(完整word版)等腰三角形中的分类讨论问题归类

合集下载

(完整word版)等腰三角形存在性问题(带答案).doc

(完整word版)等腰三角形存在性问题(带答案).doc

等腰三角形存在性问题(两圆一线)类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是()2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ()个.3 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC的面积之和等于.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB=.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点 Q 是 BC的中点,点P 在 AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P有()个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有()个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;等腰三角形存在性问题(两圆一线)答案类型一、格点中的等腰三角形1、在如图所示的 5×5方格中,每个小方格都是边长为 1的正方形,△ABC是格点三角形(即顶点恰好是正方形的顶点),则与△ABC 有一条公共边且全等的所有格点三角形的个数是(4)2、 .如图,在正方形网格的格点(即最小正方形的顶点)中找一点C,使得△ABC是等腰三角形,且AB 为其中一腰.这样的 C 点有 ( B)个.A.8B.9C.10D.113 、如图, A、B 是网格中的两个格点,点 C 也是网格中的一个格点,连接AB、 BC、AC,当△ ABC为等腰三角形时,格点 C 的不同位置有3处,设网格中的每个小正方形的边长为1,则所有满足题意的等腰三角形ABC 的面积之和等于15.【解答】解:格点 C 的不同位置分别是:C、C′、 C″,∵网格中的每个小正方形的边长为1,∴S△ABC= × 4× 3=6,S△ABC′=20﹣2× 3﹣=6.5,S△ABC″=2.5,∴S△ABC+S△ABC′+S△ABC″=6+6.5+2.5=15.故答案分别为: 3; 15.4、如图,在图中能画出与△ABC全等的格点三角形有几个?类型二、定边几何法讨论:两圆一线5、以线段AB 为一边的等腰直角三角形有个,请在下列图中画出来6、( 1)如图所示,线段OD 的一个端点O 在直线 AB 上,以 OD 为一边的等腰三角形ODP,并且使点P 也在 AB 上,这样的等腰三角形能画4个(在图中作出点P)( 2)若∠ DOB=60°,其它条件不变,则这样的等腰三角形能画2个,(只写出结果)( 3)若改变( 2)中∠ DOB的度数,其他条件不变,则等腰三角形ODP的个数和( 2)中的结果相同,则改变后∠DOB= 90 °.7、如图,南北向的公路上有一点A,东西向的公路上有一点B,若要在南北向的公路上确定点P,使得△ PAB 是等腰三角形,则这样的点P 最多能确定()个.8、线段 AB 和直线 l 在同一平面上.则下列判断可能成立的有 5 个直线 l 上恰好只有个 1 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 2 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 3 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 4 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 5 点 P,使△ ABP为等腰三角形直线 l 上恰好只有个 6 点 P,使△ ABP为等腰三角形.9、如图AOB ,当AOB为 30 , 60 , 120 时,请在射线OA 上找点 P,使POB 为等腰三角形,并分析出当AOB 发生变化时,点P 个数的情况;【结论】当AOB 为锐角,AOB60 ,有三个点,当AOB =60,只有一个点;当 AOB 为钝角或直角,只有一个点;类型三、三角形、长方形和正方形中的等腰三角形10、如图,在长方形ABCD中, AB=4, AD=10,点Q 是BC的中点,点P 在AD 边上运动,若△ BPQ 是腰长为 5 的等腰三角形,则满足题意的点P 有 ( B )A.2 个B.3 个C.4 个D.5 个11、如图所示,在长方形ABCD 的对称轴上找一点P,使得△ PAB,△ PBC均为等腰三角形,则满足条件的点P 有(C )A.1 个B.3 个C.5 个D.无数多个12、如图,边长为 6 的正方形 ABCD内部有一点P,BP=4,∠ PBC=60°,点 Q 为正方形边上一动点,且△ PBQ是等腰三角形,则符合条件的Q 点有 ____个.13、在等边△ ABC所在的平面内求一点P,使△ PAB,△ PBC,△ PAC都是等腰三角形,请画出所有满足条件的点;。

江苏中考数学复习--题型六分类讨论问题(word解析版)

江苏中考数学复习--题型六分类讨论问题(word解析版)

二、选填重难点突破题型六分类讨论问题类型一直角三角形中的分类讨论1.(2015宿迁)在平面直角坐标系中,点A,B的坐标分别为(-3,0)、(3,0),点P在反比例函数y=的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个B. 4个C. 5个D. 6个2.已知△ABC中,AB=20,AC=15,BC边上的高为12,则△ABC的周长为.类型二等腰三角形中的分类讨论1.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条2.在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC 所在直线的距离是 ( )A. 1B.1或C.1或D.或类型三相似三角形中的分类讨论1.(2014常州)如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=8,AD=3,BC=4,点P为AB边上一动点,若△PAD与△PBC是相似三角形,则满足条件的点P 的个数是()A.1个B.2个C.3个D. 4个2.(2015凉山州)在ABCD中,M,N是AD边上的三等分点,连接BD,MC相交于O点,则S△MOD∶S△COB =.类型四圆中的分类讨论在平面直角坐标系xOy中,直线l经过点A(-3,0),点B(0,3),点P的坐标为(1,0),⊙P与y轴相切于点O,若将⊙P沿x轴向左平移,平移后得到⊙P′(点P的对应点为P′),当⊙P′与直线l相交时,横坐标为整数的点P′共有 ( )A. 1个B.2个C. 3个D.4个【答案】类型一直角三角形中的分类讨论1. D【解析】如果以AB为直径画圆与双曲线相交,交点有4个,这四个点与AB组成的三角形是直角三角形而且是以AB为斜边,如果以A,B为直角顶点,则双曲线上还有两个点使△ABP为直角三角形,故选D.2. 60或42【解析】如解图,作AD⊥BC于点D,则AD为BC边上的高,AD=12,分两种情况:①高AD在三角形内,如解图①所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD+DC=16+9=25,所以,△ABC的周长为AB+AC+BC=20+15+25=60.②高AD在三角形外,如解图②所示:在Rt△ADC中,由勾股定理得:AC2=AD2+DC2,∴DC=,在Rt△ADB中,由勾股定理得:AB2=AD2+BD2,∴BD=,∴BC=BD-DC=16-9=7,所以,△ABC的周长为AB+AC+BC=20+15+7=42.故△ABC的周长为60或42.类型二等腰三角形中的分类讨论1.B【解析】如解图所示:当BC1=AC1,AC=CC2,AB=BC3,AC4=CC4,AB=AC5,AB=AC6,BC7=CC7时,都能得到符合题意的等腰三角形.故选B.2. D【解析】分两种情况:如解图①,延长AC,作PD⊥BC交点为D,PE⊥AC,交点为点E,∵CP∥AB,∴∠PCD=∠CBA=45°,∴四边形CDPE是正方形,则CD=DP=PE=EC,∵在等腰Rt△ABC中,AC=BC=1,∴AB=,∴AB=AP=;∴在Rt△AEP中,(1+EC)2+EP2=AP2,∴(1+DP)2+DP2=()2,解得,DP=或DP=(与题意不符,舍去);如解图②,延长BC,作PD⊥BC,交点为D,延长CA,作PE⊥CA,交点为E,同理可证,四边形CDPE是正方形,∴CD=DP=PE=EC,同理可得,在Rt△AEP中,(EC-1)2+EP2=AP2,∴(PD-1)2+PD2=()2,解得,PD=或(与题意不符,舍去).故选D.类型三相似三角形中的分类讨论1. C【解析】∵AB⊥BC,∴∠B=90°.∵AD∥BC,∴∠A=180°-∠B=90°,∴∠PAD=∠PBC=90°,AB=8,。

【初二数学方法技巧专题】等腰三角形的分类讨论思想

【初二数学方法技巧专题】等腰三角形的分类讨论思想

【初二数学方法技巧专题】等腰三角形的分类讨论思想每日更新教研资源等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在解有关等腰三角形问题时,当所给的边、角等条件不明确时,常常要进行分类讨论,否则易造成错解.那么在什么情况下应该进行分类讨论呢?下面有4种常考题型,快来和小名老师一起学习一下吧!类型1针对顶角和底角进行分类例1. 若等腰三角形中有一个角等于70°,则这个等腰三角形的顶角的度数是()A.70° B.40°C.70°或40° D.70°或55°分析:70°角可能是底角,也可能是顶角.当70°是底角时,则顶角的度数为180°-70°×2=40°;当70°角是顶角时,则顶角的度数就等于70°.所以这个等腰三角形的顶角为30°或75°.故应选C.变式已知一个等腰三角形中有一个角为100°,则这个等腰三角形的顶角为 .答案100°方法归纳:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.类型2针对腰长和底边长进行分类题型1 遇边需讨论例2 已知等腰三角形一边长等于5,另一边长等于9,则它的周长是 .分析:已知条件中并没有指明5和9谁是腰长谁是底边的长,因此需要针对腰长及底边长分别是哪一个进行分类谈论.当5是等腰三角形的腰长时,这个等腰三角形的底边长就是9,则此时等腰三角形的周长等于5+5+9=19;当9是等腰三角形的腰长时,这个等腰三角形的底边长就是5,则此时等腰三角形的周长等于9+9+5=23.故这个等腰三角形的周长等于19或23.变式答案25方法归纳:在已知条件中没有明确等腰三角形的腰长和底边长时,应分类讨论.分类讨论时,还要判断所给的三边能否构成三角形,避免造成错解.题型2 遇中线需讨论例3 已知等腰△ABC中,一腰AC上的中线BD将三角形的周长分成9 cm和12 cm两部分,则这个三角形的腰长和底边长分别为 .分析:已知条件并没有指明哪一部分是9cm,哪一部分是12cm,因此,应有两种情形:①AB+AD=9,BC+CD=12;②AB+AD=12,BC+CD=9.若设这个等腰三角形的腰长是xcm,底边长为ycm,可得:即当腰长是6 cm时,底边长是9 cm;当腰长是8 cm时,底边长是5 cm.变式若等腰三角形一腰上的中线分周长为9cm和15cm两部分,则这个等腰三角形的底和腰的长分别为 .答案10 cm和4 cm.易错警示:这里求出来的解验证一下三角形的边满足三角形三边关系定理,如果不满足一定要舍去.类型3针对三角形的形状进行分类题型1 遇高需讨论例4 已知等腰三角形一腰上的高与另一腰的夹角为36°,求这个等腰三角形的底角的度数.分析:本题中等腰三角形腰上的高可能在三角形内部,也可能在三角形外部,故应分原三角形为锐角三角形和钝角三角形进行分类求解.详解:分两种情况讨论:①若∠A<90°,如图1所示.∵BD⊥AC,∴∠A+∠ABD=90°.∵∠ABD=36°,∴∠A=90°-36°=54°.∵AB=AC,∴∠ABC=∠C=1/2×(180°-54°)=63°.②若∠A>90°,如图2所示.同①可得∠DAB=90°-36°=54°,∵AB=AC,∴∠ABC=∠C=1/2∠DAB=27°.综上所述:等腰三角形底角的度数为63°或27°.题型2 遇中垂线需讨论例5 在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____.分析:本题中AB的中垂线与AC直线的交点不确定,交点可能在边AC上,也可能在其延长线上,故需进行分类讨论.详解:按照题意可画出如图1和如图2两种情况的示意图.如图1,当交点在腰AC上时,ΔABC是锐角三角形,此时可求得∠A=40°,所以如图2,当交点在腰CA的延长线上时,ΔABC为钝角三有形,此时可求得∠BAD=40°,所以故这个等腰三角形的底角为70°或20°.易错警示:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题.类型4找点构造等腰三角形需讨论例6 如图,已知线段AB,在直线l上找一点C,使ΔABC为等腰三角形这样的C 点有个.分析:存在三种情况①AB=AC;②BA=BC;③CA=CB.详解:①当AB=AC时,以点A为圆心,AB长为半径画圆与直线l的交点C3即为所求点;②当BA=BC时,以点B为圆心,AB长为半径画圆与直线l的交点C1,C2即为所求点;③当CA=CB时,做线段AB的垂直平分线与直线l的交点C4即为所要求点.所以使ΔABC为等腰三角形这样的C 点有4个方法指导:等腰三角形的存在性问题方法常用两圆一线。

等腰三角形

等腰三角形

等腰三角形性质及分类讨论(讲义)一、知识点睛1. 在等腰三角形中,顶角的平分线,底边上的中线,底边上的高重合(也称“三线合一”),这是等腰三角形的重要性质.2. 在一个三角形中,当中线,高线,角平分线“三线”中有“两线”重合时,尝试构造等腰三角形.3. 分类讨论的类型: ①定义法则.如绝对值,平方,完全平方式等. ②关键词不明确.如等腰三角形的角(底角与顶角),边(底边与腰)等. ③位置不确定.如线段端点的位置,角的位置,高等. ④对应关系不确定.如两部分的差,全等三角形对应关系等. 4. 分类讨论题目解题要点: ①辨识类型;②画出各种类型的图形并求解; ③根据标准进行取舍.标准包括限制条件,实际意义等.二、精讲精练1. 已知:如图,D ,E 分别是AB ,AC 的中点,CD ⊥AB 于D ,BE ⊥AC 于E ,CD ,BE 交于点O .求证:AB =AC .O EC DB2. 已知:如图,在△ABC 中,∠A =90º,AB =AC ,BD 平分∠ABC ,CE ⊥BD 交BD 的延长线于E ,若CE =5cm ,求BD 的长.AED3.如图,在△ABC中,延长BC到D,使CD=AC,连接AD,CF平分∠ACB,交AB于F,AF=BF.求证:BC=CD.AF4.如图,在△ABC中,点E在AB上,AE=AC,连接CE,点G为EC的中点,连接AG并延长交BC于D,连接ED,过点E作EF∥BC交AC于点F.求证:EC平分∠DEF.GEBFC A5.(1)若4x2-(m-1)xy+9y2是完全平方式,则m=_________.(2)若x2-4xy+ny2是完全平方式,则n=_________.(3)若9x2-12xy+(m+1)2y2是完全平方式,则m=_________.6.等腰三角形的一个角是另一个角的4倍,则顶角的度数为______________.7.已知一等腰三角形的三边分别是3x-1,x+1,5,则x=________.8.在直线l上任取一点A,截取AB=2cm,再截取AC=3cm,则线段BC的长为______________.9.等腰三角形一腰上的高与另一腰的夹角为25°,则顶角的度数为__________.10.若等腰三角形的底边长为5cm,一腰上的中线把其周长分成的两部分之差为3cm,则腰长为__________.11.已知等腰三角形的周长为20cm,两边的差为2cm,则底边长为__________.12.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为30º,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?求出每个等腰三角形顶角的度数.B30°lA13.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,在直线BC或AC上取一点P,使得△P AB为等腰三角形,找出所有符合条件的点P.AB C三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】1.证明略(提示:连接BC,证明AC=BC,AB=BC)2.10cm(提示:延长CE交BA的延长线于点F,证明BD=2CE)3.证明略(提示:延长CF到E,使CF=EF,连接BE,证明△AFC≌△BEF,再证明BE=BC)4.证明略(提示:利用等腰三角形“三线合一”,证明AD⊥EC,再证明ED=CD,利用平行导角)5.(1)-11,13 (2)4 (3)1,-36.120°或20°7. 28.1cm或5cm9.65°或115°10. 8cm 11. 8cm 或163cm 12. 作图略 13. 作图略等腰三角形性质及分类讨论(随堂测试)1. 若x 2-(a+1)xy +4y 2是完全平方式,则a =_________.2. 等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形顶角的度数为______________.3. 如图,在△ABC 中,D ,E 为BC 上的点,AC =CD ,CF ⊥AD 交AD 于G ,交AB 于F ,AD 平分∠BAE . 求证:DF ∥AE .【参考答案】1.3或-52.50°或130°3.证明略;(利用等腰三角形“三线合一”得到AG =DG ,得到AF =FD ,证得∠F AD =∠FDA ,由角平分线可得∠FDA =∠EAD ,所以DF ∥AE ) FGEDA等腰三角形性质及分类讨论(作业)14.已知:如图,在△ABC中,AD平分∠BAC,BD=CD,E,F分别为AB,AC边上的点,BE=CF.求证:DE=DF.15.已知:如图,在等边△ABC中,D是AC的中点,E是BC延长线上一点,CE=CD,DM⊥BC,垂足为M.求证:BM=ME.16.如图,在△ABC中,D为BC上一点,DE⊥AB,DF⊥AC,垂足分别为E,F,DE平分∠ADB,AF=FC,连接AD.M DAF DAE求证:BD=CD.AFE17.若4x2-axy+16y2是完全平方式,则a=_________.18.在直线l上任取一点A,截取AB=8cm,点C为AB中点,截取CD=5cm,则线段AD的长为______________.19.若等腰三角形的一个角比另一个角大30°,则此等腰三角形顶角的度数为______________.20.已知一等腰三角形的三边分别是5x 3,3x+3,27,则x=__________.21.等腰三角形一腰的垂直平分线与另一腰所在的直线夹角为30°,则顶角的度数为__________.22.已知等腰三角形的周长为24cm,两边的差为3cm,则底边长为__________.23.在已知直线l上找一点C,和直线外的A,B两点组成一个等腰三角形.一共可以画出几个符合条件的等腰三角形?请你在直线l上找出所有符合条件的点C.l【参考答案】1.证明略(提示:延长AD到H,使DH=AD,连接BH,证明△BHD≌△CAD,导出AB=AC,再证明△BED≌△CFD)2.证明略(提示:连接BD,利用“三线合一”证明∠DBE=∠E=30°)3.证明略(提示:证明AD=DC,AD=BD)4.±165. 1cm 或9cm6. 80°或40°7. 6或88. 60°或120°9. 10cm 或6cm 10. 点C 有5个,作图略等腰三角形(讲义)一、知识点睛1. ______________的三角形叫做等腰三角形.2. 等腰三角形是_________图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“__________”),它们所在的直线都是等腰三角形的_________.3. 等腰三角形的两个底角________,简称______________.如果一个三角形有两个角相等,那么它们所对的边也______,简称_________________.4. 三边都______的三角形是等边三角形.等边三角形三边都相等,三个内角都是________.二、精讲精练1. 在下面的等腰三角形中,∠A 是顶角,请分别将它们底角的度数标注在相应的图上.2. 如图,在△ACD 中,AD =BD =BC ,若∠C =25°,则∠ADB =____.ABC DABDC第2题图第3题图3. 如图,在等腰△ABC 中,AB =AC ,D 为边BC 上一点,CD =AC ,AD =BD ,则∠BAC =_________.4. 如图,在Rt △ABC 中,∠B =90°,DE 垂60°108°BA C ABC A BCA直平分AC ,交AC 于D ,交BC 于E ,连接AE ,若 ∠BAE :∠BAC =1:5,则∠C =_____.5. 如图,在△ABC 中,BE 平分∠ABC ,DE ∥BC . (1)若∠ADE =80°,则∠DEB =________.(2)若F 为BE 中点,则DF 与BE 的位置关系是________.C DAB EF6. 已知:如图,在等边△ABC 中,D 是AC 的中点,E 是BC 延长线上一点,且CE =CD ,DM ⊥BC 于M . 求证:M 是BE 的中点.7. 已知:如图,在△ABC 中,AB =AC ,D 为AC 上任意一点,延长BA 到E ,使AE =AD ,连接DE .求证:DE ⊥BC .E DCAECMAD B8. 已知:如图,△ABC 是等边三角形,D 是BC 的中点,DF ⊥AC 于F ,延长DF 到E ,使EF =DF ,连接AE .求∠E 的度数.FE DCBA9. 若等腰三角形的周长为13cm ,其中一边长为3cm ,则该等腰三角形的底边长为_______________.10. 若等腰三角形的周长是25cm ,一腰上的中线将周长分为3:2的两部分,则此三角形的底边长为_____________.11. 若等腰三角形的一个内角为40°,则此等腰三角形的顶角为______________.12. 若等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为40°,则此等腰三角形的顶角为______________.13. 已知:如图,线段AB 的端点A 在直线l 上(AB 与l 不垂直),请在直线l上另找一点C ,使△ABC 是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.14.已知:如图,线段AB的端点A在直线l上,AB与l的夹角为60°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.三、回顾与思考_____________________________________________________________________ _____________________________________________________________________ ______________________________【参考答案】一、知识点睛1.有两边相等的三角形叫做等腰三角形.2.等腰三角形是轴对称图形.等腰三角形顶角的平分线、底边上的中线、底边上的高重合(也称“三线合一”),它们所在的直线都是等腰三角形的对称轴.3.等腰三角形的两个底角相等,简称等边对等角.如果一个三角形有两个角相等,那么它们所对的边也相等,简称等角对等边.4.三边都相等的三角形是等边三角形.等边三角形三边都相等,三个内角都是60°.1.60°,60°;45°,45°;36°,36°2.80°3.108°4.40°5.(1)40°;(2)DF⊥BE6.提示:连接BD,由三线合一得∠DBC=∠E=30°,从而得到BD=ED,△BDE是等腰三角形,利用三线合一可以知道底边BE上的高DM也是BE边上的中线,所以M是BE的中点.7.提示:延长ED与BC交于点F,根据已知条件可以知道△AED和△ABC是等腰三角形,设∠E=α,可以表示出∠CDF=α,∠BAC=2α,∠C=90 α,得到∠EFC=90°,所以DE⊥BC.8.提示:连接AD,利用垂直平分线定理得AD=AE,从而∠E=∠ADE.9.3cm10.5cm或353cm11.40°或100°12.50°或130°13.这样的点有4个14.这样的点有2个等腰三角形(随堂测试)1.如图,在△ABC中,D为AC边上一点,且AD=BD=BC.若∠A=40°,则∠DBC=______.DC2. 等腰三角形的周长为28cm ,其中一边长为10cm ,则该等腰三角形的底边长为_______________.3. 已知:如图,在△ABC 中,E 为BC 边上一点,连接AE ,D 为AE 的中点,连接BD ,∠BAD =∠EAC +∠C .求证:AD ⊥BD .E DCB A【参考答案】1. 20°2. 10cm 或8cm3. 提示:利用外角可以得到∠AEB =∠BAD ,根据等角对等边,得到BA =BE ,因为D 是AE 的中点,利用等腰三角形三线合一,可以得到AD ⊥BD .等腰三角形(作业)1. 如图,在△ABC 中,AB =AC ,BD 平分∠ABC ,交AC 于点D ,点E 在BC 边上,且BD =BE .若∠A =84°,则∠DEC =______.E DC BA2. 已知:如图,在△ABC 中,AB =AC ,D 为AB 边上一点,若CD =AD =BC ,则∠A =_________.DCB AN MEA第2题图第3题图3. 如图,在△ABC 中,∠ABC 的平分线和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M ,交AC 于N .若BM +CN =9,则线段MN 的长为( ) A .6B .7C .8D .94. 如图,在△ABC 中,AB =AC ,点D 在△ABC 外,CD ⊥AD 于D ,12CD BC.求证:∠ACD =∠B .DB A5. 已知:如图,在△ABC 中,AB =AC ,AD 是BC 边上的中线,点P 在AD 上.求证:PB=PC .DBAP6. 已知:如图,B ,D ,E ,C 在同一直线上,AB =AC ,AD =AE . 求证:BD =CE .AB CD E7. 等腰三角形两边长分别为4和8,则这个等腰三角形的周长为________. 8. 等腰三角形的一个角比另一个角大30°,则这个三角形的顶角的度数为_____________.9. 已知:如图,线段AB 的端点A 在直线l 上,AB 与l 的夹角是30°,请在直线l上另找一点C,使△ABC是等腰三角形.这样的点能找几个?请你找出所有符合条件的点.1.78°2.36°3. D4.提示:过点A作AE⊥BC于E,可证Rt△ADC≌Rt△AEB(HL),从而得到∠ACD=∠B.5.提示:利用等腰三角形三线合一的性质,得AD垂直平分BC,从而得到PB=PC.6.提示:根据等边对等角可以得到∠B=∠C,∠ADE=∠AED,进而可以得到∠BAD=∠CAE,从而证明△ABD≌△ACE(ASA),根据全等三角形对应边相等,可以得到BD=CE.7.208.80°或40°9.共有4个,图略.。

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论(含答案)

等腰三角形中的分类讨论
类型1对顶角和底角的分类讨论
对于等腰三角形,只要已知它的一个内角的度数,就能算出其他两个内角的度数,如果题中没有确定这个内角是顶角还是底角,就要分两种情况来讨论.在分类时要注意:三角形的内角和等于180°;等腰三角形中至少有两个角相等.
1.等腰三角形中有一个角为52°,它的一条腰上的高与底边的夹角为多少度?
解:①若已知的这个角为顶角,则底角的度数为(180°-52°)÷2=64°,故一腰上的高与底边的夹角为26°;
②若已知的这个角为底角,则一腰上的高与底边的夹角为38°.
故所求的一腰上的高与底边的夹角为26°或38°.
类型2对腰长和底长的分类讨论
在解答已知等腰三角形边长的问题时,当题目条件中没有明确说明哪条边是“腰”、哪条边是“底”时,往往要进行分类讨论.判定的依据是:三角形的任意两边之和大于第三边;两边之差小于第三边.
2.(1)已知等腰三角形的一边长等于6 cm,一边长等于7 cm,求它的周长;
(2)等腰三角形的一边长等于8 cm,周长等于30 cm,求其他两边的长.
解:(1)周长为19 cm或20 cm.
(2)其他两边的长为8 cm,14 cm或11 cm,11 cm.
1。

专题——等腰三角形中的分类讨论 5

专题——等腰三角形中的分类讨论 5
例5、等腰三角形一腰上的高与另一边的夹角 为250,求这个三角形的各个内角的度数。
解:设AB=AC,BD⊥AC; (1)高与底边的夹角为250时,高在△ABC的内部, 如图1,∵∠DBC=250,∴∠C=900-∠DBC=900250=650, ∴ ∠ABC=∠C=650,∠A=1800-2×650=500。
分析:题目中AB边上的垂直平分线与直线 AC相交有两种情形;
E
解:(1)如右图1,AB边的垂直平分线与AC边
交于点D,
B
∠ADE=400,则∠A=900-∠ADE=500,
∵AB=AC, ∴∠B=(1800-500)÷2=650。
(2)如右图2,AB边的垂直平分线与直线AC的反
向延长线交于点D,∠ADE=400,则∠DAE=500,
∴∠BAC=1300,∵AB=AC,∴∠B=(1800-1300)
÷2=250,
故∠B的大小为650或250。
A
400 D C
六、几何图形之间的位置关系不明确而需分类 讨论的问题
例7、已知C、D两点在线段AB的中垂线上,且 ∠ACB=500,∠ADB=800,求∠CAD的度数
解:(1)如图1,当C、D两点在线段
A
• ①45°,45°,90°
xx
• • ②108°,36°,36°
x
x
B
D
C

• ③36°,72°,72°
A



180 7
,
540 7
,
540 7
x
x B
D 2x
2x C
x B
A 2x x
2x D
x C
A x
D
2x

(完整word版)初中数学等腰三角形分类讨论与存在性问题

(完整word版)初中数学等腰三角形分类讨论与存在性问题

1初中数学等腰三角形的分类议论等腰三角形是一种特别而又十分重要的三角形,就是因为这类特别性,在详细办理问题时常常又会出现错误,所以,同学们在求解有关等腰三角形的问题时必定要注意分类议论。

那么在什么状况下应当分类议论呢?本课分以下几种情况叙述。

一. 遇角需议论例 1.已知等腰三角形的一个内角为 75 °则其顶角为()A.30 °B.75 °C. 105 °D. 30 °或75 °说明:关于一个等腰三角形,若条件中并没有确立顶角或底角时,应注意分情况议论,先确立这个已知角是顶角仍是底角,再运用三角形内角和定理求解。

二. 遇边需议论例 2.已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

说明:关于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在切合三角形三边关系的前提下分类议论。

三. 遇中线需议论例 3. 若等腰三角形一腰上的中线分周长为 9cm 和 12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是 9cm ,哪一部分是 12cm ,说明:这里求出来的解应知足三角形三边关系定理。

四. 遇高需议论例 4. 等腰三角形一腰上的高与另一腰所成的夹角为 45 °,求这个等腰三角形的顶角的度数。

简析:例 5. 为美化环境,计划在某小区内用30m2的草皮铺设一块一边长为 10 m的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。

说明:三角形的高是由三角形的形状决定的,关于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。

五.遇中垂线需议论例 6. 在 ABC 中, AB=AC , AB 的中垂线与 AC 所在直线订交所得的锐角为 50 °,则底角∠ B=____________ 。

说明:这里的 --- 最简单遗漏,求解时必定要仔细剖析题意,画出全部可能的图形,这样才能正确解题。

等腰三角形中的分类讨论63

等腰三角形中的分类讨论63

等腰三角形中的分类讨论:1. 已知等腰三角形的一个内角为75°则其顶角为2、等腰三角形中,一个角是另一个角的两倍,求它各角的度数.3、若等腰三角形的一个外角为70°,则它的底角为____.4、等腰三角形的一个外角等于110°,则顶角的度数为.5、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

6、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是7、等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为8、若等腰三角形的两边长分别为9cm和4cm,其周长为9、已知等腰三角形的周长为20cm,一边长为8cm,则其它两边长分别是.10、若等腰三角形一腰上的中线分周长为9cm和12cm两部分,这个等腰三角形的底和腰的长分别是。

11、等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,三角形各边的长.12、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,腰长为.13.等腰三角形底边长为5cm,一腰上的中线把周长分成的两部分之差为2cm,则腰长为14. 等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角的度数。

15.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为16.等腰三角形一腰上的高与另一腰的夹角为35 °,则其顶角为17、已知等腰三角形ABC中,BC边上的高12A DB C,∠BAC的度数.18、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,等腰三角形的周长为.19.已知点A和点B,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作出20在等边△ABC所在的平面内求一点P,使△PAB、△PBC、△PAC都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.21.如图所示,在△ABC中,∠1=∠2,点G为AD的中点,延长BG交AC于点E,F为AB上一点,且CF⊥AD于点H,下列判断中正确的是( )(1)AD是△ABE的角平分线;(2)BE是△ABD边AD上的中线;(3)CH是△ACD边AD上的高.22.如图,△ABC的边BC上的高为AF,AC边上的高为BG,中线为AD,已知AF=6,BC=10,BG=5.(1)求△ABC的面积;(2)求AC的长;(3)说明△ABC和△ACD的面积的关系.23.如图,在△ABC 中,BP 、CP 分别是∠ABC 和∠ACB 的平分线,且PD //AB ,PE //AC ,求△PED 的周长.24.如图,在等腰△ABC 中,∠C=90°,如果点B 到∠A 的平分线AD 的距离为5cm,求AD 的长。

初中数学等腰三角形的存在性问题(word版+详解答案)

初中数学等腰三角形的存在性问题(word版+详解答案)

等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

【解题攻略】在讨论等腰三角形的存在性问题时,一般都要先分类.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.几何法一般分三步:分类、画图、计算.哪些题目适合用几何法呢?如果△ABC的∠A(的余弦值)是确定的,夹∠A的两边AB和AC可以用含x的式子表示出来,那么就用几何法.①如图1,如果AB=AC,直接列方程;②如图2,如果BA=BC,那么;③如图3,如果CA=CB,那么.代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果三角形的三个角都是不确定的,而三个顶点的坐标可以用含x的式子表示出来,那么根据两点间的距离公式,三边长(的平方)就可以罗列出来.【解题类型及其思路】解题类型:动态类型:1.一动点类型问题;2.双动点或多动点类型问题背景类型:1.几何图形背景;2.平面直角坐标系和几何图形背景解题思路:几何法一般分三步:分类、画图、计算;代数法一般也分三步:罗列三边长,分类列方程,解方程并检验.如果△ABC是等腰三角形,那么存在①AB=AC,②BA=BC,③CA=CB三种情况.已知腰长画等腰三角形用圆规画圆,已知底边画等腰三角形用刻度尺画垂直平分线.解等腰三角形的存在性问题,有几何法和代数法,把几何法和代数法相结合,可以使得解题又好又快.【典例指引】类型一【二次函数综合题中根据条件判定三角形的形状】典例指引1.抛物线2y x bx c =++与x 轴交于点A ,点B (1,0),与y 轴交于点C (0,﹣3),点M 是其顶点. (1)求抛物线解析式;(2)第一象限抛物线上有一点D,满足∠DAB=45°,求点D 的坐标;(3)直线x t = (﹣3<t <﹣1)与x 轴相交于点H .与线段AC ,AM 和抛物线分别相交于点E ,F ,P .证明线段HE ,EF ,FP 总能组成等腰三角形.【举一反三】(2020·江西初三期中)如图①,已知抛物线y=ax 2+bx+3(a≠0)与x 轴交于点A (1,0)和点B (-3,0),与y 轴交于点C .(1)求抛物线的解析式;(2)设抛物线的对称轴与x 轴交于点M ,问在对称轴上是否存在点P ,使△CMP 为等腰三角形?若存在,请直接写出所有符合条件的点P 的坐标;若不存在,请说明理由;(3)如图②,若点E 为第二象限抛物线上一动点,连接BE 、CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标.类型二【利用二次函数的性质与等腰三角形的性质确定点的坐标】典例指引2.(2019·山东初三期末)如图1,已知抛物线2()30y ax bx a =++≠与x 轴交于点(1,0)A 和点(3,0)B -,与y 轴交于点C .(l )求抛物线的表达式;(2)如图l ,若点E 为第二象限抛物线上一动点,连接,BE CE ,求四边形BOCE 面积的最大值,并求此时E 点的坐标;(3)如图2,在x 轴上是否存在一点D 使得ACD ∆为等腰三角形?若存在,请求出所有符合条件的点D 的坐标;若不存在,请说明理由.【举一反三】(2019·广东省中山市中山纪念中学三鑫双语学校初三期中)如图,已知抛物线y =ax 2+bx +c 的图象与x 轴交于A (2,0),B (﹣8,0)两点,与y 轴交于点C (0,﹣8).(1)求抛物线的解析式;(2)点F是直线BC下方抛物线上的一点,当△BCF的面积最大时,求出点F的坐标;(3)在(2)的条件下,是否存在这样的点Q(0,m),使得△BFQ为等腰三角形?如果有,请直接写出点Q的坐标;如果没有,请说明理由.类型三【确定满足等腰三角形的动点的运动时间】典例指引3.(2018济南中考)如图1,抛物线平移后过点A(8,,0)和原点,顶点为B,对称轴与轴相交于点C,与原抛物线相交于点D.(1)求平移后抛物线的解析式并直接写出阴影部分的面积;(2)如图2,直线AB与轴相交于点P,点M为线段OA上一动点,为直角,边MN与AP相交于点N,设,试探求:①为何值时为等腰三角形;②为何值时线段PN的长度最小,最小长度是多少.【举一反三】如图所示,抛物线y=ax2+bx+c(a≠0)经过A(﹣1,0)、B(3,0)、C(0,3)三点.点D从C出发,沿线段CO以1个单位/秒的速度向终点O运动,过点D作OC的垂线交BC于点E,作EF∥OC,交抛物线于点F.(1)求此抛物线的解析式;(2)小明在探究点D运动时发现,①当点D与点C重合时,EF长度可看作O;②当点D与点O重合时,EF长度也可以看作O,于是他猜想:设点D运动到OC中点位置时,当线段EF最长,你认为他猜想是否正确,为什么?(3)连接CF、DF,请直接写出△CDF为等腰三角形时所有t的值.【新题训练】1.(2020·江西初三)如图,在平面直角坐标系中,已知点A(﹣2,﹣4),直线x=﹣2与x轴相交于点B,连接OA,抛物线y=﹣x2从点O沿OA方向平移,与直线x=﹣2交于点P,顶点M到点A时停止移动.(1)线段OA 所在直线的函数解析式是 ;(2)设平移后抛物线的顶点M 的横坐标为m ,问:当m 为何值时,线段PA 最长?并求出此时PA 的长. (3)若平移后抛物线交y 轴于点Q ,是否存在点Q 使得△OMQ 为等腰三角形?若存在,请求出点Q 的坐标;若不存在,请说明理由.2.(2018·山东中考真题)如图,在平面直角坐标系中,二次函数2y ax bx c =++交x 轴于点()4,0A -、()2,0B ,交y 轴于点()0,6C ,在y 轴上有一点()0,2E -,连接AE .(1)求二次函数的表达式;(2)若点D 为抛物线在x 轴负半轴上方的一个动点,求ADE ∆面积的最大值;(3)抛物线对称轴上是否存在点P ,使AEP ∆为等腰三角形,若存在,请直接写出所有P 点的坐标,若不存在请说明理由.3.(2016·广西中考真题)在平面直角坐标系中,抛物线223y x x =--+与x 轴交于A ,B 两点(A 在B的左侧),与y 轴交于点C ,顶点为D . (1)请直接写出点A ,C ,D 的坐标;(2)如图(1),在x 轴上找一点E ,使得△CDE 的周长最小,求点E 的坐标;(3)如图(2),F 为直线AC 上的动点,在抛物线上是否存在点P ,使得△AFP 为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.4.(2019·广东广州市第二中学初三)如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=12-x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=12-x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图,动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE 13个单位长度的速度向终点E运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值,如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,求出此时t的值.5.(2019·湖南中考模拟)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y 轴交于点C(0,3),抛物线的对称轴与x轴交于点D.(1)求二次函数的表达式;(2)在y轴上是否存在一点P,使△PBC为等腰三角形?若存在.请求出点P的坐标;(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M 同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.6.(2018·山东中考模拟)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.7.(2019·山东中考模拟)已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C (﹣2,0),点P是线段AB上方抛物线上的一个动点.(1)求抛物线的解析式;(2)当点P运动到什么位置时,△PAB的面积有最大值?(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P 使△PDE 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,说明理由.8.(2018·广东中考模拟)如图,在平面直角坐标系xOy 中,二次函数24y ax bx =+-(0a ≠)的图象与x 轴交于A (﹣2,0)、B (8,0)两点,与y 轴交于点B ,其对称轴与x 轴交于点D .(1)求该二次函数的解析式;(2)如图1,连结BC ,在线段BC 上是否存在点E ,使得△CDE 为等腰三角形?若存在,求出所有符合条件的点E 的坐标;若不存在,请说明理由;(3)如图2,若点P (m ,n )是该二次函数图象上的一个动点(其中m >0,n <0),连结PB ,PD ,BD ,求△BDP 面积的最大值及此时点P 的坐标.9.(2019·四川中考模拟)如图,已知二次函数y =﹣x 2+bx+c (c >0)的图象与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,且OB =OC =3,顶点为M .(1)求二次函数的解析式;(2)点P 为线段BM 上的一个动点,过点P 作x 轴的垂线PQ ,垂足为Q ,若OQ =m ,四边形ACPQ 的面积为S ,求S 关于m 的函数解析式,并写出m 的取值范围;(3)探索:线段BM 上是否存在点N ,使△NMC 为等腰三角形?如果存在,求出点N 的坐标;如果不存在,请说明理由.10.(2019·甘肃中考模拟)如图,已知二次函数y=ax 2+bx+c 的图象与x 轴相交于A (﹣1,0),B (3,0)两点,与y 轴相交于点C (0,﹣3). (1)求这个二次函数的表达式;(2)若P 是第四象限内这个二次函数的图象上任意一点,PH ⊥x 轴于点H ,与BC 交于点M ,连接PC . ①求线段PM 的最大值;②当△PCM 是以PM 为一腰的等腰三角形时,求点P 的坐标.11.(2019·安徽中考模拟)如图,已知直线1y x =+与抛物线2y ax 2x c =++相交于点()1,0A -和点()2,B m 两点.(1)求抛物线的函数表达式;(2)若点P 是位于直线AB 上方抛物线上的一动点,当PAB ∆的面积S 最大时,求此时PAB ∆的面积S 及点P 的坐标;(3)在x 轴上是否存在点Q ,使QAB ∆是等腰三角形?若存在,直接写出Q 点的坐标(不用说理);若不存在,请说明理由.12.(2018·江苏中考模拟)(2017南宁,第26题,10分)如图,已知抛物线2239y ax ax a =--与坐标轴交于A ,B ,C 三点,其中C (0,3),∠BAC 的平分线AE 交y 轴于点D ,交BC 于点E ,过点D 的直线l 与射线AC ,AB 分别交于点M ,N .(1)直接写出a的值、点A的坐标及抛物线的对称轴;(2)点P为抛物线的对称轴上一动点,若△PAD为等腰三角形,求出点P的坐标;(3)证明:当直线l绕点D旋转时,11AM AN均为定值,并求出该定值.13.(2019·重庆中考模拟)如图,在平面直角坐标系中,一抛物线的对称轴为直线,与y轴负半轴交于C点,与x轴交于A、B两点,其中B点的坐标为(3,0),且OB=OC.(1)求此抛物线的解析式;(2)若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.(3)若平行于x轴的直线与该抛物线交于M、N两点(其中点M在点N的右侧),在x轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.14.(2019·辽宁中考模拟)抛物线y=ax2+bx﹣3(a≠0)与直线y=kx+c(k≠0)相交于A(﹣1,0)、B(2,﹣3)两点,且抛物线与y轴交于点C.(1)求抛物线的解析式;(2)求出C、D两点的坐标(3)在第四象限抛物线上有一点P,若△PCD是以CD为底边的等腰三角形,求出点P的坐标.15.(2020·浙江初三期末)如图,抛物线y=﹣12x2+2x+6交x轴于A,B两点(点A在点B的右侧),交y轴于点C,顶点为D,对称轴分別交x轴、线段AC于点E、F.(1)求抛物线的对称轴及点A的坐标;(2)连结AD,CD,求△ACD的面积;(3)设动点P从点D出发,沿线段DE匀速向终点E运动,取△ACD一边的两端点和点P,若以这三点为顶点的三角形是等腰三角形,且P为顶角顶点,求所有满足条件的点P的坐标.16.(2020·湖北初三期末)如图,已知二次函数的图象经过点A(4,4),B(5,0)和原点O,P为二次函数图象上的一个动点,过点P作x轴的垂线,垂足为D(m,0),并与直线OA相较于点C.(1)求出二次函数的解析式;(2)当点P在直线OA的上方时,求线段PC的最大值;(3)当点P在直线OA的上方时,是否存在一点P,使射线OP平分∠AOy,若存在,请求出P点坐标;若不存在.请说明理由;(4)当m>0时,探索是否存在点P,使得△PCO为等腰三角形,若存在,求出P点的坐标;若不存在,请说明理由.17.(2019·吉林初三)如图1,抛物线与y =﹣211433x x ++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接AC 、BC ,点D 是线段AB 上一点,且AD =CA ,连接CD .(1)如图2,点P 是直线BC 上方抛物线上的一动点,在线段BC 上有一动点Q ,连接PC 、PD 、PQ ,当△PCD 面积最大时,求PQ +10CQ 的最小值; (2)将过点D 的直线绕点D 旋转,设旋转中的直线l 分别与直线AC 、直线CO 交于点M 、N ,当△CMN 为等腰三角形时,直接写出CM 的长.18.(2020·江苏初三期末)在平面直角坐标系xOy 中,抛物线2y x mx n =-++与x 轴交于点A,B ( A 在B的左侧)(1)如图1,若抛物线的对称轴为直线3,4x AB =-= .①点A 的坐标为( , ),点B 的坐标为( , ); ②求抛物线的函数表达式;(2)如图2,将(1)中的抛物线向右平移若干个单位,再向下平移若干个单位,使平移后的抛物线经过点O ,且与x 正半轴交于点C ,记平移后的抛物线顶点为P ,若OCP ∆是等腰直角三角形,求点P 的坐标.等腰三角形的存在性问题【考题研究】近几年各地的中考数学试题中,探索等腰三角形的存在性问题频频出现,这类试题的知识覆盖面较广,综合性较强,题意构思精巧,要求学生要有较高的分析问题的能力和解决问题的能力,这类问题符合课标对学生能力提高的要求。

(完整word版)等腰三角形获奖教案

(完整word版)等腰三角形获奖教案

12.3.1 等腰三角形河南省新乡市第十中学程宏一、教学目标1、知识技能:(1)掌握等腰三角形的性质。

(2)运用等腰三角形的性质进行证明和计算。

2、数学思考:(1)观察等腰三角形的对称性,发展形象思维。

(2)经历等腰三角形性质的探究过程,在实验操作、观察猜想、推理论证的过程中发展学生合情推理和演绎推理能力。

3、问题解决:(1)通过观察等腰三角形的对称性,培养学生观察、分析、归纳问题的能力。

(2)通过运用等腰三角形的性质解决有关问题,提高运用知识和技能解决问题的能力,发展学生的应用意识、创新意识、反思意识。

4、情感态度:引导学生对图形的观察、发现,激发学生的好奇心和求知欲,并在运用数学知识解决问题的活动中获取成功的体验,建立学习的自信心。

二、教学方法:实验法和探究法。

三、重难点:重点是等腰三角形的性质及应用。

难点是等腰三角形性质的证明。

四、教学过程(一)创设情境,引入新课人类的聪明智慧让我们看到了一个又一个令人惊叹的奇迹,下面请同学们观察这几幅图片,看看这些伟大的人类建筑中都含有一个什么样的基本图形?师1:同学们,这几张图片中共同存在的基本图形是什么?等腰三角形以它那对称、和谐、庄重、典雅之美成为我们数学殿堂的一枚瑰宝,可现实生活中为什么这些建筑要设计成等腰三角形的形式呢?等腰三角形有什么特殊的性质吗?今天就让我们一同来走进这个美妙的图形。

(板书)12.3.1 等腰三角形(二)探究发现,学习新知1. 认识等腰三角形师1:在小学时我们就知道两条边相等的三角形叫做等腰三角形。

下面我们利用剪纸的方法将手中的矩形纸片变变形。

请大家跟着老师一起做:先将纸片向下对折,再把角斜向下折叠,沿折痕剪下,打开就得到一个等腰三角形。

观察这个等腰三角形,我们称相等的边叫做——腰,那么另一边叫做——底边,两腰的夹角叫做——顶角,腰和底边的夹角叫做——底角。

2. 探究等腰三角形的性质(1)观察猜想师1:接下来,我们再度观察手中的等腰三角形,它是轴对称图形吗?为什么?师2:仔细观察:将等腰三角形ABC沿折痕对折,请大家找出其中重合的线段和角。

初中数学重难点突破:等腰三角形中的分类讨论问题

初中数学重难点突破:等腰三角形中的分类讨论问题

等腰三角形中的分类讨论问题典例讲解:分类讨论求角度例1:等腰三角形有一个内角是50°,则其余两个内角的度数为 .解:当50°角是顶角时,则底角为(180°-50°)÷2=65°,则其余两个角的度数为65°,65°;当50°角是底角时,则顶角为180°-50°×2=80°,则其余两个角的度数度数为50°,80°.所以,本题的答案为:65°,65°或50°,80°.总结:(1)在等腰三角形中求内角的度数时,要看已知角是否已经确定是顶角或底角.若已确定,则直接利用三角形的内角和定理求解;否则,要分类讨论,分已知角为顶角和已知角为底角两种情况.(2)若等腰三角形中已知的角是直角或钝角,则此角必为顶角,不用再分类讨论.分类讨论求长度解:当3x-1= x+1时,解得x=1,此时三角形的三条边长分别为2,2,5,因为2+2<5,不符合三角形三边关系,所以x=1舍去;当3x-1= 5时,解得x=2,此时三角形的三条边长分别为5,3,5,因为5+3>5,符合三角形三边关系,所以x=2成立;当x+1=5时,解得x=4,此时三角形的三条边长分别为11,5,5,因为5+5<11,不符合三角形三边关系,所以x=4舍去.所以,本题答案为2.总结:利用等腰三角形有两条边长相等的性质求边长或周长时,当不确定哪两条边是腰时,要进行分类讨论,计算出结果后要验证,检验算出的结果是否符号三角形三边关系.提升练习1.已知等腰三角形的两边长a,b满足|a﹣2|+b2﹣10b+25=0,那么这个等腰三角形的周长为()A.8B.12C.9或12D.92.如果等腰三角形两边长是6cm和12cm,那么它的周长是()A.18cm B.24cm C.30cm D.24或30cm3.等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为()A.60°B.150°C.60°或120°D.60°或150°4.已知等腰△ABC中,∠A=50°,则∠B的度数为()A.50°B.65°C.50°或65°D.50°或80°或65°5.已知等腰三角形的顶角等于50°,则底角的度数为度.6.等腰三角形一个外角是150°,求一腰上的高与另一腰的夹角是.7.在等腰三角形ABC中,∠A=2∠B,则∠C的度数为.8.在△ABC中,AB=AC,∠B=40°,点D在BC边上,连接AD,若△ABD是直角三角形,则∠DAC的度数是.9.等腰三角形一边长等于4,一边长等于9,它的周长是.10.等腰三角形的一个内角是80°,则它顶角的度数是.11.已知一个等腰三角形的一边长为2cm,另一边长为5cm,则这个等腰三角形的周长是cm.12.一等腰三角形的底边长为15cm,一腰上的中线把三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个三角形的周长为.13.若等腰三角形一腰上的高与另一腰的夹角为45°,则这个等腰三角形的底角为.14.如图,△ABC中∠ABC=40°,动点D在直线BC上,当△ABD为等腰三角形,∠ADB=.15.等腰三角形的周长为21cm.(1)若已知腰长是底边长的3倍,求各边长;(2)若已知一边长为6cm,求其他两边长.16.如图,在△ABC中,AB=AC,AC边上的中线BD把△ABC的周长分成18cm和21cm两部分,求△ABC的三边长.17.已知在△ABC中,AB=20,BC=8,AC=2m﹣2.(1)求m的取值范围;(2)若△ABC是等腰三角形,求△ABC的周长.18.已知:在△ABC中,AB=AC,∠BAC=45°.(1)如图,点D在AB边上,点E在AC边上,BD=CE,BE与CD交于点F.求证:BF=CF;(2)若点D是AB边上的一个动点,点E是AC边上的一个动点,且BD=CE,BE与CD交于点F.当△BFD是等腰三角形时,求∠FBD的度数.参考答案:1.B . 2.C . 3.C . 4.D .5. 65 . 6. 30°或60° . 7. 45°或72° . 8. 10°或50° .9. 22 . 10. 80°或20° . 11. 12 . 12. 55cm 或35cm .13. 67.5°或22.5° . 14. 40°或100°或70°或20° .15.解:(1)如图,设底边BC =a cm ,则AC =AB =3a cm ,∵等腰三角形的周长是21cm ,∴3a +3a +a =21,∴a =3,∴3a =9,∴等腰三角形的三边长是3cm ,9cm ,9cm ;(2)①当等腰三角形的底边长为6cm 时,腰长=(21﹣6)÷2=7.5(cm );则等腰三角形的三边长为6cm 、7.5cm 、7.5cm ,能构成三角形;②当等腰三角形的腰长为6cm 时,底边长=21﹣2×6=9;则等腰三角形的三边长为6cm ,6cm 、9cm ,能构成三角形.故等腰三角形其他两边的长为7.5cm ,7.5cm 或6cm 、9cm .16.解:∵BD 是AC 边上的中线,∴AD =CD=21AC , ∵AB =AC ,∴AD =CD=21AB , 设AD =CD =x cm ,BC =y cm ,分两种情况:当时,即,解得:, ∴△ABC 的各边长为10cm ,10cm ,7cm ;当时,即,解得:, ∴△ABC 的各边长为14cm ,14cm ,11cm ;综上所述:△ABC 各边的长为10cm ,10cm ,7cm 或14cm ,14cm ,11cm .17.解:(1)在△ABC中,AB=20,BC=8,AC=2m﹣2.∴20﹣8<2m﹣2<20+8,解得:7<m<15;∴m的取值范围为:7<m<15;(2)∵△ABC是等腰三角形,∴分两种情况:当AB=AC=20时,∴△ABC的周长=20+20+8=48;当BC=AC=8时,∵8+8=16<20,∴不能组成三角形;综上所述,△ABC的周长为48.18.(1)证明:∵AB=AC,∴∠ABC=∠ACB,在△BCD与△CBE中,∴△BCD≌△CBE(SAS),∴∠FBC=∠FCB,∴BF=CF;(2)解:∵AB=AC,∠BAC=45°,∴,由(1)知,∠FBC=∠FCB,∴∠DBF=∠ECF,设∠FBD=∠ECF=x,则∠FBC=∠FCB=(67.5°﹣x),∠BDF=∠ECF+∠BAC=x+45°,∠DFB=2∠FBC=2(67.5°﹣x)=135°﹣2x,∵△BFD是等腰三角形,故分三种情况讨论:①.当BD=BF时,此时∠BDF=∠DFB,∴x+45°=135°﹣2x,得x=30°,即∠FBD=30°;②当BD=DF时,此时∠FBD=∠DFB,∴x=135°﹣2x,得x=45°,即∠FBD=45°;③当BF=DF时,此时∠FBD=∠FDB,∴x=x+45°,不符题意,舍去;综上所述,∠FBD=30°或45°.。

特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)

特殊三角形中的分类讨论模型—2024年中考数学常见几何模型全归纳之模型解读(全国通用)(解析版)

三角形中的重要模型-特殊三角形中的分类讨论模型 模型1、等腰三角形中的分类讨论模型【知识储备】凡是涉及等腰三角形边、角、周长、面积等问题,优先考虑分类讨论,再利用等腰三角形的性质与三角形三边关系解题即可。

1)无图需分类讨论①已知边长度无法确定是底边还是腰时要分类讨论;②已知角度数无法确定是顶角还是底角时要分类讨论; ③遇高线需分高在△内和△外两类讨论;④中线把等腰△周长分成两部分需分类讨论。

2)“两定一动”等腰三角形存在性问题:即:如图:已知A ,B 两点是定点,找一点C 构成等腰ABC △方法:两圆一线具体图解:①当AC AB =时,以点A 为圆心,AB 长为半径作⊙A ,点C 在⊙A 上(B ,C 除外)②当BC AB =时,以点B 为圆心,AB 长为半径作⊙B ,点C 在⊙B 上(A ,E 除外)③当BC AC =时,作AB 的中垂线,点C 在该中垂线上(D 除外)【答案】C【分析】由已知等式,结合非负数的性质求m 、n 的值,再根据m 、n 分别作为等腰三角形的腰,分类求解.【详解】解:()2350m n −+−=,30m −≥,()250n −≥,30m ∴−=,50n −=,解得:3m =,5n =,当3m =作腰时,三边为3,3,5,符合三边关系定理,周长为:33511++=,当5n =作腰时,三边为3,5,5,符合三边关系定理,周长为:35513++=,故选:C .【点睛】本题考查了等腰三角形的性质,三角形的三边关系,非负数的性质,关键是根据非负数的性质求m 、n 的值,再根据m 或n 作为腰,分类求解. 例2.(2023春·黑龙江佳木斯·八年级校考期中)一个等腰三角形的周长为18cm ,且一边长是4cm ,则它的腰长为( )A .4cmB .7cmC .4cm 或7cmD .全不对【答案】B【分析】根据等腰三角形的定义,两腰相等,结合三角形的三边关系,进行求解即可.【详解】解:当4cm 为腰长时,则底边长为182410−⨯=cm ,∵4410+<,不符合题意;∴4cm 为底边长,∴等腰三角形的腰长为:()11847cm 2⨯−=;故选B . 【点睛】本题考查等腰三角形的定义,三角形的三边关系.解题的关键是掌握等腰三角形的两腰相等,注意讨论时要根据三角形的三边关系,判断能否构成三角形.例3.(2023春·四川达州·八年级校考阶段练习)等腰三角形的一个角是80︒,则它顶角的度数是( )A .80︒B .80︒或20︒C .80︒或30︒D .20︒【答案】B【分析】根据三角形的内角和为180︒,进行分类讨论即可【详解】解:①当底角为80︒时,顶角18080220=︒−︒⨯=︒,②当顶角为80︒时,顶角度数80=︒,综上:顶角度数为80︒或20︒;故选:B .【点睛】本题考查了三角形的内角和为180︒,等腰三角形两底角相等,解题的关键是书熟练掌握相关内容. 例3.(2023·四川广安·八年级校考期中)等腰三角形的一个外角为100︒,则它的底角为( )A .55︒B .80︒C .55︒或80︒D .以上都不是 【答案】D【分析】等腰三角形的一个外角等于100︒,则等腰三角形的一个内角为80︒,但已知没有明确此角是顶角还是底角,所以应分两种情况进行分类讨论.【详解】∵等腰三角形的一个外角等于100︒,∴等腰三角形的一个内角为80︒,①当80︒为顶角时,其他两角都为50︒、50︒,②当80︒为底角时,其他两角为80︒、20︒,所以等腰三角形的底角可以是50︒,也可以是80︒.故选:D .【点睛】本题考查了等腰三角形的性质和三角形的内角和定理;在解决与等腰三角形有关的问题,由于等腰所具有的特殊性质,很多题目在已知不明确的情况下,要进行分类讨论,才能正确解题,因此,解决和等腰三角形有关的边角问题时,要仔细认真,避免出错. 例4.(2023·四川绵阳·八年级校考阶段练习)等腰三角形一腰上的高与另一腰的夹角为70︒,则等腰三角形的顶角度数为 .【答案】20︒或160︒【分析】要注意分类讨论,等腰三角形可能是锐角三角形也可能是钝角三角形,然后根据三角形的内角和以及三角形的外角的性质即可求解.【详解】解:若三角形为锐角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时180A ACD ADC ∠+∠+∠=︒,∴180907020A =︒−︒−︒=︒,若三角形为钝角三角形时,如图,AB AC =,70ACD ∠=︒,CD 为高,即90ADC ∠=︒,此时9070160BAC D ACD ∠=∠+∠=︒+︒=︒,综上,等腰三角形的顶角的度数为20︒或160︒.故答案为:20︒或160︒. 【点睛】本题主要考查了等腰三角形的性质,三角形外角的性质,三角形内角和定理,解题的关键是根据题意画出图形,并注意分类讨论. 例5.(2023·山东滨州·八年级校考期末)我们称网格线的交点为格点.如图,在6行5⨯列的长方形网格中有两个格点A 、B ,连接AB ,在网格中再找一个格点C ,使得ABC 是等腰直角三角形,则满足条件的格点C 的个数是( )A .3B .4C .5D .6【答案】C 【分析】根据题意,结合图形,分两种情况讨论:①AB 为等腰直角ABC 底边;②AB 为等腰直角ABC 其中的一条腰.【详解】如图:分情况讨论:①AB 为等腰直角ABC 底边时,符合条件的格点C 点有2个;②AB 为等腰直角ABC 其中的一条腰时,符合条件的格点C 点有3个.故共有5个点,故选:C .【点睛】本题考查了等腰三角形的性质和判定;解答本题关键是根据题意,画出符合实际条件的图形,数形结合的思想是数学解题中很重要的解题思想.例6.(2023·北京·八年级期中)Rt △ABC 中,∠BAC =90°,AB =AC =2,以AC 为一边.在△ABC 外部作等腰直角三角形ACD ,则线段BD 的长为____.【答案】4或【分析】根据题意分类讨论,①90CAD ∠=︒,②90ACD ∠=︒,③90ADC ∠=︒,分别作出图形,再结合已知条件勾股定理求解即可.【详解】解:①如图,当90CAD ∠=︒时,902BAC AB AC ∠=︒==,,ACD △是等腰直角三角形,2AC AD AB ∴===,180BAD BAC CAD ∠=∠+∠=︒,224BD AB AD ∴=+=+=;②如图,当90ACD ∠=︒时,过点D 作DE BC ⊥,交BC 的延长线于点E ,902BAC AB AC ∠=︒==,,ACD △,ABC 是等腰直角三角形,2CD AC AB ∴===,18045DCE ACD ACB ∠=︒−∠−∠=︒, 又DE BC ⊥,∴DEC 是等腰直角三角形,DE CE ∴=,在Rt DEC △中,22222DC CE DE DE =+=,∴2DE DC ==在Rt ABC 中,BC 在Rt BDE 中,BD =③如图,当90ADC ∠=︒时,902BAC AB AC ∠=︒==,ACD △,ABC 是等腰直角三角形, 2CD AD AC ∴===在Rt ABC 中,BC ==Rt BDC 中,BD =综上所述,BD 的长为:4或4或.【点睛】本题考查了勾股定理,等腰三角形的性质,分类讨论是解题的关键. 例7.(2023·福建南平·八年级校考期中)已知△ABC 中,如果过顶点B 的一条直线把这个三角形分割成两个三角形,其中一个为等腰三角形,另一个为直角三角形,则称这条直线为△ABC 的关于点B 的二分割线.如图1,Rt △ABC 中,显然直线BD 是△ABC 的关于点B 的二分割线.在图2的△ABC 中,∠ABC =110°,若直线BD 是△ABC 的关于点B 的二分割线,则∠CDB 的度数是 .【答案】40°或90°或140°【分析】分三种情况讨论,由等腰三角形的性质和直角三角形的性质可求解.【详解】解:①如图,当∠DBC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠DBC=90°,∴∠ABD=20°,∵AD=BD ,∴∠A=∠ABD=20°,∴∠CDB=∠A+∠ABD=40°;②如图,当∠BDC=90°,AD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,或当∠BDC=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,;③如图,当∠ABD=90°,CD=BD 时,直线BD 是△ABC 的关于点B 的二分割线,∵∠ABC=110°,∠ABD=90°,∴∠DBC=20°,∵CD=BD ,∴∠C=∠DBC=20°,∴∠BDC=140°.综上所述:当∠BDC 的度数是40°或90°或140°时,直线BD 是△ABC 的关于点B 的二分割线.【点睛】本题是三角形综合题,考查了等腰三角形的性质,直角三角形的性质,理解二分割线是本题关键. 且ABP 为等腰三角形,则点【答案】(2,0)或(2,0)−或(64+或(6−【分析】根据等腰三角形的判定,分①AB=BP ;②AB=AP ;③AP=BP 三种情况求解即可.【详解】∵ABP 为等腰三角形,①当AB BP =时,如图①,∵AB ==∴BP =∵(6,0)B ,∴(6P +或(6P −;②当AB AP =时,如图② 作AC BP ⊥于C 点,则(2,0)C ,∵AB AP =,∴BC CP =,∵624BC =−=,∴4CP =,∴(2,0)P −.③当AP BP =时,如图③,作AP BP ⊥,∴4AP BP ==,∴(2,0)P .综上所述:点P 的坐标为(2,0)或(2,0)−或(6+或(6−,故答案为:(2,0)或(2,0)−或(6+或(6−.【点睛】本题考查了等腰三角形的判定与性质、勾股定理、坐标与图形,熟练掌握等腰三角形的判定与性质,灵活运用分类讨论的思想解决问题是解答的关键. 八年级校考期中)如图,ABC 中,A 【答案】(1)16(2)6或2(3)4或2或95或3【分析】(1)设cm PB PA x ==,则()4cm PC x =−,利用勾股定理求出3cm AC =,在Rt ACP 中,依据222AC PC AP +=,列方程求解即可得到t 的值.(2)如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,依据222AD PD AP +=,列方程求解即可得到t 的值.当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==.(3)分四种情况:当P 在AB 上且AP CP =时,当P 在AB 上且3cm AP CA ==时,当P 在AB 上且AC PC =时,当P 在BC 上且3cm AC PC ==时,分别依据等腰三角形的性质即可得到t 的值.【详解】(1)解:如图,设cm PB PA x ==,则()4cm PC x =−,90ACB ∠=︒,5cm AB =,4cm BC =,3cm AC ∴,在Rt ACP 中,由勾股定理得222AC PC AP +=,()22234x x ∴+−=,解得258x =,258BP ∴=,2556582216AB BP t ++∴===;(2)解:如图所示,当点P 在AC 上时,过P 作PD AB ⊥于D ,BP 平分ABC ∠,90C ∠=︒,PD AB ⊥PD PC ∴=,DBP CBP ∠=∠,在BCP 与BDP △中,BDP BCP DBP CBP BP BP ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()AAS BDP BCP ∴≌4cm BC BD ∴==,541cm AD ∴=−=,设cm PD PC y ==,则()3cm AP y =−,在Rt ADP 中,由勾股定理得222AD PD AP +=,()22213y y ∴+=−,解得43y =,43CP \=,454313226AB BC CP t ++++∴===,当点P 与点B 重合时,点P 也在ABC ∠的角平分线上,此时,522AB t ==. 综上所述,点P 恰好在ABC ∠的角平分线上,t 的值为316或52.(3)解:分四种情况:①如图,当P 在AB 上且AP CP =时,∴A ACP ∠=∠,∵A B ∠∠=︒+90,90ACP BCP ∠+∠=︒,B BCP ∴∠=∠,CP BP AP ∴==,P ∴是AB 的中点,即15cm 22AP AB ==,524AP t ∴==. ②如图,当P 在AB 上且3cm AP CA ==时,∴322AP t ==. ③如图,当P 在AB 上且AC PC =时,过C 作CD AB ⊥于D , ∵1122ABC S AC BC AB CD =⋅=⋅,∴12cm 5AC BC CD AB ⋅==,在Rt ACD △中,由勾股定理得9cm 5AD =,182cm 5AP AD ∴==,925AP t ∴==. ④如图,当P 在BC 上且3cm AC PC ==时,则431cm BP =−=,6322AB BP t +∴===. 综上所述,当t 的值为54或32或95或3时,ACP △为等腰三角形.【点睛】本题属于三角形综合题,考查了角平分线的性质,等腰三角形的性质以及勾股定理的综合运用.画出图形,利用分类讨论的思想是解第(3)题的关键. 例10.(2022春·四川成都·八年级校考期中)如图,在平面直角坐标系内,点O 为坐标原点,经过()26A−,的直线交x 轴正半轴于点B ,交y 轴于点C OB OC =,,直线AD 交x 轴负半轴于点D ,若ABD △的面积为27(1)求直线AB 的表达式和点D 的坐标;(2)横坐标为m 的点P 在线段AB 上(不与点A B 、重合),过点P 作x 轴的平行线交AD 于点E ,设PE 的长为()0y y ≠,求y 与m 之间的函数关系式并直接写出相应的m 取值范围;(3)在(2)的条件下,在x 轴上是否存在点F ,使PEF !为等腰直角三角形?若存在求出点F 的坐标;若不存在,请说明理由.【答案】(1)()450y x D =−+−,,(2)()33242y m m =+−<<,(3)存在,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭ 【分析】(1)据直线AB 交x 轴正半轴于点B ,交y 轴于点C ,OB OC =,设直线AB 解析式为y x n =−+,把A 的坐标代入求得n 的值,从而求得B 的坐标,再根据三角形的面积建立方程求出BD 的值,求出OD 的值,从而求出D 点的坐标; (2)直接根据待定系数法求出AD 的解析式,先根据B A 、的坐标求出直线AB 的解析式,将P 点的横坐标代入直线AB 的解析式,求出P 的纵坐标,将P 的纵坐标代入直线AD 的解析式就可以求出E 的横坐标,根据线段的和差关系就可以求出结论;(3)要使PEF !为等腰直角三角形,分三种情况分别以点P E F 、、为直角顶点,据等腰直角三角形的性质求出(2)中m 的值,就可以求出F 点的坐标.【详解】(1)解:OB OC =,∴设直线AB 的解析式为y x n =−+,∵直线AB 经过()26A −,,26n ∴+=,4n ∴=,∴直线AB 的解析式为4y x =−+,()40B ∴,,4OB ∴=,ABD 的面积为()2726A −,,,16272ABD S BD =⨯⨯=,9BD ∴=,5OD ∴=,()50D ∴−,,∴直线AB 的解析式为()450y x D =−+−,,(2)解:设直线AD 的解析式为y ax b =+,()26A −,,()50D −,∴2650a b a b −+=⎧⎨−+=⎩,解得210a b =⎧⎨=⎩.∴直线AD 的解析式为210y x =+;∵点P 在AB 上,且横坐标为m ,()4P m m ∴−+,,PE x ∥轴,∴E 的纵坐标为4m −+,代入210y x =+得,4=210m x −++,解得62m x −−=,6,42m E m −−⎛⎫∴−+ ⎪⎝⎭, PE ∴的长63322m m y m −−=−=+;即332y m =+,()24m −<<;(3)解:在x 轴上存在点F ,使PEF !为等腰直角三角形,①当90FPE ∠=︒时,如图①,有PF PE =,4PF m =−+,332PE m =+,3432m m ∴−+=+,解得25m =,此时2,05F ⎛⎫ ⎪⎝⎭; ②当90PEF ∠=︒时,如图②,有EP EF =,EF 的长等于点E 的纵坐标,4EF m ∴=−+,3432m m ∴−+=+,解得:25m =, ∴点E 的横坐标为61625m x −−==−,∴16,05F ⎛⎫− ⎪⎝⎭;③当90PFE ∠=︒时,如图③,有FP FE =,FPE FEP ∴∠=∠.180FPE EFP FEP ∠+∠+∠=︒,45FPE FEP ∴∠=∠=︒.作FR PE ⊥,点R 为垂足,18045PFR FPE PRF ∴∠=︒−∠−∠=︒,=PFR RPF ∴∠∠,=FR PR ∴.同理=FR ER ,12FR PE ∴=.∵点R 与点E 的纵坐标相同,4FR m ∴=−+,∴134322m m ⎛⎫−+=+ ⎪⎝⎭,解得:107m =, 10184477PR FR m ∴==−+=−+=,∴点F 的横坐标为10188777−=−,8,07F ⎛⎫∴− ⎪⎝⎭. 综上,在x 轴上存在点F 使PEF !为等腰直角三角形,点F 的坐标为2,05⎛⎫ ⎪⎝⎭或16,05⎛⎫− ⎪⎝⎭或8,07⎛⎫− ⎪⎝⎭.【点睛】本题考查了等腰直角三角形的性质,三角形的面积公式的运用,待定系数法求一次函数的解析式 模型2、直角三角形中的分类讨论模型【知识储备】凡是涉及直角三角形问题,优先考虑直角顶点(或斜边)分类讨论,再利用直角三角形的性质或勾股定理解题即可。

(完整版)等腰三角形中的分类讨论

(完整版)等腰三角形中的分类讨论

等腰三角形中的分类讨论陈佐国教学目标:1.有关等腰三角形的角的分类讨论2.有关等腰三角形边的分类讨论3.有关等腰三角形高的分类讨论4.已知等腰三角形的两个顶点,求第三个顶点的位置的分类讨论教学重点:分类思想的应用。

教学难点:已知等腰三角形的两个顶点,求第三个顶点的位置的分类及应用。

教学手段:多媒体教学。

教学过程:一、有关等腰三角形的角的分类讨论:1.若等腰三角形的一个角为100°,求另两个角的度数。

2.若等腰三角形的一个角为80°,求另两个角的度数3.若等腰三角形的两个内角之比为4:1,求顶角的度数.注意:等腰三角形涉及到角的问题时,可按照“顶角”与“底角”来分类,特别注意:要利用三角形的内角和判断三角形是否存在。

二、有关等腰三角形的边长的分类讨论:1.若等腰三角形的两边长为2和4,求这个等腰三角形的周长。

2.若等腰三角形的两边长为3和4,求这个等腰三角形的周长。

3.若等腰三角形的周长是17厘米,其中一条边长为4厘米,求这个等腰三角形的另两条边长。

注意:等腰三角形涉及到边的问题时,可按照“腰”与“底边”来分类,特别注意:要利用三角形的三边关系判断三角形是否存在。

三、有关等腰三角形的高的分类讨论:例:等腰三角形一腰上的高与另一腰所在直线的夹角为60°求这个等腰三角形的底角.注意:等腰三角形涉及到高的问题时,三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。

练.在等腰△ABC中,∠A=30°,AB=8,求AB边上的高CD的长.四、有关已知两点确定等腰三角形的第三点的分类讨论:例:如图示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是_____个.注意:确定第三点所在位置的方法:(1)作以其中一点为圆心,它们之间的距离为半径圆;(2)作以两点为端点的线段的垂直平分线练1.在平面直角坐标系中,A(4,0) 、B(0,3),(1)在x轴上求点P,使△PAB是等腰三角形.(2)在y轴上求点P,使△PAB是等腰三角形.(3)在坐标轴上求点P,使△PAB是等腰三角形.练2.在平面直角坐标系中,⊙C与y轴相切,点C的坐标为(1,0),直线l过点A(-1,0),与⊙C切于点D,在直线l上存在点P,使△APC为等腰三角形,求点P的坐标.练3.有一块直角三角形绿地,量得两直角边长分别是6m和8m,现要将绿地扩充成等腰三角形,且扩充部分是以8m为直角边的直角三角形,求扩充后等腰三角形的周长.练4.如图, 平行四边形ABCD中,AC⊥AB,AB=6㎝,BC=10㎝,E是CD上的点且DE=2CE,P从D出发,以1㎝/s的速度沿DA AB BC 运动至C停止,则当△EDP为等腰三角形时,求运动时间是多少?练5.已知抛物线y=k(x+1)(x-3/k)与x轴交于点A、B,与y轴交于C,则能使△ABC为等腰三角形的抛物线的条数是______条.小结:分类讨论:•无图要细思,考虑要周到, •方法需得当,情况不重漏.。

期末复习专题:等腰三角形中的分类讨论

期末复习专题:等腰三角形中的分类讨论

备用图
探究变式:
直角 若将(2)中的△AEF为“等腰三角形 ”改为“
三角形”时, ∠BAE=α ,求 α与β之间的数量关
系。
A
A
F
B
E
CB
C
备用图
解:
(3)如图1,当∠AFE=90°时, ∵∠B+∠BAE= ∠AEF+∠CEF, ∠B=∠AEF=∠C, ∴∠BAE= ∠CEF, ∵∠C+∠CEF=90°, ∴∠BAE+ ∠AEF=90°, 即α+β= 90°;
五、 遇中垂线需讨论
1.在△ABC 中,AB=AC ,AB 边的垂直平分 线与AC所在的直线相交所成的锐角为40°, 则底角∠B的度数为__6_5_°__或__2_5°
40°
40°
六、 遇动点动角需讨论
1、已知C、D两点为线段AB的中垂线上的两 动点,且∠ACB=500,∠ADB=800,求 ∠CAD的度数。
E'
∴∠ADC=(1800-∠DAC)÷2=∠BAC÷2,
又∵∠DCE'=1800-(∠ BE'C+ ∠ADC) , ∴ ∠DCE'=1800-(∠ ABC+ ∠BAC) ÷2
0
0
(4)当点D、E在点A的两侧,且 点D在D' 的位置时,如图,
∵AD'=AC ,∴
? ? ? ? ? AD?C ? 1800 ? ? D?AC ? 2 ? 1800 ? ? BAC ? 2,
在下图三角形的边上找出一点,使得该点与
三角形的两顶点构成 一个等腰三角形
C 110°
A
20°
50° B
1 、对∠ A进行讨论
3、对∠ C进行讨论
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学等腰三角形的分类讨论
等腰三角形是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论。

那么在什么情况下应该分类讨论呢?本文分以下几种情形讲述。

一、遇角需讨论
例1. 已知等腰三角形的一个内角为75°则其顶角为( )
A. 30°
B. 75°
C. 105°
D. 30°或75°
简析:75°角可能是顶角,也可能是底角。

当75°是底角时,则顶角的度数为
180°-75°×2=30°;当75°角是顶角时,则顶角的度数就等于75°。

所以这个等腰三角形的顶角为30°或75°。

故应选D 。

说明:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解。

二、遇边需讨论
例2. 已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________。

简析:已知条件中并没有指明5和6谁是腰长谁是底边的长,因此应由三角形的三边关系进行分类讨论。

当5是等腰三角形的腰长时,这个等腰三角形的底边长就是6,则此时等腰三角形的周长等于16;当6是腰长时,这个三角形的底边长就是5,则此时周长等于17。

故这个等腰三角形的周长等于16或17。

说明:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论。

三、遇中线需讨论
例3. 若等腰三角形一腰上的中线分周长为9cm 和12cm 两部分,求这个等腰三角形的底和腰的长。

简析:已知条件并没有指明哪一部分是9cm ,哪一部分是12cm ,因此,应有两种情形。

若设这个等腰三角形的腰长是x cm ,底边长为y cm ,可得⎪⎪⎩⎪⎪⎨⎧=+=+,1221,921y x x x 或⎪⎪⎩⎪⎪⎨⎧=+=+.92
1,1221y x x x 解得⎩⎨⎧==,9,
6y x 或⎩⎨⎧==.5,
8y x 即当腰长是6cm 时,底边长是9cm ;当腰长是8cm 时,底边长是5cm 。

说明:这里求出来的解应满足三角形三边关系定理。

四、遇高需讨论
例4. 等腰三角形一腰上的高与另一腰所成的夹角为45°,求这个等腰三角形的顶角的度数。

简析:依题意可画出图1和图2两种情形。

图1中顶角为45°,图2中顶角为135°。

例5. 为美化环境,计划在某小区内用230m 的草皮铺设一块一边长为10m 的等腰三角形绿地,请你求出这个等腰三角形绿地的另两边长。

简析:在等腰ΔABC 中,设AB=10m ,作CD ⊥AB 于D ,由3021=⋅⨯=∆CD AB S ABC ,可得CD=6m 。

如下图,当AB 为底边时,AD=DB=5m ,所以)(6122m AD CD BC AC =+==。

如下图,当AB 为腰且ΔABC 为锐角三角形时,
m AC AB 10==,所以)(822m CD AC AD =-=,
)(102,222m BD CD BC m BD =+==。

如下图,当AB 为腰且ΔABC 为钝角三角形时,
m BC AB 10==,)(822m CD BC BD =-=,
所以)(106,1822m AD CD AC m AD =+==。

说明:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外。

五、遇中垂线需讨论
例6.在ΔABC 中,AB=AC ,AB 的中垂线与AC 所在直线相交所得的锐角为50°,则底角∠B=____________。

简析:按照题意可画出如图1和如图2两种情况的示意图。

如图1,当交点在腰AC 上时,ΔABC 是锐角三角形,此时可求得∠A=40°,所以 ∠B=∠C=21(180°-40°)=70°。

如图2,当交点在腰CA 的延长线上时,ΔABC 为钝角三有形,此时可求得 ∠BAC=140°,所以∠B=∠C=
21(180°-140°)=20°
故这个等腰三角形的底角为70°或20°。

说明:这里的图2最容易漏掉,求解时一定要认真分析题意,画出所有可能的图形,这样才能正确解题。

六、和方程问题的综合讨论
例7. 已知ΔABC 的两边AB ,AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 长为5。

(1)k 为何值时,ΔABC 是以BC 为斜边的直角三角形?
(2)k 为何值时,ΔABC 是等腰三角形,并求ΔABC 的周长。

简析:(1)略。

(2)若ΔABC 是等腰三角形,则有AB=AC ,AB=BC ,AC=BC 这三种情形。

方程023)32(22=++++-k k x k x 可化为0)1)(2(=----k x k x ,即21+=k x ,12+=k x ,显然21x x ≠,即AC AB ≠。

当AB=BC 或AC=BC 时,5是方程023)32(22=++++-k k x k x 的根。

当5=x 时,代入原方程可得01272=+-k k ,解得31=k ,42=k 。

当3=k 时,原方程的解为4,521==x x ,等腰ΔABC 的三边长分别为5,5,4,周长为14。

当4=k 时,原方程的解为5,621==x x ,等腰ΔABC 的三边长分别为5,5,6,周长为16。

所以当3=k 或4=k 时,ΔABC 是等腰三角形,周长分别为14或16。

相关文档
最新文档