循环流化床锅炉燃烧方式

合集下载

循环流化床锅炉原理

循环流化床锅炉原理

循环流化床锅炉原理
循环流化床锅炉是一种利用循环流化床燃烧技术的锅炉,其工作原理如下:
1. 燃料进料:燃料(如煤、生物质等)通过给料系统进入锅炉。

2. 燃烧反应:燃料在锅炉内被氧气气化和燃烧产生热能,生成的废气和灰分被释放到锅炉内。

3. 燃烧床层:锅炉内的燃料和空气混合物形成一个循环流化床,在床层中形成了固体燃料粒子的循环,同时也形成了气体和固体颗粒之间的循环流动。

4. 气固分离:床层中的气固两相分离,固体颗粒在床层循环,而燃烧生成的气体通过分离器进入锅炉的上部。

5. 固体回流:分离器中的固体颗粒被分离后,一部分被回流到床层继续燃烧,另一部分则通过排渣系统排出锅炉。

6. 热交换:燃烧生成的高温烟气在锅炉的热交换器中与水进行换热,产生蒸汽或热水。

7. 废气处理:通过合适的废气处理系统,对燃烧废气进行脱硫、脱硝和除尘等处理,降低废气对环境的污染。

总体来说,循环流化床锅炉通过循环流化床的形成,实现了燃料和空气的良好混合,提高了燃烧效率;同时通过固体的循环回流,在保持稳定燃烧的同时,降低了燃料的耗损和废渣产生量,提高了锅炉的可持续性和经济性。

流化床燃烧技术

流化床燃烧技术

鼓泡流化床燃烧技术的主要特点如下。
① 流化床床内混合剧烈,燃烧稳定,其燃料适应性很强,几乎可以燃 烧所有燃料。 ② 低温燃烧特性可以实现炉内加脱硫剂进行直接脱硫,而且可以利用 低灰熔点的燃料。 ③ 低温燃烧和分级燃烧可以较好地控制煤燃烧过程中NOx的生成。 ④ 通常燃用宽筛分燃料颗粒(如0-8mm,0-10mm),床料的组成也比 较复杂。 ⑤ 流化床运行速度较低,一般在2-4m/s之间,燃烧室内运行在鼓泡流 化状态,可以明显分为下部高颗粒浓度的流化床区(密相区)和上部 颗粒浓度很低的稀相区(悬浮段)。
1.2.3 循环流化床的气固两相流体动力特性
一般来说,循环流化床锅炉炉膛截面积形状大都是矩形或方形的,其高度与截 面当量直径之比要小得多,而且炉膛通常布臵垂直的膜式水冷壁以吸收热量。循环 流化床锅炉的炉内床料是宽筛分的粗颗粒,如中国循环流化床锅炉常用的煤粒粒径 为0-10mm。
项目 截面形状 直径/m 高度与当量直径比 反应器壁面 床料分布及平均直径/mm 循环流化床锅炉 大都为矩形 4-8(当量直径) <5(10) 膜式水冷壁(垂直管和鳍片) 约0.2
为了克服这些问题,通过把燃烧室内的流化床速度从原来的2-4m/s提高 到4-6m/s甚至更高后,把更多的床料颗粒从燃烧室下部的密相区带到了上部 稀相区,这样不仅使得更多的燃料在上部稀相区燃烧,而且也通过这些携带 的大量细灰颗粒从密相区带出了大量热量,从而使得燃烧室上部颗粒浓度增 加,燃烧室温度分布均匀,而密相区内则不再需要布臵埋管受热面吸热。同 时通过布臵飞灰颗粒分离及回送装臵,把携带出燃烧室细灰颗粒中不完全燃 烧的燃烧颗粒或未完全反应的脱硫剂颗粒重新送回到燃烧室内循环燃烧或利 用,从而大大提高燃料燃烧效率和脱硫剂利用率。这种状态运行的流化床燃 烧技术称为循环流化床燃烧技术,近三十年内得到快速发展的一种新型燃烧 技术。

循环流化床燃烧技术

循环流化床燃烧技术

循环流化床燃烧技术循环流化床燃烧技术是最近20多年来发展起来的新一代高效、低污染的清洁燃烧技术,也是目前商业化程度最好,应用前景最广的洁净煤燃烧技术,它的燃烧技术比较简单,当进炉的燃料粒度循环流化床锅炉独特的流体动力特性和结构使其具备有许多独特的优点。

1、燃料适应性甚广这是循环流化床锅炉的主要优点之一。

在循环流化床锅炉中按重量计,燃料仅占床料的1%~3%,其余是不可燃的固体颗粒,如脱硫剂、灰渣或砂。

循环流化床锅炉的特殊流体动力特性使得气~固和固~固混合非常好,因此燃料进人炉膛后很快与大量床料混合,燃料被迅速加热至高于着火温度,而同时床层温度没有明显降低。

只要燃料的热值大于加热燃料本身和燃烧所需的空气至着火温度所需的热量,上述特点就可以使得循环流化床锅炉不需辅助燃料而燃用任何燃料。

循环流化床锅炉既可燃用优质煤,也可燃用各种劣质燃料,如高灰煤、高硫煤、高灰高硫煤、高水分煤、煤矸石、煤泥,以及油页岩、泥煤、石油焦、尾矿、炉渣、树皮、废木头、垃圾等。

2、冷却效率高循环流化床锅炉的燃烧效率要比鼓泡流化床锅炉高,燃烧效率通常在97.5%~99.5%范围内,可与煤粉锅炉相媲美.循环流化床锅炉燃烧效率高是因为有下述特点:气~固混合良好;燃烧速率高,特别是对粗粒燃料;绝大部分未燃尽的燃料被再循环至炉膛。

与齿槽流化床锅炉相同,循环流化床锅炉能够在较宽的运转变化范围内维持低的冷却效率,甚至燃用细粉含量低的燃料时也就是如此。

循环流化床锅炉的脱硫比鼓泡流化床锅炉更加有效。

典型的循环流化床锅炉达到90%脱硫效率时所需的脱硫剂化学当量比为1.5~2.5,鼓泡流化床锅炉达到90%脱硫效率则需脱硫剂化学当量比为2.5~3,甚至更高,有时即使ca/s比再高,鼓泡流化床锅炉也不能达到90%的脱硫效率。

与冷却过程相同,烟气反应展开得较为缓慢。

为了并使氧化钙(研磨石灰石)充份转变为硫酸钙,烟气中的二氧化硫气体必须与脱硫剂存有充份短的碰触时间和尽可能小的面积。

循环流化床锅炉技术

循环流化床锅炉技术

循环流化床锅炉技术循环流化床锅炉技术是一种高效、环保、节能的燃烧技术。

该技术利用循环流化床的高速气流把燃料物料悬浮在床层中,使其充分混合和燃烧,有效地保证了燃烧的充分程度和热能的利用率。

与传统锅炉相比,循环流化床锅炉具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,因此在能源领域得到广泛应用。

一、循环流化床锅炉的基本原理循环流化床锅炉是一种利用循环流化床燃烧技术的锅炉,其基本原理是利用高速气流产生的快速搅拌作用,在床层中形成“气固两相流”,使燃料和空气充分混合并燃烧。

在循环流化床锅炉中,床层上方的空气被强制送入到床层中,形成了高速气流,使床层中的燃料物料悬浮在气流中并产生强烈的搅拌,从而形成了“气固两相流”。

床层下方设置有回料装置,将燃烧后的废渣回收到床层中,实现了废渣的循环利用。

二、循环流化床锅炉的优点1、热效率高:循环流化床锅炉可以利用燃料中的所有热能,强化了燃烧过程中的传热和传质,从而提高了锅炉的热效率。

2、燃烧效率高:循环流化床锅炉中燃烧完成度高,因为床料悬浮在气流中,使空气与燃料充分混合,从而实现了高效、充分的燃烧。

3、废气排放少:循环流化床锅炉的废气排放量低,废气中的二氧化硫和氮氧化物排放量远低于其他锅炉,对环境的影响小。

4、燃料适应性强:循环流化床锅炉可使用各种燃料,如煤、燃气、油、生物质等,具有一定的燃料适应性。

5、灰渣利用价值高:循环流化床锅炉中的灰渣细化程度高,易于回收利用,在土地改良、水泥生产和道路建设等领域具有广泛的使用价值。

三、循环流化床锅炉的应用领域循环流化床锅炉技术广泛应用于各个领域,如煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等。

在煤炭领域,循环流化床锅炉可用于煤的燃烧,实现高效、低排放、节能的目的。

在化工、冶金、烟草等行业,循环流化床锅炉可用于燃烧废弃物、废气等,实现废物资源化、减少污染的目的。

综上所述,循环流化床锅炉技术是一种高效、环保、节能的燃烧技术,具有热效率高、燃烧效率高、废气排放少、灰渣利用价值高等优点,广泛应用于煤炭、石油、天然气、化工、冶金、烟草、食品、纺织等不同领域。

循环流化床锅炉 冷态试验 点火过程

循环流化床锅炉 冷态试验 点火过程

1、点火过程及方式循环流化床锅炉的点火是指通过某种方式将燃烧室内的床料加热到一定温度,并送风使床内底料呈流化状态,直到给煤机连续给进的燃料能稳定地燃烧。

循环流化床锅炉的点火与其它锅炉相比有所循环流化床锅炉的点火方式主要分为:固定床点火;床面油枪流态化点火;预燃室流态化油点火和热风流态化点火四种,其优、缺点比较见表1。

前三种点火方式使用较多,后文将作详细介绍。

2、冷态特性试验循环流化床锅炉在安装或大修完毕后,在点火前应对燃烧系统包括送风系统,布风装置、料层厚度和飞灰循环装置进行冷态试验。

其目的在于:(1)鉴定鼓风机的风量和风压是否能满足流化燃烧的需要。

(2)测定布风板阻力和料层阻力。

(3)检查床内各处流化质量,冷态流化时如有死区应予以消除。

(4)测定料层厚度、送风量与阻力特性曲线,确定冷态临界流化风量,用以指导点火过程的调整操作,同时也为热态运行提供参数依据。

(5)检查飞灰系统的工作性能。

2.1床内料层流化均匀性的检查测定时在床面上铺上颗粒为3mm以下的料渣,铺料厚度约300-500mm,以能流化起来为准,流化均匀性可用两种方法检查。

一种是开启引风机和鼓风机,缓慢调节送风门,逐渐加大风量,直到整个料层流化起来,然后突然停止送风,观察料层表面是否平坦,如果很平坦,说明布风均匀,如果料层表面高低不平,高处表明风量小,低处表明风量大,应该停止试验,检查原因及时予以消除;另一种方法是当料层流化起来后,用较长的火耙在床内不断来回耙动,如手感阻力较小且均匀,说明料层流化良好,反之,则布风不均匀或风帽有堵塞,阻力小的地方流化良好,而阻力大的地方可能存在死区。

通过料层流化均匀性的检查,也可以确定流化状态所需的最低料层厚度。

这一数据对流化床点火十分重要,料层太薄,难以形成稳定的流化状态,锅炉无法点火和运行。

料层太厚,又会延长点火时间和造成点火燃料的增多。

布风均匀是流化床点火、低负荷时稳定燃烧、防止颗粒分层和床层结焦的必要条件。

循环流化床锅炉的工作原理

循环流化床锅炉的工作原理

循环流化床锅炉的工作原理
循环流化床锅炉是一种燃煤锅炉,主要用于发电、供热等能源领域。

其工作原理如下:
1. 燃烧室:煤炭被输送到燃烧室,并在空气的作用下进行燃烧。

燃烧过程产生的高温烟气从燃烧室顶部进入循环流化床。

2. 循环流化床:燃烧室内部设置有一层石英砂或沸石砂床,煤炭的燃烧产生的烟气通过这层床时,将砂床搅动形成类似于沸腾的状态,即床层内的固相颗粒呈现流化状态。

燃烧室烟气中的固体颗粒在空气的推动下在循环流化床中快速流动。

3. 固气分离:在循环流化床内,高温固体颗粒燃烧剩余物与床层内部的石英砂或沸石砂进行混合,然后流向循环下部的分离器。

分离器通过重力和离心力作用,将固态颗粒和烟气分开,使烟气通过废气排放管道排出,而固态颗粒留在床层内。

4. 回流装置:将分离器中的固态颗粒以一定速度通过回流装置输送回循环流化床内,与新添加的煤粉混合进行再次燃烧。

这种回流装置可保持循环流化床内的稳定燃烧状态。

5. 热水系统:在燃烧过程中,产生的高温烟气通过热交换器与锅炉水管中的水进行热交换,使水变为高温高压蒸汽。

这些蒸汽可用于发电或供热等用途。

通过循环流化床锅炉的工作原理,既可以实现高效燃烧,又可
以减少污染物的排放,提高能源利用率,具有较好的环保性能和经济性能。

循环流化床锅炉结构原理及运行资料讲解

循环流化床锅炉结构原理及运行资料讲解

循环流化床锅炉结构原理及运行资料讲解一、循环流化床锅炉的结构1.炉膛:炉膛是循环流化床锅炉的燃烧区,通过给燃料和气体供应,将燃料在悬浮状态下燃烧,从而释放热能。

2.燃烧器:燃烧器是燃料进入循环床的通道,它将燃料和氧气混合并点燃,形成高温气流。

3.空气预热器:空气预热器用于对燃烧所需的空气进行预热,以提高燃烧效率,并减少燃料消耗。

4.循环床:循环床由大量细颗粒物质组成,可以是砂、矿渣等,它起到支撑燃料和增大反应面积的作用。

在循环床中,床料循环流动,保持悬浮状态,使燃料充分接触氧气,加快燃烧速度。

5.分离器:分离器用于将循环床中的固体颗粒与燃烧产物分离,确保床料的循环正常进行。

6.尾气换热器:尾气换热器用于回收废气中的热能,并将其传递给水蒸汽,提高锅炉的热效率。

7.省煤器:省煤器用于对锅炉排出的烟气进行冷却,并从中回收热能,用于预热给水,减少燃料的消耗。

8.除尘器:除尘器用于对燃烧产生的烟尘进行收集和过滤,保证热空气的洁净排放。

二、循环流化床锅炉的原理循环流化床锅炉的工作原理是利用气体和固体颗粒的流态化来进行燃烧。

在循环床中,床料被高速空气一同悬浮并形成流化状态,颗粒间相互碰撞并形成干燥、氧化和燃烧等反应过程。

通过床料的循环和燃料的补给,保持循环床内的温度和反应区的平衡。

循环流化床锅炉的燃烧过程主要包括迅速燃烧区、燃烧工质区和氧化还原区。

迅速燃烧区是燃料在高速空气中的氧化和挥发过程,燃料开始燃烧并释放大量热能。

燃烧工质区是氧化剂和燃料完全混合燃烧的区域,燃料被完全氧化,产生大量的热能。

氧化还原区是氧化剂与燃料反应的区域,会产生一些复杂的氧化反应。

三、循环流化床锅炉的运行资料1.安装要求:循环流化床锅炉的安装位置应有良好的通风条件,并与电源、给水、排烟等系统连接良好。

锅炉应安装在水平坚固的基础上,并具备良好的防震措施。

安装完成后,需要对各个系统进行调试,确保锅炉的正常运行。

2.运行参数:循环流化床锅炉的运行参数包括供热温度、供热压力、燃料含硫量、床温、床压等。

循环流化床锅炉的工作原理及锅炉特点【最新版】

循环流化床锅炉的工作原理及锅炉特点【最新版】

循环流化床锅炉的工作原理及锅炉特点一、循环流化床燃煤锅炉炉内工作原理循环流化床燃煤锅炉基于循环流态化的原理组织煤的燃烧过程,以携带燃料的大量高温固体颗粒物料的循环燃烧为主要特征。

固体颗粒充满整个炉膛,处于悬浮并强烈掺混的燃烧方式。

但与常规煤粉炉中发生的单纯悬浮燃烧过程相比,颞粒在循环流化床燃烧室内的浓度远大于煤粉炉,并且存在显著的揪粒成闭和床料的颗粒间混,颗粒与气体间的相对速度大,这一点显然与基于气力输送方式的煤粉悬浮燃烧过程完全不同。

循环流化床锅炉的燃烧与烟风流程示意见图6-1。

预热后的一次风(流化风)经风室由炉膛底部穿过布风板送入,使炉膛内的物料处于快速流化状态,燃料在充满整个炉膛的惰件床料中燃烧。

较细小的颗粒被气流夹带飞出炉膛,并由K灰分离装置分离收粜,通过分离器下的回料管与飞灰回送器(返料器)送W炉膛循坏燃烧;燃料在燃烧系统内完成燃烧和卨温烟气向X质的部分热M 传递过程。

烟气和未被分离器捕集的细颗粒排入图s-i拥环流化床锅炉炉内燃烧与烟风系统尾部烟逬,继续受热曲•进行对流换热,最后排出锅炉。

在这种燃烧方式下,燃烧室密相区的湿度水T受到燃煤过秆中的高温结液、低温结焦和最佳脱硫温度的限制,一般维持在850℃左右,这一温度范围也恰与垃圾脱硫温度吻合。

由于循环流化床锅炉较煤粉炉炉膛的温度水平低的特点,带来低污染物排放和避免燃煤过程中结渣等问题的优越性。

二、循环流化床锅炉的工作过程图6-2为典型电站用循环流化床锅炉的工作系统,其基本工作过程如下:煤由煤场经抓斗和运煤皮带等传输设备被送入煤仓,然后由煤仓进入破碎机被破碎成粒径小于10mm 的煤粒后送入炉膛。

与此同时,用于燃烧脱硫的脱硫剂石灰石也由石灰石仓送入炉膛,参与煤粒燃烧反应。

此后,随烟气流出炉膛的大量颗粒在旋风分离器中与烟气分离。

分离出来的颗粒可以直接回到炉膛,也可经外置式换热器办进入炉膛参与燃烧过程。

由旋风分离器分离出来的烟气则被引入锅炉尾部烟道,对布置在尾部烟道中的过热器、省煤器和空气预热器中的工质进行加热,从空气预热器出口流出的烟气经布袋除尘器除尘后,由引风机排入烟囱,排向大气。

循环流化床燃烧技术

循环流化床燃烧技术

循环流化床燃烧技术循环流化床燃烧(CFBC)技术系指小颗粒的煤与空气在炉膛内处于沸腾状态下,即高速气流与所携带的稠密悬浮煤颗粒充分接触燃烧的技术。

循环流化床锅炉脱硫是一种炉内燃烧脱硫工艺,以石灰石为脱硫吸收剂,燃煤和石灰石自锅炉燃烧室下部送入,一次风从布风板下部送入,二次风从燃烧室中部送入。

石灰石受热分解为氧化钙和二氧化碳。

气流使燃煤、石灰颗粒在燃烧室内强烈扰动形成流化床,燃煤烟气中的SO2与氧化钙接触发生化学反应被脱除。

为了提高吸收剂的利用率,将未反应的氧化钙、脱硫产物及飞灰送回燃烧室参与循环利用。

钙硫比达到2~2.5左右时,脱硫率可达90%以上。

流化床燃烧方式的特点是:1.清洁燃烧,脱硫率可达80%~95%,NO x排放可减少50%;2.燃料适应性强,特别适合中、低硫煤;3.燃烧效率高,可达95%~99%;4.负荷适应性好。

负荷调节范围30%~100%。

循环流化床锅炉主要由燃烧系统、气固分离循环系统、对流烟道三部分组成。

其中燃烧系统包括风室、布风板、燃烧室、炉膛、给煤系统等几部分;气固分离循环系统包括物料分离装置和返料装置两部分;对流烟道包括过热器、省煤器、空气预热器等几部分。

循环流化床锅炉属低温燃烧。

燃料由炉前给煤系统送入炉膛,送风一般设有一次风和二次风,有的生产厂加设三次风,一次风由布风板下部送入燃烧室,主要保证料层流化;二次风沿燃烧室高度分级多点送入,主要是增加燃烧室的氧量保证燃料燃烬;三次风进一步强化燃烧。

燃烧室内的物料在一定的流化风速作用下,发生剧烈扰动,部分固体颗料在高速气流的携带下离开燃烧室进入炉膛,其中较大颗料因重力作用沿炉膛内壁向下流动,一些较小颗料随烟气飞出炉膛进入物料分离装置,炉膛内形成气固两相流,进入分离装置的烟气经过固气分离,被分离下来的颗料沿分离装置下部的返料装置送回到燃烧室,经过分离的烟气通过对流烟道内的受热面吸热后,离开锅炉。

因为循环流化床锅炉设有高效率的分离装置,被分离下来的颗料经过返料器又被送回炉膛,使锅炉炉膛内有足够高的灰浓度,因此循环流化床锅炉不同于常规锅炉炉膛仅有的辐射传热方式,而且还有对流及热传等传热方式,大大提高了炉膛的传导热系数,确保锅炉达到额定出力。

循环流化床锅炉

循环流化床锅炉
锅炉采用床下点火(油或煤气),分级燃烧,一次风比率占50—60%,飞灰循环为低倍率,中温分离灰渣排 放采用干式,分别由水冷螺旋出渣机、灰冷却器及除尘器灰斗排出。炉膛是保证燃料充分燃烧的关键,采用湍流 床,使得流化速度在3.5—4.5m/s,并设计适当的炉膛截面,在炉膛膜式壁管上铺设薄内衬(高铝质砖),即使 锅炉燃烧用不同燃料时,燃烧效率也可保持在98—99%以上。
锅炉结构
锅炉结构
锅炉采用单锅筒,自然循环方式,总体上分为前部及尾部两个竖井。前部竖井为总吊结构,四周膜式水冷 壁组成。自下而上,依次为一次风室、密相区、稀相区,尾部烟道自上而下依次为高温过热器、低温过热器及省 煤器、空气预热器。尾部竖井采用支撑结构,两竖井之间由立式旋风分离器相连通,分离器下部联接回送装置及 灰冷却器。燃烧室及分离器内部均设有防磨内衬,前部竖井用敷管炉墙,外置金属护板,尾部竖井用轻型炉墙, 由八根钢柱承受锅炉全部重量。
高温分离器入口烟温在800℃左右,旋风筒内径较小,结构简化,筒内仅需一层薄薄的防磨内衬(氮化硅 砖)。其使用寿命较长。循环倍率为10—20左右。
循环灰输送系统主要由回料管、回送装置,溢流管及灰冷却器等几部分组成。
床温控制系统的调节过程是自动的。在整个负荷变化范围内始终保持浓相床床温850-950℃间的某一恒定值, 这个值是最佳的脱硫温度。当自动控制不投入时,靠手动也能维持恒定的床温。
循环流化床锅炉
低污染清洁燃烧枝术
01 简介
03 烟风系统 05 临界速度
目录
02 锅炉结构 04 流态化 06 节能改造
07 安全事项
09 优点
目录
08 注意事项
基本信息
循环流化床锅炉采用的是工业化程度最高的洁净煤燃烧技术。循环流化床锅炉采用流态化燃烧,主要结构包 括燃烧室(包括密相区和稀相区)和循环回炉(包括高温气固分离器和返料系统)两大部分。与鼓泡流化床燃烧 技术的最大区别是运行风速高,强化了燃烧和脱硫等非均相反应过程,锅炉容量可以扩大到电力工业可以接受的 大容量(600MW或以上等级),循环流化床锅炉已经很好的解决了热学、力学、材料学等基础问题和膨胀、磨损、 超温等工程问题,成为难燃固体燃料(如煤矸石、油页岩、城市垃圾、淤泥和其他废弃物)能源利用的先进技术。

循环流化床锅炉的工作原理及特点

循环流化床锅炉的工作原理及特点

循环流化床锅炉的工作原理及其特点一、工作原理1液态化过程流态化是固体颗粒在流体作用下表现出类似流体状态的一种状态固体颗粒、流体以及完成化介质为气体,固体颗粒以及煤燃烧后的灰渣(床料)被流化,称为气固流态化。

流化床锅炉与其他类型燃烧锅炉的根本区别在于燃料处于流态化运动状态,并在流态化过程中进行燃烧。

当气体通过颗粒床层时,该床层随着气流速度的变化会呈现不同的流动状态。

随着气体流速的增加,固体颗粒呈现出固定床、起始流化态、鼓泡流化态、节涌、湍流流化态及气力输送等状态。

2宽筛分颗粒流态化时的流体动力特性(1)在任意高度的静压近似于在此高度以上单位床截面内固体颗粒的重量。

(2)无论床层如何倾斜,床表面总是保持水平,床层的形状也保持容器的形状。

(3)床内固体颗粒可以向流体一样从底部或者侧面的孔口中排出。

(4)密度高于床层表观密度(如果把颗粒间的空间体积也看做颗粒体积的一部分,这时单位体积的燃料质量就称为表观密度)的物体在床内会下沉,密度小的物体会浮在床面上。

(5)床内颗粒混合良好,因此当加热床层时,整个床层的温度基本均匀。

3循环流化床锅炉的工作过程在燃煤循环流化床锅炉的燃烧系统中,燃料煤首先被加工成一定粒度范围内的宽筛分煤,然后由给料机经给煤口送入循环流化床密相区进行燃烧,其中许多细颗粒物料将将进入稀相区继续燃烧,并有部分随烟气飞出炉膛。

飞出炉膛的大部分细颗粒由固体物料分离器分离后经过返料器送回炉膛,在参与燃烧。

燃烧过程中产生的大量高温烟气,流经过热器、再热器、省煤器、空气预热器等受热面,进入除尘器进行除尘,最后由引风机排至烟囱进入大气。

循环流化床锅炉燃烧在整个炉膛内进行,而且炉膛内具有更高的颗粒浓度,高浓度的颗粒通过床层、炉膛、分离器和返料装置,再返回炉膛,进行多次循环颗粒在循环过程中进行燃烧和传热。

锅炉给水首先进入省煤器,然后进入汽包,后经过下降管进入水冷壁。

燃料燃烧所产生的热量在炉膛内通过辐射和对流等换热形式由水冷壁吸收,用以加热给水生成汽水混合物。

循环流化床锅炉与煤粉炉锅炉的比较

循环流化床锅炉与煤粉炉锅炉的比较

循环流化床锅炉与煤粉炉锅炉的比较一、锅炉结构概述循环流化床锅炉跟煤粉炉燃烧系统截然不同,它是由一个流态燃烧室及其后的物料收集系统构成的。

燃料及空气进入燃烧室后,由于物料的热容量大并强烈地掺混,迅速加热着火燃烧。

被烟气带出炉膛的细小物料由旋风分离装置收集,返回炉膛进行再燃烧。

因设计理念和燃烧机理的重大突破,循环流化床锅炉与煤粉炉及其他炉型相比,在燃烧工艺方面有着明显的优势。

二、运行方式比较2.1锅炉启动方式的比较2.1.1点火方式如四角切圆煤粉锅炉在启动中所采取的点火方式是在炉膛内点燃对角油枪,对炉膛内的耐火材料、金属受热面和烟气直接进行加热,并随着耐火材料、金属受热面和烟气温度的提高逐渐增加油枪的出力或增加点火油枪的投入数量,使炉膛内的烟气温度达到煤粉的着火温度。

由于煤粉较易于着火,点火系统还可采用微油点火或等离子点火技术(无烟煤除外),可以节省大量的燃油,节约运行成本。

CFB锅炉的点火方式则不同,它是采用床下风道点火器或联合床上点火器联合点火的方式【根据煤种燃点挥发分、发热量等实际情况可选择取消不用床上油枪】再利用热烟气加热炉膛内的床层,以不断提高床层的温度水平来达到煤粒的着火温度。

从结构上讲,床下风道点火器和床上点火器不仅要对炉膛内的耐火材料、金属受热面和烟气进行加热,还要对燃烧室内的耐火材料和床层物料进行加热,因此CFB锅炉的启动时间和在启动过程中的燃油量都比煤粉锅炉要大,而且它在启动过程中所受到的升温、升压速度的限制条件也比煤粉锅炉要多。

CFB锅炉无法实行节油点火技术。

由上述分析可知,CFB锅炉与同容量煤粉锅炉相比,启动时间相对较长,这对于机组的经济性是不利的。

2.2锅炉变负荷运行2.2.1 煤粉炉的变负荷运行煤粉锅炉的炉内热交换方式以辐射为主。

煤粉锅炉一般要求煤粉气流在离开燃烧器出口200~300 mm 处开始着火,以保证既不烧坏燃烧器又不使火炬脱节。

降低锅炉负荷时,必须减少锅炉给粉量,为了保证良好的空气动力场,喷烧器出口气流速度不得低于设计值,也就降低了煤粉气流的浓度,煤粉的燃烧速度随煤粉浓度的降低而降低。

按目前常用的供热燃煤锅炉燃烧方式考虑

按目前常用的供热燃煤锅炉燃烧方式考虑

按目前常用的供热燃煤锅炉燃烧方式考虑,主要有两种方式可供选择:循环流化床燃烧方式及层燃燃烧方式。

层燃方式细分为链条炉排、往复炉排两种。

1、循环流化床锅炉(1)燃料适应性好,能燃烧劣质煤种或煤矸石。

循环流化床锅炉受煤种变化影响小,不仅可以燃烧其它型号锅炉可燃用的燃料,而且也可燃用其它型号锅炉不能燃用的燃料,能够适应多变的煤种或它们的混合料。

(2)NOx排放量低。

对于加入空气助燃的流化床锅炉,因炉膛底部处于还原状态,属低温燃烧,此处析出的部分燃料氮会转化为分子氮,不能充分与氧气反应,生成NOx。

而分子氮即使在炉膛上部的氧化区也难以氧化,因此NOx生成量更小。

(3)燃烧效率高。

流化床的气固混合好,燃烧速率高,煤粒在炉膛高度的有效范围内有足够时间燃烬。

绝大部分未燃烬的碳粒,被高温旋风分离器捕集后,再送回炉膛,从而获得更长的燃烬时间,因而相对层燃炉而言,燃烧效率高。

循环流化床锅炉主要缺点为:运行耗电量大、烟尘排放浓度高、烟尘颗粒小,必须采用高效率除尘器才能达到环保排放标准;循环流化床锅炉的本体磨损较快,检修间隔时间短,检修量大;对运行操作人员技术能力要求较高。

往复炉排锅炉锅炉炉排在炉膛内作往复运动,燃料自煤斗落下,经煤闸门进入炉内,在往复炉排的推饲作用下,煤沿炉排面由前向后缓慢移动,依次经历热力准备、焦炭燃烧和燃烬过程,所以燃烧过程与链条炉相似。

由于炉排的往复运动,可使部分新燃料推饲到已经着火的炽热火床上,一部分已经着火的炭粒回送到未燃煤层的底部,同时,燃料层被耙松,增加了透气性,焦炭块和煤粒外表的灰壳因挤压而破碎脱落,这些都有利于燃烧的强化和燃尽。

往复炉排炉对煤种的适应性较好,尤其对粘结性较强、含灰量多并难以着火的劣质煤,更能发挥其长处;消烟效果较佳,当操作及结构设计合理时,排烟含尘浓度低;锅炉运行操作简单,对运行人员技术水平要求较低。

往复炉排炉缺点是:炉排中段的炉排片容易烧坏;不宜燃用挥发分低、灰分少及发热值高的烟煤或贫煤;炉排两侧的漏风和漏煤较大,运行时,容易造成火床燃烧的不稳定;锅炉机械损失高,影响锅炉整体运行效率。

循环流化床锅炉原理完整ppt课件

循环流化床锅炉原理完整ppt课件
节涌现象易在鼓泡床与湍流床之间的流化过程中产生。因此,通常把鼓泡 床与湍流床之间的流化状态称为不稳定流化状态。锅炉应尽可能避免在这一状 态下运行。不正常气泡和节涌的产生,主要与布风板、风帽设计不合理,床料 颗粒过粗、料层过薄等因素有关。
3、分层 床料在流化过程中,较粗较重的颗粒一般在底部,细而轻的颗粒悬浮于
当物料呈湍流床时,沿四周壁面的物料浓度较中心大,并沿壁面向下流动。 而中心区物料颗粒相对稀少(浓度低),并随气流向上运动。当气流速度再增大 时,沿壁面明显下降的高浓度气—固两相流出现湍动,下降环流与上升中心流 发生掺混,在炉内产生循环。这种物料在炉内掺混循环,称为“内循环”(图 2-20)。
.
.
二、床内压力波动 在鼓泡流化床床层内,压力波动主要是由气泡运动所致。在早期的
一般地说,沿高度方向,整个循环流化床会同时呈现鼓泡流态化、 湍流流态化、快速流态化和气力输送流动型态,然而要正确地划分其界 限是困难的。目前,有关循环流化床锅炉在采用大颗粒和高温时的流体 动力特性研究结果尚很欠缺,有待进一步深化研究。
.
三、影响临界流化风速的主要因素分析 临界流化风速与床料粒径、密度和流化气体的物性参数有关。
(3)高强度的热量、质量和动量传递过程。循环流化 床锅炉的热量主要靠高速度、高浓度、高通量的 固体物料来实现循环的,炉内的热量、质量和动 量的传递交换非常迅速,从而使整个炉膛内温度 分布很均匀。
.
循环流化床锅炉的典型结构
.
流化床锅炉的原理:
流化床锅炉是一种可燃用劣质燃料及 添加脱硫剂来产生蒸汽的装置。锅炉的燃 烧室运行在一种特殊的流体动力特性下, 细颗粒以超过平均粒径终端速度的气流输 送离开流化床,并存在着大量物料的返混 ,以保证流化床的温度分布均匀及足够大 的热容量。离开流化床的大部分颗粒通过 炉膛进入到旋风分离器被捕捉下来并以足 够的速度经返料装置重新送回到炉膛,。

锅炉三种燃烧方式优缺点对比及综合分析

锅炉三种燃烧方式优缺点对比及综合分析

锅炉三种燃烧方式优缺点对比及综合分析一、引言锅炉是工业领域中重要的热能设备,其燃烧方式直接影响到锅炉的性能和运行效率。

本文将对比分析三种常见的锅炉燃烧方式:层燃、室燃和循环流化床燃烧的优缺点,并对其进行综合评估。

二、层燃燃烧方式优点:(1)燃料适应性广:层燃锅炉可以适应多种类型的燃料,包括煤、油和气。

(2)燃烧稳定:由于采用层状燃烧方式,燃料在炉排上逐层燃烧,因此燃烧过程稳定。

(3)易于操作:层燃锅炉的送风系统相对简单,操作方便。

缺点:(1)燃烧效率低:由于燃料在炉排上逐层燃烧,热量传递过程较长,导致燃烧效率较低。

(2)炉膛温度不均:层燃锅炉的炉膛温度分布不均,影响热能的充分利用。

(3)污染排放大:由于燃烧不完全,烟气中存在大量未燃尽的碳颗粒和有害气体,污染环境。

三、室燃燃烧方式优点:(1)燃烧效率高:室燃锅炉采用悬浮燃烧方式,燃料与空气混合充分,燃烧速度快,效率高。

(2)热能利用率高:由于炉膛温度分布均匀,热能得到充分吸收和利用。

(3)燃料适应性广:室燃锅炉同样可以适应煤、油和气等多种燃料。

缺点:(1)操作难度大:室燃锅炉的送风系统和燃料供应系统较为复杂,操作难度较大。

(2)易受结渣影响:在高温条件下,燃料中的灰分容易结渣,影响锅炉运行。

(3)制造成本高:室燃锅炉的结构复杂,制造和维修成本相对较高。

四、循环流化床燃烧方式优点:(1)燃烧效率高:循环流化床锅炉采用流态化燃烧方式,燃料与空气混合良好,燃烧效率高。

(2)环保性能好:循环流化床锅炉具有较高的脱硫效率和较低的NOx排放量,对环境友好。

(3)燃料适应性广:循环流化床锅炉可以适应多种类型的燃料,包括劣质煤、生物质等。

缺点:(1)运行成本高:循环流化床锅炉的燃料消耗量较大,运行成本相对较高。

(2)磨损问题:循环流化床锅炉内的高速流动介质对设备部件造成较大的磨损,需要定期维修和更换部件。

(3)启动时间长:循环流化床锅炉的启动和停炉过程相对较长,不适合频繁启停操作。

循环流化床锅炉的工作原理

循环流化床锅炉的工作原理

循环流化床锅炉的工作原理
循环流化床锅炉是一种利用循环流化床技术进行燃烧的锅炉。

其工作原理如下:
1. 燃料供给:将燃料(如煤炭、生物质或废弃物等)送入循环流化床锅炉中。

2. 燃烧气体进入循环流化床:通过给燃料供应充分的氧气,燃烧产生的高温燃烧气体进入循环流化床。

3. 循环流化床:循环流化床是由高速气流和燃料颗粒组成的流化床。

床内的气流维持颗粒悬浮,并使其呈现类似流体的状态。

4. 燃料燃烧:在流化床中,燃料颗粒与气流混合并燃烧。

燃料颗粒中的固体燃料被氧化为燃烧产物(如二氧化碳、水蒸汽等)。

5. 温度调控:通过调节燃料供应和床内气流速度,控制循环流化床的温度,使其保持在适宜的燃烧温度范围内。

6. 固体分离:燃烧后的固体残渣(灰渣)通过装置(如旋风分离器)从循环流化床中分离出来。

燃烧气体进一步通过喷射器和其他副燃烧器等装置进行处理。

7. 热能回收:循环流化床锅炉燃烧过程产生的热能通过烟汽换热器等装置回收,以便用于发电、供热或其他用途。

总的说来,循环流化床锅炉的工作原理是通过在床内产生循环气流来维持颗粒床的流化状态,使燃料颗粒与气流充分混合并燃烧,从而实现热能的释放和利用。

这种技术具有高热效率、低污染排放和适应多种燃料等优点,所以被广泛应用于能源产业。

循环流化床锅炉原理说明

循环流化床锅炉原理说明

一、循环流化床锅炉及脱硫1、循环流化床锅炉工作原理煤和脱硫剂被送入炉膛后,迅速被炉膛内存在的大量惰性高温物料(床料)包围,着火燃烧所需的的一次风和二次风分别从炉膛的底部和侧墙送入,物料在炉膛内呈流态化沸腾燃烧。

在上升气流的作用下向炉膛上部运动,对水冷壁和炉内布置的其他受热面放热。

大颗粒物料被上升气流带入悬浮区后,在重力及其他外力作用下不断减速偏离主气流,并最终形成附壁下降粒子流,被气流夹带出炉膛的固体物料在气固分离装置中被收集并通过返料装置送回炉膛循环燃烧直至燃尽。

未被分离的极细粒子随烟气进入尾部烟道,进一步对受热面、空气预热器等放热冷却,经除尘器后,由引风机送入烟囱排入大气。

燃料燃烧、气固流体对受热面放热、再循环灰与补充物料及排渣的热量带入与带出,形成热平衡使炉膛温度维持在一定温度水平上。

大量的循环灰的存在,较好的维持了炉膛的温度均化性,增大了传热,而燃料成灰、脱硫与补充物料以及粗渣排除维持了炉膛的物料平衡。

煤质变化或加入石灰石均会改变炉内热平衡,故燃用不同煤种的循环流化床锅炉在设计及运行方面都有不同程度的差异。

循环流化床锅炉在煤种变化时,会对运行调节带来影响。

试验表明,各种煤种的燃尽率差别极大,在更换煤种时,必须重新调节分段送风和床温,使燃烧室适应新的煤种。

加入石灰石的目的,是为了在炉内进行脱硫。

石灰石的主要化学成份是CaO .而煤粉燃烧后产生的SO2、SO3等,若直接通过烟囱排入大气层,必然会造成污染。

加入石灰石后,石灰石中的的Cao 与烟气中的SO2、SO3等起化学反应,生成固态的 CaSO3 、CaSO4 (即石膏),从而减少了空气中的硫酸类的酸性气体的污染。

另外,由于流化床锅炉的燃烧温度被控制在800-900 ℃范围内,煤粉燃烧后产生的 NOx 气体也会大大减少硝酸类酸性气体。

2、循环流化床锅炉的特点可燃烧劣质煤因循环流化床锅炉特有的飞灰再循环结构,飞灰再循环量的大小可改变床内(燃烧室)的吸收份额,即任何劣质煤均可充分燃烧,所以循环流化床锅炉对燃料的适应性特别好。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

循环流化床锅炉燃烧方式
引言
循环流化床锅炉是一种利用流化床技术进行高效燃烧的锅炉,其独特的燃烧方式可以提供更高的热效率和更低的污染排放。

本文将介绍循环流化床锅炉的燃烧方式,包括基本原理、燃烧过程及其应用领域等方面。

1. 循环流化床基本原理
循环流化床是一种通过将固体颗粒物质与气流进行循环混合而实现燃烧的技术。

循环流化床锅炉的基本原理如下:
•利用气流形成床内均匀的悬浮状态:循环流化床锅炉床内充满了固体颗粒物质,通过高速气流的作用,使颗粒物质悬浮在气流中,形成均匀的悬浮状态。

•利用气流的高速度提高传热效率:气流通过床层时,与悬浮颗粒物质发生剧烈碰撞,使气流中的热量迅速传递给颗粒物质,从而提高传热效率。

•利用颗粒物质的独特特性实现燃烧:循环流化床锅炉中的颗粒物质具有很好的燃烧性能,通过与气流的混合作用,颗粒物质可以迅速燃烧,释放出热量。

2. 循环流化床锅炉燃烧过程
循环流化床锅炉的燃烧过程可以分为以下几个步骤:
2.1 预热和干燥阶段:初始阶段,床内固体颗粒物质开始被加热和干燥,床温逐
渐升高。

2.2 燃烧和混合阶段:预热和干燥后,固体颗粒物质与燃料混合,同时引入适量
的气流。

在高速气流的作用下,颗粒物质迅速燃烧,释放出大量的热量。

2.3 吸热和燃料转化阶段:燃烧过程中,颗粒物质吸收热量,使颗粒物质温度升高。

同时,燃料在高温下发生物理和化学反应,转化为可燃气体。

2.4 燃料气化阶段:燃料转化为可燃气体后,与床内的气流充分混合,形成高温
的气体。

该气体进一步燃烧,释放更多的热量。

2.5 传热和排烟阶段:燃烧产生的热量通过颗粒物质与气流的热交换,传递给锅
炉管道中的工质(通常为水蒸气)。

同时,废气中的污染物通过烟气净化设备进行处理,以降低污染物排放。

3. 循环流化床锅炉燃烧方式的优势
循环流化床锅炉的燃烧方式具有以下优势:
•高热效率:循环流化床锅炉通过气流与颗粒物质的循环混合,使热量更均匀地传递给工质,提高了热效率。

•低排放:循环流化床锅炉通过燃料的充分燃烧和烟气净化设备的处理,减少了二氧化硫、氮氧化物等有害气体的排放。

•多燃料适应性:循环流化床锅炉可以灵活适应不同的燃料,包括煤炭、生物质、废物燃料等,提高了能源的利用效率。

•环保可持续发展:循环流化床锅炉通过减少污染物排放和有效利用废物资源,使能源利用更加环保和可持续。

4. 循环流化床锅炉的应用领域
循环流化床锅炉的燃烧方式使其在以下领域得到广泛应用:
•电力工业:循环流化床锅炉可以为发电厂提供高效、低排放的热能,能够适应不同种类的燃料,满足电力需求。

•钢铁工业:循环流化床锅炉可用于钢铁行业的高炉煤气余热锅炉、焦炉余热锅炉等,提高能源利用效率。

•化工工业:循环流化床锅炉在化工工业中可以用于加热和蒸汽产生等过程,提供热能支持。

•城市供热:循环流化床锅炉可以为城市供热系统提供高效、环保的热能,减少对化石燃料的依赖。

结论
循环流化床锅炉是一种通过气流与颗粒物质的循环混合实现燃烧的高效热能利用技术。

其独特的燃烧方式具有高热效率、低排放、多燃料适应性和环保可持续等优势,广泛应用于电力、钢铁、化工和城市供热等领域。

随着能源需求和环保要求的不断提升,循环流化床锅炉有望在未来得到更加广泛的应用和发展。

相关文档
最新文档