湖南师大附中2021届高三年级10月第二次月考数学试题(含答案)
2021届湖南师大附中高三10月第二次月考化学试题
湖南师大附中2021届高三月考试卷(二)化学本试题卷分选择题和非选择题两部分,共8页。
时量90分钟,满分100分。
可能用到的相对原子质量:H~1 C~12 N~14 O~16 Mn~55 Fe~56 Cu~64一、选择题:本题共10小题,每小题2分,共20分。
每小题只有一个选项符合题目要求。
1.2020年伊始,新冠肺炎肆虐神州,一场疫情阻击战打响,一时间消杀试剂成为紧俏物品。
下列关于消杀试剂的说法正确的是A.酒精作为消杀试剂,浓度越高消杀效果越好B.“84”消毒液与含HCl 的洁厕灵混合使用可增强消毒效果C.“84”消毒液与酒精消毒液的消毒原理相同D.臭氧、过氧乙酸都有杀菌消毒的效果2.用N A 表示阿伏加德罗常数的值,下列说法正确的是A.常温常压下,1.8 g D 2O 含有的电子数是N AB.1.0 L 0.5 mol/L 的NH 4NO 3溶液中NHt 数目为0.5N AC. NaH 与水反应生成0.5molH 2时,转移电子数为N AD.标准状况下,5.6 L 一氯甲烷中共价键数目为N A3.在给定条件下,下列加点的物质在化学反应中能完全消耗的是A.在5×107 Pa 、500 °C 和铁触媒催化的条件下,用1 mol 氮气和4 mol 氢气合成氨B.标准状况下,将1 g 铁片投入15 mL 18.4 mol ·L -1的硫酸溶液中C.向150 mL3 mol ·L -1的硝酸中加入6.4 g 铜D.用50 mL8 mol ·L -1浓盐酸与10 g 二氧化锰共热制取氯气4.在10 L 密闭容器中,A 、B 、C 三种气态物质构成了可逆反应的体系,当在某一温度时,A 、B 、C 的物质的量与时间的关系如图1所示;相同反应时间内C 的百分含量与温度的关系如图2所示。
下列分析不正确的是A.0~4 min 时,A 的平均反应速率为0.02 mol/(L●min)B.该反应的平衡常数表达式2()=()()c C K c A c B ⋅ C.图2曲线中与Ti 和T2对应的反应状态下,v v >正逆D.此反应的正方向为放热过程5.稀土铈(Ce)元素主要存在于独居石中,金属铈在空气中易氧化变暗,受热时燃烧,遇水很快反应。
2021年师大二附中高三数学第一学期10月考包含答案
师大二附中2021届高三第一学期10月考数学试卷一、单项选择题:认真审题,仔细想一想,然后选出唯一正确答案。
(共10小题;共40分)1. 设集合{}{}|03,|02,""""M x x N x x a M a N =<≤=<≤∈∈那么是的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】B2. 若35log log 33b ⋅=,则b =( ) A. 6 B. 5C. 53D. 35【答案】D3. 已知∈,x y R ,且0x y >>,则( )A.110x y-> B. 0cosx cosy -<C. 11022xy⎛⎫⎛⎫-< ⎪ ⎪⎝⎭⎝⎭D. ()ln 0x y ->【答案】C4. 已知()y f x =是定义在R 上的奇函数,当0x >时,()2f x x =-,那么不等式1()2f x <的解集是( ) A. 502x x ⎧⎫<<⎨⎬⎩⎭B. 302x x ⎧⎫-<<⎨⎬⎩⎭C. {3|02x x -<<或502x ⎫<<⎬⎭D. {3|2x x <-或502x ⎫≤<⎬⎭【答案】D 5. 已知α ∈(0,π2),2sin2α=cos2α+1,则sinα= A.15B.C.D.【答案】B6. 若函数1()ln f x x a x=-+在区间(1,)e 上存在零点,则常数a 取值范围为( )A. 01a <<B.11a e<< C.111a e-<< D.111a e+<< 【答案】C 7. 函数1()f x x ax=+在(,1)-∞-上单调递增,则实数a 的取值范围是( ) A. [1,)+∞ B. (,0)(0,1]-∞ C. (0,1] D. (,0)[1,)-∞⋃+∞【答案】D8. 数列{}n a 的前n 项和为n S ,已知115a =,且对任意正整数m ,n ,都有m n m n a a a +=,若n S a <恒成立,则实数a 的最小值为( ) A.14B.34C. 43D. 4【答案】A9. 函数32()f x ax x cx d =-++的图象如图所示,则有( )A. 0,0,0a c d ><>B. 0,0,0a c d <<>C. 0,0,0a c d <>>D. 0,0,0a c d >><【答案】C10. 已知函数()|lg |,,()()f x x a b f a f b =>=,且33a b m +>恒成立,那么m 的最大值等于( ) A. 8 B. 3 C.3 D. 2【答案】D二、填空题(共5小题;共25分)11. 若集合{21}A x x =-<<,{}B x x a =≥,且{2}A B x x ⋃=>-,则实数a 的取值范围是_______. 【答案】21a -<≤12. 设函数(),12,1x x a x f x x -+<⎧=⎨≥⎩最小值为2,则实数a 的取值范围是______.【答案】[)3,+∞13. 记等差数列{}n a 的前n 项和为n S .若31a =,714S =,则5a =____________. 【答案】314. 已知函数32()1f x ax x =-+在(0,1)上有增区间,则a 的取值范围是_______.【答案】2,3⎛⎫+∞⎪⎝⎭15. 已知函数2()x f x ae x =-有两个极值点,则实数a 的取值范围是_______.【答案】2(0,)e.三、解答题(共6小题;共85分)16. 已知等比数列{}n a 的各项均为正数,且212326231,9a a a a a +==.(1)求数列{}n a 的通项公式; (2)设31323log log log n n b a a a =+++,求数列{}n b 的通项公式.【答案】(1)13n na =;(2)(1)2nn n b +=-. 17. 在ABC 中,角,,A B C 所对的边分别为,,,a b c 已知222b c a bc +=+. (1)求A 的大小; (2)如果6cos 2B b ==,求ABC 的面积. 【答案】(1)3π;(2323+18. 函数cos2()2sin sin cos xf x x x x=++.(1)求函数()f x 的定义域; (2)求4f π⎛⎫⎪⎝⎭的值; (3)求函数()f x 的最小正周期及其图象的所有对称轴的方程. 【答案】(1),4x x k k Z ππ⎧⎫≠-∈⎨⎬⎩⎭;(2)2;(3)最小正周期2T π=;对称轴方程为,4x k k Z ππ=+∈. 19. 已知函数()2()22xf x x x a e =-++,其中e 是自然对数的底数,a R ∈.(1)求函数()f x 的单调区间;(2)当[0,4]x ∈时,求函数()f x 的最小值.【答案】(1)答案不唯一,具体见解析;(2)答案不唯一,具体见解析.20. 已知()sin f x x =,()ln g x x =,()21=--h x x ax .(1)若[]0,1x ∈,证明:()()1≥+f x g x ; (2)对任意(]0,1x ∈都有()()()0+->f x eh x g x ,求整数a 的最大值.【答案】(1)证明见解析;(2)2.21. 已知{}n a 是公差不等于0的等差数列,{}n b 是等比数列()*n N ∈,且110ab =>.(1)若33a b =,比较2a 与2b 的大小关系; (2)若2244,a b a b ==.①判断10b 是否为数列{}n a 中的某一项,并请说明理由;②若m b 是数列{}n a 中的某一项,写出正整数m 的集合(不必说明理由). 【答案】(1)答案见解析;(2)是{}n a 中的第172项,理由见解析;(3){1m m =或}*2,m n n N=∈.为大家整理的资料供学习参考,希望能帮助到大家,非常感谢大家的下载,以后会为大家提供更多实用的资料。
湖南师范大学附属中学2021届高三第一学期月考(三)数学试题
!4!º»O pU½!,!#"Us½!_,8!#"$,!$"($$da¾¿#+$^ À,8!#"),!#",!$J × û,!#<"#5!,! è U # U Æ Ç È É _ !!!!!
!"#$!%&'"!(!/ )!*")"
?UP$7$849$80$/!UPVW=XYZ[\[]^_`a bc! !0!./012!$2
!"#$!%&'"!(!" )!*")"
,%d &'('"$J &"('!5
-%d&'('" (!$Á ± + , '! )&"5 U - . q s A$± + , '! )
&"5 UÊ/íU0R.G'
!"#$!%&'"!(!# )!*")"
!#!EFÐ//6###)#6#5%#($!6(!$#$-"!ô` 2!)!$$"1Ð//6 2 3Ù_76!76,$"U4/)6$4`_ 26!#6$%6"!JÚÛ'5YÜUG *%!Û'U67_#6(665!
*%#&
+%#1
,%#0
-%#"
&!_ @:"¡#A¢£$¤k¥¦$§$¨©ª&3«¬a!"9
U;<$%®$=¯+ $ ° ± ² $ ³ ´ µ ¶ ·$J V ² $ ³ ¸ ¹ © ª !
湖南省长沙市湖南师范大学附属中学2025届高三上学期月考试卷(三)语文试题(含答案)
湖南省长沙市湖南师大附中2025届高三月考试卷(三)语文试题本试卷共四道大题,23道小题,满分150分。
时量150分钟。
得分:_一、现代文阅读(35分)(一)现代文阅读I(本题共5小题,19分)阅读下面的文字,完成1~5题。
对于大部分人来说,隐喻不是寻常的语言,而是诗意的想象和修辞多样性的一种策略,非同寻常。
而且,隐喻通常被看成语言文字的特征,而非思想和行为的特点。
由于这个原因,大多数人认为没有隐喻的存在,他们依然可以自如地生活,而我们发现事实恰恰相反。
不论是在语言上还是在思想和行动中,日常生活中隐喻无所不在,我们思想和行为所依据的概念系统本身是以隐喻为基础。
这些支配着我们思想的概念不仅关乎我们的思维能力,它们也同时管辖我们日常的运作,乃至一些细枝末叶的平凡细节。
这些概念建构了我们的感知,构成了我们如何在这个世界生存以及我们与其他人的关系。
因此,我们的这个概念系统在界定日常现实中扮演着举足轻重的角色。
我们的概念系统大部分是隐喻——如果我们说的没错的话,那么我们的思维方式,我们每天所经历所做的一切就充满了隐喻。
但是我们的概念系统不是我们平时能够意识到的。
我们每天所做的大部分琐事都只是按照某些方式或多或少地在自动思维和行动。
这些方式是什么却并非显而易见。
要搞清这些,一个方法就是研究语言。
既然交流是基于我们用以思考和行动的同一个概念系统,那么语言就是探明这个系统是什么样子的重要证据来源。
基于语言学证据(linguistic evidence),我们已经发现我们普通的概念系统,究其实质,大都是隐喻的,并且找到了一种方式来仔细鉴定那些建构我们如何感知、如何思考、如何行动的隐喻究竟是什么。
为了说明什么样的概念是隐喻,这样的概念又如何建构我们的日常活动,让我们从“争论”(ARGUMENT)以及“争论是战争”这个概念隐喻开始阐述吧。
日常生活中总是能见到这类表达:争论是战争你的观点无法防御。
他攻击我观点中的每一个弱点。
湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)数学试题及答案
大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣D. {12}x x <<∣2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.3. 已知平面向量()()5,0,2,1ab ==−,则向量a b +在向量b上投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,04. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21B. 19C. 12D. 425. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A 136人 B. 272人C. 328人D. 820人6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π37. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条的.渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.14. 已知点C 为扇形AOB 弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.的(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值; (2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 12345678910销售量千张 1.9 1.98 2.2 2.36 2.43 2.59 2.68 2.76 2.7 04经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑ (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ; (3)记(2)中所得概率n P 的值构成数列{}()N n P n ∗∈.①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛...参考公式: ()()()1122211ˆˆ,n ni ii ii i n n i i i i x x y y x y nx yay bx x xx nx====−−−==−−−∑∑∑∑.大联考湖南师大附中2025届高三月考试卷(一)数学命题人:高三数学备课组 审题人:高三数学备课组时量:120分钟 满分:150分一、选选选:本选共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,1. 已知{}()260,{lg 10}Axx x B x x =+−≤=−<∣∣,则A B = ( )A. {}32xx −≤≤∣ B. {32}x x −≤<∣ C. {12}x x <≤∣ D. {12}x x <<∣【答案】D 【解析】【分析】通过解一元二次不等式和对数函数的定义域,求出集合,A B ,再求交集. 【详解】集合{}()32,{lg 10}{12}A x x B x x x x =−≤≤=−<=<<∣∣∣,则{12}A B xx ∩=<<∣, 故选:D .2. 若复数z 满足()1i 3i z +=−+(i 是虚数单位),则z 等于( )A.B.54C.D.【答案】C 【解析】【分析】由复数的除法运算计算可得12i z =−+,再由模长公式即可得出结果. 【详解】依题意()1i 3i z +=−+可得()()()()3i 1i 3i 24i12i 1i 1i 1i 2z −+−−+−+====−+++−,所以z =. 故选:C3. 已知平面向量()()5,0,2,1a b ==−,则向量a b +在向量b上的投影向量为( )A. ()6,3−B. ()4,2−C. ()2,1−D. ()5,0【答案】A 【解析】【分析】根据投影向量的计算公式即可求解.【详解】()()7,1,15,a b a b b b +=−+⋅==所以向量a b +在向量b 上的投影向量为()()236,3||a b b b bb +⋅==− .故选:A4. 记n S 为等差数列{}n a 的前n 项和,若396714,63a a a a +==,则7S =( ) A. 21 B. 19C. 12D. 42【答案】A 【解析】【分析】根据等差数列的性质,即可求解公差和首项,进而由求和公式求解.【详解】{}n a 是等差数列,396214a a a ∴+==,即67a =,所以67769,a a a a == 故公差76162,53d a a a a d =−=∴=−=−,()767732212S ×∴=×−+×=, 故选:A5. 某校高二年级下学期期末考试数学试卷满分为150分,90分以上(含90分)为及格.阅卷结果显示,全年级1200名学生的数学成绩近似服从正态分布,试卷的难度系数(难度系数=平均分/满分)为0.49,标准差为22,则该次数学考试及格的人数约为( )附:若()2,X Nµσ∼,记()()p k P k X k µσµσ=−≤≤+,则()()0.750.547,10.683p p ≈≈.A. 136人B. 272人C. 328人D. 820人【答案】B 【解析】【分析】首先求出平均数,即可得到学生的数学成绩2~(73.5,22)X N ,再根据所给条件求出(5790)P X ≤≤,即可求出(90)P X ≥,即可估计人数.【详解】由题得0.4915073.5,22µσ=×==,()()(),0.750.547p k P k X k p µσµσ=−≤≤+≈ ,()5790P X ∴≤≤ ()0.750.547p ≈,()()900.510.5470.2265P X ≥×−,∴该校及格人数为0.22651200272×≈(人),故选:B . 6. 已知()π5,0,,cos ,tan tan 426αβαβαβ∈−=⋅=,则αβ+=( ) A.π6 B.π4C.π3D.2π3【答案】D 【解析】【分析】利用两角差的余弦定理和同角三角函数的基本关系建立等式求解,再由两角和的余弦公式求解即可.【详解】由已知可得5cos cos sin sin 6sin sin 4cos cos αβαβαβαβ⋅+⋅=⋅ =⋅ , 解得1cos cos 62sin sin 3αβαβ⋅=⋅=,,()1cos cos cos sin sin 2αβαβαβ∴+=⋅−⋅=−,π,0,2αβ∈,()0,παβ∴+∈, 2π,3αβ∴+=,故选:D .7. 已知12,F F 是双曲线22221(0)x y a b a b−=>>的左、右焦点,以2F 为圆心,a 为半径的圆与双曲线的一条渐近线交于,A B 两点,若123AB F F >,则双曲线的离心率的取值范围是( )A.B.C. (D. (【答案】B 【解析】【分析】根据双曲线以及圆的方程可求得弦长AB =,再根据不等式123AB F F >整理可得2259c a <,即可求得双曲线的离心率的取值范围.【详解】设以()2,0F c 为圆心,a 为半径的圆与双曲线的一条渐近线0bx ay −=交于,A B 两点, 则2F 到渐近线0bx ay −=的距离d b,所以AB =, 因为123AB F F >,所以32c ×>,可得2222299a b c a b −>=+, 即22224555a b c a >=−,可得2259c a <,所以2295c a <,所以e <,又1e >,所以双曲线的离心率的取值范围是 .故选:B8. 已知函数()220log 0x a x f x x x ⋅≤= > ,,,,若关于x 的方程()()0f f x =有且仅有两个实数根,则实数a 的取值范围是( ) A. ()0,1 B. ()(),00,1−∞∪C. [)1,+∞D. ()()0,11,+∞【答案】C 【解析】【分析】利用换元法设()u f x =,则方程等价为()0f u =,根据指数函数和对数函数图象和性质求出1u =,利用数形结合进行求解即可. 【详解】令()u f x =,则()0f u =.�当0a =时,若()0,0u f u ≤=;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()0f x ≤或()1f x =.如图所示,满足()0f x ≤的x 有无数个,方程()1f x =只有一个解,不满足题意;�当0a ≠时,若0≤u ,则()20uf u a =⋅≠;若0u >,由()2log 0f u u==,得1u =. 所以由()()0ff x =可得()1f x =,当0x >时,由()2log 1f x x==,可得2x =, 因为关于x 的方程()()0f f x =有且仅有两个实数根,则方程()1f x =在(,0∞−]上有且仅有一个实数根,若0a >且()(]0,20,xx f x a a ≤=⋅∈,故1a ≥; 若0a <且()0,20xx f x a ≤=⋅<,不满足题意.综上所述,实数a 的取值范围是[)1,+∞, 故选:C .二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分9. 如图,在正方体111ABCD A B C D −中,E F M N ,,,分别为棱111AA A D AB DC ,,,的中点,点P 是面1B C 的中心,则下列结论正确的是( )A. E F M P ,,,四点共面B. 平面PEF 被正方体截得的截面是等腰梯形C. //EF 平面PMND. 平面MEF ⊥平面PMN【答案】BD 【解析】【分析】可得过,,E F M 三点的平面为一个正六边形,判断A ;分别连接,E F 和1,B C ,截面1C BEF 是等腰梯形,判断B ;分别取11,BB CC 的中点,G Q ,易证EF 显然不平行平面QGMN ,可判断C ;EM ⊥平面PMN ,可判断D.【详解】对于A :如图经过,,E F M 三点的平面为一个正六边形EFMHQK ,点P 在平面外,,,,E F M P ∴四点不共面,∴选项A 错误;对于B :分别连接,E F 和1,B C ,则平面PEF 即平面1C BEF ,截面1C BEF 是等腰梯形,∴选项B 正确;对于C :分别取11,BB CC 的中点,G Q ,则平面PMN 即为平面QGMN , 由正六边形EFMHQK ,可知HQ EF ,所以MQ 不平行于EF ,又,EF MQ ⊂平面EFMHQK ,所以EF MQ W = ,所以EF I 平面QGMN W =, 所以EF 不平行于平面PMN ,故选项C 错误;对于D :因为,AEM BMG 是等腰三角形,45AME BMG ∴∠=∠=°, 90EMG ∴∠=°,EMMG ∴⊥,,M N 是,AB CD 的中点,易证MN AD ∥,由正方体可得AD ⊥平面11ABB A ,MN ∴⊥平面11ABB A ,又ME ⊂平面11ABB A ,EM MN ∴⊥,,MG MN ⊂ 平面PMN ,EM ∴⊥平面GMN ,EM ⊂ 平面MEF ,∴平面MEF ⊥平面,PMN 故选项D 正确.���BD .10. 已知函数()5π24f x x=+,则( )A. ()f x 的一个对称中心为3π,08B. ()f x 的图象向右平移3π8个单位长度后得到的是奇函数的图象 C. ()f x 在区间5π7π,88上单调递增 D. 若()y f x =在区间()0,m 上与1y =有且只有6个交点,则5π13π,24m∈【答案】BD 【解析】【分析】代入即可验证A ,根据平移可得函数图象,即可由正弦型函数的奇偶性求解B ,利用整体法即可判断C ,由5πcos 24x+求解所以根,即可求解D.【详解】对于A ,由35π3π2π0848f =+×=≠,故A 错误;对于B ,()f x 的图象向右平移3π8个单位长度后得: 3π3π5ππ228842y f x x x x=−−++,为奇函数,故B 正确; 对于C ,当5π7π,88x∈时,则5π5π2,3π42x +∈ ,由余弦函数单调性知,()f x 在区间5π7π,88 上单调递减,故C 错误;对于D ,由()1f x =,得5πcos 24x+ππ4x k =+或ππ,2k k +∈Z , ()y f x =在区间()0,m 上与1y =有且只有6个交点,其横坐标从小到大依次为:ππ5π3π9π5π,,,,,424242, 而第7个交点的横坐标为13π4, 5π13π24m ∴<≤,故D 正确. 故选:BD11. 已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()21f x g x ++−=,则( )A. ()f x 的图象关于点()2,1对称B. ()f x 是以8为周期的周期函数C. ()20240g =D.20241(42)2025k f k =−=∑ 【答案】ABC 【解析】【分析】根据函数奇偶性以及所满足的表达式构造方程组可得()()222f x f x ++−=,即可判断A 正确;利用对称中心表达式进行化简计算可得B 正确,可判断()g x 也是以8为周期的周期函数,即C 正确;根据周期性以及()()42f x f x ++=计算可得20241(42)2024k f k =−=∑,可得D 错误. 【详解】由题意()()()(),f x f x g x g x −=−=−,且()()()00,21g f x g x =++−=, 即()()21f x g x +−=①, 用x −替换()()21f x g x ++−=中的x ,得()()21f x g x −+=②, 由①+②得()()222f x f x ++−=, 所以()f x 的图象关于点(2,1)对称,且()21f =,故A 正确;由()()222f x f x ++−=,可得()()()()()42,422f x f x f x f x f x ++−=+=−−=−, 所以()()()()82422f x f x f x f x +=−+=−−= , 所以()f x 是以8为周期的周期函数,故B 正确; 由①知()()21g x f x =+−,则()()()()882121g x f x f x g x +=++−=+−=,故()()8g x g x +=,因此()g x 也是以8为周期的周期函数, 所以()()202400g g ==,C 正确;又因为()()42f x f x ++−=,所以()()42f x f x ++=, 令2x =,则有()()262f f +=,令10x =,则有()()10142,f f +=…, 令8090x =,则有()()809080942f f +=, 所以1012(2)(6)(10)(14)(8090)(8094)2222024f f f f f f ++++++=+++=个所以20241(42)(2)(6)(10)(14)(8090)(8094)2024k f k f f f f f f =−=++++++=∑ ,故D 错误.故选:ABC【点睛】方法点睛:求解函数奇偶性、对称性、周期性等函数性质综合问题时,经常利用其中两个性质推得第三个性质特征,再进行相关计算.三、填空题:本题共3小题,每小题5分,共15分.12. 6(31)x y +−的展开式中2x y 的系数为______. 【答案】180− 【解析】【分析】根据题意,由条件可得展开式中2x y 的系数为213643C C (1)⋅−,化简即可得到结果. 【详解】在6(31)x y +−的展开式中, 由()2213264C C 3(1)180x y x y ⋅⋅−=−,得2x y 的系数为180−. 故答案为:180−.13. 已知函数()f x 是定义域为R 的奇函数,当0x >时,()()2f x f x ′−>,且()10f =,则不等式()0f x >的解集为__________.【答案】()()1,01,−∪+∞ 【解析】【分析】根据函数奇偶性并求导可得()()f x f x ′′−=,因此可得()()2f x f x ′>,可构造函数()()2xf x h x =e并求得其单调性即可得()f x 在()1,+∞上大于零,在()0,1上小于零,即可得出结论. 【详解】因为()f x 为奇函数,定义域为R ,所以()()f x f x −=−,两边同时求导可得()()f x f x ′′−−=−,即()()f x f x ′′−=且()00f =,又因为当0x >时,()()2f x f x ′−>,所以()()2f x f x ′>. 构造函数()()2xf x h x =e,则()()()22x f x f x h x ′−′=e , 所以当0x >时,()()0,h x h x ′>在()0,∞+上单调递增,又因为()10f =,所以()()10,h h x =在()1,+∞上大于零,在()0,1上小于零, 又因为2e 0x >,所以()f x 在()1,+∞上大于零,在()0,1上小于零, 因为()f x 为奇函数,所以()f x 在(),1∞−−上小于零,在()1,0−上大于零, 综上所述,()0f x >的解集为()()1,01,−∪+∞. 故答案为:()()1,01,−∪+∞14. 已知点C 为扇形AOB 的弧AB 上任意一点,且60AOB ∠=,若(),R OC OA OB λµλµ=+∈,则λµ+的取值范围是__________.【答案】【解析】【分析】建系设点的坐标,再结合向量关系表示λµ+,最后应用三角恒等变换及三角函数值域求范围即可. 【详解】方法一:设圆O 的半径为1,由已知可设OB 为x 轴的正半轴,O 为坐标原点,过O 点作x 轴垂线为y 轴建立直角坐标系,其中()()1,1,0,cos ,sin 2A B C θθ ,其中π,0,3BOC θθ ∠=∈ , 由(),R OC OA OB λµλµ=+∈,即()()1cos ,sin 1,02θθλµ =+,整理得1cos sin 2λµθθ+=,解得cos λµθ=,则ππcos cos ,0,33λµθθθθθ+=++=+∈,ππ2ππ,,sin 3333θθ+∈+∈所以λµ +∈ . 方法二:设k λµ+=,如图,当C 位于点A 或点B 时,,,A B C 三点共线,所以1k λµ=+=; 当点C 运动到AB的中点时,k λµ=+,所以λµ +∈故答案为:四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. ABC V 的内角,,A B C 的对边分别为,,a b c ,已知22cos a b c B +=. (1)求角C ;(2)若角C 的平分线CD 交AB于点,D AD DB =,求CD 的长.【答案】(1)2π3C = (2)3CD = 【解析】【分析】(1)利用正弦定理及两角和的正弦定理整理得到()2cos 1sin 0C B +=,再利用三角形的内角及正弦函数的性质即可求解;(2)利用正弦定理得出3b a =,再由余弦定理求出4a =,12b =,再根据三角形的面积建立等式求解. 【小问1详解】 由22cos a b c B +=,根据正弦定理可得2sin sin 2sin cos A B C B +=,则()2sin sin 2sin cos B C B C B ++=,所以2sin cos 2cos sin sin 2sin cos B C B C B C B ++=,整理得()2cos 1sin 0C B +=, 因为,B C 均为三角形内角,所以(),0,π,sin 0B C B ∈≠, 因此1cos 2C =−,所以2π3C =. 【小问2详解】因为CD 是角C的平分线,AD DB=所以在ACD 和BCD △中,由正弦定理可得,,ππsin sin sin sin 33AD CD BD CDA B ==, 因此sin 3sin BADA BD==,即sin 3sin B A =,所以3b a =, 又由余弦定理可得2222cos c a b ab C =+−,即222293a a a =++, 解得4a =,所以12b =.又ABCACD BCD S S S =+△△△,即111sin sin sin 222ab ACB b CD ACD a CD BCD ∠∠∠=⋅⋅+⋅⋅, 即4816CD =,所以3CD =. 16. 已知1ex =为函数()ln af x x x =的极值点. (1)求a 的值; (2)设函数()ex kxg x =,若对()120,,x x ∀∈+∞∃∈R ,使得()()120f x g x −≥,求k 的取值范围. 【答案】(1)1a = (2)(]()10,−∞−+∞ , 【解析】【分析】(1)直接根据极值点求出a 的值;(2)先由(1)求出()f x 的最小值,由题意可得是求()g x 的最小值,小于等于()f x 的最小值,对()g x 求导,判断由最小值时的k 的范围,再求出最小值与()f x 最小值的关系式,进而求出k 的范围. 【小问1详解】()()111ln ln 1a a f x ax x x x a x xα−−==′+⋅+,由1111ln 10e e e a f a −=+=′,得1a =, 当1a =时,()ln 1f x x =′+,函数()f x 在10,e上单调递减,在1,e∞ +上单调递增, 所以1ex =为函数()ln af x x x =的极小值点, 所以1a =. 【小问2详解】由(1)知min 11()e ef x f ==−. 函数()g x 的导函数()()1e xg x k x −=−′ �若0k >,对()1210,,x x k ∞∀∈+∃=−,使得()()12111e 1e k g x g f x k=−=−<−<−≤,即()()120f x g x −≥,符合题意. �若()0,0kg x =,取11ex =,对2x ∀∈R ,有()()120f x g x −<,不符合题意.�若0k <,当1x <时,()()0,g x g x ′<在(),1∞−上单调递减;当1x >时,()()0,g x g x ′>在(1,+∞)上单调递增,所以()min ()1ekg x g ==, 若对()120,,x x ∞∀∈+∃∈R ,使得()()120f x g x −≥,只需min min ()()g x f x ≤, 即1e ek ≤−,解得1k ≤−. 综上所述,k 的取值范围为(](),10,∞∞−−∪+.17. 已知四棱锥P ABCD −中,平面PAB ⊥底面,ABCD AD ∥,,,2,BC AB BC PA PB AB AB BC AD E ⊥==为AB 的中点,F 为棱PC 上异于,P C 的点.(1)证明:BD EF ⊥;(2)试确定点F 的位置,使EF 与平面PCD【答案】(1)证明见解析 (2)F 位于棱PC 靠近P 的三等分点 【解析】【分析】(1)连接,,PE EC EC 交BD 于点G ,利用面面垂直的性质定理和三角形全等,即可得证; (2)取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立,利用线面角公式代入即可求解.小问1详解】如图,连接,,PE EC EC 交BD 于点G .因为E 为AB 的中点,PA PB =,所以PE AB ⊥.因为平面PAB ⊥平面ABCD ,平面PAB ∩平面,ABCD AB PE =⊂平面PAB , 所以PE ⊥平面ABCD ,因为BD ⊂平面ABCD ,所以PE BD ⊥.因为ABD BCE ≅ ,所以CEB BDA ∠∠=,所以90CEB ABD ∠∠+= , 所以BD EC ⊥,因为,,PE EC E PE EC ∩=⊂平面PEC , 所以BD ⊥平面PEC .因为EF ⊂平面PEC ,所以BD EF ⊥. 【小问2详解】如图,取DC 的中点H ,以E 为坐标原点,分别以,,EB EH EP 所在直线为,,x y z 轴建立空间直角坐标系,【设2AB =,则2,1,BC AD PA PB ====则()()()()0,0,1,1,2,0,1,1,0,0,0,0P C D E −,设(),,,(01)F x y z PF PC λλ=<<, 所以()(),,11,2,1x y z λ−=−,所以,2,1x y z λλλ===−,即(),2,1F λλλ−.则()()()2,1,0,1,2,1,,2,1DC PC EF λλλ==−=−,设平面PCD 的法向量为(),,m a b c =,则00DC m PC m ⋅=⋅=,,即2020a b a b c += +−= ,,取()1,2,3m =−− , 设EF 与平面PCD 所成的角为θ,由cos θ=sin θ=.所以sin cos ,m EF m EF m EF θ⋅===整理得2620λλ−=,因为01λ<<,所以13λ=,即13PF PC = ,故当F 位于棱PC 靠近P 的三等分点时,EF 与平面PCD18. 在平面直角坐标系xOy 中,抛物线21:2(0)C ypx p =>的焦点到准线的距离等于椭圆222:161C x y +=的短轴长,点P 在抛物线1C 上,圆222:(2)E x y r −+=(其中01r <<).(1)若1,2r Q =为圆E 上的动点,求线段PQ 长度的最小值;(2)设()1,D t 是抛物线1C 上位于第一象限的一点,过D 作圆E 的两条切线,分别交抛物线1C 于点,M N .证明:直线MN 经过定点.【答案】(1(2)证明见解析【解析】【分析】(1)根据椭圆的短轴可得抛物线方程2y x =,进而根据两点斜率公式,结合三角形的三边关系,即可由二次函数的性质求解,(2)根据两点坐标可得直线,MN DM 的直线方程,由直线与圆相切可得,a b 是方程()()()2222124240r x r x r −+−+−=的两个解,即可利用韦达定理代入化简求解定点. 【小问1详解】 由题意得椭圆的方程:221116y x +=,所以短半轴14b = 所以112242p b ==×=,所以抛物线1C 的方程是2y x =. 设点()2,P t t ,则111222PQ PE ≥−=−=≥, 所以当232ι=时,线段PQ . 【小问2详解】()1,D t 是抛物线1C 上位于第一象限的点,21t ∴=,且()0,1,1t D >∴设()()22,,,M a a N b b ,则: 直线()222:b a MN y a x a b a −−=−−,即()21y a x a a b −=−+,即()0x a b y ab −++=. 直线()21:111a DM y x a −−=−−,即()10x a y a −++=. 由直线DMr =,即()()()2222124240r a r a r −+−+−=..同理,由直线DN 与圆相切得()()()2222124240r b r b r −+−+−=. 所以,a b 是方程()()()2222124240r x r x r −+−+−=的两个解, 22224224,11r r a b ab r r −−∴+==−− 代入方程()0x a b y ab −++=得()()222440x y r x y +++−−−=, 220,440,x y x y ++= ∴ ++= 解得0,1.x y = =− ∴直线MN 恒过定点()0,1−.【点睛】圆锥曲线中定点问题的两种解法(1)引进参数法:先引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.(2)特殊到一般法:先根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.技巧:若直线方程为()00y y k x x −=−,则直线过定点()00,x y ;若直线方程为y kx b =+ (b 为定值),则直线过定点()0,.b 19. 龙泉游泳馆为给顾客更好的体验,推出了A 和B 两个套餐服务,顾客可选择A 和B 两个套餐之一,并在App 平台上推出了优惠券活动,下表是该游泳馆在App 平台10天销售优惠券情况. 日期t 1 2 3 4 5 6 7 8 9 10 销售量千张 1.9 1.98 2.2 2.36 2.43 259 2.68 2.76 2.7 0.4经计算可得:10101021111 2.2,118.73,38510i i i i i i i y y t y t ======∑∑∑. (1)因为优惠券购买火爆,App 平台在第10天时系统出现异常,导致当天顾客购买优惠券数量大幅减少,已知销售量y 和日期t 呈线性关系,现剔除第10天数据,求y 关于t 的经验回归方程结果中的数值用分数表示;..(2)若购买优惠券的顾客选择A 套餐的概率为14,选择B 套餐的概率为34,并且A 套餐可以用一张优惠券,B 套餐可以用两张优惠券,记App 平台累计销售优惠券为n 张的概率为n P ,求n P ;(3)记(2)中所得概率n P 的值构成数列{}()Nn P n ∗∈. ①求n P 的最值;②数列收敛的定义:已知数列{}n a ,若对于任意给定的正数ε,总存在正整数0N ,使得当0n N >时,n a a ε−<,(a 是一个确定的实数),则称数列{}n a 收敛于a .根据数列收敛的定义证明数列{}n P 收敛.参考公式: ()()()1122211ˆˆ,n ni ii i i i n n ii i i x x y y x y nx y ay bx x x x nx ====−−−==−−−∑∑∑∑. 【答案】(1)673220710001200y t + (2)433774n n P =+⋅−(3)①最大值为1316,最小值为14;②证明见解析 【解析】 【分析】(1)计算出新数据的相关数值,代入公式求出 ,ab 的值,进而得到y 关于t 的回归方程; (2)由题意可知1213,(3)44n n n P P P n −−=+≥,其中12113,416P P ==,构造等比数列,再利用等比数列的通项公式求解;(3)①分n 为偶数和n 为奇数两种情况讨论,结合指数函数的单调性求解;②利用数列收敛的定义,准确推理、运算,即可得证. 【小问1详解】 解:剔除第10天的数据,可得2.2100.4 2.49y ×−==新, 12345678959t ++++++++=新, 则9922111119.73100.4114,73,38510285i i i i t y t = =−×==−= ∑∑新新,所以912922119114,7395 2.4673ˆ2859560009i i i i t y t y b t t == − −×× ==−× − ∑∑新新新新新, 可得6732207ˆ 2.4560001200a =−×=,所以6732207ˆ60001200y t +. 【小问2详解】 解:由题意知1213,(3)44n n n P P P n −−=+≥,其中12111313,444416P P ==×+=, 所以11233,(3)44n n n n P P P P n −−−+=+≥,又由2131331141644P P ++×, 所以134n n P P − +是首项为1的常数列,所以131,(2)4n n P P n −+=≥ 所以1434(),(2)747n n P P n −−=−−≥,又因为1414974728P −=−=−, 所以数列47n P − 是首项为928−,公比为34−的等比数列, 故1493()7284n n P −−=−−,所以1934433()()2847774n n n P −=−−+=+−. 【小问3详解】 解:①当n 为偶数时,19344334()()28477747n n n P −=−−+=+⋅>单调递减, 最大值为21316P =; 当n 为奇数时,19344334()()28477747n n n P −=−−+=−⋅<单调递增,最小值为114P =, 综上可得,数列{}n P 的最大值为1316,最小值为14. ②证明:对任意0ε>总存在正整数0347[log ()]13N ε=+,其中 []x 表示取整函数, 当 347[log ()]13n ε>+时,347log ()34333333()()()7747474n n n P εε−=⋅−=⋅<⋅=, 所以数列{}n P 收敛.【点睛】知识方法点拨:与新定义有关的问题的求解策略:1、通过给出一个新的定义,或约定一种新的运算,或给出几个新模型来创设新问题的情景,要求在阅读理解的基础上,依据题目提供的信息,联系所学的知识和方法,实心信息的迁移,达到灵活解题的目的;2、遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质,按新定义的要求,“照章办事”,逐条分析、运算、验证,使得问题得以解决.方法点拨:与数列有关的问题的求解策略:3、若新定义与数列有关,可得利用数列的递推关系式,结合数列的相关知识进行求解,多通过构造的分法转化为等差、等比数列问题求解,求解过程灵活运用数列的性质,准确应用相关的数列知识.。
湖南省长沙市湖南师范大学附属中学2024-2025学年高三上学期月考(一)地理试题及答案
湖南师大附中2025届高三月考试卷(一)地理得分:______本试题卷分选择题和非选择题两部分,共8页。
时量75分钟,满分100分。
第Ⅰ卷选择题(共48分)一、选择题(本大题共16小题,每小题3分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求)职住关系是指居住地与工作地的空间位置关系,下图为城郊轨道交通沿线两种职住关系模式图。
完成下面小题。
1. 极化型职住关系主要反映了轨道交通沿线()A. 交通方式多样B. 逆城市化严重C. 生产要素集中D. 居住用地短缺2. 与极化型相比,平衡型职住关系的突出优点是()①减缓就业型站点的拥堵②强化中心城区核心地位③缩短职工平均通勤时间④人口趋向轨道沿线集聚A. ①③B. ①④C. ②③D. ②④加车村位于贵州省黔东南苗族侗族自治州,村庄依山而建,至今保留着诸如祭祀等完整的少数民族文化。
大、小芦笙堂是加车村重要的公共活动空间,其位置和功能有明显的差异。
随着乡村振兴战略的提出,加车村立足自身发展特点,积极打造商业街、扩建基础设施等,经济发展迅速。
下图示意加车村位置和村庄区位布局。
据此完成下面小题。
3. 在加车村可以见到的景象是( )A. 水满田畴的梯田B. 漫山遍野的牦牛C. 静静流淌的小河D. 纵横交错的车道4. 与大芦笙堂相比较,推测小芦笙堂功能特点是多承担( )A. 大型祭祀及休闲、娱乐活动B. 大型祭祀及农事、商贸活动C. 小型祭祀及休闲、娱乐活动D. 小型祭祀及农事、商贸活动5. 适于加车村发展的方向是( )A. 加快人口聚集,提高城镇化水平B. 促进村庄生产、生活、生态融合 C 下寨建筑集中连片,拓展商业街 D. 协调第一、二、三产业均衡发展 下图为2024年元旦跨年时刻江苏某同学查询到的太阳和月亮高度轨迹示意图,该同学在元旦(农历二十)日出时刻观察到了日、月同天景象。
据此回答下面小题。
6. 跨年钟声响起时,东半球新年的范围占全球的( )A. 5/6B. 2/9C. 1/6D. 1/97. 该同学观察到的日、月同天景象位置示意图是( )A. B. C.D.倒暖锋是我国东北地区的一种特殊天气类型,一般出现在强寒潮过境2~3天后。
湖南师范大学附属中学2020-2021学年高三上学期第二次月考数学(理)试卷
湖南师范大学附属中学2020-2021学年高三上学期第二次月考数学(理)试卷学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知集合{}2|230A x x x =--<,集合{}1|21x B x +=>,则C B A =( )A .[3,)+∞B .(3,)+∞C .(,1][3,)-∞-⋃+∞D .(,1)(3,)-∞-+∞2.已知函数()2f x x bx c =++,则“0c <”是“0x R ∃∈,使()00f x <”的 A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件3.设40.48,8a log b log ==,0.42c =,则( ) A .b c a <<B .c b a <<C .c a b <<D .b a c <<4.若平面区域30,{230,230x y x y x y +-≥--≤-+≥夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) ABC.2D5.函数||4x e y x=的图象可能是( )A .B .C .D .6.如果执行如图所示的程序框图,则输出的数S 不可能是( )A .0.7B .0.75C .0.8D .0.97.古希腊人常用小石子在沙滩上摆成各种形状来研究数.比如:他们研究过图(1)中的1,3,6,10,…,由于这些数能够表示成三角形,所以将其称为三角形数;类似地,称图(2)中的1,4,9,16,…这样的数为正方形数,则下列数中既是三角形数又是正方形数的是( )A .289B .1024C .1225D .13788.已知,A B 是圆22:16O x y +=的两个动点,524,33AB OC OA OB ==-,若M 分别是线段AB 的中点,则·OC OM =( )A .8+B .8-C .12D .49.点A 、B 为椭圆2222:1(0)x y E a b a b+=>>长轴的端点,C 、D 为椭圆E 短轴的端点,动点M 满足||2||MA MB =,记动点M 的轨迹为曲线Γ,若曲线Γ上两点1M 、2M满足1M AB △面积的最大值为8,2M CD △面积的最小值为1,则椭圆的离心率为( )A .3B .3C .2D .210.如图所示,在单位正方体ABCD -A 1B 1C 1D 1的面对角线A 1B 上存在一点P 使得AP +D 1P 取得最小值,则此最小值为( )A .2BC .2+D 11.已知函数()22ln f x x x =-与()()()sin 0g x x ωϕω=+>有两个公共点,则在下列函数中满足条件的周期最大的()g x = A .sin 22x ππ⎛⎫-⎪⎝⎭B .sin 22x ππ⎛⎫-⎪⎝⎭C .sin 2x ππ⎛⎫-⎪⎝⎭D .sin 2x ππ⎛⎫+⎪⎝⎭12.设D 是含数1的有限实数集,()f x 是定义在D 上的函数,若()f x 的图象绕原点逆时针旋转π6后与原图象重合,则在以下各项中,()1f 的可能取值只能是( )A B C D .0二、填空题13.定积分=⎰____________.14.在公差大于0的等差数列{}n a 中,71321a a -=,且1a ,31a -,65a +成等比数列,则数列(){}11n n a --的前21项和为_________.15.若函数()y f x =的图象上存在两个点A ,B 关于原点对称,则称点对[],A B 为()y f x =的“友情点对”,点对[],A B 与[],B A 可看作同一个“友情点对”,若函数()322,069,0x f x x x x a x <⎧=⎨-+-+≥⎩恰好有两个“友情点对”,则实数a 的值为__________16.点M 为棱长是1111ABCD A B C D -的内切球O 的球面上的动点,点N 为11B C 的中点,若满足DM BN ⊥,则动点M 的轨迹的长度为________三、解答题17.在ABC ∆ 中,内角,,A B C 的对边分别为,,a b c .已知cos 2cos 2cos A C c aB b--=(1) 求sin sin CA的值 (2) 若1cos ,24B b == ,求ABC ∆的面积.18.某种产品的质量以其质量指标值衡量,并依据质量指标值划分等级如下表:从某企业生产的这种产品中抽取200件,检测后得到如下的频率分布直方图:(1)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定?(2)在样本中,按产品等级用分层抽样的方法抽取8件,再从这8件产品中随机抽取4件,求抽取的4件产品中,一、二、三等品都有的概率;(3)该企业为提高产品质量,开展了“质量提升月”活动,活动后再抽样检测,产品质量指标值X 近似满足~(218,140)X N ,则“质量提升月”活动后的质量指标值的均值比活动前大约提升了多少?19.如图,ABCD 是边长为2的正方形,平面EAD ⊥平面ABCD ,且EA ED =,O 是线段AD 的中点,过E 作直线//l AB ,F 是直线l 上一动点.(1)求证:OF BC ⊥;(2)若直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直,求此时二面角B OFC --的余弦值.20.已知抛物线C 的顶点为O (0,0),焦点F (0,1) (Ⅰ)求抛物线C 的方程;(Ⅱ)过F 作直线交抛物线于A 、B 两点.若直线OA 、OB 分别交直线l :y=x ﹣2于M 、N 两点,求|MN|的最小值.21.已知函数()2ln f x x x =.(1)求函数()f x 的单调区间;(2)证明:对任意的0t >,存在唯一的s ,使()t f s =;(3)设(2)中所确定的s 关于t 的函数为()s g t =,证明:当2t e >时,有()ln 215ln 2g t t <<. 22.在平面直角坐标系xOy 中,曲线C 的参数方程为3cos sin x y αα=⎧⎨=⎩(a 为参数),在以原点为极点,x 轴正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 4πρθ⎛⎫-= ⎪⎝⎭. (1)求C 的普通方程和l 的倾斜角;(2)设点(0,2)P ,l 和C 交于A ,B 两点,求||+||PA PB . 23.已知函数()|1||3|f x x x =-+-. (1)解不等式()1f x x ≤+;(2)设函数()f x 的最小值为c ,实数,a b 满足0,0,a b a b c >>+=,求证:22111a b a b +≥++.参考答案1.A 【分析】首先解得集合A ,B ,再根据补集的定义求解即可. 【详解】 解:{}2|230{|13}A x x x x x =--<=-<<,{}1|21{|1}x B x x x +=>=>-,{}C |3[3,)B A x x ∴=≥=+∞,故选A .【点睛】本题考查一元二次不等式的解法,指数不等式的解法以及补集的运算,属于基础题. 2.A 【分析】通过c <0,判断函数对应的不等式有解,说明充分性;不等式有解,说明c 的值不一定小于0,判断必要性即可. 【详解】已知函数()2f x x bx c =++,则“0c <”时,函数与x 轴有两个交点,所以“0x R ∃∈,使()00f x <”成立.而“0x R ∃∈,使()00f x <”.即20x bx c ++<,所以240b c ∆=->,即24b c >,c 不一定有0c <,如2320x x ++<.综上,函数()2f x x bx c =++.则“0c <”是“0x R ∃∈,使()00f x <”的充分不必要条件;故选A . 【点睛】本题考查充要条件的判断与应用,二次函数与二次不等式的解集的关系,考查计算能力. 3.A 【分析】根据指数函数、对数函数单调性比较数值大小. 【详解】因为4233log 8log 222a ===,0.40.4log 8log 10b =<=,0.40.53222c =<=<,所以b c a <<, 故选A. 【点睛】本题考查利用指、对数函数的单调性比较数值大小,难度一般.利用指、对数函数单调性比较大小时,注意利用中间量比较大小,常用的中间量有:0,1. 4.B 【解析】试题分析:画出不等式组的平面区域如题所示,由230{30x y x y -+=+-=得(1,2)A ,由230{30x y x y --=+-=得(2,1)B ,由题意可知,当斜率为1的两条直线分别过点A 和点B 时,两直线的距离最小,即AB ==B .考点:线性规划. 5.C 【分析】由函数的奇偶性可排除B ;由(1),(3)f f 可排除选项A 、D. 【详解】设||()4x e f x x =,定义域为{|0}x x ≠,||()()4x e f x f x x-=-=-,所以()f x 为奇函数,故排除选项B ;又(1)14e f =<,排除选项A ;3(3)112e f =>,排除选项D.故选:C 【点睛】本题考查由解析式选函数图象的问题,涉及到函数的性质,此类题一般从单调性、奇偶性、特殊点的函数值入手,是一道容易题. 6.A 【解析】试题分析:根据程序框图:111,1122i S ===-⨯;1111112,1112232233i S ==-+=-+-=-⨯;;当1,11i n S n ==-+.当3n =时,13144S =-=;当4n =时,14155S =-=;当9n =时,1911010S =-=;当171110n -=+时,73n N =∉,所以选A .考点:1.程序框图;2.数列裂项相消法求和.【易错点晴】本题主要考查的是程序框图和数列中的裂项相消法,属于中档题.在给出程序框图求解输出结果的试题中一定要按照程序框图规定的运算方法逐次计算,根据前面的式子找到其中的规律,对本题来说就是这个程序框图的本质是利用裂项相消法求和,所以,又,找到各项满足条件的即可.7.C 【分析】记三角形数构成的数列为{}n a ,计算可得()12n n n a +=;易知2n b n =.据此确定复合题意的选项即可. 【详解】记三角形数构成的数列为{}n a ,则11a =,2312a ==+,36123a ==++,4101234a ==+++,…,易得通项公式为()11232n n n a n +=++++=;同理可得正方形数构成的数列{}n b 的通项公式为2n b n =.将四个选项中的数字分别代入上述两个通项公式,使得n 都为正整数的只有249501225352⨯==. 故选C . 【点睛】本题主要考查归纳推理的方法,数列求和的方法等知识,意在考查学生的转化能力和计算求解能力. 8.C 【详解】 由题意1122OM OA OB =+,则2252115113322632OC OM OA OB OA OB OA OB OA OB ⎛⎫⎛⎫⋅=-⋅+=-+⋅ ⎪ ⎪⎝⎭⎝⎭,又圆的半径为4,4AB,则,OA OB 两向量的夹角为π3.则8OA OB ⋅=,2216OA OB ==,所以12OC OM ⋅=.故本题答案选C .点睛:本题主要考查平面向量的基本定理.用平面向量的基本定理解决问题的一般思路是:先选择一组基底,并且运用平面向量的基本定理将条件和结论表示成基底的线性组合,在基底未给出的情况下进行向量的运算,合理地选取基底会给解题带来方便.进行向量运算时,要尽可能转化到平行四边形或三角形中. 9.C 【分析】根据题意求得动点M 的轨迹方程,再分析1M AB △与2M CD △面积的表达式求解,a b 的关系进而求得离心率即可. 【详解】由题可设(,0),(,0)A a B a -,(,)M x y 则因为||2||MA MB =,故22222()4()4x a y x a y =⇒++=-+.化简得Γ:222516()39x a y a -+=.故当1254,,,0333M a a M a ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭时1M AB △面积最大, 2M CD △面积的最小.故14128,212323a a a a b b ⎧=⎪⨯⨯=⨯⨯=⇒⎨=⎪⎩.故椭圆的离心率2e ==. 故选:C 【点睛】本题主要考查了圆的轨迹方程的求解以及离心率的求解问题,需要根据题意列出(,)M x y 满足的条件,再化简求得方程,属于中等题型. 10.D 【解析】试题分析:将1ABA ∆翻折到与四边形11A BCD 同一平面内,1AP D P +的最小值为1D A ,在11D AA ∆中1111131,1,4A D AA AA D π==∠=,由余弦定理可得1AD =考点:1.翻折问题;2.空间距离 11.C 【解析】 【分析】利用导数研究函数f (x )的最值,利用f (x )与g (x )的图象有两个公共点,建立条件关系,结合周期公式和最值点,即可得到结论. 【详解】因为()22ln f x x x =-为偶函数,所以当0x >时,()22ln f x x x =-,则()()()21122x x f x x x x+-'=-=,所以()f x 在()0,1上单调递减,在()1,+∞上单调递增,所以当1x =时,()()min 11f x f ==,所以当0x <时,()()min 11f x f =-=,所以()g x 的最大周期是2.所以22T πω==,ωπ=,又()g x 恰好在1x =和1x =-处取得最大值1,故2πϕ=-,故选C .【点睛】本题主要考查函数图象的应用,根据导数研究函数的最值是解决本题的关键,考查了三角函数的性质的应用,属于中档题. 12.B 【分析】利用函数的定义即可得到结果. 【详解】由题意得到:问题相当于圆上由12个点为一组,每次绕原点逆时针旋转6π个单位后与下一个点会重合.我们可以通过代入和赋值的方法当f (1)0时,此时得到的圆心角为3π,6π,0,然而此时x=0或者x=1时,都有2个y 与之对应,而我们知道函数的定义就是要求一个x 只能对应一个y ,因此只有当x=2,此时旋转6π,此时满足一个x 只会对应一个y ,故选B . 【点睛】本题考查函数的定义,即“对于集合A 中的每一个值,在集合B 中有唯一的元素与它对应”(不允许一对多). 13.4π【分析】根据定积分的几何意义即可求出. 【详解】令0)y y =≥,则(x -1)2+y 2=1表示以(1,0)为圆心,以1为半径的圆,其面积为π,所以⎰表示半径为1的四分之一圆的面积,如下图.故答案为4π 【点睛】本题考查定积分的几何意义,准确转化为图形的面积是解决问题的关键,属基础题. 14.21 【分析】设公差为d (d >0),运用等差数列的通项公式,可得首项为1,再由等比数列的中项的性质,解方程可得公差d ,进而得到等差数列{a n }的通项,再由并项求和即可得到所求和. 【详解】公差d 大于0的等差数列{}n a 中,71321a a -=,可得()11212121a d a d +-+=,即11a =,由1a ,31a -,65a +成等比数列,可得()()231615a a a -=+,即为()2121155d d +-=++,解得2d =(负值舍去),则()12121n a n n =+-=-,*n N ∈, 所以数列(){}11n n a --的前21项和为123419202113573739412104121a a a a a a a -+-++-+=-+-++-+=-⨯+=.故答案为21. 【点睛】本题考查数列的求和,注意运用并项求和,考查等差数列的通项公式和等比数列的中项的性质,考查运算能力,属于中档题. 15.2【分析】由对称可知f (x )=﹣2在(0,+∞)上有两解,分离参数得a =x 3﹣6x 2+9x ﹣2,作出函数图象,根据解的个数得出a 的范围. 【详解】由题意可知32692x x x a -+-+=-在()0,∞+上有两解,即32692a x x x =-+-在()0,∞+上有两解,设()32692g x x x x =-+-,则()23129g x x x '=-+.令()0g x '=得1x =或3x =.∴当01x <<时,()0g x '>,当13x <<时,()0g x '<,当3x >时,()0g x '>, ∴()g x 在()0,1上单调递增,在[)1,3上单调递减,在[)3,+∞上单调递增,∴当1x =时,()g x 取得极大值()12g =,当3x =时,()g x 取得极小值()32g =-. 作出()g x 的函数图象如图所示:∵32692a x x x =-+-在()0,∞+上有两解,∴2a =. 故答案为2 【点睛】本题考查了函数的单调性与极值计算,根的个数与函数图象的关系,属于中档题.16【分析】取1BB 的中点H ,连接CH ,可证得NB ⊥平面DCH ,由题意,点M 的轨迹是内切球O的球面与平面DCH 相交得到的小圆,利用垂径定理即可得出结论. 【详解】正方体1111ABCD A B C D -的内切球O 的半径R =由题意,取1BB 的中点H ,连接CH ,则CH NB ⊥,DC NB ⊥,∴NB ⊥平面DCH ,∴动点M 的轨迹就是平面DCH 与内切球O 的球面相交得到的小圆,∵正方体1111ABCD A B C D -的棱长是∴O 到平面DCH 的距离为d =,截面圆的半径r ==所以动点M 的轨迹的长度为截面圆的周长25r π=.故答案为5【点睛】本题考查了学生的空间想象力,求出点M 的轨迹是关键,属于中档题.17.(1)sin 2sin C A = (2【分析】(1)正弦定理得边化角整理可得()()sin 2sin A B B C +=+,化简即得答案.(2)由(1)知sin 2sin c C a A ==,结合题意由余弦定理可解得1a = ,sin B =,从而计算出面积. 【详解】(1)由正弦定理得2sin ,2sin ,2sin a R A b R b c R C ===, 所以cos cos 22sin sin cos sin A C c a C AB b B---==即sin cos 2sin cos 2sin cos sin cos B A B C C B A B -=- 即有()()sin 2sin A B B C +=+,即sin 2sin C A = 所以sin 2sin CA= (2)由(1)知sin 2sin c C a A==,即2c a =, 又因为2b = ,所以由余弦定理得:2222cos b c a ac B =+-,即222124224a a a a =+-⨯⨯,解得1a =,所以2c =,又因为1cos 4B =,所以sin B =,故ABC ∆的面积为11sin 1222ac B =⨯⨯⨯4=4. 【点睛】正弦定理与余弦定理是高考的重要考点,本题主要考查由正余弦定理解三角形,属于一般题. 18.(1)见解析;(2)37.(2)质量提升月”活动后的质量指标值的均值比活动前大约提升了17.6. 【解析】试题分析:(1)根据频率分布直方图,一、二等品所占比例的估计值为0.2000.3000.2600.0900.0250.8750.92++++=<,可做出判断.(2)由频率分布直方图的频率分布可知8件产品中,一等品3件,二等品4件,三等品1件,分类讨论各种情况可得P .(3)算出“质量提升月”活动前,后产品质量指标值为200.4218和,可得质量指标值的均值比活动前大约提升了17.6试题解析:(1)根据抽样调查数据,一、二等品所占比例的估计值为0.2000.3000.2600.0900.0250.875++++=,由于该估计值小于0.92,故不能认为该企业生产的这种产品符合“一、二等品至少要占全部产品92%”的规定.(2)由频率分布直方图知,一、二、三等品的频率分别为0.375、0.5、0.125,故在样本中用分层抽样方法抽取的8件产品中,一等品3件,二等品4件,三等品1件,再从这8件产品中随机抽取4件,一、二、三等品都有的情况有2种:①一等品2件,二等品1件,三等品1件;②一等品1件,二等品2件,三等品1件,故所求的概率2111213413414837C C C C C C P C +==.(3)“质量提升月”活动前,该企业这种产品的质量指标值的均值约为1700.0251800.11900.22000.32100.262200.092300.025⨯+⨯+⨯+⨯+⨯+⨯+⨯ 200.4=“质量提升月”活动后,产品质量指标值X 近似满足()~218,140X N ,则()218E X =. 所以,“质量提升月”活动后的质量指标值的均值比活动前大约提升了17.6 19.(1)见解析;(2)13【分析】(1)先证EO ⊥面ABCD ,进而可得BC ⊥面EOF ,从而可证OF ⊥BC ;(2)由(1)可得EO ⊥平面ABCD ,得到OE 、OA 、OM 两两垂直,可建立空间直角坐标系O xyz -,由条件得到OF BF ⊥,转化为向量0OF BF ⋅=,从而()220t t s -+=,转化为关于t 的方程有唯一实数解,得到1s =,1t =,又判断∠BFC 为二面角B ﹣OF ﹣C 的平面角,利用向量夹角公式可求二面角B ﹣OF ﹣C 的余弦值. 【详解】(1)因为EA ED =,O 是AD 中点,故EO DA ⊥, 又因为平面EAD ⊥平面ABCD ,平面EAD 平面ABCD AD =,故EO ⊥平面ABCD ,所以EO BC ⊥; 因为//EF AB ,BC AB ⊥,所以EF BC ⊥, 故BC ⊥平面EOF , 所以BC OF ⊥.(2)设BC 的中点为M ,则有OM DA ⊥,由(1),EO ⊥平面ABCD , 所以OE 、OA 、OM 两两垂直.可如图建立空间直角坐标系O xyz -.依题意设点E 的坐标为()0,0,s ,点F 的坐标为()()0,,0,t s s t R >∈,又()1,2,0B ,()1,2,0C -,所以()0,,OF t s =,()1,2,BF t s =--,由(1)知OF BC ⊥,故OF 与平面BCF 垂直,等价于OF BF ⊥, 故0OF BF ⋅=,从而()220t t s -+=,即2220t t s -+=,直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直,即关于t 的方程有唯一实数解. 所以2440s ∆=-=,解得1s =,此时1t =. 故点E 的坐标为()0,0,1,点F 的坐标为()0,1,1. 因为OF ⊥平面FBC ,所以OF BF ⊥且OF CF ⊥, 所以BFC ∠即二面角B OF C --的平面角. 因为()1,1,1FB =-,()1,1,1FC =--, 所以1cos 3FB FCBFC FB FC ⋅∠==⋅,即若直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直时, 所以二面角B OF C --的余弦值为13.【点睛】本题考查线面垂直,考查面面角的向量求解方法,解题的关键是将直线l 上存在唯一一点F 使得直线OF 与平面BCF 垂直转化为关于t 的方程有唯一实数解,将空间几何问题转化为代数问题,凸显空间坐标系的优点,属于中档题. 20.(1)x 2=4y (2)当t=﹣时,|MN|的最小值是【解析】(I )由题意可设抛物线C 的方程为x 2=2py (p >0)则=1,解得p=2,故抛物线C 的方程为x 2=4y(II )设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y=kx+1 由消去y ,整理得x 2﹣4kx ﹣4=0所以x 1+x 2=4k ,x 1x 2=﹣4,从而有|x 1﹣x 2|==4由解得点M 的横坐标为x M ===,同理可得点N 的横坐标为x N =所以|MN|=|x M ﹣x N |=|﹣|=8||=令4k ﹣3=t ,t 不为0,则k=当t >0时,|MN|=2>2当t <0时,|MN|=2=2≥综上所述,当t=﹣时,|MN|的最小值是21.(1)减区间是⎛ ⎝,增区间是⎫+∞⎪⎭;(2)详见解析;(3)详见解析. 【解析】试题分析:(1)先确定函数()f x 的定义域,然后利用导数求出函数()f x 的单调区间;(2)构造函数()h x =()f x t -,利用函数()h x 的单调性与零点存在定理来证明题中结论;(3)根据(2)中的结论得到()ln ln g t t()()2ln ln ln ln 2ln ln ln ln ln s s s f s s s s s ==+,利用换元法令ln u s =得到()ln ln 2ln g t u t u u=+,于是将问题转化为ln 0u >且2ln 0u u -<,构造新函数()2ln F u u u =-,利用导数来证明()0F u >在区间()1,+∞上恒成立即可. 试题解析:(1)函数()f x 的定义域为()0,+∞,()()2ln 2ln 1f x x x x x x =+=+',令()0f x '=,得x =, 当x 变化时,()f x ',()f x 的变化情况如下表:所以函数()f x 的单调递减区间是⎛ ⎝,单调递增区间是⎫+∞⎪⎭;(2)当01x <≤时,()0f x ≤.设0t >,令()()h x f x t =-,[)1,x ∈+∞, 由(1)知()h x 在区间()1,+∞内单调递增,()1h t t =-<,()()22ln 10t t t t h e e e t t e =-=->,故存在唯一的[)1,s ∈+∞,使得()t f s =成立; (3)()s g t =,由(2)知,()t f s =,且1s >,()()()2ln ln ln ln ln ln 2ln ln ln 2ln ln ln g t s s s utf s s s u us s ∴====++,其中,ln u s =,要使()ln 215ln 2g t t <<成立,只需ln 0u >且2ln 0u u -<, 当2t e >时,若()s g t e =≤,则由()f s 的单调性,有()()2t f s f e e =≤=,矛盾,所以s e >,即1u >,从而ln 0u >成立.又设()2ln F u u u =-,则()21F u u '=-, 所以()2ln F u u u =-在1,2内是增函数,在()2,+∞内为减函数,()2ln F u u u =-在()1,+∞上的最大值为()22ln 220F =-<2ln 0u u ∴-<成立,∴当2t e >时,()ln 215ln 2g t t <<成立. 考点:1.函数的单调性与导数;2.零点存在定理;3.利用导数证明函数不等式22.(1) 2219x y +=.4π. (2) ||||5PA PB +=. 【分析】(1)直接利用参数方程和极坐标方程公式得到普通方程,再计算倾斜角.(2)判断点(0,2)P 在直线l 上,建立直线参数方程,代入椭圆方程,利用韦达定理得到答案.【详解】(1)3cos ,sin ,x y αα=⎧⎨=⎩消去参数α得2219x y +=, 即C 的普通方程为2219x y +=.由sin 4πρθ⎛⎫-= ⎪⎝⎭,得sin cos 2ρθρθ-=,(*) 将cos sin x y ρθρθ=⎧⎨=⎩,代入(*),化简得+2y x =, 所以直线l 的倾斜角为4π.(2)由(1),知点(0,2)P 在直线l 上,可设直线l 的参数方程为cos 42sin 4x t y t ππ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),即222x t y t ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数), 代入2219x y +=并化简,得25270t ++=,245271080∆=-⨯⨯=>,设A ,B 两点对应的参数分别为1t ,2t ,则1205t t +=-<,122705t t =>, 所以10t <,20t <,所以()1212||||5PA PB t t t t +=+=-+=. 【点睛】本题考查了参数方程,极坐标方程,倾斜角,利用直线的参数方程可以简化运算. 23.(1)[]1,5;(2)证明见解析.【分析】(1) ()1f x x ≤+,即131x x x -+-≤+.利用零点分域法,分别讨论当1x <、13x ≤≤、3x >时取绝对值,解不等式即可;(2)先利用绝对值三角不等式求出2c =,可得2a b +=,令1,1a m b n +=+=,则4m n +=,()()22221111m n a ba b m n --+=+++,展开后利用基本不等式即可证明.【详解】 (1)()1f x x ≤+,即131x x x -+-≤+.当1x <时,不等式可化为421x x -≤+,解得:1≥x又∵1x <,∴x ∈∅;当13x ≤≤时,不等式可化为21x ≤+,解得:1≥x又∵13x ≤≤,∴13x ≤≤.当3x >时,不等式可化为241x x -≤+,解得:5x ≤又∵3x >,∴35x <≤.综上所得,13x ≤≤或35x <≤,即15x ≤≤.∴原不等式的解集为[]1,5.(2)由绝对值不等式性质得,()()13132x x x x -+-≥---=,∴2c =,即2a b +=.令1,1a m b n +=+=,则1,1m n >>,114a m b n m n =-=-+=,,,()()2222211114441112m n a b m n a b m n m n mn m n --+=+=+++-=≥=+++⎛⎫ ⎪⎝⎭, 等且仅当2m n ==即1a b ==时等号成立.原不等式得证.【点睛】 关键点点睛:证明22111a b a b +≥++成立的关键点是()()13132x x x x -+-≥---=, 令1,1a m b n +=+=,则()()22221111411m n a b m n a b m n m n --+=+=+++-++,再利用基本不等式即可得证.。
湖南省长沙市湖南师大附中2024-2025学年高三上学期第三次月考数学试题(含解析)
湖南师大附中2025届高三月考试卷(三)数学时量:120分钟满分:150分得分:________________一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合的真子集个数是( )A.7B.8C.15D.162.“”是“”的( )A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知角的终边上有一点的坐标是,其中,则( )A.B.C.D.4.设向量,满足,等于( )A. B.2C.5D.85.若无论为何值,直线与双曲线总有公共点,则的取值范围是( )A. B.C.,且 D.,且6.已知函数的图象关于原点对称,且满足,且当时,,若,则等于( )A.B.C. D.7.已知正三棱台所有顶点均在半径为5的半球球面上,且棱台的高为( )A.1B.4C.7D.1或78.北宋数学家沈括博学多才、善于观察.据说有一天,他走进一家酒馆,看见一层层垒起的酒坛,不禁想到:{}0,1,2,311x -<240x x -<αP ()3,4a a 0a ≠sin2α=4372524252425-a b a b += a b -=a b ⋅ θsin cos 10y x θθ⋅+⋅+=2215x y m -=m 1m ≥01m <≤05m <<1m ≠1m ≥5m ≠()2f x ()()130f x f x ++-=()2,4x ∈()()12log 2f x x m =--+()()2025112f f -=-m 132323-13-111ABC A B C -AB =11A B =“怎么求这些酒坛的总数呢?”经过反复尝试,沈括提出对于上底有个,下底有个,共层的堆积物(如图所示),可以用公式求出物体的总数,这就是所谓的“隙积术”,相当于求数列,的和.若由小球堆成的上述垛积共7层,小球总个数为238,则该垛积最上层的小球个数为()A.2B.6C.12D.20二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.若,则下列正确的是()A. B.C. D.10.对于函数和,下列说法中正确的有()A.与有相同的零点B.与有相同的最大值点C.与有相同的最小正周期D.与的图象有相同的对称轴11.过点的直线与抛物线交于,两点,抛物线在点处的切线与直线交于点,作交于点,则()A.B.直线恒过定点C.点的轨迹方程是D.的最小值为选择题答题卡题号1234567891011得分ab cd n()()()2266n nS b d a b d c c a⎡⎤=++++-⎣⎦ab()()()()()()11,22,,11a b a b a n b n cd+++⋅++-+-=2024220240122024(12)x a a x a x a x+=++++2024a=20240120243a a a+++=012320241a a a a a-+-++=12320242320242024a a a a-+--=-()sin cosf x x x=+()sin cos22g x x xππ⎛⎫⎛⎫=---⎪ ⎪⎝⎭⎝⎭()f x()g x()f x()g x()f x()g x()f x()g x()0,2P2:4C x y=()11,A x y()22,B x yC A2y=-N NM AP⊥AB M5OA OB⋅=-MNM()22(1)10y x y-+=≠ABMN答案三、填空题:本题共3小题,每小题5分,共15分.12.已知复数,的模长为1,且,则________.13.在中,角,,所对的边分别为,,已知,,,则________.14.若正实数是函数的一个零点,是函数的一个大于e 的零点,则的值为________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题满分13分)现有某企业计划用10年的时间进行技术革新,有两种方案:贷款利润A 方案一次性向银行贷款10万元第1年利润1万元,以后每年比前一年增加的利润B 方案每年初向银行贷款1万元第1年利润1万元,以后每年比前一年增加利润3000元两方案使用期都是10年,贷款10年后一次性还本付息(年末结息),若银行贷款利息均按的复利计算.(1)计算10年后,A 方案到期一次性需要付银行多少本息?(2)试比较A 、B 两方案的优劣.(结果精确到万元,参考数据:,)16.(本小题满分15分)如图,四棱锥中,底面为等腰梯形,.点在底面的射影点在线段上.(1)在图中过作平面的垂线段,为垂足,并给出严谨的作图过程;(2)若.求平面与平面所成锐二面角的余弦值.17.(本小题满分15分)1z 2z 21111z z +=12z z +=ABC ∆A B C a b c 5a =4b =()31cos 32A B -=sin B =1x ()2e e xf x x x =--2x ()()()3e ln 1e g x x x =---()122e ex x -25%10%101.12.594≈101.259.313≈P ABCD -ABCD 222AD AB BC ===P Q AC A PCD H 2PA PD ==PAB PCD已知函数,为的导数.(1)证明:当时,;(2)设,证明:有且仅有2个零点.18.(本小题满分17分)在平面直角坐标系中,已知椭圆的两个焦点为、,为椭圆上一动点,设,当时,.(1)求椭圆的标准方程.(2)过点的直线与椭圆交于不同的两点、(在,之间),若为椭圆上一点,且,①求的取值范围;②求四边形的面积.19.(本小题满分17分)飞行棋是大家熟悉的棋类游戏,玩家通过投掷骰子来决定飞机起飞与飞行的步数.当且仅当玩家投郑出6点时,飞机才能起飞.并且掷得6点的游戏者可以连续投掷骰子,直至显示点数不是6点.飞机起飞后,飞行步数即骰子向上的点数.(1)求甲玩家第一轮投掷中,投郑次数的均值)(2)对于两个离散型随机变量,,我们将其可能出现的结果作为一个有序数对,类似于离散型随机变量的分布列,我们可以用如下表格来表示这个有序数对的概率分布:(记,)()e sin cos x f x x x =+-()f x '()f x 0x ≥()2f x '≥()()21g x f x x =--()g x xOy 2222:1(0)x y C a b a b+=>>1F 2F P C 12F PF θ∠=23πθ=12F PF ∆C ()0,2B l M N M B N Q C OQ OM ON =+ OBMOBNS S OMQN X 11()()lim ()n n k k E X kP k kP k ∞→∞==⎛⎫== ⎪⎝⎭∑∑ξη()()()11,m i i ijj p x p x p x y ξ====∑()()()21,njjiji p y p y p x y η====∑ξη1x 2x ⋯nx 1y ()11,p x y ()21,p x y ⋯()1,n p x y ()21p y 2y ()12,p x y ()22,p x y()2,n p x y ()22p y1若已知,则事件的条件概率为.可以发现依然是一个随机变量,可以对其求期望.(ⅰ)上述期望依旧是一个随机变量(取值不同时,期望也不同),不妨记为,求;(ⅱ)若修改游戏规则,需连续掷出两次6点飞机才能起飞,记表示“甲第一次未能掷出6点”表示“甲第一次掷出6点且第二次未能掷出6点”,表示“甲第一次第二次均掷出6点”,为甲首次使得飞机起飞时抛掷骰子的次数,求.⋯⋯⋯⋯⋯⋯my ()1,m p x y ()2,m p x y ⋯(),n m p x y ()2m p y ()11p x ()12p x()1n p x i x ξ={}j y η={}{}{}()()1,,j i i j jii i P y x p x y Py x P x p x ηξηξξ=======∣i x ηξ=∣{}{}1mi j j i j E x y P y x ηξηξ===⋅==∑∣∣()()111,mj i j i i y p x y p x ==⋅∑ξ{}E ηξ∣{}E E ηξ⎡⎤⎣⎦∣0ξ=1ξ=2ξ=ηE η湖南师大附中2025届高三月考试卷(三)数学参考答案题号1234567891011答案CACBBDABBCACDBC一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.C 【解析】集合共有(个)真子集.故选C.2.A 【解析】解不等式,得,解不等式,得,所以“”是“”的充分不必要条件.3.C 【解析】根据三角函数的概念,,,故选C.4.B 【解析】.5.B 【解析】易得原点到直线的距离,故直线为单位圆的切线,由于直线与双曲线总有公共点,所以点必在双曲线内或双曲线上,则.6.D 【解析】依题意函数的图象关于原点对称,所以为奇函数,因为,故函数的周期为4,则,而,所以由可得,而,所以,解得.7.A 【解析】上下底面所在外接圆的半径分别为,,过点,,,的截面如图:{}0,1,2,342115-=240x x -<04x <<11x -<02x <<11x -<240x x -<44tan 33y a x a α===22sin cos 2tan 24sin211tan 25ααααα===+()2211()()1911244a b a b a b ⎡⎤⋅=+--=⨯-=⎣⎦ 1d ==2215x y m -=()1,0±01m <≤()f x ()f x ()()()133f x f x f x +=--=-()f x ()()20251f f =()()11f f -=-()()2025112f f -=-()113f =()()13f f =-()121log 323m --=13m =-13r =24r =A 1A 1O 2O,,,故选A.8.B 【解析】由题意,得,,则由得,整理得,所以.因为,为正整数,所以或6.因此有或而无整数解,因此.故选B.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.BC 【解析】对于A :令,则,故A 错误;对于B :令,则,故B 正确;对于C :令,则,故C 正确;对于D ,由,两边同时求导得,令,则,故D 错误.故选BC.10.ACD 【解析】,.令,则,;令,则,,两个函数的零点是相同的,故选项A 正确.的最大值点是,,的最大值点是,,两个函数的最大值虽然是相同的,但最大值点是不同的,故选项B 不正确.由正弦型函数的最小正周期为可知与有相同的最小正周期,故选项C 正确.曲线的对称轴为,,曲线的对称轴为,,两个函数的图象有相同的对称轴,故选项D 正确.故选ACD.11.BC 【解析】作图如下:24OO ==13OO ==211h OO OO ∴=-=6c a =+6d b =+()()()772223866b d a b dc c a ⎡⎤++++-=⎣⎦()()()()77262126623866b b a b b a a a ⎡⎤++++++++-=⎣⎦()321ab a b ++=773aba b +=-<a b 3ab =6,3a b ab +=⎧⎨=⎩5,6.a b ab +=⎧⎨=⎩63a b ab +=⎧⎨=⎩6ab =0x =01a =1x =20240120243a a a +++= 1x =-012320241a a a a a -+-++= 2024220240122024(12)x a a x a x a x +=++++ 202322023123202420242(12)232024x a a x a x a x ⨯⨯+=++++ 1x =-12320242320244048a a a a -++-=- ()4f x x π⎛⎫=+ ⎪⎝⎭()3244g x x x πππ⎛⎫⎛⎫=--=-⎪ ⎪⎝⎭⎝⎭()0f x =4x k ππ=-+k ∈Z ()0g x =34x k ππ=+k ∈Z ()f x 24k ππ+k ∈Z ()g x 324k ππ-+k ∈Z 2πω()f x ()g x 2π()y f x =4x k ππ=+k ∈Z ()y g x =54x k ππ=+k ∈Z设直线的方程为(斜率显然存在),,,联立消去整理可得,由韦达定理得,,A.,,故A 错误;B.抛物线在点处的切线为,当时,,即,直线的方程为,整理得,直线恒过定点,故B 正确;C.由选项B 可得点在以线段为直径的圆上,点除外,故点的轨迹方程是,故C 正确;D.,则,,,则,设,,当单调递增,所以,故D 错误.故选BC.三、填空题:本题共3小题,每小题5分,共15分.AB 2y tx =+211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭22,4,y tx x y =+⎧⎨=⎩x 2480x tx --=124x x t +=128x x =-221212444x x y y =⋅=1212844OA OB x x y y ⋅=+=-+=- C A 21124x x x y ⎛⎫=+ ⎪⎝⎭2y =-11121244282222x x x x x t x x =-=-=+=-()2,2N t -MN ()122y x t t +=--xy t=-MN ()0,0M OP O M ()22(1)10y x y -+=≠2MN AB ===22ABMN ===m =m ≥12ABm MN m ⎛⎫=- ⎪⎝⎭()1f m m m =-m ≥()2110f m m=+>'m ≥()f m min ()f m f==12.1【解析】设,,因为,所以.因为,,所以,所以,所以,,所以.【解析】在中,因为,所以.又,可知为锐角且.由正弦定理,,于是.将及的值代入可得,平方得,故.14.e 【解析】依题意得,,即,,,即,,,,,又,,同构函数:,则,又,,,,又,,单调递增,,.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.【解析】(1)A 方案到期时银行贷款本息为(万元).……(3分)()1i ,z a b a b =+∈R ()2i ,z c d cd =+∈R 21111z z +=1222111z z z z z z +=111z z =221z z =121z z +=()()i i i 1a b c d a c b d -+-=+-+=1a c +=0b d +=()()12i 1z z a c b d +=+++=ABC ∆a b >A B >()31cos 32A B -=A B -()sin A B -=sin 5sin 4A aB b ==()()()5sin sin sin sin cos cos sin 4B A A B B A B B A B B ⎡⎤==-+=-+-⎣⎦()cos A B -()sin A B -3sin B B =2229sin 7cos 77sin B B B ==-sin B =1211e e 0xx x --=1211e e xx x -=10x >()()322e ln 1e 0x x ---=()()322e ln 1e x x --=2e x >()()()131122e e e e ln 1x x x x x ∴-==--()()()11122e e ln 1e x x x x +∴-=--()()()21ln 11112e e ln 1e e x x x x -++⎡⎤∴-=--⎣⎦2ln 1x > 2ln 10x ->∴()()1e e ,0x F x x x +=->()()312ln 1e F x F x =-=()()111e e e e e 1e x x x x F x x x +++=-+'=-+0x > 0e e 1x ∴>=e 10x ∴->1e 0x x +>()0F x ∴'>()F x 12ln 1x x ∴=-()()()31222222e ln 1e e e eeex x x x ---∴===()1010110%26⨯+≈(2)A 方案10年共获利:(万元),……(5分)到期时银行贷款本息为(万元),所以A 方案净收益为:(万元),……(7分)B 方案10年共获利:(万元),……(9分)到期时银行贷款本息为(万元),……(11分)所以B 方案净收益为:(万元),……(12分)由比较知A 方案比B 方案更优.……(13分)16.【解析】(1)连接,有平面,所以.在中,.同理,在中,有.又因为,所以,,所以,,故,即.又因为,,平面,所以平面.平面,所以平面平面.……(5分)过作垂直于点,因为平面平面,平面平面,且平面,有平面.……(7分)(2)依题意,.故为,的交点,且.所以过作直线的平行线,则,,,两两垂直,以为原点建立如图所示空间直角坐标系,()1091.2511125%(125%)33.31.251-+++++=≈- 1010(110%)25.9⨯+≈33.325.97-≈()()101010.31 1.3190.310123.52⨯-⨯++++⨯=⨯+= ()()10109 1.11.11(110%)(110%)110%17.51.11-++++++=≈- 23.517.56-≈PQ PQ ⊥ABCD PQ CD ⊥ACD ∆2222cos 54cos AC AD CD AD CD ADC ADC =+-⋅⋅∠=-∠ABC ∆222cos AC ABC =-∠180ABC ADC ∠+∠= 1cos 2ADC ∠=()0,180ADC ∠∈ 60ADC ∠=AC =222AC CD AD +=AC CD ⊥PQ AC Q = PQ AC ⊂PAC CD ⊥PAC CD ⊂PCD PCD ⊥PAC A AH PC H PCD ⊥PAC PCD PAC PC =AH ⊂PAC AH ⊥PCD AQ DQ ==Q AC BD 2AQ ADCQ BC==23AQ AC ==PQ ==C PQ l l AC CD C则:,,,,所以,,,.设平面的法向量为,则取.同理,平面的法向量,,……(14分)故所求锐二面角余弦值为.……(15分)17.【解析】(1)由,设,则,当时,设,,,,和在上单调递增,,,当时,,,则,函数在上单调递增,,即当时,.()1,0,0D P ⎛ ⎝()A 12B ⎛⎫- ⎪ ⎪⎝⎭()1,0,0CD = CP ⎛= ⎝ 0,AP ⎛= ⎝ 1,2BP ⎛= ⎝ PCD (),,m x y z =)0,0,m CD x m CP y ⎧⋅==⎪⎨⋅=+=⎪⎩()0,m =- PAB )1n =-1cos ,3m n m n m n ⋅==13()e cos sin xf x x x =+'+()e cos sin xh x x x =++()e sin cos xh x x x =+'-0x ≥()e 1x p x x =--()sin q x x x =-()e 10x p x ='-≥ ()1cos 0q x x ='-≥()p x ∴()q x [)0,+∞()()00p x p ∴≥=()()00q x q ≥=∴0x ≥e 1x x ≥+sin x x ≥()()()e sin cos 1sin cos sin 1cos 0xh x x x x x x x x x =-+≥+-+=-++≥'∴()e cos sin x h x x x =++[)0,+∞()()02h x h ∴≥=0x ≥()2f x '≥(2)由已知得.①当时,,在上单调递增,又,,由零点存在定理可知,在上仅有一个零点.……(10分)②当时,设,则,在上单调递减,,,,在上单调递减,又,,由零点存在定理可知在上仅有一个零点,综上所述,有且仅有2个零点.……(15分)18.【解析】(1)设,为椭圆的焦半距,,,当时,最大,此时或,不妨设,当时,得,所以,又因为,所以,.从,而椭圆的标准方程为.……(3分)(2)由题意,直线的斜率显然存在.设,.……(4分),同理,..……(6分)联立,……(8分)()e sin cos 21xg x x x x =+---0x ≥()()e cos sin 220x g x x x f x =+='+--'≥ ()g x ∴[)0,+∞()010g =-< ()e 20g πππ=->∴()g x [)0,+∞0x <()2sin cos (0)e x x xm x x --=<()()2sin 10exx m x -=≤'()m x ∴(),0-∞()()01m x m ∴>=e cos sin 20x x x ∴++-<()e cos sin 20x g x x x ∴=++-<'()g x ∴(),0-∞()010g =-< ()e 20g πππ--=+>∴()g x (),0-∞()g x ()00,P x y c C 12122F PF p S c y ∆=⋅⋅00y b <≤ 0y b =12F PF S ∆()0,P b ()0,P b -()0,P b 23πθ=213OPF OPF π∠=∠=c =12F PF S bc ∆==1b =c =2a =∴C 2214x y +=l ()11: 2.,l y kx M x y =+()22,N x y 1112OBM S OB x x ∆∴=⋅=2OBN S x ∆=12OBM OBN S xS x ∆∆∴=()22222,141612044y kx k x kx x y =+⎧⇒+++=⎨+=⎩,.……(9分)又,,,同号..,,.令,则,解得,.……(12分)(3),.且四边形为平行四边形.由(2)知,,.而在椭圆上,.化简得.……(14分)线段,……(15分)到直线的距离……(16分).……(17分)()()222Δ(16)4121416430k k k∴=-⨯⨯+=->234k ∴>1221614k x x k -+=+ 12212014x x k=>+1x ∴2x ()()2222122121212216641421231414k x x x x k k x x x x k k -⎛⎫ ⎪++⎝⎭∴===++++234k > ()2226464164,1331434k k k ⎛⎫∴=∈ ⎪⎛⎫+⎝⎭+ ⎪⎝⎭211216423x x x x ∴<++<()120x x λλ=≠116423λλ<++<()1,11,33λ⎛⎫∈ ⎪⎝⎭()1,11,33OBM OBN S S ∆∆⎛⎫∴∈ ⎪⎝⎭ OQ OM ON =+()1212,Q x x y y ∴++OMQN 1221614k x x k -+=+()121224414y y k x x k ∴+=++=+22164,1414k Q k k -⎛⎫∴ ⎪++⎝⎭Q C 2222164441414k k k -⎛⎫⎛⎫∴+⨯= ⎪ ⎪++⎝⎭⎝⎭2154k =∴MN ====O MN d ==OMQN S MN d ∴=⋅==四边形19.【解析】(1),,2,3,…,所以,,2,3,…,记,则.作差得:,所以,.故.……(6分)(2)(ⅰ)所有可能的取值为:,.且对应的概率,.所以,又,所以.……(12分)(ⅱ),;,;,,,故.……(17分)()11566k P X k -⎛⎫==⨯ ⎪⎝⎭1k =()56k k k P X k ⋅==1k =()21111512666nn k kP k n =⎛⎫=⨯+⨯++⨯ ⎪⎝⎭∑ 211112666n n S n =⨯+⨯++⨯ 2311111126666n n S n +=⨯+⨯++⨯ 1211111511111111661666666556616n n n n n n n S n n ++⎛⎫- ⎪⎛⎫⎛⎫⎝⎭=+++-⨯=-⨯=-+ ⎪⎪⎝⎭⎝⎭- 611155566n n n S ⎡⎤⎛⎫⎛⎫=⋅-+⎢⎥ ⎪⎪⎝⎭⎝⎭⎢⎥⎣⎦()16615556n nn k kP k S n =⎛⎫⎛⎫==-+ ⎪⎪⎝⎭⎝⎭∑116616()()lim ()lim 5565nn n n k k E X kP k kP k n ∞→∞→∞==⎡⎤⎛⎫⎛⎫⎛⎫===-+=⎢⎥ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦∑∑{}E ηξ∣{}i E x ηξ=∣1,2,,i n = {}{}()()()1ii i p E E x p x p x ηξηξξ=====∣∣1,2,,i n = {}()()()()()111111111[{}],,nnm n m i i j i j i j i j i i j i j i E E E x p x y p x y p x y p x y p x ηξηξ=====⎛⎫==⋅=⋅= ⎪ ⎪⎝⎭∑∑∑∑∑∣∣()()()()21111111,,,n m m n mn mj i j j i j j i j j j i j j i j i j y p x y y p x y y p x y y p y E η=======⎛⎫⋅=⋅==⋅= ⎪⎝⎭∑∑∑∑∑∑∑{}E E E ηξη⎡⎤=⎣⎦∣{}01E E ηξη==+∣156p ={}12E E ηξη==+∣2536p ={}22E η==3136p ={}()()5513542122636363636E E E E E E ηηηηηξ⎡⎤==++++⨯=+⎣⎦∣42E η=。
2024届湖南师范大学附属中学高三上学期月考卷(四)数学及答案
湖南师大附中2024届高三月考试卷(四)数学审题人:高三备课组时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数12i z =+,其中i 为虚数单位,则复数2z 在复平面内对应的点的坐标为( )A.(4,5)- B.(4,3)C.(3,4)- D.(5,4))2.若随机事件A ,B 满足1()3P A =,1()2P B =,3()4P A B = ,则(|)P A B =( )A.29B.23C.14D.168.设{}n a 是公比不为1的无穷等比数列,则“{}n a 为递减数列”是“存在正整数0N ,当0n N >时,1n a <”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件4.设0,2πα⎛⎫∈ ⎪⎝⎭,0,2πβ⎛⎫∈ ⎪⎝⎭,且1tan tan cos αβα+=,则( )A.22παβ+=B.22παβ-=C.22πβα-=D.22πβα+=5.若52345012345(12)(1)(1)(1)(1)(1)x a a x a x a x a x a x -=+-+-+-+-+-,则下列结论中正确的是( )A.01a = B.480a =C.50123453a a a a a a +++++= D.()()10024135134a a a a a a -++++=6.函数1()2cos[(2023)]|1|f x x x π=++-在区间[3,5]-上所有零点的和等于( )A.2B.4C.6D.87.点M 是椭圆22221x y a b+=(0a b >>)上的点,以M 为圆心的圆与x 轴相切于椭圆的焦点F ,圆M 与y 轴相交于P ,Q ,若PQM △是钝角三角形,则椭圆离心率的取值范围是()A.(0,2B.⎛ ⎝C.⎫⎪⎪⎭D.(2-8.已知函数22,0,()4|1|4,0,x x f x x x ⎧=⎨-++<⎩…若存在唯一的整数x ,使得()10f x x a -<-成立,则所有满足条件的整数a 的取值集合为( )A.{2,1,0,1}-- B.{2,1,0}-- C.{1,0,1}- D.{2,1}-二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分、9.已.知双曲线C过点且渐近线为y x =,则下列结论正确的是( )A.C 的方程为2213x y -= B.CC.曲线2e1x y -=-经过C 的一个焦点D.直线10x --=与C 有两个公共点10.已知向量a ,b满足|2|||a b a += ,20a b a ⋅+= 且||2a = ,则( )A.||8b = B.0a b += C.|2|6a b -=D.4a b ⋅= 11.如图、正方体1111ABCD A B C D -的棱长为2,点M 是其侧面11ADD A 上的一个动点(含边界),点P 是线段1CC 上的动点,则下列结论正确的是()A.存在点P ,M ,使得二面角M DC P --大小为23πB.存在点P ,M ,使得平面11B D M 与平面PBD 平行C.当P 为棱1CC的中点且PM =时,则点M 的轨迹长度为23πD.当M 为1A D 中点时,四棱锥M ABCD -12.若存在实常数k 和b ,使得函数()F x 和()G x 对其公共定义域上的任意实数x 都满足:()F x kx b +…和()G x kx b +…恒成立,则称此直线y kx b =+为()F x 和()G x 的“隔离直线”.已知函数2()f x x =(x ∈R ),1()g x x=(0x <),()2eln h x x =(e 2.718≈),则下列选项正确的是( )A.()()()m x f x g x =-在x ⎛⎫∈ ⎪⎝⎭时单调递增B.()f x 和()g x 之间存在“隔离直线”,且b 的最小值为–4C.()f x 和()g x 之间存在“隔离直线”,且k 的取值范围是[4,1]-D.()f x 和()h x之间存在唯一的“隔离直线”ey =-三、填空题:本题共4小题,每小题5分,共20分.13.已知函数()y f x =的图象在点(1,(1))M f 处的切线方程是122y x =+,则(1)(1)f f +'=___________.14.如图,由3个全等的钝角三角形与中间一个小等边三角形DEF 拼成的一个较大的等边三角形ABC ,若3AF =,sin ACF ∠=,则DEF △的面积为___________.15.已知数列{}n a 的首项132a =,且满足1323n n n a a a +=+.若123111181n a a a a ++++< ,则n 的最大值为___________.16.在棱长为3的正方体1111ABCD A B C D -中,点E 满足112A E EB =,点F 在平面1BC D 内,则|1||A F EF +的最小值为___________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知函数2()2cos 2xf x x m ωω=++(0ω>)的最小值为–2.(1)求函数()f x 的最大值;(2)把函数()y f x =的图象向右平移6πω个单位长度,可得函数()y g x =的图象,且函数()y g x =在0,8π⎡⎤⎢⎥⎣⎦上单调递增,求ω的最大值.18.(12分)为了丰富在校学生的课余生活,某校举办了一次趣味运动会活动,学校设置项目A “毛毛虫旱地龙舟”和项目B “袋鼠接力跳”.甲、乙两班每班分成两组,每组参加一个项目,进行班级对抗赛.第一个比赛项目A 采取五局三胜制(即有一方先胜3局即获胜,比赛结束);第二个比赛项目B 采取领先3局者获胜。
2021届湖南师范大学附属中学高三下学期二模数学试题(解析版)
2021届湖南师范大学附属中学高三下学期二模数学试题一、单选题1.已知全集U =R ,集合{}2430A x x x =-+>,{}12B x x =-<<,则()UA B =( ) A .(]1,1- B .[)1,2C .[]1,3D .(]1,3- 【答案】D【分析】化简集合A ,再求集合的补集与并集即可.【详解】由2430x x -+>解得1x <或3x >,则()(),13,A =-∞+∞,所以()[]()(]1,31,21,3UA B ⋃=-=-.故选:D【点睛】本小题主要考查一元二次不等式的解法、补集与并集等基础知识;考查运算求解能力.2.在复平面内,设z=1+i (i 是虚数单位),则复数+z 2对应的点位于 A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【详解】试题分析:根据复数的四则运算进行化简,结合复数的几何意义即可得到结论. 解:∵z=1+i , ∴+z 2=+(1+i )2==1﹣i+2i=1+i ,对应的点为(1,1),位于第一象限, 故选A .点评:本题主要考查复数的几何意义,利用复数的基本运算进行化简是解决本题的关键. 3.某校开设A 类选修课4门,B 类选修课3门,每位同学从中选3门.若要求两类课程中都至少选一门,则不同的选法共有( ) A .18种 B .24种C .30种D .36种【答案】C【分析】应用分类计数,从A 中选1门B 中选2门或A 中选2门B 中选1门,分别求得选法种数,再加总即可.【详解】根据题意,分两种情况讨论:①若从A 类课程中选1门,从B 类课程中选2门,有124312C C ⋅=(种)选法; ②若从A 类课程中选2门,从B 类课程中选1门,有214318C C ⋅=(种)选法.综上,两类课程中都至少选一门的选法有121830+=(种). 故选:C.4.天文学中为了衡量星星的明暗程度,古希腊天文学家喜帕恰斯(Hipparchus ,又名依巴谷)在公元前二世纪首先提出了星等这个概念.星等的数值越小,星星就越亮;星等的数值越大,它的光就越暗.到了1850年,由于光度计在天体光度测量中的应用,英国天文学家普森(..M R Pogson )又提出了衡量天体明暗程度的亮度的概念.天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足()1221 2.5lg lg m m E E -=-.其中星等为i m 的星的亮度为()1,2i E i =.已知“心宿二”的星等是1.00.“天津四” 的星等是1.25.“心宿二”的亮度是“天津四”的r 倍,则与r 最接近的是(当x 较小时,2101 2.3 2.7x x x ≈++)A .1.24B .1.25C .1.26D .1.27【答案】C【分析】根据题意,代值计算,即可得r ,再结合参考公式,即可估算出结果. 【详解】根据题意可得:()211 1.25 2.5lgE lgE -=-可得12110E lgE =,解得1110210E r E ==, 根据参考公式可得111 2.3 2.7 1.25710100r ≈+⨯+⨯=, 故与r 最接近的是1.26. 故选:C.【点睛】本题考查对数运算,以及数据的估算,属基础题.5.如图所示为2018年某市某天中6h 至14h 的温度变化曲线,其近似满足函数y =A sin(ωx +φ)+b 0,0,2A πωϕπ⎛⎫>><< ⎪⎝⎭的半个周期的图象,则该天8h 的温度大约为( )A .16℃B .15℃C .14℃D .13℃【答案】D【分析】由最大值和最小值及中间值求得,A b ,由周期求得ω,再由起点求得ϕ(注意图象起点是最低点).得函数解析式,然后令8x =代入即可得. 【详解】由题意得A =12×(30-10)=10, b =12×(30+10)=20, ∵2×(14-6)=16,∴2πω=16,∴ω=8π, ∴y =10sin 8x πϕ⎛⎫+⎪⎝⎭+20, 将x =6,y =10代入得10sin 68πϕ⎛⎫⨯+⎪⎝⎭+20=10, 即sin 34πϕ⎛⎫+⎪⎝⎭=-1, 由于2π<φ<π,可得φ=34π, ∴y =10sin 384x ππ⎛⎫+⎪⎝⎭+20,x ∈[6,14]. 当x =8时,y =10sin 3884ππ⎛⎫⨯+⎪⎝⎭+20=20-2,即该天8h 的温度大约为13℃, 故选:D.【点睛】本题考查()sin()f x A x m ωϕ=++的应用,解题关键是利用正弦函数的性质求出函数解析式.6.《莱茵德纸草书》是世界上最古老的数学著作之一.书中有一道这样的题:把100个面包分给5个人,使每个人的所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小一份的量为A .52B .54C .53D .56【答案】C【分析】先求得中间那份为20个面包,设最小的一份为1a ,公差为d ,建立等式得到答案.【详解】123453++++=5100a a a a a a = 得中间的那份为20个面包 设最小的一份为1a ,公差为d ,根据题意,于是有11111[20(3)(4)]()7a d a d a a d ++++⨯=++ 解得153a =. 故选C .【点睛】本题考查了等差数列,意在考查学生的应用能力.7.已知()1,0F c -、()2,0F c 是双曲线2222:1x yC a b-=(0a >,0b >)的左、右焦点,1F 关于双曲线的一条渐近线的对称点为P ,且点P 在抛物线24y cx =上,则双曲线的离心率为( )A 1B .2C D .12【答案】D【分析】由点关于线的对称点的性质可知,垂直平分,所以能得到122F PF π∠=,12PF b =,又122F F c =,从而22PF a =,再结合抛物线的定义得到关于a ,c 的关系式,计算得到离心率.【详解】由题意1F 关于双曲线的一条渐近线的对称点为P ,且1F 到渐近线的距离为b , ∴12F PF △中,122F PF π∠=,12PF b =,又122F F c =,所以22PF a =,∴12tan bF F P a ∠=,∴12cos a F F P c∠=,又点P 在抛物线24y cx =上, ∴12F F 的长度为抛物线中抛物线的焦点到抛物线的准线的距离, ∴由抛物线的定义得到:122212cos F F PF PF F F P =+∠,∴12222cos c a a F F P =+∠,∴210e e --=,∴51e +=. 故选:D.【点睛】关键点点睛:充分利用“点关于线的对称点的性质:垂直平分+抛物线的定义”. 8.在直四棱柱1111ABCD A BC D -中,底面ABCD 是边长为6的正方形,点E 在线段AD 上,且满足2AE ED =,过点E 作直四棱柱1111ABCD A BC D -外接球的截面,所得的截面面积的最大值与最小值之差为19π,则直四棱柱1111ABCD A BC D -外接球的半径为( ) A .3B .23C .33D .43【答案】C【分析】先根据直四棱柱的特征,得到其外接球的球心位于直四棱柱的中心,记作O ,过点O 向底面ABCD 作垂线,垂足为G ,连接BD ,取AD 中点为F ,连接OF ,OE ,OB ,设12AA a =,根据题意,先得到外接球半径218R OB a ==+210OE a =+,根据球的特征,分别求出截面面积的最大值与最小值,列出方程求解,得出219a =,即可求出半径.【详解】因为四棱柱1111ABCD A BC D -是直棱柱,且底面是正方形, 所以其外接球的球心位于直四棱柱的中心,记作O ,过点O 向底面ABCD 作垂线,垂足为G ,则112OG AA =, 连接BD ,因为底面ABCD 是边长为6的正方形,所以点G 为BD 的中点, 取AD 中点为F ,连接OF ,OE ,OB , 设12AA a =,则OG a =,所以外接球的半径为R OB ==,因为点E 在线段AD 上,且满足2AE ED =,则116EF DF DE AB =-==,又132FG AB ==,所以OF 因为直四棱柱中,AB ⊥侧面11ADD A ,//FG AB ,所以FG ⊥侧面11ADD A , 所以FG AD ⊥,又OG ⊥底面ABCD ,所以OG AD ⊥, 又FG OG G ⋂=,所以OF AD ⊥,则OE =根据球的特征,过点E 作直四棱柱1111ABCD A BC D -外接球的截面, 当截面过球心时,截面圆面积最大,此时截面面积为2S R π=;当OE ⊥所以此时截面圆面积为()2221S R OE ππ==-;又截面面积的最大值与最小值之差为19π,所以()2222119S S R R OE OE ππππ-=--=⋅=,因此21019a +=,即29a =,所以R =故选:C.【点睛】本题主要考查求几何体外接球的半径,熟记直四棱柱以及球的结构特征即可,考查空间想象能力,属于常考题型.二、多选题9.如图,在四面体ABCD中,截面PQMN是正方形,则在下列命题中,正确的为⊥A.AC BDAC截面PQMNB.//=C.AC BDD.异面直线PM与BD所成的角为45︒【答案】ABD【分析】根据线线、线面平行判定和性质逐一判断即可.PQ MN PN QM,【详解】解:因为截面PQMN是正方形,所以//,//又MN⊂平面DACPQ平面DAC所以//=又PQ⊂平面BAC,平面BAC平面DAC AC////,PQ AC MN//AC 截面PQMN ,故B 正确同理可证////,PN BD MQ因为PN NM ⊥,所以AC BD ⊥,故A 正确 又45PMQ ︒∠=所以异面直线PM 与BD 所成的角为45︒,故D 正确AC 和 BD 不一定相等,故C 错误故选:ABD【点睛】考查线线、线面平行的判定和性质以及异面直线所成的角;基础题. 10.下列命题中,正确的命题有( )A .已知随机变量服从二项分布(),B n p ,若()30E X =,()20D X =,则23p = B .将一组数据中的每个数据都加上同一个常数后,方差恒不变C .设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1102P p ξ-<≤=- D .若某次考试的标准分X 服从正态分布()90,900N ,则甲、乙、丙三人恰有2人的标准分超过90分的概率为38【答案】BCD【分析】对四个选项一一判断:对于A:根据二项分布的数学期望和方差的公式,直接计算; 对于B:根据数据方差的计算公式可以判断; 对于C :由正态分布的图象的对称性可以判断; 对于D:利用独立重复试验的概率计算公式计算即可.【详解】根据二项分布的数学期望和方差的公式,可得()30E X np ==,()()120D X np p =-=,解得13p =,所以A 错误; 根据数据方差的计算公式可知,将一组数据中的每个数据都加上同一个常数后,方差恒不变,所以B 正确;由正态分布的图象的对称性可得()()12112110222P p P p ξξ->--<≤===-,所以C 正确;甲、乙、丙三人恰有2人的标准分超过90分的概率2231131228C ⎛⎫⎛⎫-= ⎪ ⎪⎝⎭⎝⎭,故D 正确. 故选:BCD【点睛】多项选择题是2020年高考新题型,需要要对选项一一验证. 11.关于函数()1cos cos f x x x=+有如下四个命题,其中正确的命题有( ) A .()f x 的图象关于y 轴对称 B .()f x 的图象关于原点对称 C .()f x 的图象关于直线2x π=对称D .()f x 的值域为(][),22,-∞-+∞【答案】AD【分析】对于A ,B ,先求出函数的定义域,然后判断函数的奇偶性,从而可得结论;对于C ,分别求解2f x π⎛⎫+⎪⎝⎭和2f x π⎛⎫- ⎪⎝⎭,若相等,则()f x 的图象关于直线2x π=对称,否则()f x 的图象不关于直线2x π=对称;对于D ,利用基本不等式判断即可【详解】由题意知()f x 的定义域为,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭,且关于原点对称.又()()()()11cos cos cos cos x x x f x f x x=-=-++=-,所以函数()f x 为偶函数,其图象关于y 轴对称,所以A 正确,B 错误.因为11cos sin 22sin cos 2f x x x x x πππ⎛⎫⎛⎫-=-+=+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭,11cos sin 22sin cos 2f x x x x x πππ⎛⎫⎛⎫+=++=--⎪ ⎪⎛⎫⎝⎭⎝⎭+ ⎪⎝⎭,所以22f x f x ππ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以函数()f x 的图象不关于直线2x π=对称,C 错误.当cos 0x <时,()1[(cos )]2cos f x x x =--+≤-=--,当且仅当 1cos cos x x-=-,即cos 1x =-时取等号,所以()2f x ≤-, 当cos 0x >时,()1cos 2cos f x x x =+≥=,当且仅当1cos cos x x =,即cos 1x =时取等号,所以 ()2f x ≥,所以()f x 的值域为(][),22,-∞-+∞,所以D 正确. 故选:AD12.若实数2t ≥,则下列不等式中一定成立的是( ) A .()()()()3ln 22ln 3t t t t ++>++ B .()()2112t t t t +++<+C .()11log 1t t t+>+ D .()()()()12log 2log 3t t t t +++>+【答案】AD【分析】构造函数()ln xf x x=,利用导数分析该函数的单调性,可判断ABD 选项的正误;构造函数()()ln 1ln x g x x+=,利用导数分析该函数的单调性,可判断C 选项的正误.【详解】令()ln x f x x =,则()21ln xf x x -'=, 当x e >时,()0f x '<,函数单调递减,当0x e <<时,()0f x '>,函数单调递增, 因为2t ≥,32t t e +>+>,所以()()ln 3ln 2032t t t t ++<<++, 所以()()()()3ln 22ln 3t t t t ++>++,A 正确;同理()()ln 1ln 2012t t t t ++>>++,所以()()()()2ln 11ln 2t t t t ++>++,所以()()2112t t t t +++>+,B 错误;令()()ln 1ln x g x x+=,2x ≥,则()()()()()()()2211ln ln 1ln 1ln 110ln 1ln x x x x x x x x g x x x x x -+-+++'==<+,故()g x 在[)2,+∞上单调递减,()()12g t g t +>+,所以()()()()ln 2ln 3ln 1ln 2t t t t ++>++,故()()()()12log 2log 3t t t t +++>+,D 正确;对于C ,()()()ln 1ln 111ln 1log 1ln 1t t t t t t tt t t t ++++>+⇔>⇔>+,结合选项A 的讨论,t 与e 的大小不确定,故C 不一定成立.故选:AD.【点睛】思路点睛:解答比较函数值大小问题,常见的思路有两个: (1)判断各个数值所在的区间; (2)利用函数的单调性直接解答.数值比较多的比较大小问题也也可以利用两种方法的综合应用.三、填空题13.已知向量,a b 夹角为45︒,且1,210a a b =-=,则b =__________. 【答案】32 【详解】试题分析:的夹角,,,,.【解析】向量的运算.【思路点晴】平面向量的数量积计算问题,往往有两种形式,一是利用数量积的定义式,二是利用数量积的坐标运算公式,涉及几何图形的问题,先建立适当的平面直角坐标系,可起到化繁为简的妙用. 利用向量夹角公式、模公式及向量垂直的充要条件,可将有关角度问题、线段长问题及垂直问题转化为向量的数量积来解决.列出方程组求解未知数. 14.若直线220(,0)ax by a b +-=>始终平分圆224280+---=x y x y 的周长,则12a b+的最小值为 . 【答案】【详解】由题意()1,0a b a b +=>,所以()121222332322b a b a a b a b a b a b a b ⎛⎫+=++=++≥+⨯=+ ⎪⎝⎭当且仅当1,2a b ==.15.已知数列{}n a 中,147a =,且1112n n n a a a --+=,数列{}nb 满足11n n b a =-,则{}n b 的通项公式是n b =_____. 【答案】103n -【分析】根据已知,利用作差法求1n n b b --易判断{}n b 为等差数列,写出通项公式即可. 【详解】∵1112n n n a a a --+=, ∴()()11111111111111111n n n n n n n n n n n n n n n n n na a a a a ab b a a a a a a a a a a -------------=-====----+---, 又147a =,则111713b a ==--,∴数列{}n b 是首项为73-,公差为1的等差数列, ∴710133n b n n =-+-=-.故答案为:103n -. 【点睛】关键点点睛:应用作差的方法求1n n b b --,判断数列的性质,进而求通项.四、双空题16.设()()22log 31,0,22,0,x x x f x x x ⎧-+<⎪=⎨--≥⎪⎩且关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根1x ,2x ,3x ,则①m 的取值范围是_______;②123x x x 的取值范围是_______.【答案】02m <<(123230x x x -<< 【分析】作出函数()f x 的图象,利用数形结合法求解.【详解】当0x <时,由复合函数的单调性知:()22log 31y x x =-+单调递减,作出函数()f x 的图象,如图所示:由图可知,当02m <<时,()()f x m m R =∈恰有三个互不相等的实数根1x ,2x ,3x ,不妨设123x x x <<,易知20x >,且23232242x x x x +=⨯=≥, ∴2304x x <<.令()22log 312x x -+=,解得321x +=(舍去)或321x -=. ∴13210x -<<, ∴()12323210x x x -<<.故答案为:02m <<,()12323210x x x -<<五、解答题17.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值. 【答案】(1)3,2a c ==;(2)2327【详解】试题分析:(1)由2BA BC ⋅=和1cos 3B =,得ac=6.由余弦定理,得2213a c +=.解,即可求出a ,c ;(2) 在ABC ∆中,利用同角基本关系得22sin B =由正弦定理,得42sin sin 9c C B b ==,又因为a b c =>,所以C 为锐角,因此27cos 1sin 9C C =-=,利用cos()cos cos sin sin B C B C B C -=+,即可求出结果. (1)由2BA BC ⋅=得,,又1cos 3B =,所以ac=6.由余弦定理,得2222cos a c b ac B +=+. 又b=3,所以2292213a c +=+⨯=.解,得a=2,c=3或a=3,c=2.因为a>c,∴ a=3,c=2.(2)在ABC ∆中,22122sin 1cos 1()3B B =-=-=由正弦定理,得22242sin sin 3c C B b ===,又因为a b c =>,所以C 为锐角,因此22427cos 1sin 1()99C C =-=-=.于是cos()cos cos sin sin B C B C B C -=+=172242233927⋅+=. 【解析】1.解三角形;2.三角恒等变换.18.已知数列{}n a 的各项均为正数,其前n 项和为n S ,且满足()241n n S a =+,若数列{}n b 满足12b =,24b =,且等式211n n n b b b -+=对任意2n ≥成立.(1)求数列{}n a 的通项公式;(2)将数列{}n a 与{}n b 的项相间排列构成新数列1a ,1b ,2a ,2b ,,n a ,n b ,,设该新数列为{}n c ,求数列{}n c 的通项公式和前2n 项的和2n T .【答案】(1)21n a n =-;(2)2,21{*2,2n n n n k c k N n k=-=∈=,,前2n 项和为2122n n ++-.【分析】(1)由n a 与n S 的关系,可得11a =、()()1120n n n n a a a a ----+=,结合已知可确定{}n a 为等差数列,写出通项公式.(2)由题设得到2nn b =,结合(1)确定{}n c 的通项公式,应用分组求和法求2n T .【详解】(1)由()241n n S a =+,1n =时,()21141a a =+,解得11a =,2n ≥时,()()()22114411n n n n n a S S a a --=-=+-+,化为:()()1120n n n n a a a a ----+=,∵数列{}n a 的各项均为正数,则10n n a a ->+,∴12n n a a --=,即数列{}n a 为等差数列,首项为1,公差为2, ∴()12121n a n n =+-=-.(2)数列{}n b 满足12b =,24b =,且等式211n n n b b b -+=对任意2n ≥成立,∴数列{}n b 是首项为2,公比为2的等比数列,即2nn b =.∴2,212,2n n n n k c n k=-⎧⎪=⎨⎪=⎩,*k N ∈,∴()()21222112122221n n nn n T n +-+-=+=+--. 【点睛】关键点点睛:(1)根据n a 与n S 的关系,以及等差数列的定义求数列通项; (2)利用分组求和法,求前2n 项和.19.如图,在四棱锥P ABCD -中,//AB CD ,90ABC ∠=︒,1AB BC ==,△PDC 是边长为2的等边三角形,平面PDC ⊥平面ABCD ,E 为线段PC 上一点.(1)设平面PAB ⋂平面PDC l =,证明://l 平面ABCD ;(2)是否存在这样点E ,使平面ADEF 与平面ABCD 所成角为60︒,如果存在,求CE CP的值;如果不存在,请说明理由.【答案】(1)证明见解析;(2)存在,()221CE CP=-.【分析】(1)由线面平行的判定有//AB 平面PDC ,根据线面平行的性质得//AB l ,再由线面平行的判定可证//l 平面ABCD .(2)设DC 中点为O ,易知OA 、OC 、OP 两两垂直,构建以O 为原点,OA 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系并写出对应点坐标及面ABCD 的一个法向量m ,设()01CE CP λλ=≤≤,求面ADEF 的一个法向量n ,最后根据二面角大小及向量夹角的坐标表示列关于λ的方程求解即可,注意λ的范围. 【详解】(1)证明:∵//AB CD ,AB ⊄平面PDC ,DC ⊂平面PDC , ∴//AB 平面PDC ,又//AB 平面PAB ,且平面PAB ⋂平面PDC l =, ∴//AB l ,又l ⊄平面ABCD ,AB ⊂平面ABCD , ∴//l 平面ABCD .(2)设DC 中点为O ,则PO DC ⊥,∵面PDC ⊥面ABCD ,PO ⊂面PDC ,面PDC 面ABCD DC =,∴PO ⊥平面ABCD ,以O 为原点,OA 为x 轴,OC 为y 轴,OP 为z 轴,建立空间直角坐标系, 由已知,()1,0,0A 、()0,1,0D -、()0,1,0C 、(3P , ∴面ABCD 的一个法向量为()0,0,1m =,假设存在点E 使面ADEF 与面ABCD 所成角为60︒,设()01CE CP λλ=≤≤,则()0,1E λ-,即()0,2DE λ=-,设面ADEF 的一个法向量为(),,n x y z =,()1,1,0DA =,则00n DA n DE ⎧⋅=⎨⋅=⎩,即(2)0x y y z λ+=⎧⎪⎨-+=⎪⎩,取1x =,有1,n ⎛=- ⎝,由面ADEF 与面ABCD 所成角为60︒,则21cos ,2m n m nm n⋅<>===⋅,整理得2440λλ+-=,解得)[]210,1λ=∈,故存在这样的点E 满足条件,)21CE CP=.【点睛】关键点点睛:(1)应用线面平行的判定及性质证线面平行;(2)构建空间直角坐标系,假设点存在,设该点所在线段的线段比λ,利用二面角的大小及向量坐标表示,列方程求参数λ.20.某电子公司新开发一电子产品,该电子产品的一个系统G 有3个电子元件组成,各个电子元件能否正常工作的概率均为12,且每个电子元件能否正常工作相互独立.若系统C 中有超过一半的电子元件正常工作,则G 可以正常工作,否则就需要维修,且维修所需费用为500元. (1)求系统不需要维修的概率;(2)该电子产品共由3个系统G 组成,设E 为电子产品需要维修的系统所需的费用,求ξ的分布列与期望;(3)为提高G 系统正常工作概率,在系统内增加两个功能完全一样的其他品牌的电子元件,每个新元件正常工作的概率均为p ,且新增元件后有超过一半的电子元件正常工作,则C 可以正常工作,问:p 满足什么条件时,可以提高整个G 系统的正常工作概率? 【答案】(1)12;(2)见解析;(3) 当112p <<时,可以提高整个G 系统的正常工作概率. 【分析】(1)由条件,利用独立重复试验成功的次数对应的概率公式以及概率加法公式求得系统不需要维修的概率;(2)设X 为维修维修的系统的个数,根据题意可得13,2XB ⎛⎫⎪⎝⎭,从而得到500X ξ=,利用公式写出分布列,并求得期望;(3)根据题意,当系统G 有5个电子元件时,分析得出系统正常工作对应的情况,分类得出结果,求得相应的概率,根据题意列出式子,最后求得结果.【详解】(1)系统不需要维修的概率为23233311112222C C ⎛⎫⎛⎫⋅⋅+⋅= ⎪ ⎪⎝⎭⎝⎭.(2)设X 为维修维修的系统的个数,则13,2XB ⎛⎫⎪⎝⎭,且500X ξ=, 所以()()3311500,0,1,2,322kkk P k P X k C k ξ-⎛⎫⎛⎫====⋅⋅= ⎪ ⎪⎝⎭⎝⎭.所以ξ的分布列为所以ξ的期望为()150037502E ξ=⨯⨯=. (3)当系统G 有5个电子元件时,原来3个电子元件中至少有1个元件正常工作,G 系统的才正常工作. 若前3个电子元件中有1个正常工作,同时新增的两个必须都正常工作,则概率为21223113228C p p ⎛⎫⋅⋅⋅= ⎪⎝⎭;若前3个电子元件中有两个正常工作, 同时新增的两个至少有1个正常工作,则概率为()()2221222323111131222228C C p p C p p p ⎛⎫⎛⎫⋅⋅⋅⋅⋅-+⋅⋅⋅=- ⎪ ⎪⎝⎭⎝⎭;若前3个电子元件中3个都正常工作,则不管新增两个元件能否正常工作,系统G 均能正常工作,则概率为3331128C ⎛⎫⋅= ⎪⎝⎭.所以新增两个元件后系统G 能正常工作的概率为()2233131288848p p p p +-+=+,于是由()3113214828p p +-=-知,当210p ->时,即112p <<时, 可以提高整个G 系统的正常工作概率.【点睛】该题考查的是有关概率的问题,涉及到的知识点有独立重复试验,二项分布,分布列与期望,概率加法公式,属于中档题目. 21.已知函数()21sin cos 2f x x x x ax =++. (1)当0a =时,求()f x 在[],ππ-上的单调区间; (2)当0a >时,讨论()f x 在[]0,π上的零点个数. 【答案】(1)()f x 的单调增区间为,2ππ⎛⎫--⎪⎝⎭,0,2π⎛⎫ ⎪⎝⎭;单调减区间为,02π⎛⎫- ⎪⎝⎭,,2ππ⎛⎫⎪⎝⎭;(2)当220a π<≤时,()f x 有1个零点;当22a π>时,()f x 没有零点. 【分析】(1)当0a =时求出导数,根据余弦函数的图像与性质判断导数的符号从而确定函数的单调性;(2)当1a ≥时,根据函数的单调性及()0f 的符号可判断()f x 在[]0,π上没有零点;当01a <<时,由10a -<-<可知存在唯一0,2x ππ⎛⎫∈ ⎪⎝⎭使得0cos x a =-,分221a π<<、220a π<≤两类情况讨论函数的零点个数.【详解】(1)当0a =时,()sin cos f x x x x =+,[],x ππ∈-.()sin cos sin cos f x x x x x x x '=+-=.当x 在区间[],ππ-上变化时,()f x ',()f x 的变化如下表∴()f x 的单调增区间为,2ππ⎛⎫--⎪⎝⎭,0,2π⎛⎫⎪⎝⎭;()f x 的单调减区间为,02π⎛⎫- ⎪⎝⎭,,2ππ⎛⎫ ⎪⎝⎭. (2)()()cos cos f x ax x x x a x '=+=+,[]0,x π∈. 当1a ≥时,cos 0a x +≥在[]0,π上恒成立,∴[]0,x π∈时,()0f x '≥,()f x 在[]0,π上单调递增. 又∵()010f =>,∴()f x 在[]0,π上没有零点; 当01a <<时,令()0f x '=,得cos x a =-. 由10a -<-<可知存在唯一0,2x ππ⎛⎫∈⎪⎝⎭使得0cos x a =-. ∴当[)00,x x ∈时,()0f x '≥,()f x 单调递增; 当()0,x x π∈时,()0f x '<,()f x 单调递减. ∵()01f =,()01f x >,()2112f a ππ=-.①当21102a π->,即221a π<<时,()f x 在[]0,π上没有零点.②当21102a π-≤,即220a π<≤时,()f x 在[]0,π上有1个零点.综上,当220a π<≤时,()f x 有1个零点;当22a π>时,()f x 没有零点.【点睛】(1)涉及函数的零点(方程的根)问题,主要利用导数确定函数的单调区间及极值点,根据函数零点的个数寻找函数在给定区间的极值以及区间端点的函数值与0的关系,从而求得参数的取值范围;(2)解决此类问题的关键是将函数零点、方程的根、曲线交点相互转化,突出导数的工具作用,体现转化与化归的思想方法22.已知斜率为k 的直线交椭圆()2230x y λλ+=>于A ,B 两点,AB 的垂直平分线与椭圆交于C ,D 两点,点()01,N y 是线段AB 的中点. (1)若03y =,求直线AB 的方程以及λ的取值范围;(2)不管λ怎么变化,都有A ,B ,C ,D 四点共圆,求0y 的取值范围. 【答案】(1)40x y +-=,12λ>;(2){}3,3-.【分析】(1)将直线AB 的方程()13y k x =-+代入椭圆方程223x y λ+=,再利用根与系数的关系可得()1223123k k x x k -+==+,从而可求出k 的值,进而可得到直线AB 的方程,由判别式大于零可求出λ的取值范围;(2)设直线AB 的方程为()01y k x y =-+,代入椭圆方程中,利用根与系数的关系,再利用弦长公式表示出AB ,由于DC 是AB 的垂直平分线,所以同理可表示DC 的长,求出CD 中点P 的横坐标,则可求出点P 到AB 的距离d ,由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭,将AB ,DC ,d 代入化简可得222211313k k k k ++=++,从而可求出k 的值,进而可求得0y【详解】设()11,A x y ,()22,B x y .(1)当03y =时,直线AB 的方程为()13y k x =-+,将AB 方程代入223x y λ+=得:()()()22232330k x k k x k λ++-+--=.① 由()1223123k k x x k -+==+,解得1k =-,此时AB 的方程为40x y +-=. 将1k =-代入①,得248160x x λ-+-=.由()6416160λ∆=-->,解得12λ>.(2)设直线AB 的方程为()01y k x y =-+,将方程代入223x y λ+=得:()()()22200320k x k y k x y k λ++-+--=.② 由题意()0122123k k y x x k-+==+,即03ky -=.12AB x =-=== 同理得CD ==, 所以CD 中点P 的横坐标0032221112131313y ky k k x k k k⎛⎫--- ⎪+-⎝⎭===+++, 点P 到AB 的距离d1-= 由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭, 即()()2222222211912133313k k k k k k λλ⎛⎫++⎛⎫⎡⎤-++=--+ ⎪ ⎪⎣⎦+⎝⎭⎝⎭+,③ 不管λ怎么变化,都有A ,B ,C ,D 四点共圆,即上式恒成立,所以222211313k k k k ++=++,解得21k =,此时③式成立.代入②,由0∆>得12λ>.所以0y 的取值范围为{}3,3-.【点睛】关键点点睛:此题考查直线与椭圆的位置关系,考查计算求解能力,解题的关键是由A ,B ,C ,D 四点共圆22222CD AB d ⎛⎫⎛⎫⇔=+ ⎪ ⎪⎝⎭⎝⎭,将AB ,DC ,d 代入化简可得222211313k k k k++=++,从而可求出k 的值,进而可求得0y ,考查数学转化思想,属于较难题。
2024-2025学年湖南省师大附中高三上学期月考(二)数学试题及答案
湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组 时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( )A. 1B.12C. 12−D. 1−2. 已知a是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2B. 4C. 3D. 13. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( )A. 23−B. 13−C. 23D.134. 已知函数()2e 33,0,0x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( )A 34a ≤B. 34a ≥C. 1a ≤D. 1a ≥5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为().A. 10πB.9π2C. 4πD. 8π6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A.52+B. 5+C. 10+D. 117. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线114y x =−的交点个数为( ) A. 1B. 2C. 3D. 48. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( ) A. 一个样本的方差()()()22221220133320sx x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16 C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小10. 已知函数()32f x ax bx =−+,则( )A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2的C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈−三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c,则椭圆C 的离心率为______.14. 设函数()()44xf x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在ABC 中,角,,A B C 所对的边分别为,,a b c ,已知()()()sin sin sin b c B C a c A +−=−. (1)求B ;(2)若ABC ,且2AD DC = ,求BD 的最小值.16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点. (1)求E 的方程;(2)过2F 作两条相互垂直直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b =−=,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .19 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;的.(2)若()()f x g x ≥对任意()1,x ∈+∞恒成立,求a 的取值范围.的湖南师大附中2025届高三月考试卷(二)数学命题人、审题人:高三数学备课组 时量:120分钟 满分:150分一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 复数11i z =+的虚部是( )A. 1B.12C. 12−D. 1−【答案】C 【解析】【分析】先化简给定复数,再利用虚部的定义求解即可.【详解】因为()()11i 1i 1i1i1i 1i 222z−−====−++−,所以其虚部为12−,故C 正确. 故选:C.2. 已知a是单位向量,向量b 满足3a b −=,则b 的最大值为( ) A. 2 B. 4C. 3D. 1【答案】B 【解析】【分析】设,OA a OB b == ,由3a b −=,可得点B 在以A 为圆心,3为半径的圆上,利用向量的模的几何意义,可得b 的最大值.【详解】设,OA a OB b == ,因为3a b −=, 即3OA OB BA −==,即3AB = ,所以点B 在以A 为圆心,3为半径的圆上,又a是单位向量,则1OA = ,故OB 最大值为134OA AB +=+= ,即b 的最大值为4.故选:B.3. 已知角θ的终边在直线2y x =上,则cos sin cos θθθ+的值为( )A. 23−B. 13−C. 23D.13【答案】D 【解析】【分析】由角θ的终边,得tan 2θ=,由同角三角函数的关系得cos 1sin cos 1tan θθθθ=++,代入求值即可.【详解】因为角θ的终边在直线2y x =上,所以tan 2θ=. 所以cos 111sin cos 1tan 123θθθθ===+++. 故选:D.4. 已知函数()2e 33,0,0x a x f x x a x +−<= +≥ 对任意的12,x x ∈R ,且12x x ≠,总满足以下不等关系:()()12120f x f x x x −>−,则实数a 的取值范围为( )A. 34a ≤B. 34a ≥C. 1a ≤D. 1a ≥【答案】D 【解析】【分析】由条件判定函数的单调性,再利用指数函数、二次函数的性质计算即可. 【详解】()()()12120f x f x f x x x −>⇒−在RR 上单调递增,又()2e 33,0,0x a x f x x a x +−<= +≥ , 当0x <时,()e 33xf x a =+−单调递增,当0x ≥时,()f x 单调递增, 只需1330a a +−≤+,解得1a ≥. 故选:D.5. 如图,圆柱的母线长为4,,AB CD 分别为该圆柱的上底面和下底面直径,且AB CD ⊥,三棱锥A BCD −的体积为83,则圆柱的表面积为( )A. 10πB.9π2C. 4πD. 8π【答案】A 【解析】【分析】取AB 的中点O ,由13A BCD OCD V S AB −=⋅△,可求解底面半径,即可求解. 【详解】设底面圆半径为r ,由AB CD ⊥,易得BC AC BD AD ===, 取AB 的中点O ,连接,OC OD ,则,AB OC AB OD ⊥⊥,又OC OD O,OC,OD =⊂ 平面OCD , 所以AB ⊥平面OCD ,所以,11182423323A BCD OCD V S AB r r −=⋅=××××= , 解得rr =1,所以圆柱表面积为22π42π10πr r +×=.故选:A.6. 已知抛物线()2:20C y px p =>的焦点F 到准线的距离为2,过焦点F 的直线l 与抛物线交于,A B 两点,则23AF BF +的最小值为( )A.52+B. 5+C. 10+D. 11【答案】B 【解析】【分析】(方法一)首先求出抛物线C 的方程为24y x =,设直线l 的方程为:1x ty =+,与抛物线C 的方程联立,利用根与系数的关系求出21x x 的值,再根据抛物线的定义知11AF x =+,21BFx =+,从而求出23AF BF +的最小值即可.(方法二)首先求出111AF BF+=,再利用基本不等式即可求解即可. 【详解】(方法一)因为抛物线C 的焦点到准线的距离为2,故2p =, 所以抛物线C 的方程为24y x =,焦点坐标为FF (1,0),设直线l 的方程为:()()11221,,,,xty A x y B x y =+,不妨设120y y >>, 联立方程241y xxty = =+ ,整理得2440y ty −−=,则12124,4y y t y y +==−, 故221212144y y x x =⋅=,又|AAFF |=xx 1+pp2=xx 1+1,2212pBF x x =+=+,则()()121223213123555AF BF x x x x +=+++=++≥=,当且仅当12x x =时等号成立,故23AF BF +的最小值为5.故选:B.(方法二)由方法一可得121x x =,则11AF BF+211111x x +++121212211x x x x x x ++=+++, 因此23AF BF +()1123AF BF AF BF=++235AF BF BF AF =++55≥++,当且仅当11AF =++ 故23AF BF +的最小值为5+. 故选:B.7. 设函数()()cos f x x ϕ=+,其中π2ϕ<.若R x ∀∈,都有ππ44f x f x +=−.则()y f x =的图象与直线1y x =−的交点个数为( ) A. 1 B. 2C. 3D. 4【答案】C 【解析】【分析】利用给定条件求出()πcos 4f x x=−,再作出图像求解交点个数即可. 【详解】对R x ∀∈,都有ππ44f x f x +=−, 所以π4x =是yy =ff (xx )的一条对称轴, 所以()ππZ 4k k ϕ+=∈,又π2ϕ<,所以π4ϕ=−.所以()πcos 4f x x=−, 在平面直角坐标系中画出()πcos 4f x x =−与114y x =−的图象,当3π4=−x 时,3π14f −=− ,11113π3π)4164y −−=×(−=−<−, 当5π4x =时,5π14f =− ,5π5π14111461y =×−=−>−, 当9π4x =时,9π14f = ,11119π9π4416y =×−=−<, 当17π4x =时,17π14f = ,111117π17π4416y =×−=−> 所以如图所示,可知yy =ff (xx )的图象与直线114y x =−的交点个数为3,故C 正确. 故选:C.8. 已知定义域为R 的函数()(),f x g x 满足:()()()()()()00,g f x g y f y g x f x y ≠−⋅=−,且()()()()()g x g y f x f y g x y −=−,则下列说法正确的是( )A. ()01f =B. ()f x 是偶函数C. 若()()1112f g +=,则()()2024202420242f g −=− D. 若()()111g f −=,则()()202420242f g += 【答案】C【解析】【分析】对A ,利用赋值法令0,0x y ==即可求解;对B ,根据题中条件求出()f y x −,再利用偶函数定义即可求解;对C ,先根据题意求出()()001f g −=−,再找出()()11f x g x −−−与()()f x g x − 的关系,根据等比数列的定义即可求解;对D ,找出()()11f x g x −+−与()()f x g x + 的关系,再根据常数列的定义即可求解.【详解】对A ,()()()()()f x g y f y g x f x y −⋅=− ,令0,0x y ==,即()()()()()00000f g f g f −⋅=,解得()00f =,故A 错; 对B ,根据()()()()()f x g y f y g x f x y −=−,得()()()()()f y g x f x g y f y x −=−, 即()()f y x f x y −=−−,故()f x 为奇函数,故B 错; 对C ,()()()()()g x g y f x f y g x y −=− 令0xy ==,即()()()()()00000g g f f g −=, ()00f = ,()()200g g ∴=,又()00g ≠,()01g ∴=,()()001f g ∴−=−,由题知:()()f x y g x y −−−()()()()()()()()f x g y f y g x g x g y f x f y −⋅−−()()()()f y g y f x g x =+−, 令1y =,即()()()()()()1111f x g x f g f x g x −−−=+− ,()()1112f g += , ()()()()1112f xg x f x g x ∴−−−=− , 即()(){}f x g x −是以()()001f g −=−为首项2为公比的等比数列; 故()()()2024202420242024122f g −=−×=−,故C 正确;对D ,由题意知:()()f x y g x y −+−()()()()()()()()f x g y f y g x g x g y f x f y −⋅+−()()()()g y f y f x g x =−+, 令1y =,得()()()()()()1111f x g x g f f x g x −+−=−+ ,又()()111g f −=,即()()()()11f x g x f x g x −+−=+, 即数列()(){}f xg x +为常数列,由上知()()001f g +=,故()()202420241f g +=,故D 错. 故选:C.【点睛】关键点点睛:本题的关键是对抽象函数进行赋值,难点是C ,D 选项通过赋值再结合数列的性质进行求解.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列说法中正确的是( )A. 一个样本的方差()()()22221220133320s x x x =−+−++−,则这组样本数据的总和等于60 B. 若样本数据1210,,,x x x 的标准差为8,则数据1221,21,x x −− ,1021x −的标准差为16C. 数据13,27,24,12,14,30,15,17,19,23的第70百分位数是23D. 若一个样本容量为8的样本的平均数为5,方差为2,现样本中又加入一个新数据5,此时样本容量为9,平均数不变,方差变小【答案】ABD【解析】【分析】对于A ,由题意可得样本容量为20,平均数是3,从而可得样本数据的总和,即可判断;对于B ,根据标准差为8,可得方差为64,从而可得新数据的方差及标准差,即可判断;对于C ,根据百分位数的定义,求出第70百分位数,即可判断;对于D ,由题意可求得新数据的平均数及方差,即可判断.【详解】解:对于A ,因为样本的方差()()()222212201333,20s x x x =−+−++−所以这个样本有20个数据,平均数是3,这组样本数据的总和为32060,×=A 正确; 对于B ,已知样本数据1210,,,x x x 的标准差为8s =,则264s =,数据121021,21,,21x x x −−− 的方差为2222264s =×2816=×=,故B 正确;对于C ,数据13,27,24,12,14,30,15,17,19,23共10个数,从小到大排列为12,13,14,15,17,19,23,24,27,30,由于100.77×=,故选择第7和第8个数的平均数作为第70百分位数,即232423.52+=, 所以第70百分位数是23.5,故C 错误;对于D ,某8个数的平均数为5,方差为2,现又加入一个新数据5,设此时这9个数的平均数为x ,方差为2S ,则2285582(55)165,2999x S ×+×+−====<,故D 正确.故选:ABD.10. 已知函数()32f x ax bx =−+,则( ) A. ()f x 的值域为RB. ()f x 图象的对称中心为()0,2C. 当30b a −>时,()f x 在区间()1,1−内单调递减D. 当0ab >时,()f x 有两个极值点【答案】BD【解析】【分析】利用一次函数、三次函数的性质结合分类讨论思想可判定A ,利用函数的奇偶性判定B ,利用导数研究函数的单调性结合特殊值法排除C ,利用极值点的定义可判定D.【详解】对于A :当,a b 至少一个不为0,则()f x 为三次或者一次函数,值域均为RR ;当,a b 均为0时,值域为{}2,错误;对于B :函数()()32g x f x ax bx =−=−满足()()3g x ax bx g x −=−+=−, 可知()g x 奇函数,其图象关于()0,0中心对称,所以()f x 的图象为()g x 的图象向上移动两个单位后得到的,即关于(0,2)中心对称,正确;对于C :()23f x ax b ′=−,当30b a −>时,取1,1a b =−=−,当x ∈ 时,()()2310,f x x f x =−+>′在区间 上单调递增,错误;对于D :()23f x ax b ′=−,当0ab >时,()230f x ax b ′=−=有两个不相等的实数根, 所以函数()f x 有两个极值点,正确.故选:BD. 为11. 我国古代太极图是一种优美的对称图.定义:能够将圆O 的周长和面积同时等分成两个部分的函数称为圆O 的一个“太极函数”,则下列命题中正确的是( )A. 函数()sin 1f x x =+是圆22:(1)1O x y +−=的一个太极函数B. 对于圆22:1O x y +=的所有非常数函数的太极函数中,都不能为偶函数C. 对于圆22:1O x y +=的所有非常数函数的太极函数中,均为中心对称图形D. 若函数()()3f x kx kx k =−∈R 是圆22:1O x y +=的太极函数,则()2,2k ∈− 【答案】AD【解析】【分析】根据题意,对于A ,D 利用新定义逐个判断函数是否满足新定义即可,对于B ,C 举反例说明.【详解】对于A ,圆22:(1)1O x y +−=,圆心为(0,1),()sin 1f x x =+的图象也过(0,1),且(0,1)是其对称中心,所以()sin 1f x x =+的图象能将圆一分为二,所以A 正确;对于B,C ,根据题意圆22:1O x y +=,如图()121021212x x x f x x x x <− −≤≤= +<≤ −>, 与圆交于点()1,0−,(1,0),且在x 轴上方三角形面积与x 轴下方个三角形面积之和相等,()f x 为圆O 的太极函数,且()f x 是偶函数,所以B ,C 错误;对于D ,因为()()()()()33()f x k x k x kx kx f x k −=−−−=−−=−∈R ,所以()f x 为奇函数, 由()30f x kx kx =−=,得0x =或1x =±, 所以()f x 的图象与圆22:1O x y +=的交点为()()1,0,1,0−,且过圆心()0,0,由3221y kx kx x y =− +=,得()2624222110k x k x k x −++−=, 令2t x =,则()232222110k t k t k t −++−=, 即()()222110t k t k t −−+=,得1t =或22210k t k t −+=, 当1t =时,1x =±,当22210k t k t −+=时,若0k =,则方程无解,合题意;若0k ≠,则()4222Δ44k k k k =−=−, 若Δ0<,即204k <<时,方程无解,合题意;所以()2,2k ∈−时,两曲线共有两个交点,函数能将圆一分为二,如图,若Δ0=,即2k =±时,函数与圆有4个交点,将圆分成四部分,若Δ0>,即24k >时,函数与圆有6个交点,且均不能把圆一分为二,如图,所以()2,2k ∈−,所以D 正确.故选:AD.【点睛】关键点点睛:本题解题的关键是理解新定义,即如果一个函数过圆心,并且函数图象关于圆心中心对称,且函数将圆分成2部分,不能超过2部分必然合题.如果函数不是中心对称图形,则考虑与圆有2个交点,交点连起来过圆心,再考虑如何让面积相等.三、填空题:本题共3小题,每小题5分,共15分.12. 曲线2ln y x x =−在点()1,2处的切线与抛物线22y ax ax =−+相切,则a =__________. 【答案】1【解析】【分析】求出曲线2ln y x x =−在点()1,2处的切线方程,由该切线与抛物线22y ax ax =−+相切,联立消元,得到一元二次方程,其Δ0=,即可求得a .【详解】由2ln y x x =−,则12y x ′=−,则11x y =′=,曲线2ln y x x =−在点()1,2处的切线方程为21y x −=−,即1y x =+, 当0a ≠时,则 212y x y ax ax =+ =−+,得()2110ax a x −++=, 由2Δ(1)40a a =+−=,得1a =.故答案为:1.13. 已知椭圆CC :xx 2aa 2+yy 2bb 2=1(aa >bb >0)的左、右焦点分别为12,F F ,若P 为椭圆C 上一点,11212,PF F F PF F ⊥ 的内切圆的半径为3c ,则椭圆C 的离心率为______. 【答案】23【解析】 【分析】由内切圆半径的计算公式,利用等面积法表示焦点三角形12PF F 的面积,得到,a c 方程,即可得到离心率e 的方程,计算得到结果.【详解】由题意,可知1PF 为椭圆通径的一半,故21b PF a=,12PF F 的面积为21122b c c PF a ⋅⋅=, 又由于12PF F 的内切圆的半径为3c ,则12PF F 的面积也可表示为()12223c a c +⋅, 所以()111222223c c PF a c ⋅⋅=+⋅,即()212223b c c a c a =+⋅, 整理得:22230a ac c −−=,两边同除以2a ,得2320e e +−=,所以23e =或1−, 又椭圆的离心率()0,1e ∈,所以椭圆C 的离心率为23. 故答案为:23. 14. 设函数()()44x f x ax x x =+>−,若a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则()f x b >恒成立的概率为__________. 【答案】58##0.625 【解析】【分析】根据题意,利用基本不等式,求得2min ()1)f x =+,转化为21)b >恒成立,结合a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,得到基本事件总数有24个,再利用列举法,求得()f x b >成立的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】因为0,4a x >>,可得40x −>,则()()441441444x f x ax ax a x a x x x =+=++=−+++−−−2411)a ≥++=,当且仅当4x =时,等号成立,故2min ()1)f x =+,由不等式()f x b >恒成立转化为21)b +>恒成立,因为a 是从1,2,3,4四个数中任取一个,b 是从4,8,12,16,20,24六个数中任取一个,则构成(),a b 的所有基本事件总数有24个,又由()221)1)912,16==+,()221)1319,201)25+=++=,设事件A=“不等式()f x b>恒成立”,则事件A包含事件:()()1,4,1,8,()()()2,4,2,8,2,12,()()()()3,4,3,8,3,12,3,16,()()()()()()4,4,4,8,4,12,4,16,4,20,4,25共15个,因此不等式()f x b>恒成立的概率为155248=.故答案为:58.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15. 在ABC中,角,,A B C所对的边分别为,,a b c,已知()()()sin sin sinb c B C a c A+−=−.(1)求B;(2)若ABC,且2AD DC=,求BD的最小值.【答案】(1)π3B=(2.【解析】【分析】(1)利用正弦定理可得()()()b c b c a c a+−=−,再结合余弦定理得2221cos22a c bBac+−==,从而可求解.(2)结合ABC的面积可求得3ac=,再由.112333BD BC CA BA BC=+=+,平方后得,()222142993BD c a=++,再结合基本不等式即可求解.【小问1详解】由正弦定理得()()()b c b c a c a+−=−,即222a cb ac+−=,由余弦定理可得2221cos222a cb acBac ac+−===,因为()0,πB∈,所以π3B=.【小问2详解】的因为ABC π3B =,所以1sin 2ac B =3ac =. 因为()11123333BD BC CA BC BA BC BA BC =+=+−=+ , 所以()()()()22222221421441422cos 999999993BD BA BC BA BC c a ac B c a =++⋅⋅=++=++ ,所以2214212222993333c a c a ++≥⋅⋅+=,当且仅当a c所以BD .16. 已知双曲线E 的焦点在x (在双曲线E 上,点12,F F 分别为双曲线的左、右焦点.(1)求E 的方程;(2)过2F 作两条相互垂直的直线1l 和2l ,与双曲线的右支分别交于A ,C 两点和,B D 两点,求四边形ABCD 面积的最小值.【答案】(1)2213x y −= (2)6【解析】【分析】(1)由222c a b =+和e =,及点(在双曲线E 上,求出22,a b ,即可求出E 的方程; (2)设直线()()121:2,:2l y k x l y x k =−=−−,其中0k ≠,根据题中条件确定2133k <<,再将1l 的方程与2213x y −=联立,利用根与系数的关系,用k 表示AC ,BD 的长,再利用12ABCD S AC BD =,即可求出四边形ABCD 面积的最小值. 【小问1详解】因为222c a b =+,又由题意得 22243c e a ==,则有223a b ,又点(在双曲线E 上,故229213−=b b ,解得221,3b a ==,故E 方程为2213x y −=.【小问2详解】根据题意,直线12,l l 的斜率都存在且不为0,设直线()()121:2,:2l y k x l y x k=−=−−,其中0k ≠, 因为12,l l 均与E的右支有两个交点,所以k >2133k <<, 将1l21y −=联立,可得()222213121230k x k x k −+−−=. 设()()1122,,,A x y C x y ,则2212122212123,1313k k x x x x k k−−−+==−−, 所以2AC x =−==== 同理BD =所以()()()2222111622313ABCDk S AC BD k k+===⋅−−. 令21t k =+,所以241,,43k t t=−∈, 则2222166661616316161131612ABCDt S t t t t t =⋅=⋅=≥−+− −+−−−+, 当112t =,即1k =±时,等号成立. 的故四边形ABCD 面积的最小值为6.17. 如图,侧面11BCC B 水平放置的正三棱台11111,24ABC A B C AB A B −==P 为棱11A B 上的动点.(1)求证:1AA ⊥平面11BCC B ;(2)是否存在点P ,使得平面APC 与平面111A B C?若存在,求出点P ;若不存在,请说明理由.【答案】(1)证明见解析 (2)存在,点P 为11A B 中点 【解析】【分析】(1)延长三条侧棱交于一点O ,由勾股定理证明OA OB ⊥,OA OC ⊥,根据线面垂直的判定定理得证;(2)建立空间直角坐标系,求出平面111A B C 和平面APC 的法向量,利用向量夹角公式求解. 【小问1详解】延长三条侧棱交于一点O ,如图所示,由于11124,AB A B BB ===OB OA ==所以22216OA OB AB +==,所以OA OB ⊥,同理OA OC ⊥ 又OB OC O = ,,OB OC ⊂平面OBC , 所以OA ⊥平面OBC ,即1AA ⊥平面11BCC B..【小问2详解】由(1)知,,OA OB OA OC OB OC ⊥⊥⊥,如图建立空间直角坐标系,则(()0,0,,0,A C,()()111,,A B C ,所以((1110,0,,0,,AA AC A B ==−,()110,B C.设)111,0,A P A B λλ===, 则1AP AA =+)[]1,0,,0,1AP λ=∈, 设平面111A B C 和平面APC 的法向量分别为(),,,m x y z n ==(),,r s t ,所以)01000r t λ += +−, 取()()1,1,1,1,,mn λλλ==+ , 则cos ,m n mn m n⋅==整理得212870λλ+−=,即()()21670λλ−+=,所以12λ=或76λ=−(舍), 故存在点P (点P 为11A B 中点时),满足题意. 18. 若无穷正项数列{}n a 同时满足下列两个性质:①存在0M >,使得*,n a M n <∈N ;②{}n a 为单调数列,则称数列{}n a 具有性质P .(1)若121,3nn n a n b =−=,(i )判断数列{}{},n n a b 是否具有性质P ,并说明理由;(ii )记1122n n n S a b a b a b =+++ ,判断数列{}n S 是否具有性质P ,并说明理由; (2)已知离散型随机变量X 服从二项分布()1,,02B n p p <<,记X 为奇数的概率为n c .证明:数列{}n c 具有性质P .【答案】(1)(i )数列{}n a 不具有性质P ,数列{}n b 具有性质P ,理由见解析;(ii )数列{}n S 具有性质P ,理由见解析 (2)证明见解析 【解析】【分析】(1)判断数列是否满足条件①②,可得(i )的结果;利用错位相减法求数列{}n n a b 的前n 项和,再判断是否满足条件①②.(2)先求数列{}n c 的通项公式,再判断是否满足条件①②. 【小问1详解】(i )因为21na n =−单调递增,但无上限,即不存在M ,使得n a M <恒成立, 所以数列{aa nn }不具有性质P .因为113nn b =<,又数列{bb nn }为单调递减数列,所以数列{bb nn }具有性质P . (ii )数列{}n S 具有性质P .2112113333n n n S −=⋅+⋅++ ,23111121133333n n n S +−=⋅+⋅++ , 两式作差得23121111211222333333n n n n S +−=⋅+⋅+⋅++⋅− , 即1121121212223313333313n n n n n n S ++− −+ =−+−=−−,所以111,3n n n S +=−<∴数列{}n S 满足条件①. (){}11210,,3nn n n n n a b n S S S +=−>∴<∴为单调递增数列,满足条件②.综上,数列{}n S 具有性质P 【小问2详解】.因为*0,1,,,X n n =∈N , 若X 为奇数的概率为,n c X 为偶数的概率为n d ,()1[1]n n n c d p p +==−+001112220C (1)C (1)C (1)C (1)n n n n n n n n n p p p p p p p p −−−+−+−++− ①()001112220[1]C ()(1)C ()(1)C ()(1)C ()(1)n n n n n n n n n n p p p p p p p p p p −−−−=−−+−−+−−++−− ②,2n c −=①②,即1(12)2nn p c −−=. 所以当102p <<时,0121p <−<,故n c 随着n 的增大而增大,且12n c <. 故数列{}n c 具有性质P .19. 已知函数()24e 2x f x x x−=−,()2233g x x ax a a =−+−−(a ∈R 且2a <). (1)令()()()(),x f x g x h x ϕ=−是()x ϕ的导函数,判断()h x 的单调性;(2)若()()f x g x ≥对任意的()1,x ∈+∞恒成立,求a 的取值范围. 【答案】(1)ℎ(xx )在(),0∞−和(0,+∞)上单调递增; (2)(],1−∞. 【解析】【分析】(1)需要二次求导,利用导函数的符号分析函数的单调性.(2)法一先利用()()22f g ≥这一特殊情况,探索a 的取值范围,再证明对()1,x ∈+∞时,()()f x g x ≥恒成立;法二利用导数工具求出函数()x ϕ的最小值()0x ϕ,同法一求证(]0,1a ∈时()00x ϕ≥,接着求证()1,2a ∈时()20ϕ<不符合题意即可得解.【小问1详解】()()()2224e 233x x f x g x x x ax a a xϕ−=−=−+−++,定义域为{}0x x ≠∣, 所以()()()224e 1223x x h x x x a xϕ−−==−+−′,所以()()2234e 2220x x x h x x −−+=+>′.所以()h x 在(),0−∞和()0,∞+上单调递增. 【小问2详解】法一:由题知()()22f g ≥即()()()2232120a a a a ϕ=−+=−−≥,即1a ≤或2a ≥,所以1a ≤.下证当1a ≤时,()()f x g x ≥对任意的()1,x ∈+∞恒成立.令()()24e x F x f x x x x −=+=−,则()()()()()222234e 224e 11,0x x x x x F x t x t x x x−−−+−′=−==>′, 所以()()224e 11x x F x x−−=−′在()1,+∞单调递增,又()20F ′=,所以当()1,2x ∈时,()()0,F x F x ′<单调递减, 当()2,x ∈+∞时,()()0,F F x x ′>递单调增,所以()()20F x F ≥=,故()f x x ≥−, 要证()()f x g x ≥,只需证()x g x −≥,即证()223130x a x a a −+++≥,令()()22313G x x a x a a =−+++,则()()()222Δ(31)43561151a a a a a a a +−+−+−−,若115a ≤≤,则0∆≤,所以()()223130G x x a x a a =−+++≥. 若15a <,则对称轴31425a x +<,所以()G x 在()1,+∞递增,故()()210G x G a >=≥, 综上所述,a 的取值范围为(],1−∞.法二:由题知2224e 233x x x ax a a x −−≥−+−−对任意的()1,x ∈+∞恒成立,即()2224e 2330x x x x ax a a xϕ−=−+−++≥对任意的()1,x ∈+∞恒成立. 由(1)知()()224e 1223x x x x a xϕ−−=−+−′在()1,+∞递增,又()13a ϕ′=−.①若0a ≤,则()()()10,x x ϕϕϕ′>≥′在()1,+∞递增,所以()()24110ex a ϕϕ>=−+>,符合;②若0a >,则()130a ϕ=−<′,又()112224e 14e (1)(1)(1)a a a aa a a a a ϕ−− +=−=−+ ++′, 令()124e(1)a m a a −=−+,则()()()14e 21a m a a h a −=−+=′,则()14e 2a h a −′=−为单调递增函数,令()0h a ′=得1ln2a =−,当()0,1ln2a ∈−时()()0,h a m a ′′<单调递减,当()1ln2,a ∞∈−+时()()0,h a m a ′′>单调递增, 又()()10,00m m =′<′,所以当()0,1a ∈时,()()0,m a m a ′<单调递减, 当()1,a ∈+∞时,()()0,m a m a ′>单调递增,所以()()10m a m ≥=,则()12214e (1)0(1)a a a a a ϕ− +′=−+≥ +, 所以(]01,1x a ∃∈+,使得()00x ϕ′=,即()020024e 12230x x x a x−−−+−=,且当()01,x x ∈时,()()0,x x ϕϕ′<单调递减,当()0,x x ∈+∞时,()()0,x x ϕϕ′>单调递增,所以()()0222min 000004e 233x x x x x ax a a x ϕϕ−==−+−++. 若(]0,1a ∈,同法一可证()0222000004e 2330x x x x ax a a x ϕ−=−+−++≥,符合题意. 若()1,2a ∈,因为()()()2232120a a a a ϕ=−+=−−<,所以不符合题意.综上所述,a 的取值范围为(],1−∞.【点睛】方法点睛:导数问题经常会遇到恒成立的问题.常见的解决思路有: (1)根据参变分离,转化为不含参数的函数最值问题.(2)若()0f x >恒成立,就可以讨论参数不同取值下的函数的单调性和极值与最值,最终转化为()min 0f x >;若()0f x <⇔()max 0f x <.(3)若()()f x g x ≥恒成立,可转化为()()min max f x g x ≥(需在同一处取得最值).。
湖南师大附中2025届高三第二次模拟考试数学试卷含解析
湖南师大附中2025届高三第二次模拟考试数学试卷注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()sinx12sinxf x =+的部分图象如图所示,将此图象分别作以下变换,那么变换后的图象可以与原图象重合的变换方式有( )①绕着x 轴上一点旋转180︒; ②沿x 轴正方向平移; ③以x 轴为轴作轴对称;④以x 轴的某一条垂线为轴作轴对称. A .①③B .③④C .②③D .②④2.台球是一项国际上广泛流行的高雅室内体育运动,也叫桌球(中国粤港澳地区的叫法)、撞球(中国地区的叫法)控制撞球点、球的旋转等控制母球走位是击球的一项重要技术,一次台球技术表演节目中,在台球桌上,画出如图正方形ABCD ,在点E ,F 处各放一个目标球,表演者先将母球放在点A 处,通过击打母球,使其依次撞击点E ,F 处的目标球,最后停在点C 处,若AE =50cm .EF =40cm .FC =30cm ,∠AEF =∠CFE =60°,则该正方形的边长为( )A .2cmB .2cmC .50cmD .6cm3.已知()5x a +展开式的二项式系数和与展开式中常数项相等,则2x 项系数为( )A .10B .32C .40D .804.已知在平面直角坐标系xOy 中,圆1C :()()2262x m y m -+--=与圆2C :()()22121x y ++-=交于A ,B 两点,若OA OB =,则实数m 的值为( ) A .1B .2C .-1D .-25. 若x,y 满足约束条件x 0x+y-30z 2x-2y 0x y ≥⎧⎪≥=+⎨⎪≤⎩,则的取值范围是A .[0,6]B .[0,4]C .[6, +∞)D .[4, +∞)6.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y 则( ) A .221x y =+ B .221y x =+ C .221x y =-D .221y x =-7.已知正项等比数列{}n a 的前n 项和为2317,,927n S S S ==,则12n a a a 的最小值为( ) A .24()27 B .34()27C .44()27D .54()278.2(1ii +=- ) A .132i +B .32i+ C .32i- D .132i-+ 9.小张家订了一份报纸,送报人可能在早上6:307:30-之间把报送到小张家,小张离开家去工作的时间在早上7.008:00-之间.用A 表示事件:“小张在离开家前能得到报纸”,设送报人到达的时间为x ,小张离开家的时间为y ,(,)x y 看成平面中的点,则用几何概型的公式得到事件A 的概率()P A 等于( )A .58B .25C .35D .7810.直线经过椭圆的左焦点,交椭圆于两点,交轴于点,若,则该椭圆的离心率是() A .B .C .D .11.对于函数()f x ,若12,x x 满足()()()1212f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点”.若实数a 与b 和+a b 与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( )A .3log 4B .3log 41+C .43D .3log 41-12.如图,在三棱锥D ABC -中,DC ⊥平面ABC ,AC BC ⊥,2AC BC CD ===,E ,F ,G 分别是棱AB ,AC ,AD 的中点,则异面直线BG 与EF 所成角的余弦值为A .0B .63C .33D .1二、填空题:本题共4小题,每小题5分,共20分。
湖南师大附中2021届高三(上)月考数学试题(二)(wd无答案)
湖南师大附中2021届高三(上)月考数学试题(二)一、单选题(★★) 1. 已知集合,则()A.B.C.D.(★★★) 2. 已知,则()A.B.C.D.(★★★) 3. 刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正 n边形等分成 n个等腰三角形(如图所示),当 n变得很大时,这 n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为()A.B.C.D.(★★★) 4. 的展开式的常数项是()A.B.C.D.(★★) 5. 对任意实数给出下列命题:①“ ”是“ ”的充要条件;②“ 是无理数”是“ 是无理数”的充要条件;③“ ”是“ ”的充分条件;④“ ”是“ ”的必要条件.其中真命题的个数是( )A.1B.2C.3D.4二、未知(★★★) 6. 若,则 z=() A . B . C . D .1(★★★) 7. 中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹(一根根同样长短和粗细的小棍子)来进行运算.算筹的摆放有纵式、横式两种(如图所示).当表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数用横式表示,以此类推,遇零则置空.例如3266用算筹表示就是 ,则8771用算筹应表示为()A .B .C .D .(★★★) 8. 四棱锥的底面是矩形,侧面 平面,,,则该四棱锥外接球的体积为()A .B .C .D .(★★★) 9. 甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,考生成绩都分布在 内,并作出了如下频数分布统计表,规定考试成绩在 内为优秀,则下列说法正确的有()分组甲校频数3481515x32乙校频数 12891010y3A.计算得B.估计甲校优秀率为25%,乙校优秀率为40%C.估计甲校和乙校众数均为120D.估计乙校的数学平均成绩比甲校高(★★★) 10. 函数的部分图象如图中实线所示,图中圆 C与的图象交于 M, N两点,且 M在 y轴上,则下列说法中正确的是()A.函数在上单调递增B.函数的图象关于点成中心对称C.函数的图象向右平移个单位后关于直线成轴对称D.若圆半径为,则函数的解析式为(★★★) 11. 正方体中, E是棱的中点, F在侧面上运动,且满足平面.以下命题正确的有()A.侧面上存在点F,使得B.直线与直线所成角可能为C.平面与平面所成锐二面角的正切值为D.设正方体棱长为1,则过点E,F,A的平面截正方体所得的截面面积最大为(★★★) 12. 如图,过点作两条直线和分别交抛物线于和(其中位于 x轴上方),直线交于点 Q.则下列说法正确的是()A.两点的纵坐标之积为B.点Q在定直线上C.点P与抛物线上各点的连线中,最短D.无论旋转到什么位置,始终有(★★★) 13. 如图所示,在平面直角坐标系中,,则点 D的坐标为_________.(★★★) 14. 在① ,② ,③,这三个条件中任选一个,补充在下列问题中,并解答.已知的内角的对边分别为,,而且_____.(1)求;(2)求周长的最大值.注:如果选择多个条件分别解答,按第一个解答计分.(★★★) 15. 如图1,在中,, D为的中点,将沿折起,得到如图2所示的三棱锥,二面角为直二面角.(1)求证:平面平面;(2)设 E为的中点,,求二面角的余弦值.(★★★) 16. 设函数,其中.(1)若,证明:当时,;(2)若在区间内有两个不同的零点,求 a的取值范围.(★★★) 17. 已知点 P是圆上任意一点,定点,线段的垂直平分线 l与半径相交于 M点, P在圆周上运动时,设点 M的运动轨迹为.(1)求点 M的轨迹的方程;(2)若点N在双曲线(顶点除外)上运动,过点N,R的直线与曲线相交于,过点的直线与曲线相交于,试探究是否为定值,若为定值请求出这个定值,若不为定值,请说明理由.三、填空题(★★) 18. 已知函数,若曲线在处的切线与直线平行,则______.(★★★)19. 过双曲线的下焦点作轴的垂线,交双曲线于两点,若以为直径的圆恰好过其上焦点,则双曲线的离心率为__________.(★★★) 20. 已知函数,其中为自然对数的底数.若函数有个不同的零点,则实数的取值范围是__________________.四、解答题(★★) 21. 已知各项均为整数的数列满足,,前6项依次成等差数列,从第5项起依次成等比数列.(1)求数列的通项公式;(2)求出所有的正整数m ,使得.(★) 22. 现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.。
师大附中2021届高三数学10月第二次月考试题
A。 B. C. D.
【答案】B
【解析】
【分析】
如图,设 的中心为 ,球心为O,则 ,设O到平面 的距离为d,则 ,求出 的值,即可求出四棱锥 外接球的体积
【详解】取 的中点E,连接 中,
∴ , ,设 的中心为 ,球心为O,则 ,
湖南省湖南师大附中2021届高三数学10月第二次月考试题
一、单项选择题
1。 已知集合 ,则 ( )
A. B。 C. D。
【答案】C
【解析】
【分析】
化简集合A,B再求交集即可
【详解】由题意
则
故选:C
【点睛】本题考查交集的运算,考查一元二次不等式及绝对值不等式的解法,是基础题
2. 若 ,则 ( )
A。 B. C. D.
A。 B.
C。 D。
【答案】C
【解析】
【分析】
根据算筹的定义和摆放方法解题.
【详解】解:由算筹的定义,得 ,所以8771用算筹应表示 ,
故选:C.
【点睛】本题主要考查了新定义题型,理解算筹的定义是解题关键,属于基础题.
7. 对任意实数 给出下列命题:①“ ”是“ ”的充要条件;②“ 是无理数”是“ 是无理数"的充要条件;③“ ”是“ "的充分条件;④“ ”是“ "的必要条件.其中真命题的个数是( )
设O到平面 的距离为d,则 ,
∴ ,
∴四棱锥 的外接球的体积为 。
故选:B.
【点睛】此题考查求四棱锥外接球的体积,考查学生的计算能力,考查空间想象能力,属于中档题
二、多项选择题
9. 甲、乙两所学校高三年级分别有1200人,1000人,为了了解两所学校全体高三年级学生在该地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,考生成绩都分布在 内,并作出了如下频数分布统计表,规定考试成绩在 内为优秀,则下列说法正确的有( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地区六校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了 110 名学生的数学
成绩,考生成绩都分布在[70,150]内,并作出了如下频数分布统计表,规定考试成绩在[120, 150]
内为优秀,则下列说法正确的有
A.计算得 x=10,y= 7
B.估计甲校优秀率为 25%,乙校优秀率为 40%
C.估计甲校和乙校众数均为 120 D.估计乙校的数学平均成绩比甲校高
C.函数 f (x) 的图象向右平移 5 个单位后关于直线 x = 5 成轴对称
12
6
D.若圆半径为 5 ,则函数 f (x) 的解析式为 f (x)= 3 sin(2x + )
12
6
3
11.正方体 ABCD- A1B1C1D1 中,E 是棱 DD1 的中点,F 在侧面 CDD1C1 上运动,且满足 B1F//平面 A1BE.以下命题正确的有
2
D. i 2
D.
3
.4.刘徽(约公元 225 一 295 年),魏晋期间伟大的数学家,中国古典数学理论的奠基人
之一.他在割圆术中提出的“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周
合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个
圆 的内接正 n 边形等分成 n 个等腰三角形(如图所示),当 n 变得很大时,这 n 个等
四、解答题:本题共 6 小题,共 70 分。解答应写出文字说明、证明过程或演算步骤.
17. (本小题满分 10 分)
在① (a + b)2 = c2 + 3ab ,② a = 3c sin A − a cos C ,
A,B
两点,若
以 AB 为直径的圆恰好过其上焦点 F2,则双曲线的离心率为___________.
(x −1)ex , x 1
16.已知函数
f
(x)
=
ln x , x 1 x
,其中 e 为自然对数的底数.若函数 g(x) = f (x) − kx
有 3 个不同的零点,则实数 k 的取值范围是________________。
A. C,D 两点的纵坐标之积为 −4 B.点 Q 在定直线 x = −2 上
C.点 P 与抛物线上各点的连线中,PA 最短 D.无论 CD 旋转到什么位置,始终有∠CQP=∠BQP 三、填空题:本题共 4 小题,每小题 5 分,共 20 分
13.如图所示,在平面直角坐标系中, CD =(2,-3),则点 D 的坐标为 _______.
③"a>b"是“a2 >b2”的充分条件;
④“a<5"是“a<3"的必要条件.
其中真命题的个数是
A.1
B.2
C.3
D.4
8.四棱锥 P- ABCD 的底面 ABCD 是矩形,侧面 PAD⊥平面 ABCD, ∠APD=120°,AB= PA=
PD=2,则该四棱锥 P- ABCD 外接球的体积为
32
A.
A. −2, −1,0,1, 2,3
B. −2, −1,0,1, 2 C. −1,0,1, 2, D. −2, −1,0,1
2.若 z(1+ i) =1− i ,则 z =
A. 1− i
B. 1+ i
3.已知 sin 2 = 2 ,则 cos2 ( + ) =
3
4
1
A.
6
1
B.
3
C. −i 1
C.
种(如图所示).当表示一个多位数时,个位、百位、万位数用纵式表示,十位、千位、十万位数
用横式表示,以此类推,遇零则置空.例如 3266 用算筹表示就是 表示为
,则 8771 用算筹应
1
7.对任意实数 a、b、c,给出下列命题:
①"a=b"是“ac=bc"充要条件;
②“a+5 是无理数"是“a 是无理数”的充要条件;
A.侧面 CDD1C 上存在点 F,使得 B1F⊥CD1 B.直线 B1F 与直线 BC 所成角可能为 30°
C.平面 ABE 与平面 CDD1C1 所成锐二面角的正切值为 2 2
D.设正方体棱长为 1,则过点 E、F、A 的平面截正方体所得的截面面积最
大为 5 2
12.如图,过点 P(2,0)作两条直线 x=2 和 l:x= my+2(m>0)分别交抛物线 y2=2x 于 A、B 和 C、D (其 中 A,C 位于 x 轴上方),直线 AC,BD 交于点 Q.则下列说法正确的是
腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到 sin 2°的近似值为
A.
90
B.
180
C.
270
5.
(x2
+
2)(
1 x2
−1)5 的展开式的常数项是
A. −3
B. −2
C.2
D.
360
D.3
6.中国有个名句“运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙.子算经》中记载的
算筹.古代用算筹(一根根同样长短和粗细的小棍子)来.进行运算.算筹的摆放有纵式、横式两
10. 函数 f (x) = Asin(x +)(A 0,0 ) .的部
分图象如图中实线所示,图中圆 C 与
f (x) 的图象交于 M、N 两点,且 M 在 y 轴上,则下列说
法中正确的是
2
A.函数 f (x) 在 (− 3 , − ) 上单调递增 2
B.函数 f (x) 的图象关于点 (− 2 , 0) 成中心对称 3
湖南省师大附中 2021 届高三月考试卷(二)
数学
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分,共 8 页。时量 120 分钟。满分 150 分。 第I卷
一、单项选择题:本题共 8 小题,每小题 5 分,共 40 分.在每小题给出的四个选项中,只有-项是 符合题目要求的..
1.已知集合 A= x x 2, x Z ,B= x x2 −x − 6 0 ,则 A B=
3
20 5
B.
3
C. 8 6
D.36π
二、多项选择题:本题共 4 小题,每小题 5 分,共 20 分.在每小题给出的选项中,有多项符合题目
要求.全部选对的得 5 分,有选错的得 0 分,部分选对的得 3 分.
9.甲、乙两所学校高三年级分别有 1200 人,1000 人,为了了解两所学校全体高三年级学生在该
14.已知函数 f (x) = ln − ax2 ,若曲线 y = f (x) 在 (1, f (1)) 处的切线与直线 2x − y +1 = 0 x
平行,则 a = _____________
3
15.过双曲线
y2 a2
−
x2 b2
= 1(a
0,b
0)线,交双曲线于