2019年中考数学知识点:用平方差公式因式分解速记口诀
初中数学之因式分解知识点汇总
初中数学之因式分解知识点汇总因式分解1. 因式分解的概念:把一个多项式化成几个整式的积的形式,这样的式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
2. 因式分解与整式乘法的关系因式分解与整式乘法都是整式变形,两者互为逆变形。
因式分解是将“和差”的形式化为“积”的形式,而整式乘法是将“积”化为“和差”的形式。
注:分解因式必须进行到每一个多项式的因式都不能再分解为止,即分解因式要彻底。
3. 公因式多项式的各项都含有的公共因式叫做这个多项式各项的公因式。
系数——取各项系数的最大公约数;字母——取各项都含有的字母;指数——取相同字母的最低次幂。
例如:多项式pa+pb+pc 中因式p 即为多项式各项的公因式。
因式分解九大方法:(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
中考试题 因式分解(解析版)2019数学全国中考真题
2019全国中考数学真题知识点05因式分解(解析版)一、选择题8.(2019·株洲)下列各选项中因式分解正确的是( )A .221(1)x x -=-B .3222(2)a a a a a -+=-C .2242(2)y y y y -+=-+D .222(1)m n mn n n m -+=-【答案】D【解析】选项A 是平方差公式应该是(x+1)(x-1),所以错误;选项B 公因式应该是a ,所以错误;选项C 提取公因式-2y 后,括号内各项都要变号,所以错误;只有选项D 是正确的。
1. (2019·无锡市)分解因式224x y 的结果是 ( )A.(4x +y )(4x -y )B.4(x +y )(x -y )C.(2x +y )(2x -y )D.2(x +y )(x -y )【答案】C【解析】本题考查了公式法分解因式,4x 2-y 2=(2x -y )(2x +y ),故选C.2. (2019·潍坊)下列因式分解正确的是( )A .22363(2)ax ax ax ax -=-B .22()()x y x y x y -+=-+-- C .22224(2)a ab b a b ++=+ D .222(1)ax ax a a x -+-=--【答案】D【解析】选项A :2363(2)ax ax ax x -=-;选项B :22()()x y x y x y -+=-++;选项C 不能分解因式;选项D 正确;故选择D .二、填空题11.(2019·广元)分解因式:a 3-4a =________.【答案】a(a+2)(a -2)【解析】a 3-4a =a(a 2-4)=a(a+2)(a -2).12.(2019·苏州)因式分解:x 2-xy = .【答案】x (x -y )【解析】本题考查了提公因式法分解因式,x 2-xy = x (x -y ),故答案为x (x -y ).11.(2019·温州)分解因式:m 2+4m+4= .【答案】(m+2)2【解析】本题考查了运用完全平方公式分解因式,解题的关键是掌握完全平方公式的特征.原式=(m+2)2.11.(2019·绍兴 )因式分解:=-12x .【答案】(x+1)(x-1)11.(2019·嘉兴)分解因式:x 2﹣5x = .【答案】(5)x x -11.(2019·杭州)因式分解:1-x 2=_________.【答案】(1-x)(1+x)【解析】直接应用平方差公式进行因式分解,1-x 2=(1-x)(1+x),故填:(1-x)(1+x).14.(2019·威海)分解因式:2x 2-2x +12= . 【答案】2122x ⎛⎫- ⎪⎝⎭ 【解析】先提取公因式2,再根据完全平方公式进行二次分解.2x 2-2x +12=2(x 2-x +14)=2122x ⎛⎫- ⎪⎝⎭. 10.(2019·盐城)分解因式:21x -= .【答案】(1)(1)x x -+【解析】直接利用平方差公式分解因式,进而得到答案.7.(2019·江西)因式分解:12-x = .【答案】(x+1)(x-1)【解析】12-x =(x+1)(x-1)14.(2019·长沙,14,3分)分解因式:am 2-9a= .【答案】a(m+3)(m-3).【解析】先提取公因式a ,再应用平方差公式进行分解因式. am 2-9a=a(m+3)(m-3).13.(2019·衡阳)因式分解:2a 2-8= .【答案】2(a +2)(a =2)【解析】2a 2-8=2(a +2)(a =2),故答案为2(a +2)(a =2).11.(2019·黄冈)分解因式3x 2-27y 2= .【答案】3(x+3y )(x-3y )【解析】先提取公因数3,然后利用平方差公式进行分解,即3x 2-27y 2=3(x 2-9y 2)=3(x+3y )(x-3y )。
2019年春七年级数学下册第4章因式分解4.3第1课时用平方差公式分解因式练习新版浙教版
4.3 用乘法公式分解因式第1课时用平方差公式分解因式知识点1平方差公式分解因式把乘法公式(a+b)(a-b)=a2-b2反过来,得a2-b2=(a+b)(a-b).两个数的平方差,等于这两个数的和与这两个数的差的积.我们可以运用这个公式对某些多项式进行分解因式,这种方法叫运用平方差公式法.1.把下列多项式分解因式:(1)x2-36;(2)36-25y2;(3)(x+p)2-(x+q)2.一提公因式与平方差公式综合运用把下列各式分解因式:(1)18a2-8b2;(2)a5-81ab4.[归纳总结] (1)用平方差公式分解因式的条件:①二次(能写成平方的形式);②异号.(2)对于多项式中的两部分不是很明显的平方形式,应先变形为平方形式,再运用公式进行因式分解,以免出现16a2-9b2=(16a+9b)·(16a-9b)的错误.(3)还要注意不要出现分解后又乘开的现象.(4)因式分解应遵循:一提二公式.同时因式分解需彻底.二尝试用平方差公式进行简便运算教材作业题第3题变式题用简便方法计算:(1)3142-2142;(2)3.14×752-3.14×252.探究三平方差公式分解因式的应用教材补充题如图4-3-1所示,在半径为R的大圆内部挖去四个半径为r的小圆.(1)用含R,r的式子表示剩余部分的面积S;(2)当R=35 cm,r=12.5 cm时,应用分解因式的知识计算剩余部分的面积(结果保留π).图4-3-1[反思] 判断下列分解因式的过程是否正确,若不正确,请改正.①4a2-1=(4a-1)(4a+1);②(x-y)2-4x2=x2-2xy+y2-4x2=-3x2-2xy+y2.1.下列各式中,不能用平方差公式分解因式的是( )A.-m4-n4B.-16x2+y2C.1.21-a2D.9a2-64b22.将整式9-x2分解因式的结果是( )A.(3-x)2B.(3+x)(3-x)C.(9-x)2D.(9+x)(9-x)3.将多项式x3-xy2分解因式,结果正确的是( )A.x(x2-y2) B.x(x-y)2C.x(x+y)2D.x(x+y)(x-y)4.已知-(2a-b)(2a+b)是下列一个多项式分解因式的结果,则这个多项式是( )A.4a2-b2B.4a2+b2C.-4a2-b2D.-4a2+b25.观察下面4个分解因式的过程:(1)(x-3)2-y2=x2-6x+9-y2;(2)a2-4b2=(a+4b)(a-4b);(3)4x6-1=(2x3+1)(2x3-1);(4)m4n2-9=(m2n+3)(m2n-3);(5)-a2-b2=(-a+b)(-a-b).其中正确的有( )A.1个B.2个C.3个D.4个6.某同学粗心大意,在分解因式时,把等式x4-■=(x2+4)(x+2)(x-▲)中的两个数字弄污了,则式子中的■,▲对应的一组数字可以是( )A.8,1 B.16,2C.24,3 D.64,8二、填空题7.xx·嘉兴、舟山分解因式:a2-9=__________.8.xx·长沙分解因式:x2y-4y=________.9.xx·荆门分解因式:(m+1)(m-9)+8m=________.10.xx·株洲因式分解:x2(x-2)-16(x-2)=____________________.11.已知58-1能被20~30之间的两个整数整除,则这两个整数是________.三、解答题12.分解因式:(1)a3-16a;(2)16(a+b)2-9(a-b)2;(3)m4(m-2)+16(2-m).13.用简便方法计算:(1)6.42-3.62;(2)1.42×16-2.22×4.14.设n是整数,用因式分解的方法说明:(2n+1)2-25能被4整除.n(m>2n)的小正方形.(1)用含m,n的式子表示剩余部分的面积S;(2)当m=13.2厘米,n=3.4厘米时,利用分解因式计算剩余部分的面积.图4-3-2详解详析【预习效果检测】1.解:(1)x2-36=x2-62=(x+6)(x-6).(2)36-25y2=62-(5y)2=(6+5y)(6-5y).(3)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).【重难互动探究】例1[解析] 分解因式时,要先观察多项式,有公因式的要先提取公因式再考虑是否符合公式.解:(1)18a2-8b2=2(9a2-4b2)=2(3a+2b)(3a-2b).(2)a5-81ab4=a(a4-81b4)=a(a2+9b2)(a2-9b2)=a(a2+9b2)(a+3b)(a-3b).例2解:(1)原式=(314+214)×(314-214)=52800.(2)原式=3.14×(752-252)=3.14×(75+25)×(75-25)=15700.例3[解析] 剩余部分的面积为大圆面积减去四个小圆的面积.解:(1)剩余部分的面积为S=πR2-4πr2=π(R2-4r2)=π(R+2r)(R-2r).(2)当R=35 cm,r=12.5 cm时,S=π(R+2r)(R-2r)=π(35+2×12.5)×(35-2×12.5)=π·60×10=600π(cm2).【课堂总结反思】[反思] 两个均不正确.改正:①4a2-1=(2a)2-12=(2a-1)(2a+1).②(x-y)2-4x2=(x-y)2-(2x)2=(x-y-2x)·(x-y+2x)=-(x+y)(3x-y).【作业高效训练】[课堂达标]1.A 2.B3.[解析] D x3-xy2=x(x2-y2)=x(x+y)(x-y).4.D 5.B 6.B7.[答案] (a+3)(a-3)8.[答案] y(x+2)(x-2)9.[答案] (m-3)(m+3)10.[答案] (x-2)(x-4)(x+4)11.[答案] 26,24[解析] 58-1=(54+1)(52+1)(52-1),因为52+1=26,52-1=24,所以这两个数是26,24. 12.解:(1)原式=a(a+4)(a-4).(2)原式=(7a+b)(a+7b).(3)原式=m4(m-2)-16(m-2)=(m-2)(m4-16)=(m-2)(m2+4)(m2-4)=(m-2)(m2+4)(m+2)(m-2)=(m-2)2(m+2)(m2+4).13.[解析] 利用平方差公式简化计算过程.解:(1)6.42-3.62=(6.4+3.6)(6.4-3.6)=10×2.8=28.(2)1.42×16-2.22×4=(1.4×4)2-(2.2×2)2=5.62-4.42=(5.6+4.4)(5.6-4.4)=10×1.2=12.14.解:原式=(2n+1)2-52=(2n+1+5)(2n+1-5)=(2n+6)(2n-4)=4(n+3)(n-2),即(2n+1)2-25能被4整除.[数学活动][解析] 剩余部分的面积为大正方形的面积减去四个小正方形的面积.解:(1)S=m2-4n2=(m+2n)(m-2n).(2)当m=13.2厘米,n=3.4厘米时,S=(m+2n)(m-2n)=(13.2+3.4×2)(13.2-3.4×2)=20×6.4=128(厘米2).所以剩余部分的面积为128平方厘米.。
利用平方差公式进行因式分解
利用平方差公式进行因式分解平方差公式是代数学中的一个重要公式,用于将一个数或表达式的平方差拆分成两个平方的和或差。
利用平方差公式进行因式分解,我们可以简化复杂的表达式,使其更易于计算和理解。
平方差公式的一般形式为:a^2-b^2=(a+b)(a-b)其中,a和b可以是任意实数或变量。
根据这个公式,我们可以将一个平方差的表达式(a^2-b^2)因式分解成两个因子的乘积(a+b)和(a-b)。
下面我们通过一些例子来具体说明如何利用平方差公式进行因式分解。
例子1:将表达式x^2-4因式分解。
根据平方差公式,我们可以将x^2-4写成两个因子的乘积形式:x^2-4=(x+2)(x-2)这样,我们就成功地将x^2-4因式分解成了(x+2)和(x-2)两个因子的乘积。
例子2:将表达式9a^2-16因式分解。
同样地,我们可以利用平方差公式将表达式9a^2-16因式分解:9a^2-16=(3a+4)(3a-4)这里,我们得到了(3a+4)和(3a-4)两个因子的乘积形式。
例子3:将表达式4x^2y^2-25因式分解。
对于这个表达式,我们需要注意到其中的变量有两个,即x和y。
根据平方差公式,我们可以看到4x^2y^2可以看作(2xy)^2,而25可以看作5^2所以,我们可以将表达式4x^2y^2-25因式分解为:4x^2y^2 - 25 = (2xy + 5)(2xy - 5)这样,我们将表达式成功地因式分解成了(2xy + 5)和(2xy - 5)两个因子的乘积。
以上是针对一些简单的表达式的因式分解示例。
实际上,平方差公式可适用于更加复杂的表达式。
通过应用平方差公式,我们可以将多项式、多变量的表达式或更多项的表达式因式分解成更简单的形式,从而更好地理解和计算。
在实际应用中,利用平方差公式进行因式分解也十分常见,特别是在解决方程、化简代数表达式或进行变量替换时。
总结起来,通过利用平方差公式进行因式分解,我们可以将一个数或表达式的平方差拆分成两个平方的和或差,从而简化复杂的代数表达式,使其更易于计算和理解。
2019年中考数学知识点:因式分解法九大方式
因式分解法九大方式(一)运用公式法:我们知道整式乘法与因式分解互为逆变形。
如果把乘法公式反过来就是把多项式分解因式。
于是有:a2-b2=(a+b)(a-b)a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2如果把乘法公式反过来,就可以用来把某些多项式分解因式。
这种分解因式的方法叫做运用公式法。
(二)平方差公式1.平方差公式(1)式子:a2-b2=(a+b)(a-b)(2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。
这个公式就是平方差公式。
(三)因式分解1.因式分解时,各项如果有公因式应先提公因式,再进一步分解。
2.因式分解,必须进行到每一个多项式因式不能再分解为止。
(四)完全平方公式(1)把乘法公式(a+b)2=a2+2ab+b2 和(a-b)2=a2-2ab+b2反过来,就可以得到:a2+2ab+b2 =(a+b)2a2-2ab+b2 =(a-b)2这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
把a2+2ab+b2和a2-2ab+b2这样的式子叫完全平方式。
上面两个公式叫完全平方公式。
(2)完全平方式的形式和特点①项数:三项②有两项是两个数的的平方和,这两项的符号相同。
③有一项是这两个数的积的两倍。
(3)当多项式中有公因式时,应该先提出公因式,再用公式分解。
(4)完全平方公式中的a、b可表示单项式,也可以表示多项式。
这里只要将多项式看成一个整体就可以了。
(5)分解因式,必须分解到每一个多项式因式都不能再分解为止。
(五)分组分解法我们看多项式am+ an+ bm+ bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.如果我们把它分成两组(am+ an)和(bm+ bn),这两组能分别用提取公因式的方法分别分解因式.原式=(am +an)+(bm+ bn)=a(m+ n)+b(m +n)做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义.但不难看出这两项还有公因式(m+n),因此还能继续分解,所以原式=(am +an)+(bm+ bn)=a(m+ n)+b(m+ n)=(m +n)?(a +b).这种利用分组来分解因式的方法叫做分组分解法.从上面的例子可以看出,如果把一个多项式的项分组并提取公因式后它们的另一个因式正好相同,那么这个多项式就可以用分组分解法来分解因式.(六)提公因式法1.在运用提取公因式法把一个多项式因式分解时,首先观察多项式的结构特点,确定多项式的公因式.当多项式各项的公因式是一个多项式时,可以用设辅助元的方法把它转化为单项式,也可以把这个多项式因式看作一个整体,直接提取公因式;当多项式各项的公因式是隐含的时候,要把多项式进行适当的变形,或改变符号,直到可确定多项式的公因式.2. 运用公式x2 +(p+q)x+pq=(x+q)(x+p)进行因式分解要注意:1.必须先将常数项分解成两个因数的积,且这两个因数的代数和等于一次项的系数.2.将常数项分解成满足要求的两个因数积的多次尝试,一般步骤:① 列出常数项分解成两个因数的积各种可能情况;②尝试其中的哪两个因数的和恰好等于一次项系数.3.将原多项式分解成(x+q)(x+p)的形式.(七)分式的乘除法1.把一个分式的分子与分母的公因式约去,叫做分式的约分.2.分式进行约分的目的是要把这个分式化为最简分式.3.如果分式的分子或分母是多项式,可先考虑把它分别分解因式,得到因式乘积形式,再约去分子与分母的公因式.如果分子或分母中的多项式不能分解因式,此时就不能把分子、分母中的某些项单独约分.4.分式约分中注意正确运用乘方的符号法则,如x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.5.分式的分子或分母带符号的n次方,可按分式符号法则,变成整个分式的符号,然后再按-1的偶次方为正、奇次方为负来处理.当然,简单的分式之分子分母可直接乘方.6.注意混合运算中应先算括号,再算乘方,然后乘除,最后算加减.(八)分数的加减法1.通分与约分虽都是针对分式而言,但却是两种相反的变形.约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一起来.2.通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变.3.一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备.4.通分的依据:分式的基本性质.5.通分的关键:确定几个分式的公分母.通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.6.类比分数的通分得到分式的通分:把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分.7.同分母分式的加减法的法则是:同分母分式相加减,分母不变,把分子相加减。
分解因式公式法口诀
分解因式公式法口诀在数学的世界里,分解因式就像是一场有趣的解谜游戏,而公式法就是我们手中的重要工具。
要想熟练运用公式法来分解因式,那可得记住这个超有用的口诀。
“平方差,两项式,符号异,就用它。
”这说的就是平方差公式啦。
你看,a² - b² = (a + b)(a - b) ,简单吧?比如说,4x² - 9 ,这不就是(2x)² - 3²嘛,那用平方差公式一分解,就是 (2x + 3)(2x - 3) 。
“完全平,三项式,首平方,尾平方,首尾二倍在中央。
”完全平方公式也不难理解哦。
a² + 2ab + b² = (a + b)²,a² - 2ab + b² = (a - b)²。
举个例子,9x² + 12x + 4 ,这就是 (3x)² + 2×3x×2 + 2²,妥妥的一个完全平方,分解出来就是 (3x + 2)²。
我记得之前给学生们讲这个的时候,有个小家伙一脸迷糊地问我:“老师,这公式我老是记不住咋办呀?”我笑着跟他说:“别着急,咱们多做几道题,就像打怪升级一样,打着打着你就记住啦。
”然后我带着他们做了好多练习题,从简单的到复杂的,慢慢地,大家都能熟练运用这些公式了。
其实啊,分解因式公式法就像是一把神奇的钥匙,能帮我们打开数学难题的大门。
但要想真正掌握这把钥匙,还得多练习、多琢磨。
比如说,遇到 x⁴ - 16 这样的式子,别慌,先把它变成 (x²)² - 4²,再用平方差公式,就得到 (x² + 4)(x² - 4) ,然后 x² - 4 还能继续用平方差公式分解为 (x + 2)(x - 2) ,所以最后的结果就是 (x² + 4)(x + 2)(x - 2) 。
因式分解的十二种方法 因式分解的方法顺口溜
因式分解的十二种方法因式分解的方法顺口溜因式分解的十二种方法:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解。
因式分解的方法多种多样,现总结如下:1、提公因法如果一个多项式的各项都含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式。
例1、分解因式x³-2x²-x (2003淮安市中考题)x³-2x²-x=x(x²-2x -1)2、应用公式法由于分解因式与整式乘法有着互逆的关系,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式。
例2、分解因式a²+ 4ab + 4b²(2003南通市中考题)解:a²+ 4ab +4b²=(a+2b)²3、分组分解法要把多项式am+an+bm+bn分解因式,可以先把它前两项分成一组,并提出公因式a,把它后两项分成一组,并提出公因式b,从而得到a(m+n)+b(m+n),又可以提出公因式m+n,从而得到(a+b)(m+n)例3、分解因式m²+ 5n - mn - 5m 解:m²+ 5n - mn - 5m= m²- 5m - mn + 5n= (m²-5m )+(-mn+5n)=m(m-5)-n(m-5)=(m-5)(m-n)4、十字相乘法对于mx²+px+q形式的多项式,如果a×b=m,c×d=q且ac+bd=p,则多项式可因式分解为(ax+d)(bx+c)例4、分解因式7x²-19x-6分析:1 - 37 22 - 21=-19解:7x²-19x-6=(7x+2)(x-3)5、配方法对于那些不能利用公式法的多项式,有的可以利用将其配成一个完全平方式,然后再利用平方差公式,就能将其因式分解。
例5、分解因式x²+3x-4033解x²+3x - 40=x²+ 3x + ( 2)²- ( 2 )²-40313=(x + 2 )²- ( 2 )²313313=(x + 2 + 2 )(x + 2 - 2 )=(x+8)(x-5)[1**********]注:( )²+ ==( )²=( )²2444226、拆、添项法可以把多项式拆成若干部分,再用进行因式分解。
运用平方差公式因式分解
运用平方差公式因式分解因式分解是数学中的一个重要工具,而平方差公式在因式分解中更是有着广泛的应用。
今天咱们就来好好聊聊运用平方差公式因式分解这个有趣的话题。
先让咱们复习一下啥是平方差公式。
平方差公式就是:a² - b² = (a + b)(a - b) 。
这看起来挺简单,对吧?但要用好它来进行因式分解,可得下点功夫。
比如说,给你一个式子 x² - 9 ,你能马上想到用平方差公式吗?答案是肯定的!因为 9 可以写成 3²,所以 x² - 9 就可以写成 x² - 3²,然后根据平方差公式,就能分解为 (x + 3)(x - 3) 。
我记得之前给学生们讲这部分内容的时候,有个学生特别有意思。
当时我在黑板上出了一道题:4x² - 25 。
大部分同学都很快反应过来,这就是 (2x)² - 5²,然后分解为 (2x + 5)(2x - 5) 。
但有个小迷糊,一直皱着眉头苦思冥想。
我走过去问他咋啦,他一脸困惑地说:“老师,我总觉得这式子看着别扭,不知道从哪儿下手。
”我笑着给他指了指,“你看,4x²不就是 (2x)²,25 不就是 5²嘛,这不就符合平方差公式啦。
”听我这么一说,他恍然大悟,一拍脑门,“哎呀,我咋这么笨呢!”后来啊,他做这类题可积极了,每次都抢着回答。
咱们再来看一些复杂点的例子。
像 9(m + n)² - (m - n)²,这可不能直接用平方差公式,得先变形。
9(m + n)²可以写成 [3(m + n)]²,然后这式子就变成了 [3(m + n)]² - (m - n)²,这下就能用平方差公式啦,分解为 [3(m + n) + (m - n)][3(m + n) - (m - n)] ,经过去括号、合并同类项,最终得到 (4m + 2n)(2m + 4n) ,还可以继续化简为 4(2m + n)(m + 2n) 。
平方差公式记忆口诀
平方差公式记忆口诀学习数学有没有巧门?有!有的人记性好,能把书本上的典型题原原本本的背下来,这种学习方法叫死记硬背,这类人靠一般知识和概念题得分;有的人记性不好,靠推导和分析难题得分,小题、简单问题丢分,常给人一种得不偿失的感觉。
怎样才能鱼与熊掌兼得呢?小编告诉你记忆的窍门。
平方差公式记忆口诀有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
因式分解七步口诀
因式分解七步口诀因式分解七步口诀:首先提取公因式,其次考虑用公式,十字相乘排第三,分组分解排第四,几法若都行不通,拆项添项试一试,不能分解是答案。
因式分解口诀是什么因式分解七步口诀:首先提取公因式,其次考虑用公式,十字相乘排第三,分组分解排第四,几法若都行不通,拆项添项试一试,不能分解是答案。
把一个多项式在一个范围(如实数范围内分解,即所有项均为实数)化为几个整式的积的形式,这种式子变形叫做这个多项式的因式分解,也叫作把这个多项式分解因式。
因式分解的一般步骤:1、如果多项式的首项为负,应先提取负号;这里的“负”,指“负号”。
如果多项式的第一项是负的,一般要提出负号,使括号内第一项系数是正的。
2、如果多项式的各项含有公因式,那么先提取这个公因式,再进一步分解因式;要注意:多项式的某个整项是公因式时,先提出这个公因式后,括号内切勿漏掉1;提公因式要一次性提干净,并使每一个括号内的多项式都不能再分解。
3、如果各项没有公因式,那么可尝试运用公式、十字相乘法来分解;4、如果用上述方法不能分解,再尝试用分组、拆项、补项法来分解。
因式分解常用公式1、平方差公式:a²-b²=(a+b)(a-b)。
2、完全平方公式:a²+2ab+b²=(a+b)²。
3、立方和公式:a³+b³=(a+b)(a²-ab+b²)。
4、立方差公式:a³-b³=(a-b)(a²+ab+b²)。
5、完全立方和公式:a³+3a²b+3ab²+b³=(a+b)³。
6、完全立方差公式:a³-3a²b+3ab²-b³=(a-b)³。
7、三项完全平方公式:a²+b²+c²+2ab+2bc+2ac=(a+b+c)²。
初中因式分解必背公式
初中因式分解必背公式
初中数学学习中,因式分解是一个重要的知识点。
它是将一个多项式拆分成两个或多个因子的过程。
通过因式分解,我们可以更方便地处理多项式的计算和问题求解。
下面我将为大家介绍一些必备的因式分解公式。
1. 平方差公式:$a^2 - b^2 = (a+b)(a-b)$
这个公式是因式分解中最基础的公式之一。
它告诉我们,一个二次差的平方可以被分解成两个一次差的乘积。
2. 完全平方公式:$a^2 + 2ab + b^2 = (a+b)^2$
这个公式是因式分解中的一个常用公式。
它告诉我们,一个完全平方可以被分解成两个相同因子的乘积。
3. 二次三项差的平方公式:$a^2 - 2ab + b^2 = (a-b)^2$
这个公式是因式分解中的另一个常用公式。
它告诉我们,一个二次三项差的平方可以被分解成两个相同因子的乘积。
4. 一次三项差的立方公式:$a^3 - b^3 = (a-b)(a^2+ab+b^2)$
这个公式是因式分解中的一个重要公式。
它告诉我们,一个一次三项差的立方可以被分解成两个一次差的乘积。
5. 二次三项和的立方公式:$a^3 + b^3 = (a+b)(a^2-ab+b^2)$
这个公式是因式分解中的另一个重要公式。
它告诉我们,一个二次三项和的立方可以被分解成两个一次和的乘积。
以上就是初中因式分解必背的一些公式。
通过掌握这些公式,我们可以更加灵活地进行因式分解的运算和问题求解。
希望同学们通过不断练习和理解,掌握这些公式,并能够灵活运用于实际问题中。
让我们一起努力,提高数学水平!。
完全平方差公式口诀
完全平方差公式口诀完全平方差公式是一种用来求解二次方程因式分解的方法,它可以将一个二次方程转化成两个一次方程相乘的形式。
这个公式在解决许多数学问题和实际应用中非常有用。
为了便于记忆和理解,我们可以借助一个口诀来帮助记忆这个公式。
我们首先回顾一下完全平方差公式的具体形式:(a ± b)² = a² ± 2ab + b²其中,a和b可以是任意实数。
虽然这个公式看起来可能有些复杂,但是通过一个简单的口诀,我们可以轻松地记住它。
下面是一个具体而有效的口诀:一阳生两阴平,相同弟兄和亲情;先平方后高低,平方之间绾结紧。
这个口诀的含义是比较直白的:首先平方第一个数;然后平方和、差,注意正负号;最后用绳子把前两个数绾结紧。
我们可以具体解释一下这个口诀的含义:一阳生两阴平:这句话的意思是比较简单的,就是指平方运算在两个数之间起到“分身”作用。
无论是加法还是减法形式,我们都可以根据这个口诀来记忆。
相同弟兄和亲情:这句话的意思是指在平方和、差的中间部分,我们要注意到两个数的系数都是2、这是因为我们在进行平方运算时,需要加上两次“一阳生两阴平”的效果。
先平方后高低:这句话的意思是指在完全平方差公式中,我们首先进行的是平方运算,然后再进行加法或减法运算。
平方之间绾结紧:这句话的意思是指在平方和、差的表达式中,要注意正确地表达数学关系,将两个数用括号括起来,以保证运算的正确性。
通过这个口诀,我们可以很方便地记忆和运用完全平方差公式。
我们可以用一个具体的例子来说明这个口诀的应用。
假设我们需要将二次方程x²+6x+9进行因式分解。
根据完全平方差公式,我们可以将其写成(x+3)²的形式。
这个例子中,我们可以根据口诀首先平方第一个数,得到(x+3)²;然后注意到平方和和差的中间部分都是2,所以我们可以得到(x+3)²=x²+2×3x+3²;最后我们将前两个数用括号括起来,得到(x+3)²=(x+3)(x+3)。
专题04 因式分解篇(原卷版)-2023年中考数学必考考点总结
知识回顾专题04因式分解2023年中考数学必考考点总结考点一:因式分解1.因式分解的概念:把一个多项式写成几个整式的乘法的形式,这种变形叫做因式分解。
2.因式分解的方法:①提公因式法:()c b a m cm bm am ++=++公因式的确定:公因式=各项系数的最小公倍数×相同字母(式子)的最低次幂。
若多项式首项是负的,则公因式为负。
用各项除以公因式得到另一个式子。
②公式法:平方差公式:()()b a b a b a -+=-22。
完全平方公式:()2222b a b ab a ±=+±③十字相乘法:利用十字交叉线将二次三项式进行因式分解的方法叫做十字相乘法。
对于一个二次三项式c bx ax ++2,若满足21a a a ⋅=,21c c c ⋅=,且b c a c a =+1221,那么二次三项式c bx ax ++2可以分解为:()()22112c x a c x a c bx ax ++=++。
当1=a 时,二次三项式是c bx x ++2,此时只需21c c c ⋅=,且b c c =+21,则c bx x ++2可分解为:()()212c x c x c bx x ++=++。
④分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解--分组分解法.即先对题目进行分组,然后再分解因式。
(分组分解法一般针对四项及以上的多项式)3.因式分解的具体步骤:(1)先观察多项式是否有公因式,若有,则提取公因式。
(2)观察多项式的项数,两项,则考虑平方差公式;三项则考虑完全平方式与十字相乘法。
四项及以上则考虑分组分解。
(3)检查因式分解是否分解完全。
必须分解到不能分解位置。
再无特比说明的情况下,任何因式分解的题目都必须在有理数范围内进行分解。
微专题1.(2022•济宁)下面各式从左到右的变形,属于因式分解的是()A.x2﹣x﹣1=x(x﹣1)﹣1B.x2﹣1=(x﹣1)2C.x2﹣x﹣6=(x﹣3)(x+2)D.x(x﹣1)=x2﹣x2.(2022•永州)下列因式分解正确的是()A.ax+ay=a(x+y)+1B.3a+3b=3(a+b)C.a2+4a+4=(a+4)2D.a2+b=a(a+b)3.(2022•湘西州)因式分解:m2+3m=.4.(2022•广州)分解因式:3a2﹣21ab=.5.(2022•常州)分解因式:x2y+xy2=.6.(2022•柳州)把多项式a2+2a分解因式得()A.a(a+2)B.a(a﹣2)C.(a+2)2D.(a+2)(a﹣2)7.(2022•菏泽)分解因式:x2﹣9y2=.8.(2022•烟台)把x2﹣4因式分解为.9.(2022•绥化)因式分解:(m+n)2﹣6(m+n)+9=.10.(2022•苏州)已知x+y=4,x﹣y=6,则x2﹣y2=.11.(2022•衡阳)因式分解:x2+2x+1=.12.(2022•济南)因式分解:a2+4a+4=.13.(2022•宁波)分解因式:x2﹣2x+1=.14.(2022•河池)多项式x2﹣4x+4因式分解的结果是()A.x(x﹣4)+4B.(x+2)(x﹣2)C.(x+2)2D.(x﹣2)215.(2022•荆门)对于任意实数a,b,a3+b3=(a+b)(a2﹣ab+b2)恒成立,则下列关系式正确的是()A.a3﹣b3=(a﹣b)(a2+ab+b2)B.a3﹣b3=(a+b)(a2+ab+b2)C.a3﹣b3=(a﹣b)(a2﹣ab+b2)D.a3﹣b3=(a+b)(a2+ab﹣b2)16.(2022•绵阳)因式分解:3x3﹣12xy2=.17.(2022•丹东)因式分解:2a2+4a+2=.18.(2022•辽宁)分解因式:3x2y﹣3y=.19.(2022•恩施州)因式分解:a3﹣6a2+9a=.20.(2022•黔东南州)分解因式:2022x2﹣4044x+2022=.21.(2022•常德)分解因式:x3﹣9xy2=.22.(2022•怀化)因式分解:x2﹣x4=.23.(2022•台湾)多项式39x2+5x﹣14可因式分解成(3x+a)(bx+c),其中a、b、c均为整数,求a+2c之值为何?()A.﹣12B.﹣3C.3D.1224.(2022•内江)分解因式:a4﹣3a2﹣4=.25.(2022•广安)已知a+b=1,则代数式a2﹣b2+2b+9的值为.26.(2022•黔西南州)已知ab=2,a+b=3,求a2b+ab2的值是.。
平方差公式记忆口诀
平方差公式记忆口诀学习数学有没有巧门?有!有的人记性好,能把书本上的典型题原原本本的背下来,这种学习方法叫死记硬背,这类人靠一般知识和概念题得分;有的人记性不好,靠推导和分析难题得分,小题、简单问题丢分,常给人一种得不偿失的感觉。
怎样才能鱼与熊掌兼得呢?告诉你记忆的窍门。
平方差公式记忆口诀有理数的加法运算同号两数来相加,绝对值加不变号。
异号相加大减小,大数决定和符号。
互为相反数求和,结果是零须记好。
【注】“大”减“小”是指绝对值的大小。
有理数的减法运算减正等于加负,减负等于加正。
有理数的乘法运算符号法则同号得正异号负,一项为零积是零。
合并同类项说起合并同类项,法则千万不能忘。
只求系数代数和,字母指数留原样。
去、添括号法则去括号或添括号,关键要看连接号。
扩号前面是正号,去添括号不变号。
括号前面是负号,去添括号都变号。
解方程已知未知闹分离,分离要靠移完成。
移加变减减变加,移乘变除除变乘。
平方差公式两数和乘两数差,等于两数平方差。
积化和差变两项,完全平方不是它。
完全平方公式二数和或差平方,展开式它共三项。
首平方与末平方,首末二倍中间放。
和的平方加联结,先减后加差平方。
完全平方公式首平方又末平方,二倍首末在中央。
和的平方加再加,先减后加差平方。
解一元一次方程先去分母再括号,移项变号要记牢。
同类各项去合并,系数化“1”还没好。
求得未知须检验,回代值等才算了。
解一元一次方程先去分母再括号,移项合并同类项。
系数化1还没好,准确无误不白忙。
因式分解与乘法和差化积是乘法,乘法本身是运算。
积化和差是分解,因式分解非运算。
因式分解两式平方符号异,因式分解你别怕。
两底和乘两底差,分解结果就是它。
两式平方符号同,底积2倍坐中央。
因式分解能与否,符号上面有文章。
同和异差先平方,还要加上正负号。
同正则正负就负,异则需添幂符号。
因式分解一提二套三分组,十字相乘也上数。
四种方法都不行,拆项添项去重组。
重组无望试求根,换元或者算余数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学知识点:用平方差公式因式分解速记口诀
新一轮复习备考周期正式开始,为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考知识点、各科复习方法、考试答题技巧等内容,帮助各位考生梳理知识脉络,理清做题思路,希望各位考生可以在考试中取得优异成绩!下面是《数学知识点:用平方差公式因式分解速记口诀》,仅供参考!
用平方差公式因式分解速记口诀
用平方差公式因式分解
异号两个平方项,因式分解有办法。
两底和乘两底差,分解结果就是它。