒸发器的寿命会受到制约,因此在选择蒸汽压缩机时,碳钢镀镍材质的压缩机滚子保持了碳钢良好的机械强度,又发挥了镍材优秀的抗腐蚀效果。
2、蒸发温度选择
蒸发温度一般在70~90°左右,温度高,腐蚀和能耗、热损增加,温度低,真空泵负荷增加,设备密封性要求高。
3、蒸发器材质选择
含有氯盐离子的废水需要浓缩结晶时,温度在35~89°,材质可以选择2205双相不锈钢。
含有氯离子,又含有铵离子的废水浓缩结晶温度在35~89°时,要选择更高的材质,例如:2507双相不锈钢。
全面讲解蒸发器的的结构、性能特点及选型技巧(图文并茂)

全⾯讲解蒸发器的的结构、性能特点及选型技巧(图⽂并茂) 蒸发的概念 将含有不挥发溶质的溶液加热沸腾,使其中的挥发性溶剂部分汽化从⽽将溶液浓缩的过程称为蒸发。
蒸发操作⼴泛应⽤于化⼯、轻⼯、制药、⾷品等许多⼯业中。
1.蒸发操作的⽬的 ⼯业蒸发操作的主要⽬的是: (1)稀溶液的增浓直接制取液体产品,或者将浓缩的溶液再经进⼀步处理(如冷却结晶)制取固体产品,例如稀烧碱溶液(电解液)的浓缩、蔗糖⽔溶液的浓缩以及各种果汁、⽜奶的浓缩等等; (2)纯净溶剂的制取,此时蒸出的溶剂是产品,例如海⽔蒸发脱盐制取淡⽔。
(3)同时制备浓溶液和回收溶剂,例如中药⽣产中酒精浸出液的蒸发。
⼯业上被蒸发的溶液多为⽔溶液,故本章的讨论仅限于⽔溶液的蒸发。
原则上,⽔溶液蒸发的基本原理和设备对其它液体的蒸发也是适⽤的。
2.蒸发流程 按照分⼦运动学说,当液体受热时,靠近加热⾯的分⼦不断地获得动能。
当⼀些分⼦的动能⼤于液体分⼦之间的引⼒时,这些分⼦便会从液体表⾯逸出⽽成为⾃由分⼦,此即分⼦的汽化。
因此溶液的蒸发需要不断地向溶液提供热能,以维持分⼦的连续汽化;另⼀⽅⾯,液⾯上⽅的蒸汽必须及时移除,否则蒸汽与溶液将逐渐趋于平衡,汽化将不能连续进⾏。
液体蒸发过程 液体蒸发的简化流程如图⽚所⽰,其主体设备—蒸发器由加热室和分离室两部分组成,其中加热室为⼀垂直排列的加热管束,在管外⽤加热介质(通常为饱和⽔蒸汽)加热管内的溶液,使之沸腾汽化。
浓缩了的溶液(称为完成液)由蒸发器的底部排出。
⽽溶液汽化产⽣的蒸汽经上部的分离室与溶液分离后由顶部引⾄冷凝器。
为便于区别,将蒸出的蒸汽称为⼆次蒸汽,⽽将加热蒸汽称为⽣蒸汽或新鲜蒸汽。
对于沸点较⾼的溶液的蒸发,可采⽤⾼温载热体如导热油、融盐等作为加热介质,也可以采⽤烟道⽓直接加热。
3.蒸发过程的分类 (1)常压蒸发、加压蒸发和减压蒸发 按蒸发操作压⼒的不同,可将蒸发过程分为常压、加压和减压(真空)蒸发。
MVR蒸发器设计选型

1、根据原液选择蒸发型式
1.1溶液的粘度
溶液的粘度以及蒸发过程中溶液粘度的变化范围,是影响MVR设计首要考虑的因素。
1.2溶液组成物质的热稳定性
长时间受热易分解、易聚合以及易结垢的溶液蒸发时,应采用滞料量少、停留时间短的蒸发器。
1.3有晶体析出的溶液
对蒸发时有晶体析出的溶液应采用强制循环蒸发器。
1.4易发泡的溶液
易发泡的溶液在蒸发时会生成大量层层重叠不易破碎的泡沫,充满了整个分离室后即随二次蒸汽排出,不但损失物料,而且污染冷凝器。
蒸发这种溶液宜采用强制循环蒸发器或降膜式蒸发器。
1.5有腐蚀性的溶液
蒸发腐蚀性溶液时,加热管应采用特殊材质制成,或内壁衬以耐腐蚀材料。
若溶液不怕污染,也可采用直接接触式蒸发器。
1.6易结垢的溶液
无论蒸发何种溶液,蒸发器长久使用后,传热面上总会有污垢生成。
垢层的导热系数小,因此对易结垢的溶液,应考虑选择便于清洗或溶液循环速度大的蒸发
1.7溶液的处理量
溶液的处理量也是选型应考虑的因素。
根据处理量选择合理的蒸发器与效数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化工原理课程设计---蒸发器设计(二)默认分类2007-07-20 14:30:43 阅读3037 评论2 字号:大中小订阅第二章蒸发器工艺计算(请尊重版权,谢绝转载)第一节流程图及对设计流程图的说明1.1 蒸发操作流程的确定蒸发装置流程是指多效蒸发器中蒸发器的数目及其组合排列方式,物料和蒸汽的流向,以及附属设备的安排等.多效蒸发器的流程根据加热蒸汽与料液的流向不同可以分为并流、逆流、平流及混流四种。
1.1.1 一般情况下,生产中通常用并流。
如图2-1所示。
并流操作,料液在效间的传输可以利用各效间的压差进行,而不用另外用泵来传输。
同时由于效间沸点依次降低,前一效的料液进入后一效时,会因过热而自动发生蒸发。
但是并流操作也有自己的缺点。
各效的压力差依次减小,温度也依次减小,而料液的浓度依次升高,黏度依次增大,这对料液的传输不利。
特别是对于高黏度的料液不宜采用并流方式进料。
1.1.2 逆流流程料液由末效加入,依次用泵送入前一效,随着料液浓度升高温度也越高。
依次各效间黏度相差不是太大,传热系数变化也不是很大。
逆流加料适合于黏度随浓度变化较大的料液,而不适宜热敏性物料的蒸发。
1.1.3 平流操作适合于有结晶析出的物料,或用于同时浓缩两种以上的水溶液体系.如图2-2所示。
1.1.4混流操作是在各效间兼用并流和逆流的加料方法,其具有并流和逆流的有点,同时克服了他们的缺点,但是操作比较复杂。
鉴于糖汁是热敏性料液,不宜采用逆流;其出效黏度变化也比较小,在并流能满足的情况下,为了操作简便和经济,设计管路比较繁琐,其操作比较复杂,一般情况也不采用混流。
从以上又知道,平流不合适于糖汁的蒸发。
所以选择并流比较经济。
1.2. 蒸发效数的确定采用多效蒸发的目的在于充分利用热能。
通过二次蒸汽的再利用,减少蒸汽的消耗量,提高蒸汽的经济性。
但是并不代表效数越多越好,其还受到经济和计算因素的限制,因此在确定效数时,应该综合考虑设备费用和操作费用总和最小来确定最合适效数。
表2-1表示不同效数蒸发过程的单位蒸汽消耗量,可以借此作为选效参考。
表2-1 不同效数蒸发过程的单位蒸汽消耗量(㎏蒸汽/㎏水)[1]在蒸发操作中,为保证传热的正常进行,每一效的温差不能小于5~7℃,对于电解质,采用2~3效,对于非电解质,采用4~6效.糖汁溶质属于非电解质,我们采用4效,以利于确保每一效的加热面积相同。
1.3流程图及对设计流程图的说明1.3.1从以上分析,可以确定蒸发的流程图,并加以对其的说明。
流程图如图2-3所示(也可参见附录1):1.3.2 该蒸发流程采用四效并流工艺流程,料液和蒸汽从一效进效,每效的出效蒸汽(二效蒸汽)进入下一效继续进行加热蒸发,依次这样进行直到四效,每一效的二次蒸汽根据具体情况进行抽汽,抽汽方案具体见后面分析。
出四效的二次蒸汽经冷凝罐冷凝,冷凝液向下排出,不凝性气体直接排空。
第二节蒸发器类型选择2.1由于生产要求的不同,蒸发设备有多种不同的结构型式。
对常用的间壁传热式蒸发器,按溶液在蒸发器中的运动情况,大致可分为以下两大类:2.1.1单程型蒸发器特点:溶液以液膜的形式一次通过加热室,不进行循环。
优点:溶液停留时间短,故特别适用于热敏性物料的蒸发;温度差损失较小,表面传热系数较大。
缺点:设计或操作不当时不易成膜,热流量将明显下降;不适用于易结晶、结垢物料的蒸发。
此类蒸发器主要有a.升膜式蒸发器b.降膜式蒸发器c.刮板式蒸发器2.1.2循环型蒸发器特点:溶液在蒸发器中做循环流动,蒸发器内溶液浓度基本相同,接近完成液的浓度。
操作稳定。
此类蒸发器主要有a.中央循环管式蒸发器b.悬筐式蒸发器c.外热式蒸发器d.列文式蒸发器e.强制循环蒸发器。
其中,前四种为自然循环蒸发器。
2.2 蒸发器的选型[1]中央循环管式蒸发器结构和原理:其下部的加热室由垂直管束组成,中间有一根直径较大的中央循环管。
当管内液体被加热沸腾时,中央循环管内气液混合物的平均密度较大;而其余加热管内气液混合物的平均密度较小。
在密度差的作用下,溶液由中央循环管下降,而由加热管上升,做自然循环流动。
溶液的循环流动提高了沸腾表面传热系数,强化了蒸发过程。
这种蒸发器结构紧凑,制造方便,传热较好,操作可靠等优点,应用十分广泛,有"标准蒸发器"之称。
目前糖厂也大多中央循环管式蒸发器,技术比较成熟。
但是这种蒸发器的加热面积较小,随着蒸发罐向大型化的发展,单一的中央循降液管很难保证罐内糖汁的循环,因此在中央循环管蒸发器的基础上,加以改进,发展了一种新型的外循环式蒸发器,其把循环管安装在加热室的外面,加热室的直径比汁汽室的直径稍小,加热室的蒸汽从周边进入,在加热室外壳从上方开有长方形汽隙,外面包以环形蒸汽通道,这样使进入汽鼓的汽汁分布比较均匀。
外循环管有两根,其上端与位于加热室顶部外周的集汁环连接。
其中一根较低,其下部与分配器相接,分配器有一漏斗与出汁管相连接。
在汽鼓中央安装一根直径不是很大的不凝汽管,汽凝水从接近与下管板的四个出水口排除。
外循环管蒸发器的优点:在加热室有限的情况下尽可能增大加热面积,结构紧凑,罐底容积也较小,相对缩小糖汁在罐内的停留时间,糖汁进出口装置合理,入汁不会与出汁混合。
因此本次采用我国生产的TWX型外循环蒸发器。
第三节蒸发器工艺计算蒸发的工艺计算主要是在已知料液流量、温度、浓度及最终完成液的浓度、加热蒸汽压和冷凝器中的压强的前提下,通过计算确定:加热蒸汽消耗量、溶剂蒸发量以及蒸发器传热面积,最后确定出设备尺寸。
蒸发工艺计算基本步骤:(1)根据生产任务算出总的蒸发水量,然后分配到各效,求出各效的蒸发水量。
(2)由加热蒸汽压强和末效压强,根据溶液的蒸汽压、液柱静压及流动阻力所引起的温度损失,算出总的有效温度差,再根据各效传热面积相等的原则,将总的有效温度差分配致各效,找出蒸发操作的温度条件。
(3)选用各效传热系数的经验值。
(4)按传热速率方程算出各效传热面积。
3.1估算各效溶液的沸点和有效温度差进入第一效蒸发器加热蒸汽压力为1.5atm(绝压),第四效的二次蒸汽压力为0.14atm (绝压)。
以下全部化为绝压进行计算,即:根据一般经验,各效压差分配有一个比值,如表2-2所示:表2-2各效压力差分配[2]总压力差△P总=P0-P5=1.5atm-0.14atm=1.36atm各效压力降为△P1=11/40×△P总=11/40×1.36=0.374atm△P2=10.5/40×△P总=10.5/40×1.36=0.357atm△P3=9.5/40×△P总=9.5/40×1.36=0.323atm△P4=9/40×△P总=9/40×1.36=0.306atmP1`=P0-△P1=1.5-0.374=1.126atm =114.1KPaP2`= P1`-△P2 =1.126-0.357=0.769atm =77.9KPaP3`= P2`-△P3=0.769-0.323=0.446atm =45.2KPaP4`=0.14atm=14.2KPa查《化工原理》上册附录饱和水蒸气压表(以压强为标准)和饱和水蒸气压表(以温度为标准),再根据经验,汁汽每经过一道管,其温度降低1℃,即:ti=Ti+1-1可以依次求出各效加热蒸汽和汁汽的热力状况,如表2-3所示:表2-3蒸发热力状况列表3.2 抽汽方案的拟定参考《糖制汁加热与蒸发》第37页图2某个糖厂的抽汽方案[2],拟订本次设计的抽汽方案如表2-4:表2-4 抽汽方案的确定(%C)3.2 总蒸发水量和各效蒸发水量3.2.1总蒸发水量:W总= g(1-)[2]式中: g—清汁量%C,Bn—糖浆锤度,B0—清汁锤度清汁取g=99.06% ,B0=13.6(ºBx) Bn=B4=60(ºBx)W总= g(1-)= 99.06% ×(1-) = 76.61%C3.2.2 各效蒸发水量W1 = D1 === 37.15%CW2 = W1-E1 = 37.15%C-11.5%C =25.65%CW3 = W2-E2 = 25.59%C-17.0%C = 8.65%CW4 = W3-E3 = 8.59%C-3.5%C = 5.15%C3.3 各效糖汁出口浓度及平均浓度各效出口糖汁锤度:Bn=B1= = = 21.76(ºBx)B2= = = 36.26(ºBx)B3= = = 48.79(ºBx)B4= = = 59.98(ºBx)计算的B4与题给60(ºBx)相差不多,下面用59.98进行计算各糖汁的平均锤度=(进口锤度+出口锤度)/2Bm1 = =17.68(ºBx)Bm2 = = 29.01(ºBx)Bm3 = = 42.52(ºBx)Bm4 = = 54.39(ºBx)3.4 确定各效传热有效温差3.4.1计算浓度效应沸点升高参考《糖汁加热与蒸发》P16公式[1]根据1-29:e=根据以上3.1所计算Bi和上表2-3的ti值进行计算,如下所示:e1= =0.35℃依次求得各效沸点升高如表2-5所示:表2-5 各效浓度效应的沸点升高表则:∑⊿t沸=0.35+0.69+1.24+1.94=4.22 (°C)3.4.2 静压效应沸点升高本次设计用3米加热管,取液层高度为管长,即× 3 = 1m,液柱平均高度取为×1 = 0.5m = 50cm,由糖汁的平均锤度、汁汽温度和液层高度查《糖制汁加热与蒸发》[1]P17表1-6得静压效应沸点升高值表2-6所示:表2-6 各效静压效应的沸点升高表则:∑⊿t静=1.21+1.56+2.98+6.75=13.55 (°C)3.4.3 管道汁汽温度损失△T1 = 1℃△T2 = 1℃△T3 = 1℃∑△T损= 1 + 1 + 1 = 3(℃)所以可以计算出总有效温差为:∑△T有效=Ⅰ效加热汽温度-末效汁汽温度-总温度损失= 111.5 – 52.7-(4.22+13.55+3)= 38.03(℃)3.4.5 各效糖汁沸点= 104.3+ 0.35 + 1.21= 105.86(℃)= 94.1 + 0.69+ 1.56= 96.35(℃)= 79.7 + 1.24 +2.98 = 83.92(℃)=52.7 + 1.94 + 7.80= 62.44(℃)3.4.6 各效有效温差= 加热蒸汽温度-糖汁沸点△T1 = 111.5 – 105.86 = 5.64(℃)△T2 =103.3 – 96.35= 6.95(℃)△T3 =93.1 – 83.92= 9.18(℃)△T4 = 78.7 – 62.44= 16.26(℃)即蒸发热力情况如下表2-7所示:3.5 确定K值,求加热面积3.5.1 计算各效需要的传热速率参考《甘蔗糖厂设计手册上册》140页[2] ,各效传热量公式:Qi=Wi×riWi=Bi×C式中:Qi——传热速率,kWWi——各效蒸发水量,kg/hri——各效加热汽潜热,kJ/kg清汁蔗比一般取99.06%,已知清汁量为43200kg/h,则可以算出对应的甘蔗量为:C=43200/99.06%=43610kg/hQ1=37.15%×43610×2247.3=364.09×105(kJ/h)Q2=25.65%×43610×2273.2=254.28×105(kJ/h)Q3=8.65%×43610×2307.8=87.06×105(kJ/h)Q4=5.15%×43610×2396.4=53.30×105(kJ/h)3.5.2 K值的确定参考《甘蔗糖厂设计手册上册》142页表3-61 国外传热系数经验值[2],取各效传热系数如下:K1 =3.0 kW/ m2·℃K2 =1.8 kW/ m2·℃K3=0.7 kW/ m2·℃K4=0.45 kW/ m2·℃3.5.3 加热面积的计算加热面积:F =式中Q为传热量,K为传热系数,△t为有效温差A1 = =597.7(m2)A2 = = 564.6(m2)A3 = = 376.3(m2)A4 = =202.3(m2)3.5.4重新分配各有效温差,《常用化工单元设备设计》[3]P172:△= A1△tn×所以:△ = A1△t1×= 597.7×5.64× =7.54同理得:△=8.78△=7.73△=7.36各效糖汁沸点、汁汽温度:Ⅰ:沸点= 111.5- 7.54 = 103.96(℃)汁汽温度= 102.96 – 1.56= 101.40(℃)Ⅱ:沸点=100.40 – 8.78 = 91.62(℃)汁汽温度= 90.62 – 2.25 = 88.37(℃)Ⅲ:沸点= 87.37–7.73=79.64(℃)汁汽温度= 78.64- 4.22 =74.42(℃)Ⅳ:沸点=73.42 – 7.36 = 66.06(℃)汁汽温度= 60.44 – 9.74= 55.32(℃)较核以后的热力表如下表2-8所示:表2-8最后较核热力状况表3.5.5 面积的重新校核与确定由以上已经确定以下参数:K1 =3.0 kW/ m2·℃K2 =1.8 kW/ m2·℃K3=0.7 kW/ m2·℃K4=0.45 kW/ m2·℃Q1=8848.4×2247.3=364.09×105(kJ/h)Q2=8840.2×2273.2=254.28×105(kJ/h)Q3=8013.3×2307.8=87.06×105(kJ/h)Q4=7745.2×2396.4=53.30×105(kJ/h)则面积的重新计算如下:A1 = =448.6(m2) A2 = = 449.6(m2)A3 = =448.8(m2) A4 = =445.6(m2)误差为:1-Smin/Smax=1- =0.0089,试差合理,取用平均面积:平均面积为:A=(A1+A2+A3+A4)/4=448.2(m2),取值为450 m2,考虑安全和便于计算,取最终设计面积为500 m2,即取安全系数为:=1.11 1.1≦1.11≦1.2设计符合符合一般安全要求3.6加热蒸汽消耗量的计算和各效蒸发量的校核参考《常用化工单元设备的设计》[4] P276-277,进行有关计算如下:有关计算过程符号的说明:Wi-----原来设计时预定的蒸发的水量(kg/h);-----校核每效实际蒸发的水量(kg/h);D----加热生蒸汽消耗量;r,ri------加热蒸汽和第i效二次蒸汽(本处指汁汽)的汽化潜热,kJ/kg;Ii------第i效二次蒸汽的焓kJ/kg;ii-------第i效溶液焓kJ/kg;i0-------表示进料温度所对应的焓;ηi ------第i效的热利用系数,对溶解热可以忽略的料液,ηi=0.98;根据具体情况,《常用化工单元设备的设计》[4] P276-277,根据以下公式进行计算:ηi =0.98-0.7△Xη1=0.98-0.7(0.2176-0.136)=0.9229η2=0.98-0.7(0.3626-0.2176)=0.8785η3=0.98-0.7(0.4879-0.3626)=0.8923η4=0.98-0.7(0.5998-0.4879)=0.9017进料温度t0=80℃根据以上所得的参数,从《化工原理》上册附录表4和表5查得相应的热力参数[5]:如表下表2-9所示:另外对应第一效的加热生蒸汽温度为111.5℃查表得:r =2228.2(kJ/kg), 进料温度t0=80 ℃,i0=334.94(kJ/kg)根据《常用化工单元设备的设计》[4] P276-277参考公式:W1= η1Wi= ×ηi根据抽汽方案,如下表2-10所示 :表2-10 抽汽方案的确定(%C)可以求出总抽汽量和各效抽汽量为 :E=32.0%×43610=13955.2kg/hⅠ效:E1=11.5%×43610=5015.2kg/hⅡ效:E2=17.0%×43610=7413.7kg/hⅢ效:E3=3.5%×43610=1526.4kg/h又因为原来假设各效蒸发水量为 :W1= 37.15%×43610=16201(kg/h)W2=25.65%×43610=11186(kg/h)W3=8.65%×43610=3774(kg/h)则选择可以求出第i效进入i-1效的蒸汽量 =Wi-Ei , 以得 :=16201-5015.2=11185.8(kg/h)=11186-7413.7=3772.3(kg/h)=3774-1526.4=2247.6(kg/h)= ×0.9229 (3-1)= ×0.8785 (3-2)= ×0.8923 (3-3)=×0.9017 (3-4)又因为:W= + + + =33408联立解式(3-1)、(3-2)、(3-3)、(3-4),可以求得:D=19851(kg/h)= 16340(kg/h)=11093(kg/h)=3699(kg/h)=2242(kg/h)校核结果与假设比较 :=0.008 =0.008=0.028 =0.002从计算看出,设计方案与实际校核后的结果相差不大,所以设计比较合理,可以使用。