信号与系统教案第2章

合集下载

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是自变量为时间(或空间)的函数,用以描述物理现象、信息传输等。

分类:模拟信号、数字信号、离散信号、连续信号等。

1.2 系统的概念与分类定义:系统是由信号输入与输出之间关系构成的一个实体。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的处理方法信号处理:滤波、采样、量化、编码等。

系统处理:稳定性分析、频率响应分析、时域分析等。

第二章:连续信号及其运算2.1 连续信号的基本运算叠加原理、时移原理、微分、积分等。

2.2 连续信号的傅里叶级数傅里叶级数的概念与性质。

连续信号的傅里叶级数展开。

2.3 连续信号的傅里叶变换傅里叶变换的概念与性质。

连续信号的傅里叶变换公式。

第三章:离散信号及其运算3.1 离散信号的基本运算叠加原理、时移原理、差分、求和等。

3.2 离散信号的傅里叶变换离散信号的傅里叶变换的概念与性质。

离散信号的傅里叶变换公式。

3.3 离散信号的Z变换Z变换的概念与性质。

离散信号的Z变换公式。

第四章:数字信号处理概述4.1 数字信号处理的基本概念数字信号处理的定义、特点与应用。

4.2 数字信号处理的基本算法滤波器设计、快速傅里叶变换(FFT)等。

4.3 数字信号处理硬件实现数字信号处理器(DSP)、Field-Programmable Gate Array(FPGA)等。

第五章:线性时不变系统的时域分析5.1 线性时不变系统的定义与性质线性时不变系统的数学描述。

线性时不变系统的特点。

5.2 系统的零状态响应与零输入响应零状态响应的定义与求解。

零输入响应的定义与求解。

5.3 系统的稳定性分析系统稳定性的定义与判定方法。

常见系统的稳定性分析。

第六章:频率响应分析6.1 频率响应的概念系统频率响应的定义。

频率响应的性质和特点。

6.2 频率响应的求取直接法、间接法求取频率响应。

频率响应的幅频特性和相频特性。

《信号与系统》教学大纲

《信号与系统》教学大纲

《信号与系统》教学大纲Signals and Systems一、课程教学目标1、任务和地位:《信号与系统》是通信及相关专业的专业基础课,是通信专业的必修课程。

通过本课程的学习,使学生掌握用系统的观点和方法分析求解电子系统的特性,为后续课程(通信理论、网络理论、控制理论、信号处理和信号检测理论等课程)的学习和今后从事专业技术工作打下坚实的基础。

2、知识要求:本课程是信息类各专业本科生继“电路分析基础”课程之后必修的重要主干课程。

该课程主要研究确知信号的特性,线性时不变系统的特性,信号通过线性时不变系统的基本分析方法,以及信号与系统分析方法在某些重要工程领域的应用。

该课程是学习《现代通信原理》、《数字信号处理》等后续课程所必备的基础。

3、能力要求:通过本课程的学习,使学生掌握信号分析与线性系统分析的基本理论及分析方法,能对工程中应用的简单系统建立数学模型,并对数学模型求解。

为适应信息科学与技术的飞速发展,及在相关专业领域的深入学习打下坚实的基础。

同时,通过习题和实验,学生应在分析问题与解决问题的能力及实践技能方面有所提高。

二、教学内容的基本要求和学时分配2、具体要求:第一章信号与系统[目的要求]1.掌握信号、系统的概念,以及它们之间的关系。

2.了解信号的函数表示与图形表示。

3.掌握信号的能量和信号的功率的概念。

4.熟练掌握信号的自变量变换和信号的运算。

5.掌握阶跃信号、冲激信号,及其性质、相互关系。

6.了解系统的性质。

[教学内容]1. 信号、信号的自变量变换。

2. 能量和功率信号的判别方法3. 阶跃信号和冲激信号。

4. 一些典型序列。

5. 连续时间系统和离散时间系统。

6. 系统的性质[重点难点]1. 信号和系统的概念。

2. 能量和功率信号的判别方法3. 信号的自变量变换4. 阶跃信号和冲激信号。

5. 系统的性质。

[教学方法] 课堂讲解[作业] 7道[课时] 6第二章线性时不变系统[目的要求]1. 单位冲激响应的概念。

信号与系统教案第2章

信号与系统教案第2章
如何求解?
bm f
( m)
(t ) bm1 f
( m1)
ai 、 bj为常数。
2.1 LTI连续系统的响应
经典时域分析方法 y(t ) yh (t ) yp (t ) 卷积法
y(t) = yzi (t) + yzs (t)
一、经典时域分析方法(微分方程经典解)
微分方程的全解即系统的完全响应, 由齐次解 yh(t)和特解yp(t)组成
信号与系统 电子教案
2.2 冲激响应和阶跃响应
2.2
冲激响应和阶跃响应
一、冲激响应
由单位冲激函数δ(t)所引起的零状态响应称为 单位冲激响应,简称冲激响应,记为h(t)。 h(t)=T[{0},δ(t)]
t
h t T 0 , t
def
h t
t
信号与系统 电子教案
第二章 连续系统的时域分析
《信号与系统》
授课教师:吕晓丽
第2-1页

长春工程学院电子信息教研室
信号与系统 电子教案
第二节总结


1、LTI系统的判定方法 线性性质 时不变性质 2、 LTI系统的分类 因果系统 稳定系统 3、系统的描述 系统框图与系统方程
第2-2页

长春工程学院电子信息教研室
[例] 已知某二阶线性时不变连续时间系统的动态方程
y" (t ) 6 y' (t ) 8 y(t ) f (t ), t 0
初始条件y(0)=1, y '(0)=2, 输入信号f (t)=et ε(t),求 系统的完全响应y(t)。
解:
(3) 求方程的全解
y (t ) yh (t ) yp (t ) C1e

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是自变量为时间(或空间)的函数,用于描述物理量或信息。

分类:模拟信号、数字信号、离散信号、连续信号等。

1.2 系统的概念与分类定义:系统是由输入信号、系统本身和输出信号三部分组成的。

分类:线性系统、非线性系统、时不变系统、时变系统等。

第二章:信号的运算与处理2.1 信号的运算加法、减法、乘法、除法等基本运算。

叠加原理与分配律。

2.2 信号的处理滤波器、放大器、采样与量化等。

第三章:线性时不变系统的性质3.1 齐次性定义:若系统对于任意输入信号f(t),其输出信号y(t)都满足y(t)=af(t),则称系统为齐次系统。

3.2 叠加性定义:若系统对于两个输入信号f1(t)和f2(t)的输出信号y1(t)和y2(t)满足y1(t)+y2(t)=a(f1(t)+f2(t)),则称系统为叠加系统。

3.3 时不变性定义:若系统对于任意输入信号f(t),其输出信号y(t-t0)与输入信号f(t-t0)的输出信号y(t)相同,则称系统为时不变系统。

第四章:傅里叶级数与傅里叶变换4.1 傅里叶级数定义:将周期信号分解为正弦、余弦信号的和。

傅里叶级数的展开与系数计算。

4.2 傅里叶变换定义:将信号从时域转换到频域。

傅里叶变换的性质与计算方法。

第五章:拉普拉斯变换与Z变换5.1 拉普拉斯变换定义:将信号从时域转换到复频域。

拉普拉斯变换的性质与计算方法。

5.2 Z变换定义:将信号从时域转换到离散域。

Z变换的性质与计算方法。

第六章:信号与系统的时域分析6.1 系统的时域响应定义:系统对输入信号的响应称为系统的时域响应。

系统的时域响应的计算方法。

6.2 系统的稳定性定义:系统在长时间内能否收敛到一个稳定状态。

判断系统稳定性的方法。

第七章:信号与系统的频域分析7.1 傅里叶变换的应用频谱分析:分析信号的频率成分。

滤波器设计:设计线性时不变系统的滤波器。

信号与系统课程教案

信号与系统课程教案

《信号与系统》大纲一、课程基本信息课程名称:《信号与系统》使用教材:《Signals & Systems》(2nd Edtion), Alan V. Oppenheim,电子工业出版社,2008年4月教学拓展资源:参考书目有《信号与系统》(第二版)上、下册,郑君里等,高等教育出版社;《信号与线性系统分析》,吴大正,高等教育出版社;《信号与系统》,ALANV.OPPENHEIM(刘树棠译),西安交通大学出版社;《信号与线性系统》,管致中等,高等教育出版社。

《信号与系统》校级主干课资源库。

二、课程教学目的《信号与系统》是本科电子信息类专业一门重要的专业基础课程,是联系公共基础课与专业课的一个重要桥梁。

授课对象面向电子信息类的电子科学与技术、通信工程、电子信息工程三个本科专业。

该课程研究确定性信号经线性时不变系统传输与处理的基本概念与基本分析方法,具有很强的理论性和逻辑性,教学内容较抽象,数学运用得很多。

同时,这门课程以通信和控制工程为主要应用背景,具有明显的物理意义和工程背景,具有数学分析物理化,物理现象数学化的特征。

该课程与许多专业课,如通信原理、数字信号处理、高频电路、图象处理等课程有很强的联系,其理论已广泛应用到电子、通信、信号处理和自动控制等各个学科领域,并且直接与数字信号处理的基本理论和方法相衔接。

通过本门课程的学习,使学生掌握信号与系统的基础理论,掌握确定性信号经线性时不变系统传输与处理的基本概念和分析方法,包括信号分析的基本理论和方法、线性时不变系统的各种描述方法、线性时不变系统的时域和频域分析方法、有关系统的稳定性、频响、因果性等工程应用中的一些重要结论等。

通过信号与系统的基本理论和分析方法,学生应能掌握如何建立信号与系统的数学模型,如何经适当的分析方法求解,并将分析结果与物理概念相结合,对所得的结果给出物理解释和赋予物理意义。

该课程的学习将为后续课程的学习奠定基础,同时为今后能够独立地分析与解决信息领域内的实际问题打下坚实的理论基础。

信号与系统教案第2章

信号与系统教案第2章
第2-3页
2.1 LTI连续系统的响应
一、微分方程的经典解
许多实际的系统可以用线性系统来模拟。一个线性系 统其激励与响应之间的关系可以用下列形式的微分方 程来描述:
y(n)(t) + an-1y (n-1)(t) + …+ a1y(1)(t) + a0y (t) = bmf(m)(t) + bm-1f (m-1)(t) + …+ b1f(1)(t) + b0f (t)
第2-7页
2.1 LTI连续系统的响应
齐次解的函数形式仅与系统本身的特性有关,而与激励 f(t)的函数形式无关,称为系统的固有响应或自由响应; 特解的函数形式由激励确定,称为强迫响应。 例1: 描述某系统的微分方程为
y”(t) + 5y’(t) + 6y(t) = f(t) 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解;
et[C cos( t) D sin( t)], 或 A cos( t )
其中Ae j C jD
第2-6页
2.1 LTI连续系统的响应
表2- 不同激励所对应的特解
激励 f (t)
tm
e t
cos( t) 或 sin( t)
特解 yp (t) Pmt m Pm-1t m1 P1t P0 所有的特征根均不等于0;
第2-13页
2.1 LTI连续系统的响应
通常,对于具体的系统,初始状态一般容易求得。这样 为求解微分方程,就需要从已知的初始状态y(j)(0-)设法 求得y(j)(0+)。下列举例说明。
例2:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t)

信号与系统教案首页

信号与系统教案首页

华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:
华北航天工业学院教案
教研室:电工电子授课教师:。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统导论1.1 信号的概念与分类讲解信号的定义和特性介绍常见信号的分类,如连续信号、离散信号、模拟信号和数字信号等1.2 系统的概念与分类讲解系统的定义和特性介绍常见系统的分类,如线性系统、非线性系统、时不变系统等1.3 信号与系统的研究方法讲解信号与系统的研究方法,如数学分析、仿真实验等第二章:连续信号与系统2.1 连续信号的基本性质讲解连续信号的定义和特性,如连续性、周期性、对称性等2.2 连续信号的运算介绍连续信号的基本运算,如加法、乘法、积分等2.3 连续系统的基本性质讲解连续系统的基本性质,如线性、时不变性等第三章:离散信号与系统3.1 离散信号的基本性质讲解离散信号的定义和特性,如离散性、周期性、对称性等3.2 离散信号的运算介绍离散信号的基本运算,如加法、乘法、求和等3.3 离散系统的基本性质讲解离散系统的基本性质,如线性、时不变性等第四章:模拟信号处理4.1 模拟信号处理的基本方法讲解模拟信号处理的基本方法,如滤波、采样、量化等4.2 模拟滤波器的设计与分析介绍模拟滤波器的设计方法,如巴特沃斯滤波器、切比雪夫滤波器等讲解滤波器的频率响应、阶数等特性分析4.3 模拟信号处理的应用讲解模拟信号处理在实际应用中的案例,如音频处理、通信系统等第五章:数字信号处理5.1 数字信号处理的基本方法讲解数字信号处理的基本方法,如离散余弦变换、快速傅里叶变换等5.2 数字滤波器的设计与分析介绍数字滤波器的设计方法,如IIR滤波器、FIR滤波器等讲解滤波器的频率响应、阶数等特性分析5.3 数字信号处理的应用讲解数字信号处理在实际应用中的案例,如图像处理、语音识别等第六章:信号与系统的时域分析6.1 线性时不变系统的时域特性讲解线性时不变系统的时域特性,如叠加原理和时移特性6.2 常用时域分析方法介绍常用时域分析方法,如单位脉冲响应、零输入响应和零状态响应6.3 时域分析在实际应用中的案例讲解时域分析在实际应用中的案例,如信号的滤波、去噪等第七章:信号与系统的频域分析7.1 傅里叶级数与傅里叶变换讲解傅里叶级数的概念和性质介绍傅里叶变换的定义和性质,包括连续傅里叶变换和离散傅里叶变换7.2 频域分析方法介绍频域分析方法,如频谱分析、滤波器设计等7.3 频域分析在实际应用中的案例讲解频域分析在实际应用中的案例,如通信系统、音频处理等第八章:信号与系统的复频域分析8.1 拉普拉斯变换和Z变换讲解拉普拉斯变换的概念和性质介绍Z变换的定义和性质8.2 复频域分析方法介绍复频域分析方法,如系统函数分析、滤波器设计等8.3 复频域分析在实际应用中的案例讲解复频域分析在实际应用中的案例,如数字通信系统、信号的调制与解调等第九章:信号与系统的状态空间分析9.1 状态空间模型的概念和性质讲解状态空间模型的定义和性质,如状态向量、状态方程和输出方程等9.2 状态空间分析方法介绍状态空间分析方法,如状态预测、状态估计等9.3 状态空间分析在实际应用中的案例讲解状态空间分析在实际应用中的案例,如控制系统的设计和分析等第十章:信号与系统的应用案例分析10.1 通信系统中的应用讲解信号与系统在通信系统中的应用,如信号的调制与解调、信道编码与解码等10.2 音频处理中的应用讲解信号与系统在音频处理中的应用,如音频信号的滤波、均衡等10.3 图像处理中的应用讲解信号与系统在图像处理中的应用,如图像的滤波、边缘检测等重点解析信号与系统的基本概念及其分类信号与系统的研究方法连续信号与系统的性质和运算离散信号与系统的性质和运算模拟信号处理的基本方法和应用数字信号处理的基本方法和应用信号与系统的时域分析方法及其应用信号与系统的频域分析方法及其应用信号与系统的复频域分析方法及其应用信号与系统的状态空间分析方法及其应用信号与系统在不同领域中的应用案例分析难点解析信号与系统理论的数学基础和抽象概念的理解不同信号与系统分析方法的相互转换和应用信号与系统在实际工程应用中的复杂性和挑战高频信号处理和数字信号处理的算法优化和实现状态空间分析方法的数学推导和系统设计的实践应用。

信号与系统(教案) 第二章

信号与系统(教案) 第二章

二、图解机理
用图形方式理解卷积运算过程,包括以下6个步骤: Step1:换元。画出f1(t)与f2(t)波形,将波形图中的t轴 改换成τ轴,分别得到f1(τ)和f2(τ)。 Step2:翻转。将f2(τ)波形以纵轴为中心轴翻 180°,得 到f2(-τ)波形。 4
信号与系统
2.2
卷积积分
Step3:平移。给定t值,将f2(-τ)波形沿τ轴平移|t|。
卷积积分是一种数学运算,它有许多重要的性质 (或运算规则),灵活地运用它们能简化卷积运算。 下面讨论均设卷积积分是收敛的(或存在的)。
性质1.卷积代数 满足乘法的三律: 1. 交换律: f1(t)* f2(t) =f2(t)* f1(t) 2. 分配律: f1(t)*[ f2(t)+ f3(t)] =f1(t)* f2(t)+ f1(t)* f3(t) 3. 结合律: [f1(t)* f2(t)]* f3(t)] =f1(t)*[ f2(t) * f3(t)]
1.奇异信号
单位冲激信号 (t), 单位阶跃信号 (t).
2.正弦信号
也称为虚指数信号。 f (t ) A cos( t ) A [e j (t ) e j (t ) ] 2
式 中A、和分 别 为 正 弦 信 号 的 振 幅 角 频 率 和 初 相 。 、 f ( t )是 周 期 信 号 , 其 周 期 2 T=
1 0
f 1(t)
2
t
14
信号与系统 例:f1(t), f2(t)如图,求f1(t)* f2(t) 解: f1(t) = 2ε (t) –2ε (t –1) f2(t) = ε (t+1) –ε (t –1)
2.2 卷积积分 2.2 卷积积分

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统概述1.1 信号的概念与分类信号的定义信号的分类:连续信号、离散信号、随机信号等1.2 系统的概念与分类系统的定义系统的分类:线性系统、非线性系统、时不变系统、时变系统等1.3 信号与系统的研究方法解析法数值法图形法第二章:连续信号及其运算2.1 连续信号的基本性质连续信号的定义与图形连续信号的周期性、奇偶性、能量与功率等性质2.2 连续信号的运算叠加运算卷积运算2.3 连续信号的变换傅里叶变换拉普拉斯变换Z变换第三章:离散信号及其运算3.1 离散信号的基本性质离散信号的定义与图形离散信号的周期性、奇偶性、能量与功率等性质3.2 离散信号的运算叠加运算卷积运算3.3 离散信号的变换离散时间傅里叶变换离散时间拉普拉斯变换离散时间Z变换第四章:线性时不变系统的特性4.1 线性时不变系统的定义与性质线性时不变系统的定义线性时不变系统的性质:叠加原理、时不变性等4.2 线性时不变系统的转移函数转移函数的定义与性质转移函数的绘制方法4.3 线性时不变系统的响应输入信号与系统响应的关系系统的稳态响应与瞬态响应第五章:信号与系统的应用5.1 信号处理的应用信号滤波信号采样与恢复5.2 系统控制的应用线性系统的控制原理PID控制器的设计与应用5.3 通信系统的应用模拟通信系统数字通信系统第六章:傅里叶级数6.1 傅里叶级数的概念傅里叶级数的定义傅里叶级数的使用条件6.2 傅里叶级数的展开周期信号的傅里叶级数展开非周期信号的傅里叶级数展开6.3 傅里叶级数的应用周期信号分析信号的频谱分析第七章:傅里叶变换7.1 傅里叶变换的概念傅里叶变换的定义傅里叶变换的性质7.2 傅里叶变换的运算傅里叶变换的计算方法傅里叶变换的逆变换7.3 傅里叶变换的应用信号分析与处理图像处理第八章:拉普拉斯变换8.1 拉普拉斯变换的概念拉普拉斯变换的定义拉普拉斯变换的性质8.2 拉普拉斯变换的运算拉普拉斯变换的计算方法拉普拉斯变换的逆变换8.3 拉普拉斯变换的应用控制系统分析信号的滤波与去噪第九章:Z变换9.1 Z变换的概念Z变换的定义Z变换的性质9.2 Z变换的运算Z变换的计算方法Z变换的逆变换9.3 Z变换的应用数字信号处理通信系统分析第十章:现代信号处理技术10.1 数字信号处理的概念数字信号处理的定义数字信号处理的特点10.2 现代信号处理技术快速傅里叶变换(FFT)数字滤波器设计数字信号处理的应用第十一章:随机信号与噪声11.1 随机信号的概念随机信号的定义随机信号的分类:窄带信号、宽带信号等11.2 随机信号的统计特性均值、方差、相关函数等随机信号的功率谱11.3 噪声的概念与分类噪声的定义噪声的分类:白噪声、带噪声等第十二章:线性系统理论12.1 线性系统的状态空间描述状态空间模型的定义与组成线性系统的性质与方程12.2 线性系统的传递函数传递函数的定义与性质传递函数的绘制方法12.3 线性系统的稳定性分析系统稳定性的定义与条件劳斯-赫尔维茨准则第十三章:非线性系统13.1 非线性系统的基本概念非线性系统的定义与特点非线性系统的分类13.2 非线性系统的数学模型非线性微分方程与差分方程非线性系统的相平面分析13.3 非线性系统的分析方法描述法映射法相平面法第十四章:现代控制系统14.1 现代控制系统的基本概念现代控制系统的定义与特点现代控制系统的设计方法14.2 模糊控制系统模糊控制系统的定义与原理模糊控制系统的结构与设计14.3 神经网络控制系统神经网络控制系统的定义与原理神经网络控制系统的结构与设计第十五章:信号与系统的实验与实践15.1 信号与系统的实验设备与原理信号发生器与接收器信号处理实验装置15.2 信号与系统的实验项目信号的采样与恢复实验信号滤波实验信号分析与处理实验15.3 信号与系统的实践应用通信系统的设计与实现控制系统的设计与实现重点和难点解析信号与系统的基本概念:理解信号与系统的定义、分类及其研究方法。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》PPT课件第一章:信号与系统导论1.1 信号的定义与分类定义:信号是自变量为时间(或空间)的函数。

分类:连续信号、离散信号、模拟信号、数字信号等。

1.2 系统的定义与分类定义:系统是一个输入与输出之间的映射关系。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的研究方法数学方法:微分方程、差分方程、矩阵分析等。

图形方法:波形图、频谱图、相位图等。

第二章:连续信号与系统2.1 连续信号的性质连续时间:自变量为连续的实数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

2.2 连续系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

2.3 连续信号的运算叠加运算:两个连续信号的叠加仍然是连续信号。

齐次运算:连续信号的常数倍仍然是连续信号。

第三章:离散信号与系统3.1 离散信号的性质离散时间:自变量为离散的整数。

有限能量:能量信号的能量有限。

有限带宽:带宽有限的信号。

3.2 离散系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

3.3 离散信号的运算叠加运算:两个离散信号的叠加仍然是离散信号。

齐次运算:离散信号的常数倍仍然是离散信号。

第四章:模拟信号与系统4.1 模拟信号的定义与特点定义:模拟信号是连续时间、连续幅度、连续频率的信号。

特点:连续性、模拟性、无限可再生性。

4.2 模拟系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

4.3 模拟信号的处理方法模拟滤波器:根据频率特性对模拟信号进行滤波。

模拟调制:将信息信号与载波信号进行合成。

第五章:数字信号与系统5.1 数字信号的定义与特点定义:数字信号是离散时间、离散幅度、离散频率的信号。

特点:离散性、数字化、抗干扰性强。

5.2 数字系统的特性线性特性:叠加原理、齐次性原理。

时不变特性:输入信号的延迟不会影响输出信号。

线性控制系统教案2-信号与系统

线性控制系统教案2-信号与系统

方程 则下面各式成立: (a) 当且仅当A是稳定的; (b) 暗含 ; (c) , 是能控的,且 暗含 。
2.8 伴随算子 The Adjoint Operator
定义: 性质:
2.9 逆系统 Inverse Systems
系统 的逆系统 如果两个系统表示为: 则
求逆系统
−1 转换关系 y = G ( s )u ⇒ u = G ( s ) y 变换 x = A x + B u & x = Ax + Bu & y = Cx + Du u = − D −1Cx + D −1 y
线性系统的特征
G(α1w1 + α2 w2 ) = α1G(w1 ) + α2G(w2 )
线性系统信号传输的时频关系为 (卷积 convolution integral)
G(s)被称为系统的传递矩阵 2.2 无穷范数和2范数 无穷范数和2 ∞-Norms and 2-Norms 2L∞空间定义为 L∞范数的定义为 L∞范数与L2范数之关系
2.7 全通系统 All Pass Systems
一些概念: 全通(all pass)系统,带通(band pass)系统,低通 (low pass)系统,高通(high pass)系统. G称为全通的,如果 对于全通系统,可推得 如果S1与S2同维数,则
全通系统状态空间描述
定理2.2 设 是能检测的, 对称且满足Lyapunov
& x = ( A − BD −1C ) x + BD −1 y u = − D −1Cx + D −1 y
G −1 ( s) = − D −1C ( sI − ( A − BD −1C )) −1 BD −1 + D −1 得逆系统 = ( A − BD −1C , BD −1 , − D −1C , D −1 )

《信号与系统》 教案

《信号与系统》 教案

职业技术学院教师教案学年第一学期课程《信号与系统》任课教师授课班级总课时72《信号与系统》课程授课计划表制订人教研室主任系部职业技术学院《信号与系统》教案扬州工业职业技术学院教案扬州工业职业技术学院教案扬州工业职业技术学院教案扬州工业职业技术学院教案3、 在同一坐标系中画出x y =,2x y =,3x y =,3x y =,x y =的图像.4、 画出3232)1()1()(x x x f ++-=的图像,并根据图像特点指出函数)(x f 的奇偶性.5、 画出)2ln(1++=x y 及其反函数的图像.6、 画出321+=x y 及其反函数的图像.例1设计一段程序,画出一个周期的正弦函数和余弦函数的图像。

程序设计:>> clear %清除所有变量 >> x=(0:0.01:2*pi); %设置变量x 的范围 >> y1=sin(x); >> y2=cos(x);>> plot(x,y1,x,y2) %绘制函数y1和y2的图像 程序也可写成如下方式:>> clear %清除所有变量>> x=(0:0.01:2*pi); %设置变量x 的范围 >> plot(x,sin(x),x,cos(x)) %绘制函数图像 运行结果如图所示。

正弦和余弦的图像小 结本实验主要让学生掌握MATLAB 一元函数图像的绘制。

扬州工业职业技术学院教案)()()()()()()()(01)1(1)(01)1(1)(t f b t f b t fb t fb t y a t y a t y a t y a m m m m n n n n +'+++=+'+++----式中)(t y 为系统的响应变量(电流或电压等),)(t f 为系统的激励信号(电压源或电流源等)。

这种n 阶常系数线性微分程是系统时域分析的基础。

电子教案《信号与系统》(第三版)信号系统习题解答.docx

电子教案《信号与系统》(第三版)信号系统习题解答.docx

《信号与系统》(第 3 版)习题解析高等教育出版社目录第 1 章习题解析 (2)第 2 章习题解析 (6)第 3 章习题解析 (16)第 4 章习题解析 (23)第 5 章习题解析 (31)第 6 章习题解析 (41)第 7 章习题解析 (49)第 8 章习题解析 (55)第 1 章习题解析1-1题 1-1 图示信号中, 哪些是连续信号?哪些是离散信号?哪些是周期信号?哪些是非周期信号?哪些是有始信号?(c)(d)题 1-1图解 (a)、(c)、(d)为连续信号; (b)为离散信号; (d)为周期信号;其余为非周期信号; (a)、(b)、(c)为有始(因果)信号。

1-2 给定题 1-2 图示信号 f( t ),试画出下列信号的波形。

[提示: f( 2t )表示将 f( t )波形压缩,f( t)表示将 f( t )波形展宽。

]2(a) 2 f( t 2 )(b) f( 2t ) (c) f(t)2(d) f( t +1 )题1-2图解 以上各函数的波形如图 p1-2 所示。

图 p1-21-3如图1-3图示,R、L、C元件可以看成以电流为输入,电压为响应的简单线性系统S R、S L、 S C,试写出各系统响应电压与激励电流函数关系的表达式。

S RS LS C题 1-3图解各系统响应与输入的关系可分别表示为u R (t)R i R (t )u L (t)di L (t )L1dttu C (t )i C ( )dC1-4如题1-4图示系统由加法器、积分器和放大量为 a 的放大器三个子系统组成,系统属于何种联接形式?试写出该系统的微分方程。

题 1-4图解 系统为反馈联接形式。

设加法器的输出为 x( t ),由于x(t ) f (t) ( a) y(t)且y(t ) x(t)dt ,x(t) y (t)故有y (t) f (t ) ay (t)即y (t ) ay(t ) f (t)1-5已知某系统的输入 f( t )与输出 y( t )的关系为 y( t ) = | f( t )|,试判定该系统是否为线性时不变系统?解 设 T 为系统的运算子,则可以表示为y(t) T[ f (t )]f (t)不失一般性,设 f( t ) = f 1( t ) + f 2 ( t ),则T[ f 1 (t)]f 1 (t)y 1 (t )T[ f 2 (t)] f 2 (t )y 2 (t )故有T[ f (t)] f 1 (t )f 2 (t ) y(t)显然f 1 (t ) f 2 (t)f 1 (t ) f 2 (t )即不满足可加性,故为非线性时不变系统。

信号与系统教案

信号与系统教案

信号与系统教案第1次课2学时授课时间课题(章节)第一章绪论引言信号概述教学目的与要求:了解信号与常用信号,熟练掌握信号描述的各种方法。

教学重点、难点:对该课程的认识,强调该课的研究方法和要求,以及该课程在今后课程中的作用。

信号的表示方法。

教学方法及师生互动设计:以通信系统为例,导入信号与系统的教学任务,简单介绍通信系统的知识,让学生逐渐进入专业研究,领会该课程在今后专业研究中所发挥的作用。

板书与PPT演示相结合介绍常见信号,并通过若干例子进一步阐述所讲内容,深化理解信号的表示方法。

课堂练、作业:课后小结:按计划完成内容,通过通信系统实例讲解信号与系统课程作用,使学生对专业有进一步了解。

讲解常见信号,使学生能运用表达式、图形等来描述信号。

第2次课2学时授课时间课题(章节)2信号运算教学目的与要求:熟练掌握信号描述的各种方法,及信号的基本变换,能熟练进行信号的运算。

教学重点、难点:信号的变换及计算。

教学方法及师生互动设计:板书与PPT演示相结合渐渐引见信号的加、减、乘、除,和时移、反转等变更。

通过部分题例子来讲解信号是如何变更及计算的,最后布置题,让学生进一步加强对知识的理解,并通过题对其加深理解。

课堂练、作业:补充题课后小结:本节是重点内容,讲解稍慢。

通过多举题,提高学生解题能力。

与学生互动发现学生接收过程偏慢,其缘故原由是学生的基本计算能力还需求提高,应讲解更详尽更慢。

第3次课2学时授课时间课题(章节)3系统概述教学目的与要求:了解系统分类的思路,熟练掌握连续﹑动态﹑时不变线性系统的描述方法和数学模型,对算子法表示系统应能正确运用。

教学重点、难点:掌握线性时不变系统的辨别,强调线性、时不变性、因果性的独立。

教学方法及师生互动设计:先列举部分系统,导入LTI系统,然后列举题,让学生判别LTI系统。

板书与PPT演示相结合介绍其系统的描述方法和数学模型。

课堂练、作业:课后小结:此部分内容稍易,大多数同学在研究过程中思路清晰,理解较为容易。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类介绍信号的定义和基本特性讲解模拟信号和数字信号的区别分析常用信号及其应用场景1.2 系统的概念与分类介绍系统的定义和基本特性讲解线性系统、时不变系统和非时变系统的概念分析常用系统及其应用场景1.3 信号与系统的研究方法介绍信号与系统的研究方法讲解数学建模、仿真和实验研究的方法分析信号与系统的研究意义和应用前景第二章:信号的运算与处理2.1 信号的运算介绍信号的运算方法,如叠加、移位、求导等讲解信号运算的性质和规律分析信号运算在实际应用中的意义2.2 信号的傅里叶变换介绍傅里叶变换的定义和性质讲解傅里叶变换的应用,如信号分析、滤波等分析傅里叶变换在信号处理中的重要性2.3 信号的采样与恢复介绍采样定理和采样过程讲解信号恢复的方法和算法分析采样与恢复在数字信号处理中的应用第三章:线性时不变系统的特性3.1 线性时不变系统的定义与性质介绍线性时不变系统的定义和基本特性讲解线性时不变系统的矩阵表示和运算规律分析线性时不变系统的优点和应用场景3.2 系统的状态空间表示介绍状态空间表示的方法和概念讲解系统的状态转移矩阵和控制矩阵分析状态空间表示在系统分析和设计中的应用3.3 系统的稳定性分析介绍系统稳定性的概念和判定方法讲解李雅普诺夫稳定性和李雅普诺夫指数分析系统稳定性在实际应用中的重要性第四章:信号与系统的应用4.1 通信系统介绍通信系统的基本原理和组成讲解调制、解调、编码和解码等过程分析通信系统的性能指标和应用场景4.2 控制系统介绍控制系统的原理和组成讲解反馈控制、PID控制等方法分析控制系统在工程应用中的重要性4.3 信号处理的应用介绍信号处理在图像、音频、视频等领域的应用讲解数字信号处理技术在实际应用中的作用分析信号处理技术的发展趋势和挑战第五章:实验与实践5.1 信号与系统实验设备及软件介绍信号与系统实验设备及其功能讲解实验软件的使用方法和技巧分析实验设备和技术在教学和科研中的应用5.2 信号与系统实验项目介绍常见的信号与系统实验项目,如信号运算、傅里叶变换、采样与恢复等讲解实验步骤、方法和注意事项分析实验项目在理论与实践相结合中的重要性讲解实验报告的结构和内容分析实验报告在培养学生的实践能力和科学素养中的作用第六章:离散信号与系统6.1 离散信号的概念与分类介绍离散信号的定义和基本特性讲解离散信号的采样定理和实现方法分析常用离散信号及其应用场景6.2 离散系统的概念与分类介绍离散系统的定义和基本特性讲解离散系统的数学模型和运算规律分析常用离散系统及其应用场景6.3 离散信号的处理方法介绍离散信号的处理方法,如离散傅里叶变换、快速傅里叶变换等讲解离散信号处理方法的应用,如数字滤波、数模转换等分析离散信号处理方法在数字信号处理中的重要性第七章:数字信号处理技术7.1 数字信号处理的基本原理介绍数字信号处理的基本原理和方法讲解数字信号处理的算法和实现方式分析数字信号处理的优势和应用场景7.2 数字滤波器的设计与实现介绍数字滤波器的设计方法,如窗函数法、频率抽样法等讲解数字滤波器的实现方式,如直接型、级联型等分析数字滤波器在信号处理中的应用和性能评估7.3 数字信号处理技术的应用介绍数字信号处理技术在通信、控制、图像处理等领域的应用讲解数字信号处理技术在实际工程中的解决方案和案例分析数字信号处理技术的发展趋势和挑战第八章:现代信号处理技术8.1 现代信号处理技术概述介绍现代信号处理技术的概念和发展历程讲解现代信号处理技术的方法和算法分析现代信号处理技术的应用领域和挑战8.2 小波变换及其应用介绍小波变换的定义和性质讲解小波变换在信号处理中的应用,如去噪、压缩等分析小波变换在现代信号处理中的重要性8.3 稀疏信号处理技术介绍稀疏信号处理的概念和方法讲解稀疏信号处理在实际应用中的优势和挑战分析稀疏信号处理技术在现代信号处理中的地位和作用第九章:信号与系统的仿真与实验9.1 信号与系统仿真概述介绍信号与系统仿真的概念和方法讲解信号与系统仿真软件的使用和技巧分析信号与系统仿真在教学和科研中的应用9.2 信号与系统实验案例分析分析实际信号与系统实验案例,如通信系统、控制系统等讲解实验结果的分析和解释方法分析实验案例在培养学生的实践能力和科学素养中的作用9.3 信号与系统创新实验与实践介绍信号与系统创新实验的项目和方案讲解创新实验的实施方法和步骤分析创新实验在培养学生的创新能力、团队协作和科学素养中的作用回顾整个信号与系统课程的主要内容和知识点强调信号与系统课程在电子信息领域的地位和作用分析信号与系统课程在培养学生综合素质方面的贡献10.2 信号与系统领域的发展展望介绍信号与系统领域的发展趋势和前沿技术讲解信号与系统领域在国家战略需求中的应用分析信号与系统领域面临的挑战和机遇10.3 信号与系统课程教学改革与创新探讨信号与系统课程教学改革的方向和方法讲解教学创新的理念和实践案例分析信号与系统课程教学改革在培养创新型人才中的作用重点和难点解析1. 信号与系统的基本概念:信号的概念与分类、系统的概念与分类以及信号与系统的研究方法。

《信号与系统教案》课件

《信号与系统教案》课件

《信号与系统教案》课件第一章:信号与系统概述1.1 信号的概念与分类定义:信号是反映随机过程或者确定过程的变量,在时间或空间上的函数。

分类:模拟信号、数字信号、离散信号等。

1.2 系统的概念与分类定义:系统是输入与输出之间存在某种关系的装置。

分类:线性系统、非线性系统、时不变系统、时变系统等。

1.3 信号与系统的处理方法信号处理:滤波、采样、量化、调制等。

系统处理:稳定性分析、频率响应分析、时间响应分析等。

第二章:连续信号及其运算2.1 连续信号的基本运算叠加原理:两个连续信号的叠加,其结果也是连续信号。

时移原理:连续信号的时间平移,其结果仍为连续信号。

2.2 连续信号的傅里叶变换傅里叶变换的定义与性质常用连续信号的傅里叶变换2.3 连续信号的拉普拉斯变换拉普拉斯变换的定义与性质常用连续信号的拉普拉斯变换第三章:离散信号及其运算3.1 离散信号的基本运算叠加原理:两个离散信号的叠加,其结果也是离散信号。

时移原理:离散信号的时间平移,其结果仍为离散信号。

3.2 离散信号的傅里叶变换傅里叶变换的定义与性质常用离散信号的傅里叶变换3.3 离散信号的Z变换Z变换的定义与性质常用离散信号的Z变换第四章:信号与系统的时域分析4.1 系统的时域响应单位冲激响应:系统对单位冲激信号的响应。

单位阶跃响应:系统对单位阶跃信号的响应。

4.2 信号的时域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。

信号的采样与恢复:采样定理、信号的恢复方法。

4.3 信号的时域分析方法傅里叶级数:信号的分解与合成。

拉普拉斯展开:信号的分解与合成。

第五章:信号与系统的频域分析5.1 系统的频域响应频率响应的定义与性质常用系统的频率响应分析5.2 信号的频域处理滤波器设计:低通滤波器、高通滤波器、带通滤波器等。

信号的调制与解调:调幅、调频、调相等。

5.3 信号的频域分析方法傅里叶变换:信号的频谱分析。

离散傅里叶变换:信号的离散频谱分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2-10页 10页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
(2)零状态响应 f(t) 满足 )零状态响应y yf”(t) + 3yf’(t) + 2yf(t) = 2δ(t) + 6u(t) 并有 yf(0-) = yf’(0-) = 0 含有δ(t),从而 f’(t) 由于上式等号右端含有δ(t),故yf”(t)含有 含有 ,从而y 由于上式等号右端含有 , 跃变, 连续, 跃变,即yf’(0+)≠yf’(0-),而yf(t)在t = 0连续,即yf(0+) = , 在 连续 yf(0-) = 0,积分得 , 0+ 0+ [yf’(0+)- yf’(0-)]+ 3[yf(0+)- yf(0-)]+2∫0− y f (t ) d t = 2 + 6∫0− ε (t ) d t 因此, 因此,yf’(0+)= 2 – yf ’(0-)=2 对t>0时,有 yf”(t) + 3yf’(t) + 2yf(t) = 6 时 不难求得其齐次解为Cf1e-t + Cf2e-2t,其特解为常数3, 不难求得其齐次解为 其特解为常数 , yf(t)=Cf1e-t + Cf2e-2t + 3 于是有 yf(t)= – 4e-t + e-2t + 3 ,t≥0 代入初始值求得
第2-8页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
三、零输入响应和零状态响应
y(t) = yx(t) + yf(t) ,也可以分别用经典法求解。 也可以分别用经典法求解。 也可以分别用经典法求解 注意: 时接入激励f(t)的系统 注意:对t=0时接入激励 的系统, 时接入激励 的系统, 的计算。 初始值 yx(j)(0+), yf(j)(0+) (j = 0,1,2,…,n-1)的计算。 , , , , 的计算 y(j)(0-)= yx(j)(0-)+ yf(j)(0-) y(j)(0+)= yx(j)(0+)+ yf(j)(0+) 对于零输入响应 由于激励为零, 零输入响应, 对于零输入响应,由于激励为零,故有 yx(j)(0+)= yx(j)(0-) = y (j)(0-) 对于零状态响应 零状态响应, 时刻激励尚未接入, 对于零状态响应,在t=0-时刻激励尚未接入,故应有 时刻激励尚未接入 yf(j)(0-)=0 yf(j)(0+)的求法下面举例说明。 的求法下面举例说明。 的求法下面举例说明
第2-4页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
(2)齐次解同上。当激励 )齐次解同上。当激励f(t)=e–2t时,其指数与特征根 之一相重。由表知: 之一相重。由表知:其特解为 yp(t) = (P1t + P0)e–2t 代入微分方程可得 P1e-2t = e–2t 不能求得。 所以 P1= 1 但P0不能求得。全解为 y(t)= C1e–2t + C2e–3t + te–2t + P0e–2t = (C1+P0)e–2t +C2e–3t + te–2t 将初始条件代入, 将初始条件代入,得 y(0) = (C1+P0) + C2=1 ,y’(0)= –2(C1+P0) –3C2+1=0 解得 C1 + P0 = 2 ,C2= –1 最后得微分方程的全解为 y(t) = 2e–2t – e–3t + te–2t , t≥0 上式第一项的系数C 上式第一项的系数 1+P0= 2,不能区分 1和P0,因而 ,不能区分C 也不能区分自由响应和强迫响应。 也不能区分自由响应和强迫响应。
一、卷积代数 二、奇异函数的卷积特性 三、卷积的微积分性质 四、卷积的时移特性
点击目录
第2-1页
,进入相关章节

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
第二章 连续系统的时域分析
LTI连续系统的时域分析,归结为:建立并求解线 连续系统的时域分析,归结为: 连续系统的时域分析 性微分方程。 性微分方程。 由于在其分析过程涉及的函数变量均为时间t, 由于在其分析过程涉及的函数变量均为时间 ,故 称为时域分析法 这种方法比较直观,物理概念清楚, 时域分析法。 称为时域分析法。这种方法比较直观,物理概念清楚, 是学习各种变换域分析法的基础。 是学习各种变换域分析法的基础。
LTI连续系统的响应 2.1 LTI连续系统的响应 信号与系统 电子教案 微分方程的经典解: 微分方程的经典解: 完全解) 齐次解) 特解) y(t)(完全解 = yh(t)(齐次解 + yp(t)(特解) 完全解 齐次解 特解 齐次解是齐次微分方程 齐次解是齐次微分方程 y(n)+an-1y(n-1)+…+a1y(1)(t)+a0y(t)=0 的函数形式由上述微分方程的特征根确定 的解。 的解。yh(t)的函数形式由上述微分方程的特征根确定。 的函数形式由上述微分方程的特征根确定。 特解的函数形式与激励函数的形式有关 的函数形式与激励函数的形式有关。 特解的函数形式与激励函数的形式有关。P41表2-1、2-2 表 、 齐次解的函数形式仅与系统本身的特性有关,而与激励 齐次解的函数形式仅与系统本身的特性有关, 的函数形式仅与系统本身的特性有关 f(t)的函数形式无关,称为系统的固有响应或自由响应; 的函数形式无关, 固有响应或 的函数形式无关 称为系统的固有响应 自由响应; 特解的函数形式由激励确定 称为强迫响应 的函数形式由激励确定, 强迫响应。 特解的函数形式由激励确定,称为强迫响应。 例 描述某系统的微分方程为 y”(t) + 5y’(t) + 6y(t) = f(t) 时的全解; 求(1)当f(t) = 2e-t,t≥0;y(0)=2,y’(0)= -1时的全解; ) ; , 时的全解 时的全解。 (2)当f(t) = e-2t,t≥0;y(0)= 1,y’(0)=0时的全解。 ) ; , 时的全解
0− 0− 0− 0−
0+
由于积分在无穷小区间[0-, 进行的 进行的, 连续, 由于积分在无穷小区间 ,0+]进行的,且y(t)在t=0连续, 在 连续 0+ 0+ 故

0−
y (பைடு நூலகம் )dt = 0, ∫ u (t )dt = 0
0−
于是由上式得 [y’(0+) – y’(0-)] + 3[y(0+) – y(0-)]=2 考虑 y(0+) = y(0-)=2 ,所以 y’(0+) – y’(0-) = 2 , y’(0+) = y’(0-) + 2 =2 由上可见,当微分方程等号右端含有冲激函数( 由上可见,当微分方程等号右端含有冲激函数(及其各 阶导数) 响应y(t)及其各阶导数中,有些在 处将 及其各阶导数中, 阶导数)时,响应 及其各阶导数中 有些在t=0处将 发生跃变。但如果右端不含时,则不会跃变。 发生跃变。但如果右端不含时,则不会跃变。
信号与系统 电子教案 2.1 LTI连续系统的响应 LTI连续系统的响应
第二章 连续系统的时域分析
2.3
卷积积分
一、微分方程的经典解 关于0 0+初始值 二、关于0-和0+初始值 三、零输入响应和零状态响应
一、信号时域分解与卷积 二、卷积的图解
2.4
卷积积分的性质
2.2
冲激响应和阶跃响应
一、冲激响应 二、阶跃响应
第2-9页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
例:描述某系统的微分方程为 y”(t) + 3y’(t) + 2y(t) = 2f’(t) + 6f(t) 已知y(0-)=2,y’(0-)=0,f(t)=u(t)。求该系统的零输入 已知 , , 。 响应和零状态响应。 响应和零状态响应。 :(1)零输入响应y 激励为0 解:( )零输入响应 x(t) 激励为 ,故yx(t)满足 满足 yx”(t) + 3yx’(t) + 2yx(t) = 0 yx(0+)= yx(0-)= y(0-)=2 yx’(0+)= yx’(0-)= y’(0-)=0 该齐次方程的特征根 特征根为 , 该齐次方程的特征根为–1, – 2,故 , yx(t) = Cx1e –t + Cx2e –2t 代入初始值并解得系数为Cx1=4 ,Cx2= – 2 ,代入得 代入初始值并解得系数为 yx(t) = 4e –t – 2e –2t ,t > 0
第2-5页

南昌大学测控系
信号与系统 电子教案
2.1
LTI连续系统的响应 LTI连续系统的响应
二、关于0-和0+初始值 关于 和 初始值
若输入f(t)是在 时接入系统 则确定待定系数C 若输入 是在t=0时接入系统,则确定待定系数 i 是在 时接入系统, 时用t 时刻的初始值 初始值, 时用 = 0+时刻的初始值,即y(j)(0+) (j=0,1,2…,n-1)。 , 。 包含了输入信号的作用, 而y(j)(0+)包含了输入信号的作用,不便于描述系统 包含了输入信号的作用 的历史信息。 的历史信息。 在t=0-时,激励尚未接入,该时刻的值 (j)(0-)反映 时 激励尚未接入,该时刻的值y 反映 了系统的历史情况而与激励无关。称这些值为初始 系统的历史情况而与激励无关。称这些值为初始 而与激励无关 状态或起始值。 状态或起始值。 通常,对于具体的系统,初始状态一般容易求得。 通常,对于具体的系统,初始状态一般容易求得。 这样为求解微分方程, 这样为求解微分方程,就需要从已知的初始状态 y(j)(0-)设法求得 (j)(0+)。下列举例说明。 设法求得y 设法求得 。下列举例说明。
相关文档
最新文档