人教版八年级数学角平分线的性质定理

合集下载

人教版八年级数学上册 角平分线 讲义

人教版八年级数学上册 角平分线 讲义

角平分线思考:如图,AD是∠CAB的角平分线,∠ACD=∠ABD=90°,则DC与DB的有什么关系?为什么?1、角平分线定理:角平分线上的点到这个角两边的距离相等格式:∵AD是∠CAB的角平分线∴∠1=∠2又∵∠ACD=∠ABD=90°∴DC=DB思考:如果这次反过来,已知DC=DB,∠ACD=∠ABD=90°,能证明∠1=∠2吗?2、角平分线逆定理:角的内部到这个角两边的距离相等的点在这个角的角平分线上格式:∵DC=DB,∠ACD=∠ABD=90°∴∠1=∠2∴AD是∠CAB的角平分线1、如图,∠1=∠2,PD⊥OA,PE⊥OB,垂足分别为D,E,下列结论错误的是()A、PD=PEB、OD=OEC、∠DPO=∠EPOD、PD=OD21D APOEB2、如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3B.PN>3C.PN≥3D.PN≤33、如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A. DC=DEB. ∠AED=90°C. ∠ADE=∠ADCD. DB=DC4、如图,MP⊥NP,MQ为△MNP的角平分线,MT=MP,连接TQ,则下列结论中不正确的是()TQ=PQ B、∠MQT=∠MQPC、∠QTN=90°D、∠NQT=∠MQT5、在△ABC中,∠C=90°,E是AB边的中点,BD是角平分线,且DE⊥AB,则()A. BC>AEB. BC=AEC. BC<AED. 以上都有可能6、如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于D,如果AC=3 cm,那么AE+DE等于( )A .2 cmB .3 cmC .4 cmD .5 cm7、如图,OP 是∠AOB 的平分线,点C 、D 分别在角的两边OA 、OB 上,添加下列条件,不能判定△POC ≌△POD 的是( )A 、PC ⊥OA ,PD ⊥OB B 、OC=ODC 、∠OPC=∠OPD D 、PC=PD8、如图,△ABC 的面积为1cm2,AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( ) A.0.4cm2B.0.5cm2C.0.6cm2D.0.7cm29、如图所示,DB ⊥AB ,DC ⊥AC ,BD =DC ,∠BAC =80°,则∠BAD =_____, ∠CDA =_____EDCBA10、如图所示,P在∠AOB的平分线上,在利用角平分线性质推证PD=PE时,必须满足的条件是_____11、如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=8,BD=5,则点D到AB的距离是______(2)若BD∶DC=3∶2,点D到AB的距离为6,则BC的长为12、如图,△ABC中,∠C=90°,AM平分∠CAB,CM=20cm,那么M到AB的距离是_____cm.13、如图,在△ABC中,AB=AC,∠A=50°,BD为∠ABC的平分线,则∠BDC=_________°14、如图,在Rt△ABC中,∠C=90°,D是AC上一点,DE⊥AB于E,且DE=DC(1)求证:BD平分∠ABC;(2)若∠A=36°,求∠DBC的度数15、如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD相交于点C。

初二【数学(人教版)】角的平分线的性质的综合运用

初二【数学(人教版)】角的平分线的性质的综合运用
A
B
C
应用 如图,为了促进当地旅游发展,某地要在
三条公路围成的一块平地上修建一个度假村.要
使这个度假村到三条公路的距离相等,应在何处
修建?
A
分析:
可以从定理1入手
也可以从定理2入手
B
C 总之找角平分线交点
已知△ABC,在它的内部求作一个点O,使其到三
角形三边都相等.
作图:
分别作∠BAC和
A
∠ABC的平分线,
P.求证:点P到三边AB,BC,CA的距离相等.
A
ND
F
M
思路:过点P分别向三角形 各边作垂直,标垂足.
P
由角的平分线的性质得
B
E
C
PD = PE 及 PE = PF.
进而PD = PE = PF.
于是问题得证.
追问 点P在∠BAC的平分线上吗?
这说明三角形的三条角平分线有什么关系?
A
ND
F
M
分析:“双垂距离推角分” 略证:(用已证结论)
两线交于点O,
则点O即为所求.
O
课下可以试试证明.
B
C
发展 已知△ABC,求作一个点O,使其到三角形
三边都相等. A
分析:
(1)根据之前的Biblioteka 研究,在三角形内O1
部,两条角平分线
B
C
的交点符合要求;
(2)在三角形的外部呢? 有相邻两外角的平分线的交点,符合要求吗?
O2 B
A
O1 C
作法:如图 (1)作△ABC两 内角的平分线,其 O3 交点为O1; (2)分别作 △ABC两外角平分 线,其交点分别为 O2,O3,O4.
O4

人教版八年级上册数学课件:角平分线的性质优秀课件

人教版八年级上册数学课件:角平分线的性质优秀课件
求证:(1)∠ECD=∠EDC; (2)OC=OD.
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
证明 (1)∵ 点E在∠BOA的平分线上, EC⊥AO,ED⊥OB ,
条互相交叉的公路, 现要建一个货物中 转站, 要求它到三条公路的距离相等, 可选择的地址有几处? 画出它的位置.
l1
l3
l2
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
人 教人版教八版年八级年上级册上数册学数课学件课:件12:.3角角平平分分线线的的性性质质优(秀共pp1t6课张件PPT)
角平分线的性质:
角的平分线上的点到角的两边的距离相等。
几何语言: ∵ OC平分∠AOB, 且PD⊥OA, PE⊥OB
∴ PD= PE
A D
P到OA的距离
C
角平分线上的点
P
P到OB的距离
O
E B 不必再证全等
反过来,到一个角的两边的距离相等 的点是否一定在这个角的平分线上呢?
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上
如图,△ABC的角平分线
BM,CN相交于点P。求证:点P到三边
AB、BC、CA的距离相等
A
证明:过点P作PD⊥PE⊥论B:C于三E,角PF形⊥A的C于三F,条角平分线交于
一∵B点M是,△并ABC且的这角平点分到线,三B点边P在的BM距上,离E 相等C.

人教版八年级数学上册12.3 角的平分线的性质(第1课时)

人教版八年级数学上册12.3 角的平分线的性质(第1课时)

探究新知
性质定理:角的平分线上的点到角的两边的距离相等.
应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上; (3)垂直距离.
O
定理的作用:证明线段相等.
A D
PC
E
B
应用格式:
∵OP 是∠AOB的平分线, PD⊥OA, PE⊥OB,
∴PD = PE
推理的理由有三个, 必须写完全,不能
人教版 数学 八年级 上册
12.3 角的平分线的性质 第1课时
导入新知
下图是一个平分角的仪器,其中AB= AD,BC=DC. 将点A放在角的顶点,AB和AD 沿着角的两边放下,沿 AC画一条射线AE,AE 就是这个角的平分线,你能说
A
明它的道理吗?
D
B
C E
素养目标
3. 熟练地运用角平分线的性质解决实际 问题. 2. 探究并认知角平分线的性质.
课堂小结
尺规 作图
属于基本作图,必须熟练掌握
角平分线 性 质 定理
一个点:角平分线上的点; 二距离:点到角两边的距离; 两相等:两条垂线段相等
为证明线段相等 提供了又一途径
辅助线 添加
过角平分线上一点向两边作垂线段
提示
(1)已知什么?求作什么?
A
(2)把平分角的仪器放在角的两边,仪器的顶点
与角的顶点重合,且仪器的两边相等,怎样在作
图中体现这个过程呢?
(3)在平分角的仪器中,BC=DC,怎样在作图中
O
B
体现这个过程呢?
(4)你能说明为什么OC是∠AOB的平分线吗?
探究ቤተ መጻሕፍቲ ባይዱ知
已知: ∠AOB. 求作:∠AOB的平分线.
探究新知

人教版八年级数学课件-角的平分线的性质

人教版八年级数学课件-角的平分线的性质

1 2
O
C P EB
∴ △OPD≌△OPE(AAS)
∴PD=PE(全等三角形對應邊相等)
*
角平分線的性質
定理:角平分線上的點到角的兩邊的距離相等.
用符號語言表示為:
A D
∵∠1= ∠2 PD ⊥OA ,PE ⊥OB
∴PD=PE.
C
12
P
O
EB
*
如圖,要在S區建一個貿易市場,使它到鐵路和公路 距離相等, 離公路與鐵路交叉處500米,這個集貿市場 應建在何處?(比例尺為1︰20000)
s
*
【解析】 作夾角的角平分線OC,截取OD=2.5cm ,D即為所求. O
s
D C
*
反過來,到一個角的兩邊的距離相等的點是 否一定在這個角的平分線上呢? 已知:如圖,QD⊥OA,QE⊥OB, 點D、E為垂足,QD=QE. 求證:點Q在∠AOB的平分線上.
*
證明: ∵ QD⊥OA,QE⊥OB ∴ ∠QDO=∠QEO=90°(垂直的定義) 在Rt△QDO和Rt△QEO中 QO=QO(公共邊) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴點Q在∠AOB的平分線上
O ∵△OMC≌△ONC(SSS) ∴∠AOC=∠BOC 即OC 是∠AOB的角平分線.
A M
N
C B
*
將∠AOB對折,再折出一個直角三角形(使第一條折 痕為斜邊),然後展開,觀察兩次折疊形成的三條折痕, 你能得出什麼結論?
猜想:角的平分線上的點到角的兩邊的距離相等.
*
已知:OC平分∠AOB,點P在OC上,PD⊥OA於D,
12.3 角的平分線的性質
*
1.在探究作角平分線的方法和角平分線性質的過程中,掌握 角平分線的作法和角平分線的性質,發展數學直覺. 2.提高綜合運用三角形全等的有關知識的解決能力;掌握簡 單的角平分線在生產、生活中的應用.

八年级数学角平分线的性质定理及其逆定理

八年级数学角平分线的性质定理及其逆定理
求证:点P在∠MNO的平分线上
M
F
D P
O
E
N
挑战自我
如图,在△ABC中,已知AC=BC,∠C=900,AD
是△ABC的角平分线,DE⊥AB,垂足为E.
(1)如果CD=4cm,AC的长 (2)求证:AB=AC+CD.
A
E C B
D
独立作业
2
2.已知:如图,△ABC的外角∠CBD和∠BCE的 角平分线相交于点F. 求证:点F在∠DAE的平分线上. A
A
基本应用
填空: (1). ∵∠1= ∠2,DC⊥AC, DE⊥AB DC=DE ∴___________
C
1 2 E D B
(___________________________________________) 在角平分线上的点到角的两边的距离相等 (1). ∵DC⊥AC ,DE⊥AB ,DC=DE
总结归纳
1.角平分线的性质定理: 在角平分线上的点到角的两边的距离相等 2.角平分线的判定定理: 到一个角的两边的距离相等的点,在这个角平分线上。 3.性质定理和逆定理的关系
点在角平分线上 点到角两边的距离 相等 4.角平分线的性质定理是证明角相等、线段相等 的新途径.角平分线的逆定理是证明点在直线上 (或直线经过某一点)的根据之一.
思 考 分 析
二.角平分线性质定理的逆定理
逆定理: 到一个角的两边距离相等的 点,在这个角的平分线上.
用符号语言表示为: ∵PD⊥OA,PE⊥OB,垂足 分别是D,E,且PD=PE ∴点P在∠AOB的平分线上
A D O E P C
B
温馨提示:这个结论又是经常用来证明点在直线 上(或直线经过某一点)的根据之一.

人教版数学八年级上册 第十二章 12.3 角的平分线的性质 第一课时 课件(共33张PPT)

人教版数学八年级上册 第十二章 12.3 角的平分线的性质 第一课时 课件(共33张PPT)

PD⊥OA,PE⊥OB,且
O
P
PD=PE
E B ∴OP是∠AOB的平分线
动脑想一想
• 我们之间就学习了三角形的角分线,之前 谈到过,三条角分线一定交于一点,不过 当时我们没有给出证明,而只是通过画图 的方法给出了印证。
• 现在我们学习了角分线的性质和判定定理, 怎样证明这个结论呢?我们先看下面的例 题。
DC=BC(已知) ∴ △ADC≌△ABC (SSS) ∴∠DAC=∠BAC(对应角相等) 即 AE平分∠BAD
动脑想一想
• 通过刚才的启发,你能想到怎样画出下面 的角的平分线吗?
A
仅用尺规作图,
已知∠AOB,
求作∠AOB的
平分线
O
B
尺规法画角平分线
A M
O
NB
以点O为圆心,任意适当长度为半径画弧,
• 对折之后的折痕和 这个角有什么关系?
• 如果是木板不能对 折,该怎么平分?
动脑想一想
• 如图是一个平分角的仪器, 其中AB=AD,BC=DC,将 点A放在角的顶点,AB和 AD沿着角的两边放下,则 AC所在直线就是这个角的 平分线。
• 你能说明这是为什么吗?
动脑想一想
证明: 在△ADC和△ABC 中 AB=AD(已知) AC=AC(公共边相等)
角分线上的点到角两边的距离相等
A D
∵OC平分∠AOB,
O
P C PD⊥OA,PE⊥OB
∴PD=PE
EB
动脑想一想
• 如图,要在S区建一个 集贸中心,使它到铁路、 公路的距离相等,并且 离公路与铁路的交叉处 500m,这个集贸中心应 建在哪里?
动脑想一想
• 角分线上的点到角两边的距离相等。 • 到角的两边的距离相等的点是否也在角的

人教八年级数学上册《角的平分线的判定》(共18张)

人教八年级数学上册《角的平分线的判定》(共18张)
等于2 cm,则Q 在∠AOB 的平分线上.( ) √
A
M
Q
O
ห้องสมุดไป่ตู้
N
B
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与 铁路的距离相等.
(1) 这个集贸市场 应建于何处?这样的集贸市场可建 多少个?
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路 与铁路的距离相等.
学习重点: 角平分线性质定理的逆定理.
引言
问题1 如图,要在S 区建一个集贸市场,使它到 公路,铁路的距离相等,并且距离公路与铁路的交叉处500m
,请你帮忙设计一下,这个集贸市场应建于何(在图上 标 出它的位置,比例尺为1:20 000)?
探索并证明角平分线的性质定理的逆定理
问题2 交换角的平分线的性质中的已知和结论, 你能得到什么结论,这个新结论正确吗?
(1) 这个集贸市场 应建于何处?这样的集贸市场可 建多少个?
(在图上标出它的位置,比例尺为1:20 000)
应用角平分线性质定理的逆定理
2.在问题1中,在S 区建一个集贸市场,使它到公路与铁 路的距离相等.
(3)如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
角的内部到角的两边距离相等的点在角的平分线 上.
探索并证明角平分线的性质定理的逆定理
追问1 你能证明这个结论的正确性吗?
探索并证明角平分线的性质定理的逆定理
追问2 这个结论与角的平分线的性质在应用上有 什么不同?
这个结论可以判定角的平分线,而角的平分线的性 质可用来证明线段相等.

人教版数学八上第9讲角的平分线的性质(基础)知识讲解

人教版数学八上第9讲角的平分线的性质(基础)知识讲解

角的平分线的性质(基础)【学习目标】1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.3. 熟练运用角的平分线的性质解决问题.【要点梳理】要点一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.要点二、角的平分线的判定角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:若PE⊥AD于点E,PF⊥BD于点F,PE=PF,则PD平分∠ADB要点三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D、E为圆心,大于12DE的长为半径画弧,两弧在∠AOB内部交于点C.(3)画射线OC.射线OC即为所求.要点四、三角形角平分线的性质三角形三条角平分线交于三角形内部一点,此点叫做三角形的内心且这一点到三角形三边的距离相等.三角形的一内角平分线和另外两顶点处的外角平分线交于一点.这点叫做三角形的旁心.三角形有三个旁心.所以到三角形三边所在直线距离相等的点共有4个.如图所示:△ABC 的内心为1P ,旁心为234,,P P P ,这四个点到△ABC 三边所在直线距离相等.【典型例题】类型一、角的平分线的性质1.如图,∠ACB =90°,BD 平分∠ABC 交AC 于D ,DE ⊥AB 于E ,ED 的延长线交BC 的延长线于F. 求证:AE =CF.【思路点拨】利用角平分线的性质可得DE =DC ,为证明三角形全等提供了条件.【答案与解析】证明:∵BD 平分∠ABC ,DE ⊥AB,DC ⊥BF∴DE =DC (角的平分线上的点到角两边的距离相等)在△ADE 和△FDC 中DEA DCF DE DC ADE FDC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADE ≌△FDC(ASA)∴AE =CF【总结升华】有角平分线的条件,又有到角两边的垂线段,要考虑角平分线的性质定理.2、如图, △ABC中, ∠C = 90︒, AC = BC, AD平分∠CAB, 交BC于D, DE⊥AB于E, 且AB=6cm, 则△DEB的周长为( )A. 4cmB. 6cmC.10cmD. 以上都不对【答案】B;【解析】由角平分线的性质,DC=DE,△DEB的周长=BD +DE+BE =BD+DC+BE=AC+BE =AE+BE=AB=6.【总结升华】将△DEB的周长用相等的线段代换是关键.举一反三:AB AC=,则△ABD与△ACD 【变式】已知:如图,AD是△ABC的角平分线,且:3:2的面积之比为()A.3:2 B.3:2 C.2:3 D.2:3【答案】B;提示:∵AD是△ABC的角平分线,∴点D到AB的距离等于点D到AC的距离,又∵AB AC=,则△ABD与△ACD的面积之比为3:2.:3:23、如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连接DF、EF,则DF与EF的关系如何?证明你的结论.【思路点拨】利用角平分线的性质证明PD=PE,再根据“HL”定理证明△OPD≌△OPE,从而得到∠OPD =∠OPE ,∠DPF =∠EPF .再证明△DPF ≌△EPF ,得到结论.【答案与解析】解:DF =EF .理由如下:∵OC 是∠AOB 的角平分线,P 是OC 上一点,PD ⊥OA 交于点D ,PE ⊥OB 交于点E , ∴PD =PE ,由HL 定理易证△OPD ≌△OPE ,∴∠OPD =∠OPE ,∴∠DPF =∠EPF .在△DPF 与△EPF 中,PD PE DPF EPF PF PF =⎧⎪∠=∠⎨⎪=⎩,∴△DPF ≌△EPF ,∴DF =EF.【总结升华】此题综合运用了角平分线的性质、全等三角形的判定及性质.由角平分线的性质得到线段相等,是证明三角形全等的关键.类型二、角的平分线的判定4、已知,如图,CE ⊥AB,BD ⊥AC,∠B =∠C ,BF =CF.求证:AF 为∠BAC 的平分线.【答案与解析】证明: ∵CE ⊥AB,BD ⊥AC (已知)∴∠CDF =∠BEF =90°∵∠DFC =∠BFE(对顶角相等)∵ BF =CF(已知)∴△DFC ≌△EFB(AAS)∴DF =EF(全等三角形对应边相等)∵FE ⊥AB ,FD ⊥AC (已知)∴点F 在∠BAC 的平分线上(到一个角的两边距离相等的点在这个角的平分线上) 即AF 为∠BAC 的平分线【总结升华】应用角平分线性质及判定时不要遗漏了“垂直”的条件.如果遗漏了说明没有认识到“垂直”条件在证明结论的必要性.举一反三:【变式】如图,在△ABC 中,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,垂足分别是E ,F ,BE =CF .求证:AD 是△ABC 的角平分线.【答案】证明:∵DE ⊥AB ,DF ⊥AC ,∴Rt △BDE 和Rt △CDF 是直角三角形.BD DC BE CF =⎧⎨=⎩, ∴Rt △BDE ≌Rt △CDF (HL ),∴DE =DF ,∵DE ⊥AB ,DF ⊥AC ,∴AD 是角平分线.【巩固练习】一.选择题1. AD 是△ABC 的角平分线, 自D 点向AB 、AC 两边作垂线, 垂足为E 、F, 那么下列结论中错误的是( )A.DE = DFB. AE = AFC.BD = CDD. ∠ADE = ∠ADF2.如图,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn3. 如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 44. 到三角形三边距离相等的点是()A.三角形三条高线的交点B.三角形三条中线的交点C.三角形三边垂直平分线的交点 D.三角形三条内角平分线的交点5. 如图,下列条件中不能确定点O在∠APB的平分线上的是()A.△PBA≌△PDC B. △AOD≌△COBC. AB⊥PD,DC⊥PBD.点O到∠APB两边的距离相等.6. 已知,如图,AB∥CD,∠BAC、∠ACD的平分线交于点O,OE⊥AC于E,且OE=5cm,则直线AB与CD的距离为()A. 5cmB. 10cmC. 15cmD. 20cm二.填空题7.如图,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC 的长为_____cm.8. 如图,在△ABC中,∠C=90°,DE⊥AB,∠1=∠2,且AC=6cm,那么线段BE是△ABC的,AE+DE=。

人教版数学八年级上册1.2角平分线的性质定理的逆定理(角平分线的判定)课件

人教版数学八年级上册1.2角平分线的性质定理的逆定理(角平分线的判定)课件
O
定理的作用:判断点是否在角平分线上。
A D
P
EB
判断题: (1)如图,若QM =QN,则OQ 平分∠AOB;( ) (2)如图,若QM⊥OA 于M,QN⊥OB 于N,则OQ是
∠AOB 的平分线; ( ) (3)已知:Q 到OA 的距离等于2 cm, 且Q 到OB 距
离等于2cm,则Q 在∠AOB 的平分线上.( )
l1
l3
l2
P2
l1
P1
P3
P4
l3
l2
如图,在△ABC中,点O是△ABC内一点,且点O到△ABC 三边的距离相等.若∠A=40°,则∠BOC的度数为( A )
A.110° B.120° C.130° D.140°
解析:由已知,O到三角形三边的距离 相等,所以O是内心,即三条角平分线 的交点,AO,BO,CO都是角平分线, 所以有∠CBO=∠ABO=1 ∠ABC, ∠BCO=∠ACO=1 ∠ACB2, ∠ABC+∠ACB=1280°-40°=140°, ∠OBC+∠OCB=70°, ∠BOC=180°-70°=110°.
角平分线有什么关系?
点P在∠A的平分线上.
A
D
N
F
P
M
结论:
B
C
E
三角形的三条角平分线交于一点,并且这点到三边的距离相等。
如图,要在S 区建一个广告牌P,使它到两条公路和 一条铁路的距离都相等.这个广告牌P 应建在何处?
公路
公路
铁路 S
角的平分线的性质 角的平分线的判定
图形
C P
C P
已知 条件
三角形的内角平分线 活动1 分别画出下列三角形三个内角的平分线,你发现了什么?

人教版八年级数学上册(教案).2角平分线的判定

人教版八年级数学上册(教案).2角平分线的判定
4.培养学生的数学应用意识:结合生活实际,引导学生运用所学知识解决生活中的数学问题,提高数学应用能力。
5.培养学生的团队合作精神:在小组讨论、交流过程中,培养学生相互协作、共同解决问题的能力。
三、教学难点与重点
1.教学重点
-重点一:角平分线的定义及性质
-学生需要理解并掌握角平分线的定义,即从一个角的顶点出发,把这个角分成两个相等的角的射线。
-强调角平分线的性质,即它将角分成两个相等的角,这是后续解决问题的基础。
-重点二:角平分线的判定定理
-学生需要掌握如果一个射线把一个角分成两个相等的角,那么这个射线就是该角的平分线。
-通过实例讲解,让学生明白判定定理的应用,并在解题过程中加以运用。
-重点三:角平分线在实际问题中的应用பைடு நூலகம்
-学生需要学会将角平分线的概念和判定定理应用于解决实际问题,如几何图形的构造等。
此外,学生小组讨论的成果分享环节也暴露出一些问题。有些小组在分享时表达不够清晰,逻辑性不强。为了提高学生的表达能力和逻辑思维能力,我计划在接下来的课程中增加一些针对性的训练,如组织辩论赛、演讲比赛等。
在总结回顾环节,我发现部分学生对角平分线的应用还是有些模糊。在今后的教学中,我需要多举一些实际例子,让学生更好地理解角平分线在实际问题中的应用。
然而,在新课讲授环节,我发现有些学生对角平分线判定定理的理解不够深入。在今后的教学中,我需要更加注重引导学生通过实际操作和案例分析来掌握这个定理。此外,对于难点部分,我应该增加一些对比和变式的练习,帮助学生更好地突破难点。
在实践活动环节,分组讨论和实验操作进行得比较顺利,学生们也积极参与其中。但我觉得在引导与启发环节,我的问题设置还可以更加开放和有针对性,以激发学生的思维,提高他们的讨论效果。

人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

人教版八年级数学上册12.3.1角的平分线的性质(第1课时)

E
B
C
D
A
E
B
C
D
4.如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为6,OM=6, 则PN=_______ 。 2
N 0 M P
A
C B
*5.如图,△ABC中,AB=8厘米,∠C=90°, AC=BC,AD为∠BAC的平分线,DE⊥AB于 点E。求:△DBE的周长= 8厘米。
证明:连结MC,NC由作法知:
在△OMC和△ONC中 OM=ON MC=NC OC=OC ∵△OMC≌△ONC (SSS) ∴∠AOC=∠BOC 即:OC 是∠AOB的角平分线. M
A C
O
N
B
经历实验过程,发现并证明角的平分线的性质
P48 思考 利用尺规我们可以作一个角的平分线,那 么角的平分线有什么性质呢? 如图,任意作一个角∠AOB,作出∠A的平分线 OC,在OC 上任取一点P,过点 A P 画出OA,OB 的垂线,分别记 D 垂足为D,E,测量 PD,PE 并 C 作比较,你得到什么结论? P O
B
即点P到三边AB,BC,CA的距离相等
E
C
A
2. 如 图 , 在 △ ABC 中 , AC⊥BC , AD 为 ∠ BAC 的平分线,DE⊥AB,AB = 7 ㎝ , AC = 3 ㎝ , 求 BE= 4 CM. 3.如图,在△ABC中, ∠C=900,AD平分 ∠BAC交BC于点D,若 BC=8,BD=5,则点D 3 到AB的距离为_____
证明:∵ AD平分∠CAB, D是AD上一点(已知)
∵DE⊥AB,DC⊥AC(已知) ∴DC=DE(角平分线的性质) 在Rt△CDF和Rt△EDB 中 BD=FD (已知) DC=DE(已证) ∴Rt △CDF≌Rt△EDB (HL) ∴CF=EB(全等三角形对应边相等)

人教新版数学初二(八年级)上册垂直角平分线和角平分线综合题型归纳总结

人教新版数学初二(八年级)上册垂直角平分线和角平分线综合题型归纳总结

线段的垂直平分线与角平分线1 知识点1、线段垂直平分线的性质(1)垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等.定理的数学表示:如图1,∵ CD ⊥AB ,且AD =BD∴ AC =BC.定理的作用:证明两条线段相等 (2)线段关于它的垂直平分线对称. 2、线段垂直平分线的判定定理:到一条线段两个端点距离相等的点在这条线段的垂直平分线上. 定理的数学表示:如图2,∵ AC =BC∴ 点C 在线段AB 的垂直平分线m 上.定理的作用:证明一个点在某线段的垂直平分线上. 3、关于线段垂直平分线性质定理的推论(1)关于三角形三边垂直平分线的性质:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点.....的距离相等.性质的作用:证明三角形内的线段相等.(2)三角形三边垂直平分线的交点位置与三角形形状的关系:若三角形是锐角三角形,则它三边垂直平分线的交点在三角形内部; 若三角形是直角三角形,则它三边垂直平分线的交点是其斜边的中点;若三角形是钝角三角形,则它三边垂直平分线的交点在三角形外部. 反之,也成立。

4、角平分线的性质定理:角平分线的性质定理:角平分线上的点到这个角的两边的距离相等.定理的数学表示:如图4,∵ OE 是∠AOB 的平分线,F 是OE 上一点,且CF ⊥OA 于点C ,DF ⊥OB于点D , ∴ CF =DF.定理的作用:①证明两条线段相等;②用于几何作图问题; 角是一个轴对称图形,它的对称轴是角平分线所在的直线. 5、角平分线性质定理的逆定理:角平分线的判定定理:在角的内部到角的两边距离相等的点在这个角的角平分线上.图1图2图4定理的数学表示:如图5,∵点P 在∠AOB 的内部,且PC ⊥OA 于C ,PD ⊥OB 于D ,且PC =PD , ∴点P 在∠AOB 的平分线上.定理的作用:用于证明两个角相等或证明一条射线是一个角的角平分线注意角平分线的性质定理与判定定理的区别和联系. 6、关于三角形三条角平分线的定理: (1)关于三角形三条角平分线交点的定理:三角形三条角平分线相交于一点,并且这一点到三边的距离相等.定理的数学表示:如图6,如果AP 、BQ 、CR 分别是△ABC 的内角∠BAC 、 ∠ABC 、∠ACB 的平分线,那么:① AP 、BQ 、CR 相交于一点I ;② 若ID 、IE 、IF 分别垂直于BC 、CA 、AB 于点D 、E 、F ,则DI =EI =FI. 定理的作用:①用于证明三角形内的线段相等;②用于实际中的几何作图问题. (2)三角形三条角平分线的交点位置与三角形形状的关系:三角形三个内角角平分线的交点一定在三角形的内部.这个交点叫做三角形的内心(即内切圆的圆心).7、关于线段的垂直平分线和角平分线的作图:(1)会作已知线段的垂直平分线; (2)会作已知角的角平分线; (3)会作与线段垂直平分线和角平分线有关的简单综合问题的图形.图8BCD APBF2 垂直平分线题型例1、如图1,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 于点E ,△BCE 的周长等于18cm ,则AC 的长等于( ) A .6cm B .8cm C .10cm D .12cm【跟踪练习】(1)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果△EBC 的周长是24cm ,那么BC=_________;(2)如图,AB=AC=14cm,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果BC=8cm ,那么△EBC 的周长是______;(3)如图,AB=AC,AB 的垂直平分线交AB 于点D ,交AC 于点E , 如果∠A=28度,那么∠EBC=___.(如果BC=BE) Tip:求周长与角度变型:在△ABC 中,AB=AC ,AB 的垂直平分线与边AC 所在的直线相交所成锐角为50°,△ABC 的底角∠B 的大小为_______________。

八年级数学角平分线的性质

八年级数学角平分线的性质


互逆定理:
如果一个定理的逆命题经 过证明是真命题,那么它 也是一个定理。这两个定 理叫做互逆定理。其中一 个叫做另一个的逆定理。
例2:下列说法正确吗?如不正确试举反例
(1)每个命题都有逆命题; (2)一个定理的逆命题一定是真命题;
(3)每个定理都有逆定理;
(4)一个真命题的逆命题一定是真命题; (5)如果两个有理数相等,那么它们的 绝对值相等。此命题的逆命题为假命题
F M
B
E
C
练习:课本54页 第1题 小结:
1、理解原命题和逆命题之间的关 系。会写出一个命题的逆命题。 2、理解任意三角形内都有一点 到三边的距离相等。
作业:习题3.4第1、8、9题
; 211小说


他买五六级魔晶,那不知道要亏多少了. "行,这钱您收好,我走了,别送哈,以后有时间一定再来照顾你の生意."青年喜笑颜开,拿起五枚魔晶走出店门. 青年刚出店铺,店门口一名白衣少女快速の靠了过来,低声说道:"哥,买好了吗?" 不错,两人正是白重炙兄妹.见妹妹询问,白重炙点了点 头,像做贼一样,左右看了看,也低声说道:"好了,回去再说." 两人快速の走动,离开了牛栏街,从白家堡小门拐进自家小院. "嘿嘿,今天买了五枚魔晶,每枚比昨天还便宜了十晶币." 进了房间,白重炙把魔晶丢在桌子上,喝了口水笑着说道,似乎对于今天の战绩很满意. "哥哥,好厉害,快把 小白召唤出来,给它吃吧."夜轻语拿起一枚魔晶,开心笑了起来,对她来说,这世界没什么让她开心の事,只要哥哥开心她就什么都开心. "恩,小白出来吃饭了."白重炙点了点头,召唤战智小白. 一道白色气流从白重炙胸口溢出,慢慢凝结,最后变成巴掌大の战智小白.小白好像

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)-2023年新八年级数学核心知识点与常见题型(人教版)(解析版)

角平分线的性质(4种题型)【知识梳理】一、角的平分线的性质角的平分线的性质:角的平分线上的点到角两边的距离相等.要点诠释:用符号语言表示角的平分线的性质定理:若CD平分∠ADB,点P是CD上一点,且PE⊥AD于点E,PF⊥BD于点F,则PE=PF.二、角的平分线的逆定理角平分线的判定:角的内部到角两边距离相等的点在角的平分线上.要点诠释:用符号语言表示角的平分线的判定:三、角的平分线的尺规作图角平分线的尺规作图(1)以O为圆心,适当长为半径画弧,交OA于D,交OB于E.(2)分别以D 、E 为圆心,大于DE 的长为半径画弧,两弧在∠AOB 内部交于点C. (3)画射线OC.射线OC 即为所求. 【考点剖析】题型一:角平分线性质定理 例1.(2023春·陕西榆林·八年级校考期末)如图,在四边形ABCD 中,90B C ∠=∠=︒,点E 为BC 的中点,且AE 平分BAD ∠.求证:DE 是ADC ∠的平分线.【详解】证明:如图,过点E 作EF AD ⊥于点F ,∴90B Ð=°,AE 平分BAD ∠,∴BE EF =.∴点E 是BC 的中点,∴BE CE =,∴CE EF =.又∵90C ∠=︒,EF AD ⊥,∴DE 是ADC ∠的平分线.【变式1】(2023春·山西太原·七年级校考阶段练习)如图,ABC 中,90C ∠=︒,AD 平分BAC ∠,5AB =,2CD =,求ABD △的面积.12【答案】5【详解】解:作DE AB ⊥如图,∵AD 平分BAC ∠,90C ∠=︒,2CD =,∴=2CD DE =,1152522ABD S AB DE ∴=⨯⨯=⨯⨯=△.【变式2】(2023春·湖南常德·八年级统考期末)如图,点P 是ABC 的三个内角平分线的交点,若ABC 的周长为24cm ,面积为236cm ,则点P 到边BC 的距离是( )A .8cmB .3cmC .4cmD .6cm【答案】B 【详解】解:过点P 作PD AB ⊥于,PE BC ⊥于E ,PF AC ⊥于F ,如图,∵点P 是ABC 的内角平分线的交点,∴PE PF PD ==,又ABC 的周长为24cm ,面积为236cm ,∴()11112222ABC S AB PD BC PE AC PF PE AB BC AC =⋅+⋅+⋅=++,∴124363PE ⨯⨯=∴3cm PE =【变式3】(湖南省郴州市2022-2023学年八年级下学期期末数学试题)如图,在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥于点E .如果8AC =,那么AD DE +=______.【答案】8【详解】解:∵在ABC 中,90ACB ∠=︒,BD 平分ABC ∠,DE AB ⊥,∴CD DE =,∵8AC =,∴8AD DE AD CD AC +=+==, 【变式4】(2023春·广东深圳·七年级统考期末)把两个同样大小的含30︒角的三角尺像如图所示那样放置,其中M 是AD 与BC 的交点,若4CM =,则点M 到AB 的距离为______.【答案】4【详解】解:由题意,得:90,30D C ABC DAB ∠=∠=︒∠=∠=︒,∴,60MC AC CAB ⊥∠=︒,∴30MAC BAC MAB MAB ∠=∠−∠=︒=∠,∴AM 平分DAB ∠,过点M 作MN AB ⊥,交AB 于点N ,∴4MN MC ==.故答案为:4.【变式5】如图,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,垂足分别为H 、N 、M .已知ABC 的周长为15cm ,3cm PH =,则ABC 的面积为______2cm .【答案】22.5【详解】解:连接PM 、PN 、PH ,P 为ABC 三条角平分线的交点,PH 、PN 、PM 分别垂直于BC 、AC 、AB ,3cm PM PN PH ∴===,ABC ∴∆的面积ΔAPB =的面积ΔBPC +的面积ΔAPC +的面积111222AB PM BC PH AC PN =⨯⨯+⨯⨯+⨯⨯ 1()32AB BC AC =++⨯222.5(cm )=.七年级校考期末)如图,在ABC 中,【答案】(1)32︒ (2)6【详解】(1)解:∵40B ∠=︒,76C ∠=︒,∴180407664BAC ∠=︒−︒−︒=︒,∵AD 平分BAC ∠, ∴1322BAD BAC ∠=∠=︒;(2)如图,过点D 作DF AB ⊥于点F ,∵AD 平分BAC ∠,DE AC ⊥,∴DF DE =,∵2DE =,6AB =,∴2DF =, ∴ABD △的面积12662=⨯⨯=.题型二:角平分线性质定理及证明 ,且PMN 与OMN 的面积分别是【答案】(1)证明过程见详解(2)20OM ON +=【详解】(1)证明:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,∵MP 平分AMN ∠,NP 平分MNB ∠,∴PD PE =,PC PE =,∴PD PE =,∵PD AO PE BO ⊥⊥,,∴OP 平分AOB ∠.(2)解:如图所示,过P 作PC MN PD OA PE OB ⊥⊥⊥,,,连接OP ,∵18162PMN MN S MN PC ===△,,∴4PC =,由(1)可知4PD PE PC ===,∵1624PMN OMN S S ==△△,,∴40MONP S =四边形,即1122OPM ONP MONP S S S OM PD ON PE =+=+△△四边形,∴1140442222OM ON OM ON =⨯+⨯=+,∴20OM ON +=. 【变式1】(2022秋·河南安阳·八年级校考阶段练习)如图,点E 是BC 的中点,AB BC DC BC ⊥⊥,,AE 平分BAD ∠.求证:(1)DE 平分ADC ∠;(2)AD AB CD +=.【详解】(1)证明:如下图,过E 作EF AD ⊥于F ,∵AB BC ⊥,AE 平分BAD ∠,∴EB EF =,∵点E 是BC 的中点,∴EB EC =,∴EF EC =,∵DC BC EF AD ⊥⊥,,∴90EFD ECD ∠∠︒==,在Rt EFD 和Rt ECD △中,EF EC ED ED =⎧⎨=⎩,∴Rt Rt HL EFD ECD ≌(),∴FDE CDE ∠∠=,∴DE 平分ADC ∠;(2)解:由(1)知,Rt Rt EFD ECD ≌,∴FD CD =,在Rt AEF 和Rt AEB 中,EF EB AE AE =⎧⎨=⎩,∴Rt Rt HL AEF AEB ≌(),∴AF AB =,∵AD AF FD +=,∴AD AB CD +=.【变式2】(2022秋·北京朝阳·八年级校考期中)如图,在ABC ∆中,90C ∠=︒,DE AB ⊥,于点E ,AD 平分CAB ∠,点F 在AC 上,BD DF =.求证:BE FC =.【详解】证明:∵AD 平分CAB ∠,90C ∠=︒,DE AB ⊥,∴DE DC =,90C DEB ∠=∠=︒,∴在Rt DEB ∆和Rt DCF ∆中,∵DE DC BD DF =⎧⎨=⎩,∴()HL DEB DCF ∆≅∆,∴BE FC =.(1)求证:BE =CD ;(2)判断点O 是否在∠BAC 的平分线上,并说明理由.(1)证明:BE 、CD 是ABC ∆的高,且相交于点O ,90∴∠=∠=︒BEC CDB ,在BDO ∆和CEO ∆中,90CDB BEC BOD COEBD CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,BOD COE ∴∆≅∆(AAS),OD OE ∴=,OB OC =,OD OC OE OB ∴+=+,即CD BE =;(2)解:点O 在BAC ∠的平分线上,理由如下: 连接AO ,如图所示:BE 、CD 是ABC ∆的高,且相交于点O , 90ADC AEB ∴∠=∠=︒,由(1)得BE CD =,∴在ABE ∆和ACD ∆中,90ADC AEB CAD BAE CD BE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,ACD ABE ∴∆≅∆(AAS), AD AE ∴=,由(1)得OD OE =,∴在AOD ∆和AOE ∆中,90AD AE ADC AEB OD OE =⎧⎪∠=∠=︒⎨⎪=⎩,AOD AOE ∴∆≅∆(SAS),DAO EAO ∴∠=∠, ∴点O 在BAC ∠的平分线上.题型三:角平分线的判定定理 例3.如图,90B C ∠=∠=︒,M 是BC 的中点,AM 平分DAB ∠,求证:DM 平分ADC ∠.【详解】证明:如图:过点M 作ME AD ⊥,垂足为E ,AM 平分DAB ∠,MB AB ⊥,ME AD ⊥,ME MB =∴(角平分线上的点到角两边的距离相等),又MC MB =,ME MC ∴=,MC CD ⊥,ME AD ⊥,DM ∴平分ADC ∠(到角的两边距离相等的点在这个角的平分线上).【详解】(1)证明:如图,过点E 作EF DA ⊥于点F ,∵90C ∠=︒,DE 平分ADC ∠,∴CE EF =,∵E 是BC 的中点,∴BE CE =,∴BE EF =,又∵90B Ð=°,EF DA ⊥,∴AE 平分DAB ∠.(2)解:∵EF DA ⊥,90C ∠=︒,∴EFD △和ECD 都为Rt △,又∵DE 平分ADC ∠,∴EC EF =,在Rt EFD 和Rt ECD △中,ED ED EC EF =⎧⎨=⎩,∴()Rt Rt HL EFD ECD △≌△, ∴EFD ECD S S =△△,CED FED ∠=∠,∵EF DA ⊥,90B Ð=°,∴EFA △和EBA △都为Rt △,又∵AE 平分DAB ∠,∴EF EB =,在Rt EFA △和Rt EBA △中,EA EA EF EB =⎧⎨=⎩,∴()Rt Rt HL EFA EBA △≌△, ∴EFA EBA S S =△△,FEA BEA ∠=∠, ∴()111809022DEA DEF AEF CEF BEF ∠=∠+∠=∠+∠=⨯︒=︒, ∵4AE =,3DE =, ∴1143622AED S AE DE =⋅=⨯⨯=△, ∴EFD ECD EFA EBA ABCD S S S S S =+++△△△△四边形EFD EFD EFA EFA S S S S =+++△△△△()2EFD EFA S S =+△△2AED S =△ 26=⨯12=.∴四边形ABCD 的面积为12. 【变式2】如图,在AOB 和COD △中,OA OB =,OC OD =(OA OC <),AOB COD α∠=∠=,直线AC ,BD 交于点M ,连接OM .(1)求证:AC BD =;(2)用α表示AMB ∠的大小;(3)求证:OM 平分AMD ∠.【详解】(1)证明:AOB COD α∠=∠=,AOB BOC COD BOC ∴∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩,()SAS AOC BOD ∴≌, ∴AC BD =,(2)解:由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,由(1)得()SAS AOC BOD ≌△△,∴OAC OBD ∠=∠,AMB AOB α∴∠=∠=,(3)证明:作OG AM ⊥于G ,OH DM ⊥于H ,如图所示,则90OGA OHB ∠=∠=︒,在OAG △和OBH △中,OGA OHB OAC OBDOA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS OAG OBH ∴≌, OG OH ∴=,OG AM ⊥于G ,OH DM ⊥于H ,MO ∴平分AMD ∠,是ABC 的角平分线,且交于点(1)APB ∠=______.(2)求证:点P 在C ∠的平分线上.【详解】(1)解:证明:60C ∠=︒,AE ,BD 是ABC 的角平分线,12ABP ABC ∴∠=∠,12BAP BAC ∠=∠,11()(180)6022BAP ABP ABC BAC C ∴∠+∠=∠+∠=︒−∠=︒, 120APB ∴∠=︒;(2)如图,过P 作PF AB ⊥,PG AC ⊥,PH BC ⊥,AE ,BD 分别平分CAB ∠,CBA ∠,PF PG ∴=,PF PH =,PH PG ∴=,∴点P 在C ∠的平分线上;(3)如图,在AB 上取点M 使AM AD =,连接PM ,AE 是BAC ∠的平分线,PAM PAD ∴∠=∠, 在AMP 与ADP △中,AP AP PAM PADAM AD =⎧⎪∠=∠⎨⎪=⎩,()SAS AMP ADP ∴≌, 18060APM APD APB ∴∠=∠=︒−∠=︒,180()60BPM APM APD ∴∠=︒−∠+∠=︒,60BPE APD ∠=∠=︒,BPM BPE ∴∠=∠,BD Q 是ABC ∠的角平分线,MBP EBP ∴∠=∠,在BPM △与BPE 中,MBP EBP BP BPBPE BPM ∠=∠⎧⎪=⎨⎪∠=∠⎩,()ASA BPM BPD ∴≌,BM BE ∴=, AB AM BM AD BE ∴=+=+. (1)如图1,连接AC BD ,,交点为G ,连接OG ,求证:①AC BD =;②OG 平分DGC ∠;(2)如图2,若90AOD BOC ∠=∠=︒,E 是CD 的中点,过点在同一条直线上.∴AOD AOB BOC AOB ∠+∠=∠+∠,∴AOB AOC ∠=∠,又∵OA OD =,OB OC =,∴()SAS DOB AOC V V ≌,∴AC BD =;②如图所示,过点O 作OH DB ⊥于点H ,OF AC ⊥于点F ,∵DOB AOC ≌,OH DB ⊥,OF AC ⊥∴OH OF =,∴点O 在DGC ∠的角平分线上,∴OG 是DGC ∠的角平分线,∴OG 平分DGC ∠;(2)证明:连接OE ,并延长到N ,使NE OE =,连接CN ,∵E 是CD 的中点,∴CE DE =,又∵CEN DEO ∠=∠,NE OE =,∴()SAS CEN DEO ∠V V ≌,∴NCE ODE ∠=∠,CN OD =,∴CN OD ∥,∴180OCN COD CN OA ∠+∠=︒=,,90AOD BOC ∠=∠=︒,180AOB COD ∴∠+∠=︒,OCN AOB ∴∠=∠,在ONC 和BAO 中,OC OB OCN AOBCN OA =⎧⎪∠=∠⎨⎪=⎩,()SAS ONC BAO ∴≌, NOC ABO ∴∠=∠,OF AB ⊥,90ABO BOF ∴∠+∠=︒,90NOC BOF ∴∠+∠=︒,180NOC BOF BOC ∴∠+∠+∠=︒,∴点E O F ,,在同一条直线上.题型四:尺规作图—作角平分线 例4.(2023春·陕西榆林·七年级校考期末)如图,已知ABC ,利用尺规,在AC 边上求作一点D ,使得ABD DBC ∠=∠.(保留作图痕迹,不写作法)【详解】解:如图点D 即为所求..【变式1】(2023春·福建福州·七年级福建省福州第十九中学校考期末)如图,Rt ABC △中,90BAC ∠=︒,AD 为BC 边上的高.(1)尺规作图,在AB 边上求作点P ,使得点P 到边BC 的距离等于AP (保留作图痕迹,不写做法):(2)连接CP (P 为所求作的点)交AD 于点Q ,若30B ∠=︒,求AQC ∠的度数.【详解】(1)解:如图:点P 即为所求;作法:作ACB ∠的角平分线,与AB 的交点P 即为所求;理由:∵CP 是ACB ∠的角平分线,∴点P 到AC 的距离等于点P 到BC 的距离,∵90BAC ∠=︒,∴点P 到AC 的距离即为PA 的值,故点P 到边BC 的距离等于AP .(2)解:如图:∵90BAC ∠=︒,30B ∠=︒,∴180903060ACB ∠=︒−−︒=︒,又∵AD 为BC 边上的高,∴90ADC ∠=︒,∴180906030DAC ∠=︒−−︒=︒,由(1)可知CP 是ACB ∠的角平分线, ∴1302ACQ QCD ACB ∠=∠=∠=︒,∴1803030128001ACQ DAC AQC ∠−∠=︒−︒−︒=︒∠=︒−. 【变式2】(2023·甘肃兰州·统考中考真题)综合与实践问题探究:(1)如图1是古希腊数学家欧几里得所著的《几何原本》第1卷命题9:“平分一个已知角.”即:作一个已知角的平分线,如图2是欧几里得在《几何原本》中给出的角平分线作图法:在OA 和OB 上分别取点C 和D ,使得OC OD =,连接CD ,以CD 为边作等边三角形CDE ,则OE 就是AOB ∠的平分线.请写出OE 平分AOB ∠的依据:____________;类比迁移:(2)小明根据以上信息研究发现:CDE 不一定必须是等边三角形,只需CE DE =即可.他查阅资料:我国古代已经用角尺平分任意角.做法如下:如图3,在AOB ∠的边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同刻度分别与点M ,N 重合,则过角尺顶点C 的射线OC 是AOB ∠的平分线,请说明此做法的理由;拓展实践:(3)小明将研究应用于实践.如图4,校园的两条小路AB 和AC ,汇聚形成了一个岔路口A ,现在学校要在两条小路之间安装一盏路灯E ,使得路灯照亮两条小路(两条小路一样亮),并且路灯E 到岔路口A 的距离和休息椅D 到岔路口A 的距离相等.试问路灯应该安装在哪个位置?请用不带刻度的直尺和圆规..........在对应的示意图5中作出路灯E 的位置.(保留作图痕迹,不写作法)【详解】解:(1)∵OC OD =,CE DE =,DE DE =,∴()SSS OCE ODE ≌,∴AOE BOE ∠=∠,∴OE 是AOB ∠的角平分线;故答案为:SSS(2)∵OM ON =,CM CN =,OC OC =,∴()SSS OCM OCN ≌,∴AOC BOC ∠=∠,∴OC 是AOB ∠的角平分线;(3)如图,点E 即为所求作的点;. 【变式3】(2023春·重庆九龙坡·七年级校考期末)如图,已知在ABC 中,90BAC ∠=︒,AD BC ⊥于点D .(1)尺规作图:作ABC ∠的平分线交AC 于点E ,交AD 于点F ;(要求:保留作图痕迹,不写作法,不下结论)(2)在(1)的条件下,求证:AFE AEF ∠=∠.AD BC ⊥90ADB ∴∠=︒∴__________90BFD +∠=︒又BFD ∠=__________FBD ∴∠+__________90=︒90BAC ∠=︒ABF ∴∠+__________90=︒BF 平分ABC ∠ABF ∴∠=__________AFE AEF ∴∠=∠.【详解】(1)如图所示,(2)AD BC ⊥90ADB ∴∠=︒∴FBD ∠90BFD +∠=︒又BFD ∠=AEF ∠FBD ∴∠+AEF ∠90=︒90BAC ∠=︒ABF ∴∠+AFE ∠90=︒ BF 平分ABC ∠ABF ∴∠=FBD ∠AFE AEF ∴∠=∠.故答案为:FBD ∠;AEF ∠;AEF ∠;AFE ∠;FBD ∠.【过关检测】一、单选题 1.(2023春·四川泸州·八年级统考期末)如图,70AOB ∠=︒,点C 是AOB ∠内一点,CD OA ⊥于点D ,CE OB ⊥于点E .且CD CE =,则DOC ∠的度数是( )A .30︒B .35︒C .40︒D .45︒【答案】B【分析】根据角平分线的判定定理可得OC 平分AOB ∠,再计算角度.【详解】解:∵CD OA ⊥,CE OB ⊥,CD CE =,∴OC 平分AOB ∠, ∴1352DOC AOB ∠=∠=︒,故选C .【点睛】本题主要考查了角平分线的判定,注意:到角的两边距离相等的点在角平分线上. 2.(陕西省榆林市高新区2022-2023学年七年级下学期期末数学试题)如图,在Rt ABC △中,ABC ∠的平分线BD 交AC 于点D ,过点D 作DE AB ⊥交AB 于点E .若9cm CD =,则点D 到AB 的距离是( )A .9cmB .6cmC .4.5cmD .3cm【答案】A 【分析】根据角平分线的性质,角平分线上的点到角两边的距离相等,即可求解.【详解】∵BD 平分ABC ∠,DE AB ⊥,AC BC ⊥,∴9DC DE ==,∴点D 到AB 的距离是9cm .故选:A .【点睛】本题考查角平分线的性质,解题的关键是掌握角平分线的性质.3.(2023春·河南焦作·七年级校考期末)如图,在四边形ABCD 中,90A ∠=︒,3AD =,连接BD ,BD CD ⊥,ADB C ∠=∠.若P 是BC 边上一动点,则DP 的长不可能是( )【答案】A【分析】根据余角的性质可得ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,再根据垂线段最短即可得到答案.【详解】解:∵90A ∠=︒,BD CD ⊥,∴90,90ABD ADB CBD C ∠+∠=︒∠+∠=︒,∵ADB C ∠=∠,∴ABD CBD ∠=∠,即BD 平分ABC ∠,作DE BC ⊥于E ,则3AD DE ==,∵P 是BC 边上一动点,则DP DE ≥,即3DP ≥,∴DP 的长不可能是52;故选:A .【点睛】本题考查了直角三角形的性质和角平分线的性质,得出BD 平分ABC ∠是解题的关键.A .12∠=∠且CM DM =B .13∠=∠且CM DM =C .12∠=∠且OD DM =D .23∠∠=且OD DM =【答案】A 【分析】由作图过程可得:,OD OC CM DM ==,再结合DM DM =可得()SSS COM DOM ≌,由全等三角形的性质可得12∠=∠即可解答.【详解】解:由作图过程可得:,OD OC CM DM ==,∵DM DM =,∴()SSS COM DOM ≌.∴12∠=∠.∴A 选项符合题意;不能确定OC CM =,则13∠=∠不一定成立,故B 选项不符合题意;不能确定OD DM =,故C 选项不符合题意,OD CM ∥不一定成立,则23∠∠=不一定成立,故D 选项不符合题意.故选A .【点睛】本题主要考查了角平分线的尺规作图、全等三角形的判定与性质等知识点,理解尺规作图过程是解答本题的关键. ,ABC 的面积为,则ABC 的周长为( A .4B .6C .24D .12【答案】C 【分析】过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,根据角平分线的性质可得1EG EF ED ===,然后根据三角形的面积公式进行计算即可解答.【详解】解:过点E 作EF AB ⊥,垂足为F ,过点E 作EG AC ⊥,垂足为G ,∵BE 平分ABC ∠,ED BC ⊥,EF AB ⊥,∴1EF ED ==,∵CE 平分ACB ∠,ED BC ⊥,EG AC ⊥,∴1ED EG ==,∴ABC 的面积ABE =的面积BEC +△的面积AEC +△的面积()11111122222AB EF BC ED AC EG AB BC AC =⋅+⋅+⋅=⨯⨯++=,∴24AB BC AC ++=,即ABC 的周长为24.故选:C .【点睛】本题考查了角平分线的性质,根据题目的已知条件并结合图形添加适当的辅助线是解题的关键.A .3PD =B .3PD <C .3PD ≤ D .3PD ≥【答案】D 【分析】根据角平分线的性质得到3PF =,再根据垂线段最短即可解答.【详解】解:过点P 作PE AB ⊥于点E ,过点P 作PF BC ⊥于点F ,∵点P 在ABC ∠的平分线上,∴PE PF =, ∵3PE =,∴3PF =,∴根据垂线段最短可知:3PD ≥,故选D .【点睛】本题考查了角平分线的性质,垂线段最短,掌握角平分线的性质是解题的关键. 八年级统考期末)如图,在ABC 中, A .83 B .43 【答案】D【分析】由题意可求DC 的长,由角平分线的性质可求解.【详解】解:如图,过点D 作DH AB ⊥,垂足为H ,∵143AC DC AC ==,,∴1DC =,∵BD 平分ABC ∠,90C DH AB =︒∠,⊥,∴1CD DH ==,∴点D 到AB 的距离等于1,故选:D .【点睛】本题考查了角平分线的性质,熟练运用角平分线的性质是本题的关键.8.(2023春·湖南娄底·八年级统考期末)如图,三条公路把A ,B ,C 三个村庄连成一个三角形区域,现决定在这个三角形区域内修建一个集贸市场,要使集贸市场到三条公路的距离相等,则这个集贸市场应建在( )A .三角形三个内角的角平分线的交点B .三角形三条边的垂直平分线的交点C .三角形三条高的交点D .三角形三条中线的交点【答案】A 【分析】根据角平分线上的点到角的两边的距离相等解答即可.【详解】解:根据角平分线的性质,集贸市场应建在三个角的角平分线的交点处.故选:A .【点睛】本题主要考查了角平分线上的点到角的两边的距离相等的性质,熟记性质是解题的关键.9.(2023春·陕西榆林·八年级统考期末)如图,OD 平分AOB ∠,DE AO ⊥于点E ,5DE =,F 是射线OB 上的任意一点,则DF 的长度不可能是( )【答案】A 【分析】过D点作DH OB ⊥于H ,根据角平分线的性质得5DH DE ==,再利用垂线段最短得到5DF ≥,然后对各个选项进行判断即可,【详解】过D点作DH OB ⊥于H ,OD 平分AOB ∠,DE OA ⊥,DH OB ⊥,5DH DE ∴==,DF DH ≥,5DF ∴≥,故选A【点睛】本题考查了角平分线的性质:角的平分线上的点到角的两边的距离相等,也考查了垂线段最短,掌握角平分线的性质是解题的关键. 10.(2023春·河南开封·七年级统考期末)如图,在ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥于E ,则下列结论:①DE CD =;②AD 平分CDE ∠;③BAC BDE ∠=∠;④BE AC AB +=,其中正确的是( )A .1个B .2个C .3个D .4个【答案】D 【分析】①根据角平分线的性质得出结论:DE CD =;②证明ACD AED △≌△,得AD 平分CDE ∠;③由四边形的内角和为360︒得180CDE BAC ∠+∠=︒,再由平角的定义可得结论是正确的;④由ACD AED ∆≅∆得AC AE =,再由AB AE BE =+,得出结论是正确的.【详解】解:①90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,DE CD ∴=;所以此选项结论正确;②DE CD =,AD AD =,90ACD AED ∠=∠=︒,ACD AED ∴≌,ADC ADE ∴∠=∠,AD ∴平分CDE ∠,所以此选项结论正确;③90ACD AED ∠=∠=︒,3609090180CDE BAC ∴∠+∠=︒−︒−︒=︒,180BDE CDE ∠+∠=︒,BAC BDE ∴∠=∠,所以此选项结论正确;④ACD AED ≌,AC AE ∴=,AB AE BE =+,BE AC AB ∴+=,所以此选项结论正确;本题正确的结论有4个,故选D .【点睛】本题考查了全等三角形性质和判定,同时运用角平分线的性质得出两条垂线段相等;本题难度不大,关键是根据HL 证明两直角三角形全等,根据等量代换得出线段的和,并结合四边形的内角和与平角的定义得出角的关系.二、填空题 七年级统考期末)如图,在ABC 中,ABC 的内部相交于点 【答案】5【分析】先根据尺规作图描述得出AD 为BAC ∠的角平分线,再根据角平分线的性质得到点D 到AB 的距离5DE =,进而求出三角形的面积.【详解】由作法得AD 平分BAC ∠,如图所示,过点D 作DE AB ⊥于E ,∵90ACB ∠=︒,根据角平分线的性质,得43DC DE ==,ABD ∴的面积114102233AB DE AB =⋅⋅=⨯⨯=. ∴5AB =,故答案为:5.【点睛】本题考查角平分线的性质,解决本题的关键是熟知角平分线的性质并灵活应用.【答案】2【分析】根据尺规作图可得BF 平分ABC ∠,再利用角平分线的性质定理可得出2DF CF ==,最后根据垂线段最短即可得出FH 的最小值是2.【详解】解:如图,过点F 作FD AB ⊥于D .由作图可知,BF 平分ABC ∠,∵FC BC ⊥,FD AB ⊥,∴2DF CF ==.根据垂线段最短可知,FH 的最小值为DF 的长,即为2.故答案为:2.【点睛】本题主要考查角平分线的性质,垂线段最短,解题的关键在于能够准确判断出BF 是ABC ∠的角平分线.13.(2023春·重庆沙坪坝·七年级重庆八中校考期末)如图,Rt ABC △中,90C ∠=︒,AD 平分BAC ∠交BC 于点D ,E 为线段AC 上一点,连接DE ,且B CED ∠=∠.若16AB =,6CE =,则AE 的长为________.【答案】4【分析】过点D 作DF AB ⊥于点F ,由角平分线的性质得出DC DF =,证明DCE DFB ≌,得出BF CE =,求出AF ,由HL 证明Rt Rt ADC ADF ≌,得出AC AF =,即可求出结果.【详解】解:过点D 作DF AB ⊥于点F ,如图所示:∵90C ∠=︒,AD 平分BAC ∠交BC 于点D ,,∴DC DF =,在DCE △和DFB △中,90=BFD DCE B CEDDC DF ∠=∠=︒⎧⎪∠=∠⎨⎪⎩,∴()AAS DCE DFB ≌,∴6BF CE ==,∴10AF AB BF =−=,在Rt ADC 与Rt ADF 中,==DC DF AD AD ⎧⎨⎩,∴Rt Rt ADC ADF ≌,∴10AC AF ==,∴1064AE AC CE =−=−=.故答案为:4.【点睛】此题考查全等三角形的判定和性质和角平分线的性质,解题的关键是作出辅助线,构造全等三角形,根据HL 证明直角三角形的全等解答.【答案】30【分析】由作图可知OC 是AOB ∠的角平分线,根据角平分线的定义即可得到答案.【详解】解:由题意可知,OC 是AOB ∠的角平分线,∴11603022AOC AOB ∠=∠=⨯︒=︒.故答案为:30【点睛】此题考查角平分线的作图、角平分线相关计算,熟练掌握角平分线的作图是解题的关键.,则POD 的面积是【答案】6【分析】过点P 作PF OB ⊥交OB 于点F ,由作图可知OP 是AOB ∠的平分线,根据角平分线的性质得3PF PC ==,即可求得POD 的面积.【详解】解:如图,过点P 作PF OB ⊥交OB 于点F ,由作图可知,OP 是AOB ∠的平分线,∵PC OA ⊥,PF OB ⊥,∴3PF PC ==,∴POD 的面积为:162OD PF ⋅=,故答案为:6.【点睛】本题考查了尺规作角平分线以及角平分线的性质定理:角平分线上的点到角两边的距离相等.16.(2023春·山东泰安·七年级统考期末)如图,在锐角ABC 中,60BAC ∠=︒,BE 、CD 为ABC 的角平分线.且BE 、CD 交于点F ,连接AF .有下列四个结论:①120BFC ∠=︒;②BD CE =;③BC BD CE =+;④FBD FEC FBC S S S +=△△△.其中结论正确的序号是__________ .【答案】①③④【分析】根据角平分线的定义和三角形内角和定理求出BFC ∠;在BC 上取BM BD =,证明()SAS DBF MBF ≌△△,再证明()ASA MCF ECF ≌△△;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,根据角平分线的性质和三角形面积公式分别对各个结论进行判断即可.【详解】解:∵ABC 的两条角平分线BE 和CD 交于点F ,60BAC ∠=︒,∴FBC FCB∠+∠()12ABC ACB =∠+∠()11802BAC ︒=−∠()1180602=⨯︒−︒60=︒, ∴()180********BFC FBC FCB ∠=︒−∠+∠=︒−︒=︒,故结论①正确; ∴18060BFD BFC CFE Ð=°-Ð=°=Ð,在BC 上取BM BD =,∵BE 平分ABC ∠,∴DBF MBF Ð=Ð,在DBF 和MBF V 中,BD BM DBF MBFBF BF =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS DBF MBF ≌△△, ∴60BFD BFM ∠=∠=︒,∴1206060CFM BFC BFM ∠=∠−∠=︒−︒=︒,∴60CFM CFE ∠=∠=︒,∵CD 平分ACB ∠,∴MCF ECF ∠=∠,在MCF △和ECF △中,CFM CFE CF CFMCF ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴()ASA MCF ECF ≌△△, ∴CM CE =,∴BC BM CM BD CE =+=+,故结论③正确;∵没有条件得出点M 是BC 的中点,∴不能得出BD 与CE 一定相等,故结论②错误;过点F 作FG AB ⊥于点G ,FH AC ⊥于点H ,FK BC ⊥于点K ,∵BE 、CD 为ABC 的角平分线,∴FG FK =,FK FH =,∴FG FK FE ==, ∵12FBD S BD FG =⋅△,12FEC S EC FH =⋅△,12FBC S BC FK =⋅△,∴FBD FEC S S +△△1122BD FG EC FH =⋅+⋅ 1122BM FK MC FK =⋅+⋅ ()12BM MC FK =+⋅ 12BC FK =⋅FBC S =△,∴FBD FEC FBC S S S +=△△△,故结论④正确,∴结论正确的序号是①③④.故答案为:①③④.【点睛】本题考查角平分线的性质,全等三角形的判定与性质,三角形内角和定理,三角形的面积,作出辅助线构造全等三角形是解题的关键.三、解答题 17.(2023春·重庆江北·七年级统考期末)完成下面的解答过程,并填上适当的理由.已知:如图,DE BC ∥,BD 平分ABC ∠,EF 平分AED ∠.解: ∵DE BC ∥(已知)∴ABC AED ∠=∠( ① ).∵BD 平分ABC ∠,EF 平分∠∴112ABC ∠=∠,122AED ∠=∠【答案】两直线平行,同位角相等 2∠ 等量代换 同位角相等,两直线平行【分析】先分析角的位置关系,根据平行线的性质及判定定理,即可写出答案.【详解】证明:∵DE BC ∥(已知),∴ABC AED ∠=∠.∵BD 平分ABC ∠,EF 平分AED ∠,∴112ABC ∠=∠,122AED ∠=∠.∴12∠=∠(等量代换).∴EF BD ∥(同位角相等,两直线平行).故答案为:两直线平行,同位角相等 ; 2∠ ;等量代换 同位角相等,两直线平行.【点睛】本题主要考查平行线的性质(两直线平行,同位角相等),及平行线的判定方法(同位角相等,两直线平行).牢记平行线的性质和判定方法是解题的关键.18.(2023春·山东泰安·七年级统考期末)如图,在AOB 和COD △中,OA OB =,OC OD =,OA OC <,36AOB COD ∠=∠=︒,连接AC 、BD 交于点M ,连接OM .求证:(1)36AMB ∠=︒;(2)MO 平分AMD ∠.【答案】(1)证明见解析 (2)证明见解析【分析】(1)证明()SAS AOC BOD ≌△△,由三角形全等的性质得出OAC OBD ∠=∠,由三角形的外角性质得:AMB OBD OAC AOB ∠+∠=∠+∠,可得出AMB ∠的度数;(2)作OG AC ⊥于G ,OH BD ⊥于H ,利用全等三角形对应边上的高相等,得出OG OH =,由角平分线的判定方法即可得证.【详解】(1)证明:∵36AOB COD ∠=∠=︒,∴AOB BOC COD BOC ∠+∠=∠+∠,即AOC BOD ∠=∠,在AOC 和BOD 中,OA OB AOC BODOC OD =⎧⎪∠=∠⎨⎪=⎩, ∴()SAS AOC BOD ≌△△, ∴OAC OBD ∠=∠,∵AEB ∠是AOE △和BME 的外角∴AEB AMB OBD AOB OAC ∠=∠+∠=∠+∠,∴36AMB AOB ∠=∠=︒;(2)如图所示,作OG AC ⊥于G ,OH BD ⊥于H ,∴OG 是AOC 中AC 边上的高,OH 是BOD 中BD 边上的高,由(1)知:AOC BOD ≌,∴OG OH =,∴点O 在AMD ∠的平分线上,即MO 平分AMD ∠.【点睛】本题考查全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识.证明三角形全等是解题的关键. 七年级统考期末)如图,在ABC 中, (2)18【分析】(1)根据BD 平分ABC ∠,CD 平分ACB ∠得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据40ABC ∠=︒,70ACB ∠=︒得140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,根据三角形内角和定理即可得;(2)过点D 作DF BC ⊥于点F ,根据BD 平分ABC ∠,DE AB ⊥,DF BC ⊥得DE DF =,根据4DE =得4DF =,即可得.【详解】(1)解:∵BD 平分ABC ∠,CD 平分ACB ∠,∴12DBC ABC ∠=∠,12DCB ACB ∠=∠,∵40ABC ∠=︒,70ACB ∠=︒,∴140202DBC ∠=⨯︒=︒,170352DCB ∠=⨯︒=︒,∴在BCD △中,1802035125BDC ∠=︒−︒−︒=︒;(2)解:过点D 作DF BC ⊥于点F ,∵BD 平分ABC ∠,DE AB ⊥,DF BC ⊥,∴DE DF =,∵4DE =,∴4DF =,∵9BC =, ∴11S 941822BCD BC DF =⨯⨯=⨯⨯=△.【点睛】本题考查了角平分线,三角形内角和定理,三角形的面积,解题的关键是理解题意,掌握这些知识点. 八年级假期作业)如图,在ABC 中, 【答案】6cm CD =,34B ∠=︒【分析】根据角平分线的性质可得CD DE =,28BAD CAD ∠=∠=︒,再根据直角三角形的两个锐角互余即可求出B ∠的度数.【详解】解:∵ABC 中,90C ∠=︒,AD 平分BAC ∠,DE AB ⊥,∴6cm CD DE ==,28BAD CAD ∠=∠=︒,∴256BAC CAD ∠=∠=︒,∴9034B CAD ∠=︒−∠=︒.【点睛】本题考查了角平分线的性质定理和直角三角形的两个锐角互余,属于基础题型,熟练掌握角平分线的点到一个角的两边距离相等是解题关键.21.(2023春·广西南宁·七年级南宁十四中校考期末)如图,已知ABC .(1)尺规作图:作BAC ∠的角平分线交BC 于点G (不写作法,保留作图痕迹);(2)如果6AB =,10AC =,ABG 的面积为18,求ACG 的面积.【答案】(1)见解析(2)30【分析】(1)根据角平分线的尺规作图方法作图即可;(2)如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,证明AEF AFG △≌△,得到EG FG =,根据面积法求出6EG FG ==,再根据三角形面积公式求解即可.【详解】(1)解:如图所示:(2)解:如图所示,过点G 作GE AB GF AC ⊥⊥,垂足分别为E 、F ,∴90AEG AFG ∠=∠=︒,∵AG 是BAC ∠的角平分线,∴EAG FAG ∠=∠,又∵AG AG =,∴()AAS AEF AFG △≌△,∴EG FG =;∵6AB =,ABG 的面积为18,∴1182AB EG ⋅=,即16182EG ⨯=,∴6EG =,∴6EG FG ==,∴111063022ACG S AC FG =⋅=⨯⨯=△.【点睛】本题主要考查了全等三角形的性质与判定,三角形面积,角平分线的尺规作图,角平分线的定义等等,灵活运用所学知识是解题的关键. 22.(2023春·山西太原·七年级统考期末)如图,在ABC 中,AD 是它的角平分线,DE AB ⊥于点,E DF AC ⊥于点F ,且BE CF =.线段BD 与CD 相等吗?说明理由.【答案】BD CD =,见解析【分析】根据角平分线的性质得出DE DF =,根据垂直定义得出90DEB DFC ∠=∠=︒,根据SAS 证明DFC △D E B ≌△,得出BD CD =即可.【详解】解:BD CD =;理由如下:∵AD 是BAC ∠的角平分线,DE AB ⊥,DF AC ⊥,∴DE DF =,∵DE AB ⊥,DF AC ⊥,∴90DEB DFC ∠=∠=︒,又∵BE CF =,∴DFC △DE B ≌△, ∴BD CD =.【点睛】本题主要考查了角平分线的性质,垂线定义理解,三角形全等的判定和性质,解题的关键是熟练掌握三角形全等的判定方法,证明DFC △DE B ≌△. 23.(重庆市大渡口区2022-2023学年七年级下学期期末数学试题)如图,AD BC ∥,180B BCD ∠+∠=︒.(1)用直尺和圆规完成以下基本作图:过点A 作BAD ∠的角平分线,交CD 于点F ,与BC 的延长线交于点E ;(不写做法,保留作图痕迹)(2)求证:CFE FEC ∠=∠.证明:∵AD BC ∥(已知),∴DAF FEC ∠=∠(①__________). ∵AE 平分BAD ∠,∴②__________(角平分线的定义). ∴BAE FEC ∠=∠(③__________). ∵180B BCD ∠+∠=︒(已知), ∴④__________(⑤__________). ∴BAE CFE ∠=∠(两直线平行,同位角相等). ∴CFE FEC ∠=∠(等量代换). 【答案】(1)见解析(2)见解析【分析】(1)利用基本作图作BAD ∠的平分线即可;(2)先根据平行线的性质得到DAF FEC ∠=∠,再利用角平分线的定义得到BAE DAF ∠=∠,则BAE FEC ∠=∠,接着证明AB CD ∥得到BAE CFE ∠=∠,然后利用等量代换得到CFE FEC ∠=∠.【详解】(1)解:如图,BE 为所作;(2)证明:AD BC ∥(已知), DAF FEC ∴∠=∠(两直线平行,内错角相等).AE 平分BAD ∠,BAE DAF ∴∠=∠(角平分线的定义),BAE FEC ∴∠=∠(等量代换).180B BCD ∠+∠=︒(已知),AB CD ∴∥(同旁内角互补,两直线平行).BAE CFE ∴∠=∠(两直线平行,同位角相等).CFE FEC ∴∠=∠(等量代换).【点睛】本题考查了作图−基本作图:熟练掌握5种基本作图是解决问题的关键.也考查了角平分线的性质和平行线的判定与性质. 七年级校考阶段练习)如图,ABC 中, 若BCG 的面积为,则ABC 的面积为【答案】(1)120︒(2)3(3)6【分析】(1)根据作图方法可得BG 是ABC ∠的角平分线,则1302ABG ABC ==︒∠∠,再由三角形外角的性质可得120BGC A ABG =+=︒∠∠;(2)如图所示,过点G 作GD BC ⊥于D ,先求出3AG AC CG =−=,再证明ABG DBG △≌△,得到3DG AG ==,根据垂线段最短可知线段H G 的最小值为3;(3)证明BDG CDG △≌△,得到122BDG CDG BCG S S S ===△△△,进而求出2BDG ABG S S ==△△,则6ABC ABG CBG S S S =+=△△△.【详解】(1)解:由作图方法可知BG 是ABC ∠的角平分线, ∴1302ABG ABC ==︒∠∠,∵90A ∠=︒,∴120BGC A ABG =+=︒∠∠,故答案为:120︒;(2)解:如图所示,过点G 作GD BC ⊥于D ,∴90BAG BDG ==︒∠∠,∵96AC CG ==,,∴3AG AC CG =−=,∵BG 是ABC ∠的角平分线,∴ABG DBG ∠=∠,又∵BG BG =,∴()AAS ABG DBG △≌△,∴3DG AG ==,∵H 是边BC 上一动点,∴当点H 与点D 重合时,HG 最小,∴线段HG 的最小值为3, 故答案为:3;(3)解:∵BG 是ABC ∠的角平分线,∴30ABG DBG ==︒∠∠,∵9030C ABC ∠=︒−∠=︒,∴GBD C ∠=∠,又∵90DG DG BDG CDG ===︒,∠∠,∴()AAS BDG CDG △≌△, ∴122BDG CDG BCG S S S ===△△△,∵ABG DBG △≌△,∴2BDG ABG S S ==△△,∴6ABC ABG CBG S S S =+=△△△,故答案为:6.【点睛】本题主要考查了全等三角形的性质与判定,三角形内角和定理,三角形外角的性质,角平分线的定义,角平分线的尺规作图等等,正确作出辅助线构造全等三角形是解题的关键. 七年级统考期末)ABC 中, (2)如图2,若ABC 是锐角三角形.过点FED ∠,EDB ∠与ABC ∠ (3)若ABC 是钝角三角形,其中FED ∠,EDB ∠与ABC ∠之间的数量关系.【答案】(1)45 (2)12BDE FED ABC ∠=∠+∠,证明见解析 (3)12ABC BDE DEF ∠=∠+∠【分析】(1)首先证明AED ABC ∠=∠得到DE BC ∥,得到EDB DBC ∠=∠,再根据角平分线的定义得到1452DBC ABC ∠=∠=︒,即可证明;(2)延长ED 、BC 交于G ,利用平行线的性质得FED G ∠=∠,再利用三角形外角的性质可得结论;(3)由(2)同理解决问题.【详解】(1)解:DE AB ∵⊥,90AED ∴∠=︒.90ABC ∠=︒,AED ABC ∴∠=∠.DE BC ∴∥.EDB DBC ∴∠=∠.BD Q 平分ABC ∠,1452DBC ABC ∴∠=∠=︒.45EDB ∴∠=︒.(2)如图,12BDE FED ABC ∠=∠+∠,理由如下:延长ED 、BC 交于G ,EF BC ∥,FED G ∴∠=∠,BD Q 平分ABC ∠,。

人教版八年级上册数学角的平分线的性质

人教版八年级上册数学角的平分线的性质

在Rt△PDO和Rt△PEO中, ∵ OP = OP,PD = PE, ∴ Rt△PDO≌Rt△PEO.
∴ ∠AOC =∠BOC.
图1-27
∴ OC是∠AOB的平分线,即点P在∠AOB的平分线OC上.
由此得到角平分线的性质定理的逆定理:
角平分线的判定定理:
角的内部到角的两边距离相等的点在 角的平分线上。
一个货物中转站,要求它到三条公路的距
离相等,则可供选择的地址有:( )
A.一处
B. 两处
C.三处
D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
练习3 如图,求作一点P,使PC=PD,并
且点P到∠AOB的两边的距离相等.
B
D●
C●
O
A
练习
1. 如图,E 是∠AOB 的平分线上一点,EC⊥OA 于 点C,ED⊥OB 于点D. 求证:(1)∠ECD=∠EDC; (2)OC=OD.
∴ PD = PE.
图1-26
角平分线的性质定理:
角的平分线上的点到角的两边的距离相等.
用符号语言表示为:
∵ OC是∠AOB的平分线,点P在OC上,
A
PD ⊥OA ,PE ⊥OB
D
C
∴PD=PE.
P
1
∵∠1= ∠2
O
2
EBຫໍສະໝຸດ PD ⊥OA ,PE ⊥OB
∴PD=PE.
角平分线的性质定理:
角的平分线上的点到角的两边的距离相等。
图1-30
利用结论,解决问题
练一练
1、如图,为了促进当
地旅游发展,某地要在
三条公路围成的一块平
地上修建一个度假村.要
使这个度假村到三条公

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

角平分线的性质(知识梳理与考点分类讲解)(人教版)(教师版) 2024-2025学年八年级数学上册

专题12.9角平分线的性质(知识梳理与考点分类讲解)第一部分【知识点归纳】【知识点一】角的平分线的性质(1)性质:角的平分线上的点到角两边的距离相等.(2)符号语言:OC平分∠ADB,又 PE⊥AD,PF⊥BD,垂足为E、F,∴PE=PF【知识点二】角的平分线的判定(1)判定:角的内部到角两边距离相等的点在角的平分线上.(2)符号语言:PE⊥AD,PF⊥BD,垂足为E、F,又 PE=PF∴OC平分∠ADB,【知识点三】角的平分线的尺规作图(1)以O 为圆心,适当长为半径画弧,交OA 于D,交OB 于E.(2)分别以D、E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 内部交于点C.(3)画射线OC.射线OC 即为所求.第二部分【题型展示与方法点拨】【题型1】利用角平分线性质定理进行求值与证明【例1】(23-24七年级下·山东菏泽·阶段练习)如图,在ABC 中,90ACB ∠=︒,CD AB ⊥于点D ,BE 平分ABC ∠交AC 于点E ,交CD 于点F ,过点E 作EG CD ∥,交AB 于点G ,连接CG .(1)求证:90A AEG ∠+∠=︒;(2)求证:EC EG =;【分析】本题考查了角平分线的性质,平行线的性质,垂直的定义,解题的关键是灵活运用所学知识解决问题.(1)证明90EGA ∠=︒,即可证明结论成立;(2)利用角平分线性质定理即可证明结论成立.(1)证明:∵CD AB ⊥,∴90CDA ∠=︒EG CD ∥,∴90EGA CDA ∠=∠=︒∵180A AEG EGA ∠+∠+∠=︒1801809090A AEG EGA ∴∠+∠=︒-∠=︒-︒=︒(2)证明:∵90ACB ∠=︒,∴EC BC⊥BE 平分ABC ∠,EG AB ⊥,EC EG∴=【变式1】(23-24七年级下·广东佛山·阶段练习)如图,OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥交于点M ,点N 是射线OA 上的一个动点,连接PN .若6PM =,则PN 的长度不可能是()A .18B .7.2C .6D .4.5【答案】D 【分析】本题考查角平分线的性质、垂线段最短,根据角平分线的性质作出图形转化线段是解决问题的关键.过点P 作PD OA ⊥,如图所示,由角平分线的性质可得6PD PM ==,根据点与直线上各点的距离中垂线段最短可得6PN PD ≥=,从而得到答案.解:过点P 作PD OA ⊥,如图所示:OC 平分AOB ∠,点P 是射线OC 上一点,PM OB ⊥于点M ,6PM =,∴由角平分线性质可得6PD PM ==,点N 射线OA 上的一个动点,连接PN ,∴由点与直线上各点的距离中垂线段最短可得6PN PD ≥=,∴综合四个选项可知,PN 的长度不可能是4.5,故选:D .【变式2】(23-24七年级下·四川巴中·期末)如图,在ABC 中,ABC ∠,ACB ∠的平分线交于点O ,点O 到BC 边的距离为3,且ABC 的周长为20,则ABC 的面积为.【答案】30【分析】本题考查角平分线的性质、三角形的面积公式,熟练掌握角平分线的性质是解答的关键.过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,利用角平分线的性质求得3OM ON OD ===,然后利用ABC AOB AOC BOC S S S S =++ 求解即可.解:过O 作OM AB ⊥于M ,ON AC ⊥于N ,连接OA ,∵点O 到BC 边的距离为3,∴3OD =,∵ABC 的周长为20,∴20AB AC BC ++=∵ABC ∠,ACB ∠的平分线交于点O ,OM AB ⊥,ON AC ⊥,∴3OM ON OD ===,∴ABC AOB AOC BOCS S S S =++ 111222AB OM AC ON BC OD =⋅+⋅+⋅()12AB AC BC OD =++⋅12032=⨯⨯30=,故答案为:30.【题型2】利用角平分线判定定理进行求值与证明【例2】如图,DE AB ⊥于E DF AC ⊥,于F ,若BD CD BE CF ==、,(1)求证:AD 平分BAC ∠;(2)已知204,==AC BE ,求AB 的长.【答案】(1)见详解(2)12【分析】本题考查了全等三角形的性质和判定的应用,注意:全等三角形的判定定理有,,,SAS ASA AAS SSS ,全等三角形的对应边相等,对应角相等.(1)求出90E DFC ∠=∠=︒,根据全等三角形的判定定理得出Rt BED Rt CFD ≌,推出DE DF =,根据角平分线性质得出即可;(2)根据全等三角形的性质得出,==AE AF BE CF ,即可求出答案.(1)证明:∵,DE AB DF AC ⊥⊥,∴90E DFC ∠=∠=︒,∴在Rt BED 和Rt CFD 中,BD CD BE CF =⎧⎨=⎩,∴()Rt BED Rt CFD HL ≌,∴DE DF =,∵,DE AB DF AC ⊥⊥,∴AD 平分BAC ∠;(2)解:∵90,,∠=∠=︒==AED AFD AD AD DE DF ,∴()Rt ADE Rt ADF HL ≌,∴AE AF =,∵20,4===AC CF BE ,∴20416AE AF ==-=,∴16412AB AE BE =-=-=.【变式1】如图,在ABC 中,70BAC ∠=︒,4AB =,2AC =,若2ABD ACD S S = ,则CAD ∠的度数为()A .45︒B .40︒C .35︒D .30︒【答案】C 【分析】作DE AB ⊥于点E ,作DF AC ⊥于点F ,根据2ABD ACD S S = 可证DE DF =,从而可知AD 是BAC∠的平分线,进而可求出CAD ∠的度数.解:如图,作DE AB ⊥于点E ,作DF AC ⊥于点F ,∵2ABD ACD S S = ,∴11222AB DE AC DF ⋅=⨯⋅.∵4AB =,2AC =,∴44DE DF=∴DE DF =,∴AD 是BAC ∠的平分线.∴11703522CAD BAC ∠=∠=⨯︒=︒.故选C .【变式2】6.(23-24八年级上·山东聊城·阶段练习)如图,在ABC 中,48ABC ∠=︒,三角形的外角DAC ∠和ACF ∠的平分线交于点E ,则EBF ∠=.【答案】24︒【分析】本题考查了角平分线的性质和角平分线的定义,解题的关键是能正确作出辅助线,证明BE 平分ABC ∠;过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,根据角平分线的性质可得EM EO EN EO ==,,则有EM EN =,再根据EM AB EN BC ⊥⊥、,即可得出BE 平分ABC ∠即可解答.解:过点E 作EM AB EN BC EO AC ⊥⊥⊥、、,如图所示:三角形的外角DAC ∠和ACF ∠的平分线交于点E ,EM EO EN EO ∴==,,EM EN ∴=,EM AB EN BC ⊥⊥、,∴BE 平分ABC ∠,11482422EBF ABC ∴∠==⨯︒=︒,故答案为:24︒.【题型3】综合运用角平分线性质定理与判定定理进行证明与求值【例3】如图,ABC 和EBD △中,90ABC DBE AB CB BE BD ∠=∠=︒==,,,连接AE CD AE ,,与CD 交于点M ,AE 与BC 交于点N .(1)求证:AE CD =;(2)求证:AE CD ⊥;(3)连接BM ,有以下两个结论:①BM 平分CBE ∠;②MB 平分AMD ∠,其中正确的一个是(请写序号),并给出证明过程.【答案】(1)见详解(2)见详解(3)②【分析】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的判定与性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.(1)欲证明AE CD =,只要证明ABE CBD ≌;(2)由ABE CBD ≌,推出BAE BCD ∠=∠,由180NMC BCD CNM ∠=︒-∠-∠,18090ABC BAE ANB CNM ANB ABC ∠=︒-∠-∠∠=∠∠=︒,又,,可得90NMC ∠=︒;(3)结论:②;作BK AE ⊥于K BJ CD ⊥,于J .利用角平分线的判定定理证明即可.(1)证明:∵ABC DBE ∠=∠,∴ABC CBE DBE CBE ∠+∠=∠+∠,即ABE CBD ∠=∠,在ABE 和CBD △中,AB CB ABE CBD BE BD =⎧⎪∠=∠⎨⎪=⎩,∴SAS ABE CBD ≌(),∴AE CD =.(2)证明:∵ABE CBD ≌,∴BAE BCD ∠=∠,∵180180NMC BCD CNM ABC BAE ANB ∠=︒-∠-∠∠=︒-∠-∠,,又CNM ANB ∠=∠,90ABC ∠=︒ ,∴90NMC ∠=︒,∴AE CD ⊥.(3)解:结论:②理由:作BK AE ⊥于K BJ CD ⊥,于J.∵ABE CBD ≌,∴ABE CDB AE CD S S == ,,∴1122AE BK CD BJ ⨯⨯=⨯•,∴BK BJ =,∵作BK AE ⊥于K ,BJ CD ⊥于J ,∴BM AMD ∠平分.不妨设①成立,则CBM EBM ≌,则AB BD =,显然不可能,故①错误.故答案为:②.【变式1】(23-24八年级上·浙江杭州·阶段练习)如图,90B C ∠=∠=︒,M 是BC 的中点,DM 平分ADC ∠,且100ADC ∠=︒,则MAB ∠的度数是()A .50︒B .40︒C .45︒D .55︒【答案】B 【分析】本题考查了角平分线的性质和判定,解题的关键是掌握角平分线上的点到两边距离相等.作MN AD ⊥于N ,根据角平分线的性质得出MN MC =,进而得出1402MAB DAB ∠=∠=︒.解:作MN AD ⊥于N ,∵90B C ∠∠==︒,∴AB CD ∥,∴18080DAB ADC ∠∠=︒-=︒,∵DM 平分ADC ∠,MN AD ⊥,MC CD ⊥,∴MN MC =,∵M 是BC 的中点,∴MC MB =,∴MN MB =,又MN AD ⊥,MB AB ⊥,∴1402MAB DAB ∠=∠=︒,故选:B .【变式2】(23-24八年级上·重庆永川·期末)如图,在ABC 中,68BAC ∠=︒,72ACB ∠=︒,ACB ∠的平分线与BAC ∠的外角平分线交于点D ,连接BD ,则BDC ∠的大小等于.【答案】34︒/34度【分析】本题考查了角平分线的判定与性质,三角形外角的性质等知识,先根据角平分线的判定与性质得出BD 平分ABH ∠,然后利用三角形外角的性质12BDC DBH DCB BAC ∠=∠-∠=∠,即可求解.解:过点D 作DH BC ⊥于H ,DE AC ⊥于E ,DF AB ⊥于F ,∵ACB ∠的平分线与BAC ∠的外角平分线交于点D ,∴DE DF DH ==,12BCD ACB ∠=∠,∴BD 平分ABH ∠,∴12DBH ABH ∠=∠,∵68BAC ∠=︒,∴BDC DBH DCB ∠=∠-∠1122ABH ACB =∠-∠()12ABH ACB =∠-∠12BAC =∠1682=⨯︒34=︒,故答案为:34︒.【题型4】通过作图(作角平分线)进行求值或证明【例4】(23-24八年级上·广东珠海·期中)请回答下列问题:(1)如图1,已知ABC ,利用直尺和圆规,作BAC ∠的平分线AD 交BC 于点D (保留作图痕迹,不要求写作法);(2)如图2所示,AD 是ABC 的角平分线E F 、分别是AB AC 、上的点,且180EDF BAC ∠+∠=︒,求证:DE DF =.【分析】(1)根据角平分线的基本作图方法作图即可;(2)过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,证明()AAS EHD FQD ≌,得出DE DF =,即可得出答案.(1)解:如图,作BAC ∠的平分线AD 交BC 于点D ;(2)证明:如图,过点D 作DH AB ⊥于点H ,作DQ AC ⊥于点Q ,则90EHD FQD ∠=∠=︒,AD 平分BAC ∠,DH DQ ∴=,180EDF BAC ∠+∠=︒Q ,180AED AFD ∴∠+∠=︒,180DFQ AFD ∠+∠=︒ ,DEH DFQ ∴∠=∠,在EHD △和FQD △中DEH DFQ EHD FQD DH DQ ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS EHD FQD ∴ ≌,DE DF ∴=.【点拨】本题主要考查了角平分线的基本作图,角平分线的性质,三角形全等的判定和性质,补角的性质,解题的关键作图辅助线,熟练掌握三角形全等的判定方法.【变式1】(2024·湖南湘西·模拟预测)如图,在ABC 中,90C ∠=︒,以A 为圆心,任意长为半径画弧,分别交AC AB 、于点M ,N ,再分别以M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点O ,作射线AO ,交BC 于点E .已知4CE =,7AB =,ABE 的面积为()A .6B .11C .14D .28【答案】C 【分析】此题考查了角平分线的性质定理,根据角平分线的性质得到点E 到AC 和AB 的距离相等,点E 到AB 的距离等于EC 的长度,利用三角形面积公式即可得到答案.解:由基本作图得到AE 平分BAC ∠,∴点E 到AC 和AB 的距离相等,∴点E 到AB 的距离等于EC 的长度,即点E 到AB 的距离为4,∴174142ABE S =⨯⨯= .故选:C .【变式2】(2024·湖南·中考真题)如图,在锐角三角形ABC 中,AD 是边BC 上的高,在BA ,BC 上分别截取线段BE ,BF ,使BE BF =;分别以点E ,F 为圆心,大于12EF 的长为半径画弧,在ABC ∠内,两弧交于点P ,作射线BP ,交AD 于点M ,过点M 作MN AB ⊥于点N .若2MN =,4AD MD =,则AM =.【答案】6【分析】本题考查了尺规作图,角平分线的性质等知识,根据作图可知BP 平分ABC ∠,根据角平分线的性质可知2DM MN ==,结合4AD MD =求出AD ,AM .解:作图可知BP 平分ABC ∠,∵AD 是边BC 上的高,MN AB ⊥,2MN =,∴2MD MN ==,∵4AD MD =,∴8AD =,∴6AM AD MD =-=,故答案为:6.第三部分【中考链接与拓展延伸】1、直通中考【例1】1.(2024·天津·中考真题)如图,Rt ABC △中,90,40C B ∠=︒∠=︒,以点A 为圆心,适当长为半径画弧,交AB 于点E ,交AC 于点F ;再分别以点,E F 为圆心,大于12EF 的长为半径画弧,两弧(所在圆的半径相等)在BAC ∠的内部相交于点P ;画射线AP ,与BC 相交于点D ,则ADC ∠的大小为()A .60B .65C .70D .75【答案】B 【分析】本题主要考查基本作图,直角三角形两锐角互余以及三角形外角的性质,由直角三角形两锐角互余可求出50BAC ∠=︒,由作图得25BAD ∠=︒,由三角形的外角的性质可得65ADC ∠=︒,故可得答案解:∵90,40C B ∠=︒∠=︒,∴90904050BAC B ∠=︒-∠=︒-︒=︒,由作图知,AP 平分BAC ∠,∴11502522BAD BAC ∠=∠==︒⨯︒,又,ADC B BAD ∠=∠+∠∴402565,ADC ∠=︒+︒=︒故选:B【例2】.(2021·黑龙江大庆·中考真题)已知,如图1,若AD 是ABC 中BAC ∠的内角平分线,通过证明可得=AB BD AC CD,同理,若AE 是ABC 中BAC ∠的外角平分线,通过探究也有类似的性质.请你根据上述信息,求解如下问题:如图2,在ABC 中,2,3,BD CD AD ==是ABC 的内角平分线,则ABC 的BC 边上的中线长l 的取值范围是【答案】12522l <<【分析】根据题意得到2=3AB AC ,设AB =2k ,AC =3k ,在△ABC 中,由三边关系可求出k 的范围,反向延长中线AE 至F ,使得AE EF =,连接CF ,最后根据三角形三边关系解题.解:如图,反向延长中线AE 至F ,使得AE EF =,连接CF ,2,3,BD CD AD == 是ABC 的内角平分线,2==3AB BD AC CD ∴可设AB =2k ,AC =3k ,在△ABC 中,BC =5,∴5k >5,k <5,∴1<k <5,BE EC AEB CEF AE EF =⎧⎪∠=∠⎨⎪=⎩()ABE FCE SAS ∴≅ AB CF∴=由三角形三边关系可知,AC CF AF AC CF-<<+5k AF k∴<<522k k AE ∴<<∴12522l <<故答案为:12522l <<.【点拨】本题考查角平分线的性质、中线的性质、全等三角形的判定与性质、三角形三边关系等知识,是重要考点,难度一般,掌握相关知识是解题关键.2、拓展延伸【例1】(23-24七年级下·重庆沙坪坝·阶段练习)如图1,在ABC 中,BD 为AC 边上的高,BF 是ABD ∠的角平分线,点E 为AF 上一点,连接AE ,45AEF ∠=︒.(1)求证:AE 平分BAF∠(2)如图2,连接CE 交BD 于点G ,若BAE 与CAE 的面积相等,求证:BG CF=【分析】本题主要考查了全等三角形的证明以及性质运用,角平分线的判定以及基本性质,熟练掌握全等三角形的几种判定方法以及角平分线的判定是解答该题的关键.(1)根据BF 是ABD ∠的角平分线和,BD 为AC 边上的高,可得114522BAD ABD ∠=︒-∠,由45AEF ∠=︒得145452BAE ABE ABD ∠=︒-∠=︒-∠,即可证明12BAE BAD ∠=∠;(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,由角平分线性质可以得EM EN =,由BAE 与CAE 的面积相等可得AB AC =,证明(SAS)ABE ACE △≌△,得出135AEB CEB ∠=∠=︒,BE EC =,即可得出36090BEG CEF AEB AEC ∠=∠=︒-∠-∠=︒,再根据垂直模型证明ASA BEG CEF ≌(),即可得出结论.(1)证明:∵BD 为AC 边上的高,即90ADB ∠=︒,∴90ABD BAD ∠+∠=︒,∴1()452ABD BAD ∠+∠=︒,∴114522BAD ABD ∠=︒-∵45AEF ABF BAE ∠=∠+∠=︒,∴45BAE ABF ∠=︒-∠,∵12ABF ABD ∠=∠,∴1452BAE ABD ∠=︒-∠,∴12BAE BAF ∠=∠,即:AE 平分BAF ∠.(2)过点E 作EM AB ⊥于点M ,EN AC ⊥于点N ,AE 平分BAC ∠,且EM AB ⊥,EN AC ⊥,EM EN ∴=.ABE ACE S S △△=,AB AC ∴=,AE 平分BAC ∠,BAE CAE ∴∠=∠,在ABE 和ACE △中,AB BC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE ACE ∴ ≌,AEB CEB ∴∠=∠,BE EC =,45AEF ∠=︒ ,135AEB AEC ∴∠=∠=︒,36090BEG CEF AEB AEC ∴∠=∠=︒-∠-∠=︒,BD 为AC 边上的高,90ADB ∴∠=︒,FBD BFC BFC FCE ∴∠+∠=∠+∠,EBG ECF ∴∠=∠.在BEG 和CEF △中,BEG CEF BE CE EBG ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩ASA BEG CEF ∴ ≌().BG CF ∴=.【例2】(23-24八年级上·江西宜春·期末)课本再现:思考如图12.3-3,任意作一个角AOB ∠,作出AOB ∠的平分线OC .在OC 上任取一点P ,过点P 画出OA ,OB 的垂线,分别记垂足为D 、E ,测量PD 、PE 并作比较,你得到什么结论?在OC 上再取几个点试一试.通过以上测量,你发现了角的平分线的什么性质?【实验猜想】针对以上问题,同学们进行了小组实验探究,并猜想:角的平分线上的点到角的两边的距离相等.【推理证明】为了证明该定理,小明同学根据书上的图形(如图12.3-3)写出了“已知”和“求证”,请你利...用全等的知识完成证明过程.............(1)已知:点P 是AOB ∠的平分线OC 上一点,过点P 作PD OA ⊥于点D ,PE OB ⊥于点E .求证:PD PE =.【知识应用】(2)如图2,BAC ∠的平分线与ABC 的外角BCD ∠的平分线相交于点O ,过点O 作OD AC⊥于点D ,OE AB ⊥于点E ,连接OB .①证明:OB 平分CBE ∠;②若70CAB ∠=︒,则COB ∠=________.【答案】(1)证明见解析(2)①证明见解析;②55︒【分析】(1)根据条件证明OPD OPE ≌V V ,从而PD PE =.(2)①过点O 作OF CB ⊥于点F ,由(1)的结论易证OD OF OE ==,根据“到角的两边距离相等的点在这个角的平分线上”得到OB 平分CBE ∠;②根据三角形的内角和180COB BCO CBO ∠=︒-∠-∠,再利用角平分线的定义和“三角形的一个外角等于不相邻的两个内角的和”,推导出1902COB BAC ∠=︒-∠,从而求解.(1)证明:OC 平分AOB ∠,AOC BOC ∴∠=∠,PD OA ⊥ ,PE OB ⊥,90ODP OEP ∴∠=∠=︒,在OPD △和OPE 中,AOC BOC ODP OPE OP OP ∠=∠⎧⎪∠=∠⎨⎪=⎩,OPD OPE ∴V V ≌,PD PE ∴=;(2)①证明:过点O 作OF CB ⊥于点F,AO 是ABC ∠的平分线,OD AC ⊥,OE AB ⊥,OD OE ∴=,CO 是BCD ∠的平分线,OD AC ⊥,OF BC ⊥,OD OF ∴=,OF OE ∴=,OF BC ⊥ ,OE AB ⊥,BO ∴平分CBE ∠,②OB Q 平分CBE ∠,OC 平分BCD ∠,12CBO CBE ∴∠=∠,12BCO BCD ∠=∠,()111180180180222COB CBO BCO CBE BCD CBE BCD ∴∠=︒-∠-∠=︒-∠-∠=︒-∠+∠()()11118018018090222CAB ACB CAB ABC CAB CAB =︒-∠+∠+∠+∠=︒-︒+∠=︒-∠19070552=︒-⨯︒=︒.故答案为:55︒.【点拨】本题考查了全等三角形的判定与性质、角平分线的定义、角平分线的性质和判定以及三角形的内角和定理、三角形外角的性质等,熟练掌握相关知识是解题的关键.。

人教版八年级数学上册1角平分线的性质

人教版八年级数学上册1角平分线的性质
(3)、角平分线的性质是全等三角形知识的延续,为 后面学习角平分线的判定定理、圆这一章中内心的学 习奠定了基础.
因此,本节内容在数学知识体系中起到了承上启下的 作用.同时教材的安排由浅入深、由易到难、知识结 构合理,符合学生的心理特点和认知规律
2、教材目标
知识与技能: (1)掌握角平分线的作法 (2)理解角平分线的性质 (3)会运角平分线的性质解决问题 过程与方法: (1)经历角平分线的探究过程,增强学生的实验、猜 想、推理意识 (2)依据性质进行简单说理,培养学生动手操作能力、 逻辑推理能力 (3)初步了解角平分线的性质在生活、生产中的应用。 情感目标:激发学生学习兴趣,增强学生学好数学的信心.
A
N
D P
F
M

点P在BM上,
B
∴ PD=PE. 同理 PE=PF.
C E
∴ PD=PE=PF. 即点P到三边AB,BC,CA的距离相等.
三.说教学过程












































自主探究 巩固提高
1.如图,E是∠AOB的角平分线OC上的一点,EM⊥OB垂足为M,
( 2) 其次学生们的实际水平有所不 同,全面深入探究问题能力有所差异,他 们对问题的理性推理有待于提高。
二.说 教 学 法
采用“先学后教·当堂训练“ 教 学 法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、会用尺规作角的平分线.
2、角的平分线的性质: 角的平分线上的点到角的两边的距离相等
用数学语言表述: ∵ OC是∠AOB的平分线 PD⊥OA,PE⊥OB ∴ PD=PE
A D O
1 2
E
P
C
B
我们知道角的平分线上的点到角的两边的距离相等,反 过来,到一个角的两边的距离相等的点是否一定在这个角的 平分线上呢?
B A ND P E M F C
∴PD=PE (角平分线上的点到这个角的两边距离相等). 同理,PE=PF. ∴PD=PE=PF. 即点P到三边AB、BC、CA的距离相等
如图,已知△ABC的外角∠的平分线上.
证明: 过点F作FG⊥AE于G, FH⊥AD于H,FM⊥BC于M ∵点F在∠BCE的平分线上, FG⊥AE, FM⊥BC ∴FG=FM 又∵点F在∠CBD的平分线上, FH⊥AD, FM⊥BC ∴FM=FH ∴FG=FH ∴点F在∠DAE的平分线上
角的平分线上的点到角的两边的距离相等. 用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
拓展与延伸
3、已知:BD⊥AM于点D,CE⊥AN于点E,BD,CE 交点F,CF=BF,求证:点F在∠A的平分线上.
M D C F A E B N
1.角平分线的性质定理: 角平分线上的点到角的两边的距离相等
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直的定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴点Q在∠AOB的平分线上
判定:到角的两边的距离相 等的点在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE ∴点Q在∠AOB的平分线上. 性质:角的平分线上的点到角的两边的距离 相等. 用数学语言表示为: ∵ QD⊥OA,QE⊥OB,点Q在∠AOB的平分线上 ∴ QD=QE
如图, △ABC的角平分线BM,CN相交于点P, 求证:点P到三边AB、BC、CA的距离相等 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F ∵BM是△ABC的角平分线,点P 在BM上,
G M H
如图,在△ABC中,D是BC的中点,DE⊥AB, DF⊥AC,垂足分别是E,F,且BE=CF。 求证:AD是△ABC的角平分线。
A
E
F D
B
C
利用结论,解决问题
练一练 1、如图,为了促进当 地旅游发展,某地要在 三条公路围成的一块平 地上修建一个度假村.要 使这个度假村到三条公 路的距离相等,应在何处 修建? 在确定度假村的位置时,一定要画 想一想 出三个角的平分线吗?你是怎样思考 的?你是如何证明的?
2.角平分线的判定定理: 到一个角的两边的距离相等的点,在这个角平 分线上。 3.角平分线的性质定理和角平分线的判 定定理是证明角相等、线段相等的新途径.
拓展与延伸
2、直线表示三条相互交叉的公路,现要建 一个货物中转站,要求它到三条公路的距 离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
到角的两边的距离相等的点 在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
相关文档
最新文档