电荷泵工作原理-电子元件技术网

合集下载

电荷泵电路原理

电荷泵电路原理

电荷泵电路原理
电荷泵电路是一种用来提升直流电压的电路设计。

它基于电容器的充电和放电原理来实现电压的升高。

电荷泵电路由两个电容器和两个开关组成。

假设初始时两个电容器都处于放电状态,即它们的电压为0V。

第一个开关(开关1)被打开,从而将电容器C1连接到直流
电源,开始对C1进行充电。

充电过程中,C1的电压逐渐增加,直到与电源的电压相等。

这时,开关1被关闭。

接下来,第二个开关(开关2)被打开,将充满电荷的C1与
另一个电容器C2连接起来。

根据电荷守恒定律,C1的电荷被转移到了C2上。

由于电容器C2的电压与C1相反,因此在两
个电容器连接的瞬间,C2的电压会迅速升高。

此时,开关2被关闭,断开了C1和C2的连接。

C2保持着高
电压状态,成为了电荷泵电路的输出。

以上过程仅仅是电荷泵电路的一个周期,为了实现更高的输出电压,可以将多个电荷泵电路级联。

每个周期都会将输入电压放大一倍,因此级联的电荷泵电路能够实现更高的电压倍数。

需要注意的是,电荷泵电路的输出电流非常小,不能供应大功率负载。

如果需要输出大电流,还需要添加放大器阶段。

综上所述,电荷泵电路利用电容器的充电和放电原理实现对直
流电压的升高。

通过多个电荷泵电路的级联,可以实现更高的电压倍数输出。

但需要注意的是,电荷泵电路的输出电流较小,通常需要额外的放大器来满足大功率负载的需求。

电荷泵原理

电荷泵原理

电荷泵原理电荷泵是一种能够将电荷从低电势区域转移到高电势区域的装置,它是现代电子设备中非常重要的一部分。

电荷泵原理是基于电荷在电场中受力而移动的基本物理原理,通过外加能量将电荷从低电势区域抽取出来,然后将其输送到高电势区域,从而实现电势的提升。

在这篇文章中,我们将深入探讨电荷泵原理及其应用。

首先,电荷泵原理的核心是利用外部能量来实现电荷的移动。

在电场中,电荷会受到电场力的作用而发生位移,如果外部施加的能量足够大,就可以克服电场力,使电荷在电场中移动。

电荷泵利用这一原理,通过外部能量的输入,将电荷从低电势区域抽取出来,然后输送到高电势区域,从而实现电势的提升。

这种原理在许多电子设备中得到了广泛的应用,如电池、太阳能电池等。

其次,电荷泵原理的实现需要借助于半导体材料。

半导体材料具有特殊的电子结构,可以在外加电场的作用下形成电子空穴对,从而实现电荷的移动。

利用半导体材料的特性,可以设计出各种类型的电荷泵装置,如PN结电荷泵、MOS电荷泵等。

这些电荷泵装置在现代电子技术中发挥着重要作用,为各种电子设备提供稳定的电源。

此外,电荷泵原理还可以应用于能量转换和能量存储领域。

通过外部能量的输入,电荷泵可以将低能量电荷转化为高能量电荷,实现能量的提升。

这种能量转换过程可以应用于太阳能电池、燃料电池等能源装置中,为这些装置提供稳定的能量输入。

同时,电荷泵还可以将电荷储存在电场中,实现能量的存储,为电子设备提供持续的电源支持。

总的来说,电荷泵原理是一种利用外部能量实现电荷移动的重要物理原理,它在现代电子技术中发挥着重要作用。

通过对电荷泵原理的深入理解,可以为电子设备的设计和制造提供重要的理论指导,推动电子技术的发展。

同时,电荷泵原理的应用还可以拓展到能量转换和能量存储领域,为新能源技术的发展提供新的思路和方法。

希望通过本文的介绍,读者对电荷泵原理有了更深入的了解,为相关领域的研究和应用提供帮助。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理引言:电荷泵是一种用于产生高电压的电路。

它利用电容器和开关元件的相互作用,通过周期性的切换和充电来将低电压转化为高电压。

电荷泵在电子设备中广泛应用,如静电加速器、数码相机和液晶显示屏等。

一、电荷泵基本原理电荷泵的基本构成是一个或多个电容器和一系列开关元件(如二极管和晶体管)交替连接。

通过适当的控制和调节,可以使电容器中的电荷积累和放大,从而产生高电压。

其主要工作原理如下:1.1 充电阶段首先,在电荷泵电路中,电容器通过一个二极管与地相连,被电源充电。

假设电容器两端的电压为Vc,此时二极管处于导通状态。

充电阶段的持续时间有限,通常是通过一个时钟信号来控制。

1.2 断开二极管当电容器充电完成后,时钟信号将改变二极管的状态,使其变为截止状态。

此时电容器中的电荷存储下来,并且被隔绝在二极管和电源之间,不会流回电源。

1.3 连接另一个电容器现在,我们要将已经充电的电容器和另一个未充电的电容器连在一起。

这时,已充电的电容器会释放出储存的电荷,并将电荷传递给未充电的电容器。

在这个过程中,电荷被传递,并且通过一个附加的二极管来保证流动的方向。

1.4 充电和放大通过不断地重复连接和断开电容器,电荷会从一个电容器传送到另一个电容器,并在每一次传递中都会得到放大。

这样,初始的低电压会得到逐渐增加,从而产生高电压输出。

二、电荷泵的优缺点电荷泵作为一种产生高电压的电路,具有以下优点和缺点:2.1 优点(1)无需外部功率供应:电荷泵利用电容器之间的电荷转移来产生高电压,不需要额外的功率供应。

(2)输出电压可调:通过控制电容器的连接和断开时间,可以调节输出电压的大小。

(3)体积小巧:电荷泵电路由少量的电容器和开关元件组成,因此整个电路的体积较小。

(4)成本低廉:电荷泵电路的构造简单,所需元件成本较低。

2.2 缺点(1)效果受限:由于电容器和二极管的特性,电荷泵电路输出的电压和电流受到一定的限制。

(2)能耗较高:在电荷泵的工作过程中,存在不断的充电和放电过程,这会消耗一定的能量。

电荷泵工作原理-电子元件技术网

电荷泵工作原理-电子元件技术网

电荷泵工作原理电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。

另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。

由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。

电荷泵的应用电荷泵转换器常用于倍压或反压型DC-DC 转换。

电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。

电荷泵有倍压型和反压型两种基本电路形式。

电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。

采用电压反转式电路可以在便携式产品中省去一组电池。

由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。

虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。

目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。

例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。

自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。

对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。

现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。

电荷泵的工作原理

电荷泵的工作原理

电荷泵的工作原理宝子们!今天咱们来唠唠一个超酷的东西——电荷泵。

你可别一听这名字就觉得它很神秘、很高冷,其实呀,它就像一个超厉害的小魔法师呢!咱先来说说电荷是啥。

电荷就像是一群调皮的小粒子,有正的有负的。

正电荷和负电荷就像两个小冤家,老是互相吸引。

而电荷泵呢,就是专门来摆弄这些电荷的小能手。

想象一下,电荷泵就像是一个超级特别的电梯。

普通的电梯是载人或者载物的,而电荷泵这个电梯呢,是专门载电荷的。

这个电梯呀,它有自己独特的运行规则。

在电荷泵的世界里,它可以把电荷从一个地方搬到另一个地方,而且还能改变电荷的“楼层”呢。

比如说,它可以把低电压那边的电荷,像一个个小乘客一样,运到高电压的地方去。

这就好像把住在地下室的小伙伴们,一下子送到了高楼大厦的顶层。

那它是怎么做到的呢?这就涉及到电荷泵内部的一些小秘密啦。

电荷泵里面有一些特殊的电路结构,就像是精心设计的轨道一样。

当电路开始工作的时候,这些轨道就开始发挥作用啦。

比如说,有一些电容在里面起着关键的作用。

电容这个东西呀,就像是一个个小仓库。

它可以暂时储存电荷。

电荷泵就利用电容的这个特性,先把电荷存到电容这个小仓库里,然后再通过巧妙的电路切换,把电荷送到它该去的地方。

打个比方,这就像我们玩接力赛。

电容先接过电荷这个“接力棒”,然后再传递给下一个电路部分,就这样一棒一棒地,把电荷送到了电压更高的地方。

而且哦,电荷泵还有不同的类型呢。

有的电荷泵是专门用来提升电压的,就像是一个超级电压助推器。

它可以把比较低的电压,比如几伏的电压,一下子提升到十几伏甚至更高。

这对于那些需要高电压才能工作的小电器来说,简直就是救星啊。

还有一种电荷泵是可以用来反转电压的。

就像是把正的变成负的,负的变成正的。

这听起来是不是很神奇呢?就好像是把白天变成黑夜,黑夜又变成白天一样。

在我们日常的很多小玩意儿里面都有电荷泵的身影哦。

比如说我们的手机,手机里面有些电路需要不同的电压来工作,电荷泵就在里面默默地发挥着它的作用。

电荷泵工作原理

电荷泵工作原理

电荷泵,也称为开关电容式电压变换器,是一种利用所谓的"快速"(flying)或"泵送"电容(而非电感或变压器)来储能的DC-DC(变换器)。

1.电荷泵工作原理电荷泵的基本原理是给电容充电,把电容从充电电路取下以隔离充进的电荷,然后连接到另一个电路上,传递刚才隔离的电荷。

我们形象地把这个传递电荷的电容看成是“装了电子的水桶”。

从一个大水箱把这个桶接满,关闭龙头,然后把桶里的水倒进一个大水箱[8]。

电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速”或“泵送”电容,而非电感或变压器来储能的DC-DC变换器(直流变换器)。

它们能使输入电压升高或降低,也可以用于产生负电压。

其内部的MOSFET开关阵列以一定的方式控制快速电容器的充电和放电,从而使输入电压以一定因数(1/2,2或3)倍增或降低,从而得到所需要的输出电压。

2.电荷泵升压电路原理电荷泵也称为开关电容式电压变换器,是一种利用所谓的“快速”(Flying)或“泵送”电容(而非电感或变压器)来储能的DC-DC(变换器)。

它们能使输入电压升高或降低,也可以用于产生负电压。

其内部的FET开关阵列以一定方式控制快速电容器的充电和放电,从而使输入电压以一定因数(0.5,2或3)倍增或降低,从而得到所需要的输出电压。

这种特别的调制过程可以保证高达80%的效率,而且只需外接陶瓷电容。

由于电路是开关工作的,电荷泵结构也会产生一定的输出纹波和EMI(电磁干扰)。

电荷泵通过控制泵电容及调节开关来保持稳定的输出电压,电荷泵开关网络在泵电容充电和放电变换周期内可以实现泵电容的并行或串行排列。

在给定的输入、输出条件(差分电压)下,应选择电荷泵的最优工作模式以保持要求的输出电压。

电荷泵开关网络采用的MOSFET 器件具有尺寸小,成本低,开关速度快,损耗最低等特点。

3.电荷泵快充原理电荷泵也叫无电感式DC-DC转换器,利用电容作为储能元件来进行电压电流的变换。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理电荷泵是一种电子设备,通过将直流电变换成高压脉冲电压,用于驱动已电离气体灯,加速器管等,主要应用于医学、照明等领域。

本文将介绍电荷泵的工作原理。

一、电荷泵概述电荷泵是指一种电路能够将输入电压显著地提高。

电荷泵并不像名称所表明的那样,是一个实际的泵,而是包含一些电子元件组成的电路。

由于电荷泵可以将低电压变成高电压,所以它也被称作“电压倍增器”。

最常见的电荷泵类型是闪充电荷泵,输出电压通常在零点多几伏到几百甚至千伏之间。

与其他电力源不同,电荷泵的输出电流通常非常低,通常不到1毫安。

二、电荷泵工作原理电荷泵的核心元素是电容器和二极管。

在电荷泵中,交流扫描(scanning)基本上扮演了着眼于充电状态的核心角色。

当交流信号相对地电势变化时,容器的正极和负极依赖交流电源的正负极。

当电路切断,容器则保存(hold)电荷。

电荷被保存了下来。

之后,它就可以像固体电荷一样在闭合的电路中传导。

在这一过程中,电容器的电荷会“跳跃”至电容器的下一个端口,平移至下一个端口再回到前一个端口。

将这里瞬间的电流放大数倍可达高电位,高达几千伏。

重要的是,这只是单点用的情况,因为更多的电势可能会有更强的作用并推动操作电容器的各个阶段。

当然,电势的增加对于其他的瞬态电容器变化起到了一种承载作用。

感性负载也提供了默认的反馈电流方向。

一旦正向电流量被限制,负向电流量就会增加,从而触发下一个瞬态电容器的充电状态。

由于这种系统中的所有电子组件都是基于震荡和共谐振产生的,所以一旦传输和储存的电荷被软件报告,系统就可以在不经任何干扰的情况下成功运行。

总之,当直流电压施加到电荷泵中时,其通过一个震荡电路对电容器充电,从而产生了频率较高的脉冲电流。

在这个过程中,电容器接收和充电大量的电荷,并将它们储存在电容器中。

储存在电容器中的电能最终被释放,从而形成高电压脉冲,使得电荷得以取走。

三、电荷泵的性能指标电荷泵的性能特征主要包括输出电压、输出电流、固定频率、可调频率和控制方式等。

电荷泵 分压 原理

电荷泵 分压 原理

电荷泵分压原理
电荷泵(Charge Pump)是一种电子电路,常用于将电荷从低电压的节点移动到高电压的节点,以提供电压升压的功能。

它主要通过周期性的电荷传输来实现。

以下是电荷泵、分压和原理的基本概念:
1.电荷泵的基本构造:电荷泵通常由开关元件(比如场效应晶体
管)、电容器和时钟信号生成电路组成。

电荷泵通过周期性地充放电电容器来实现电荷的传输。

2.分压:分压是指在电路中通过特定的组件(例如电阻器、电容
器)将电压进行降低的过程。

电阻分压器是其中一种常见的分压方式,
根据分压原理,电压与电阻和电流的乘积成正比。

3.电荷泵的工作原理:
•充电阶段:在电荷泵的充电阶段,开关元件闭合,电容器充电。

电荷从低电压节点经过开关元件传输到电容器中。

•放电阶段:在电荷泵的放电阶段,开关元件打开,电容器中的电荷通过开关元件传输到高电压节点。

这导致高电压节点的
电压上升。

•重复过程:充放电过程在时钟信号的控制下重复进行,从而实现电荷的不断传输,使高电压节点的电压逐步上升。

4.分压与电荷泵结合:电荷泵可以与分压器结合使用,以提供更
高的输出电压。

通过反复的充放电过程,电荷泵可以将输入电压升高到
所需的水平,并通过分压电路提供稳定的输出电压。

5.应用:电荷泵常用于一些低功耗电子设备,例如嵌入式系统、
传感器和低功耗射频(RF)电路中,以提供所需的高电压。

需要注意的是,电荷泵的效率通常较低,且输出电流有限,因此其应用受到一些限制。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理
电荷泵是一种能够将电荷从低电压输送到高电压的装置,它在
许多电子设备中都有重要的应用。

电荷泵的工作原理主要基于电荷
的移动和电场的作用,下面我们将详细介绍电荷泵的工作原理。

首先,电荷泵通常由输入端和输出端组成。

在电荷泵中,输入
端的电荷通常是从一个低电压的电源中获取的,而输出端则是将电
荷输送到高电压的地方。

电荷泵的工作原理主要包括两个关键步骤,电荷的移动和电场的作用。

在电荷泵中,电荷的移动是通过一系列的电子传导和电子驱动
来实现的。

当电荷通过输入端进入电荷泵时,它们会在电荷泵内部
的导体中移动,这个过程通常需要借助于外部的能量源,比如电池
或者其他的电源。

在移动的过程中,电荷会受到一定的阻力,这时
电荷泵内部的电场就会发挥作用,它会对电荷施加一个力,使得电
荷能够克服阻力继续向输出端移动。

另外,电场的作用也是电荷泵工作原理的重要部分。

在电荷泵
内部,会产生一个电场,这个电场会对电荷产生一个力,从而使得
电荷能够沿着一定的路径移动。

这个电场通常是通过电荷泵内部的
电荷分布和导体的结构来实现的,它会对电荷的移动方向和速度产生影响,从而使得电荷能够顺利地从输入端输送到输出端。

总的来说,电荷泵的工作原理主要包括电荷的移动和电场的作用。

通过这两个关键步骤,电荷泵能够将电荷从低电压输送到高电压的地方,从而实现了电荷的输送和能量的转换。

电荷泵在许多电子设备中都有着重要的应用,比如在电源系统和信号处理系统中都有着广泛的应用。

希望通过本文的介绍,能够让大家对电荷泵的工作原理有一个更加深入的了解。

电荷泵

电荷泵

电荷泵
电荷泵为容性储能DC-DC 产品,可以进行升压,也可以作为降压使用,
还可以进行反压输出。

电荷泵消除了电感器和变压器所带有的磁场和电磁干扰。

1. 工作原理
电荷泵是通过外部一个快速充电电容(Flying Capacitor),内部以一定的频率进行开关,对电容进行充电,并且和输入电压一起,进行升压(或者降压)转换。

最后以恒压输出。

在芯片内部有负反馈电路,以保证输出电压的稳定,如上图Vout ,经R1,R2 分压得到电压V2,与基准电压VREF 做比较,经过误差放大器A,来控制充电电容的充电时间和充电电压,从而达到稳定值。

电荷泵可以依据电池电压输入不断改变其输出电压。

例如,它在1.5X 或1X 的模式下都可以运行。

当电池的输入电压较低时,电荷泵可以产生一个相当于输入电压的1.5 倍的输出电压。

而当电池的电压较高时,电荷泵则在1X 模式
下运行,此时负载电荷泵仅仅是将输入电压传输到负载中。

这样就在输入电压较高的时候降低了输入电流和功率损耗。

2. 倍压模式如何产生
以1.5x mode 为例讲解:电压转换分两个阶段完成。

第一阶段
在第一阶段,C1 和C2 串联。

假设C1=C2,则电容充电直到电容电压等于输入电压的一半
VC1+-VC1-=VC2+-VC2-=VIN/2
第二阶段。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理好嘞,以下是为您创作的关于电荷泵工作原理的内容:在我们生活的这个充满科技魅力的世界里,各种各样神奇的电子设备为我们带来了便捷和乐趣。

从手机到电脑,从平板到智能手表,这些设备内部都有着无数精巧的电路在默默工作,其中就有电荷泵这个重要的“小角色”。

咱们先来说说电荷泵到底是个啥。

想象一下,电荷就像是一群调皮的小精灵,在电路中到处乱跑。

而电荷泵呢,就像是一个超级厉害的管理员,能把这些小精灵有序地组织起来,让它们按照我们想要的方式运动。

比如说,我们有一个电源输入,电压是 5 伏。

但我们的设备里某个部分需要 9 伏的电压才能正常工作。

这时候,电荷泵就登场啦!它会通过一系列巧妙的操作,把 5 伏的输入电压提升到 9 伏,就好像给这些小精灵施加了魔法,让它们变得更有力量。

那电荷泵是怎么做到这神奇的魔法呢?其实啊,它就像是一个聪明的搬运工。

电荷泵内部有一些电容器,这些电容器就像是一个个小仓库。

电荷泵会先把电荷存到一个电容器里,然后再以特定的方式把它们转移到另一个电容器里。

在这个转移的过程中,电压就被升高啦。

我记得有一次,我自己在家里捣鼓一个小电路实验。

我想要让一个小电机转得更快,但是电源的电压不够。

我就想到了电荷泵的原理,然后自己动手搭建了一个简单的电荷泵电路。

刚开始的时候,总是不成功,我那叫一个着急啊!但我没有放弃,一遍又一遍地检查线路,调整电容的参数。

终于,当我看到小电机欢快地飞速转动起来的时候,那种成就感简直爆棚!再深入一点说,电荷泵的工作方式有好几种。

比如常见的倍压电荷泵和降压电荷泵。

倍压电荷泵能把输入电压翻倍,降压电荷泵则能把高电压降低到我们需要的数值。

而且电荷泵还有很多很棒的优点呢。

它的效率通常比较高,能有效地节省能源。

这对于那些依靠电池供电的设备来说,可太重要啦,能让电池用得更久,咱们就不用频繁地充电。

另外,电荷泵的体积还可以做得很小,这就使得它能轻松地被集成到各种紧凑的电子设备中,不占地方还能发挥大作用。

电荷泵转换器工作原理

电荷泵转换器工作原理

电荷泵转换器工作原理1. 引言电荷泵转换器是一种常用的电子器件,用于将直流电压转换成更高或更低的直流电压。

它在许多电子设备和电路中发挥着重要的作用,例如电源管理、射频通信等领域。

本文将介绍电荷泵转换器的工作原理及其实现方式。

2. 电荷泵转换器基本原理电荷泵转换器利用电容器的充放电原理,将输入电压转换成更高或更低的输出电压。

它由两个交替工作的开关和两个电容器构成。

当一个开关打开时,电容器C1通过电流源充电,同时电容器C2通过另一个开关放电。

接着,两个开关状态切换,C2开始充电,C1开始放电。

通过交替充放电,电荷泵转换器可以将电压转移到更高的电平。

3. 电荷泵转换器工作原理详解3.1 正向工作阶段当电荷泵转换器工作在正向工作阶段时,输入电压施加在电容器C1上,开关S1关闭,而开关S2打开。

在这种情况下,通过正向开启的二极管D1,电容器C2开始放电,同时将放电电流传递给负载。

在这个过程中,电容器C1通过电流源逐渐充电,并将电压逐渐增加。

3.2 反向工作阶段当电容器C1充电到一定电压后,开关S2关闭,而开关S1打开。

在这种情况下,通过反向开启的二极管D2,电容器C2开始充电。

在这个过程中,充电电流继续传递给负载,而电容器C1则通过电流源放电。

通过交替的正向和反向工作阶段,电荷泵转换器可以将输入电压转换成更高的输出电压。

具体输出电压的大小取决于电容器的数值以及开关的工作频率。

4. 电荷泵转换器实现方式电荷泵转换器可以使用不同的电路拓扑来实现。

其中较为常见的有Dickson电荷泵和Cockroft-Walton电荷泵。

4.1 Dickson电荷泵Dickson电荷泵是一种串联电荷泵结构,由多个电容器和开关组成。

在每个时钟周期中,电容器依次进行充放电操作,从而实现输出电压的倍增。

Dickson电荷泵具有简单的结构和高电压增益,但其输出电流较小。

4.2 Cockroft-Walton电荷泵Cockroft-Walton电荷泵是一种并联电荷泵结构,通过多级整流电路将直流电压倍增。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理
电荷泵是一种电子器件,利用电场或磁场的作用,将电荷从低能级向高能级转移的原理来实现电荷的泵送。

简单来说,电荷泵是通过对电荷进行反复的移动和分离,来提升电荷能级的装置。

电荷泵可以基于不同的原理来实现。

其中一个常见的例子是压电电荷泵,其原理基于压电效应,即在某些晶体中施加压力会发生电荷分离。

在电荷泵中,施加交变电压可以使压电材料发生周期性的膨胀和收缩,从而分离出正负电荷。

另一个常见的电荷泵原理是半导体电荷泵。

在半导体材料中,通过改变材料中的电势能障垒,可以实现电荷的泵送。

这种电荷泵通常利用PN结构,通过不断地改变结中的电压来实现电荷的移动和分离。

电荷泵的工作过程可以简单描述为以下几个步骤:
1. 初始状态下,电荷泵中的电荷处于较低能级状态。

2. 施加电场或磁场的作用,使电荷发生移动和分离。

3. 通过改变电势能障垒或压电效应,将电荷推向更高的能级。

4. 重复以上步骤,不断提升电荷的能级。

电荷泵的工作原理

电荷泵的工作原理

电荷泵的工作原理电荷泵的工作原理电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。

另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。

由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。

电荷泵的应用电荷泵转换器常用于倍压或反压型DC-DC 转换。

电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。

电荷泵有倍压型和反压型两种基本电路形式。

电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。

采用电压反转式电路可以在便携式产品中省去一组电池。

由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。

虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。

目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。

例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。

自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。

对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。

现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。

电荷泵工作原理

电荷泵工作原理

电荷泵工作原理
电荷泵是一种电管,可以通过控制电流或电压来把一种可调节的电流传输到一个容积上,从而维持容积内的稳定电荷。

它主要包括对流(吸充电源)、指数(或饱和)及复杂的机械结构。

它一般会出现在自由电子放大器的器件或细胞中,用来控制电荷的容积。

电荷泵的基本工作原理:它利用电荷转移的原理,即保留一定的电流,从而控制并改变电荷的容积,从而影响某些参数,在其工作过程中出现充电和放电的过程。

它是由一个由多个可调节电路(如带有内在放大器功能)和一些机械结构组成的三组件系统组成的。

即流入电路(内部吸充电源)、指数(常数或饱和)和输出电路(输出端)。

首先,它会吸收流入电路对应的电流,然后存储在指数电路对应的电容当中,最后,将这部分电量转移到输出电路,由此控制节容等参数,形成稳定的工作状态,并达到相应的目标。

此外,电荷泵还可以被使用于一些空间电离角度上,即空间电荷平衡方程,可以有效改变空间电荷的稳定容积,当没有可以调节的空间电荷此时也可运用此原理进行调节。

总的来说,电荷泵是一种利用电荷的转移以达到控制稳定电荷的容积的电子器件,它利用内在的电流和指数电路,将流入电流注入到饱和指数电路中,并在其工作过程中实现充放电,以达到稳定电之器件或细胞的容积等目的。

电荷泵(charge pump)原理

电荷泵(charge pump)原理
减少纹波输出的方法有很多种,主要取决于给定应用的需要。最简单而且直接的方法就是增 加COUT电容的值。一般的 10 μF COUT电容可以增加到 22 μF或者更多。较大的COUT电容(22 μF 及更多)生来就具有低ESR值并且可以改善电荷泵高频和低频器件的输出纹波响应。如果在COUT 处使用一个更大值的钽电容来降低低频纹波,一个小的低ESR陶瓷电容可以并联加在钽电容旁 (如图 3)。这样做是因为一般钽电容的ESR值比等价陶瓷电容的要高,减少高频元件的输出纹波 能力较低。唯一使用大容量COUT电容的缺点就是AAT3110 装置开启时间和涌入电流有可能增加。 当然,钽电容的价格也比相同容量的陶瓷电容要贵。 如果需要额外的纹波减少,则可以在COUT处给电荷泵增加一个R/C滤波器来减少纹波输出(如图 4)。R/C滤波器可以根本上削弱输出纹波。R/C滤波器的低频断点将主要取决于电容值的选择。
η = POUT PIN
VIN
_____ SHDN
CONTROL
VREF +
S2
S1
S4
S3
C+ C-
VO框图
另外,在一个理想的双倍电压电荷泵中,输出电流可以被表示为输入电流的一半。效率 η 公 式可以被写成:
η = POUT = VOUT × IOUT = VOUT PIN VIN × 2IOUT 2VIN
电压模式升压电荷泵的原理
2 倍升压模式电荷泵原理
以AAT3110 为例,如图 1。如图 2 所示,AAT3110 使用一个开关电容电荷泵来升高输入电压, 从而输出一个稳定的电压。是通过一个内部分割电阻网络感应电荷泵输出电压来进行调节。当电 阻分割电压输出低于一个由内部比较器控制的预设点(Trip Point)时,打开开关双倍电路。电 荷泵以两个不重叠的阶段循环开关四个内部开关。在第一个阶段,开关S1 和S4 关闭并且S2 和S3 打开。快速电容器使CFLY充电到一个近似等于输入电压VIN的电压。在第二个阶段,开关S1 和S4 打开并且S2 和S3 关闭。在第一阶段时,快速电容器CFLY的负极接地。在第二个阶段时,快速电 容器CFLY的负极则连接到了VIN。在快速电容器CFLY正极的电压就升高到了 2VIN并且通过一个开 关连接到输出。在每一个循环阶段,电荷从输入节点VIN由较低电压转换成较高电压。这个循环 自己重复,直到输出节点电压足够大以超越控制比较器的输入阈值电压。当输出电压超越内部预 设点标准时,开关循环停止并且电荷泵回路置于一个空闲状态。在空闲状态时,AAT3110 有一个 低于 13 μA的静态电流。闭环反馈系统包括了电压感应回路和控制比较器,允许AAT3110 提供一 个可调节的电压输出与输入电压和输出负载电流的限制相对应。一个内部时钟的振荡器驱动电荷 泵的开关信号。自由运行的电荷泵开关频率近似到 750 kHz。开关频率在一个活跃的负载下是VIN, VOUT,COUT和IOUT的函数。

电荷泵充电原理

电荷泵充电原理

电荷泵充电原理的基本原理引言电荷泵是一种用于产生高电压的电子器件,它能够将低电压的直流电源转换为高电压的直流电源。

电荷泵的充电原理是利用电容器的充放电过程来实现的。

在本文中,我们将详细解释电荷泵充电原理的基本原理。

电荷泵的基本结构电荷泵通常由以下几个基本组件组成:1.电容器:用于存储电荷的装置。

2.开关:用于控制电荷在电容器和其他元件之间的流动。

3.整流器:用于将交流电源转换为直流电源。

4.倍压电路:用于将低电压转换为高电压。

电荷泵的工作原理电荷泵的工作原理可以分为以下几个步骤:1.充电步骤:开关将电荷从电源中的一个极板引入电容器中。

2.放电步骤:开关将电荷从电容器中的一个极板引出,使其流向另一个极板。

3.反向充电步骤:开关将电荷从电容器的另一个极板引入电源中。

4.反向放电步骤:开关将电荷从电源中的一个极板引出,使其流向电容器的另一个极板。

这些步骤循环进行,从而实现电荷的累积和电压的提高。

具体充电原理下面我们将详细解释电荷泵充电原理的具体过程。

第一步:充电1.开关将电荷从电源的正极引入电容器的一个极板上,使其充电。

这个过程中,电容器的另一个极板上的电荷保持不变,即电容器的另一个极板是中性的。

2.当电容器充满电荷后,开关切断与电源的连接,停止充电。

第二步:放电1.开关将电荷从电容器的一个极板引出,使其流向另一个极板。

这个过程中,电容器的一个极板上的电荷减少,而另一个极板上的电荷增加,即电容器的两个极板上的电荷量变化相等。

2.当电容器完全放电后,开关切断与另一个极板的连接,停止放电。

第三步:反向充电1.开关将电荷从电容器的另一个极板引入电源中,使其充电。

这个过程中,电容器的一个极板上的电荷保持不变,即电容器的一个极板是中性的。

2.当电容器充满电荷后,开关切断与电源的连接,停止充电。

第四步:反向放电1.开关将电荷从电源的一个极板引出,使其流向电容器的另一个极板。

这个过程中,电容器的一个极板上的电荷减少,而另一个极板上的电荷增加,即电容器的两个极板上的电荷量变化相等。

电荷泵原理

电荷泵原理

电荷泵原理
电荷泵是一种可将电荷从低电势转移到高电势的电子器件。

它通过周期性地在一对电容器之间往复传输电荷来实现这一功能。

电荷泵核心的元件是两个电容器,分别称为输入电容器和输出电容器。

输入电容器的两个端口分别连接一个高电压源和一个交流信号源,而输出电容器的两个端口分别连接一个接地点和负载。

电荷泵的工作原理可以分为四个步骤:
1. 输入电容充电阶段:当高电压源电压施加在输入电容器上时,电容器开始充电。

这导致电容器的正极获得了一些正电荷,而负极则获得了一些负电荷。

在此过程中,输出电容器处于放电状态。

2. 开关转换阶段:一旦输入电容器充电达到一定程度,切换器会将两个电容器连接在一起。

这导致输入电容器的正极连接到输出电容器的负极,而输入电容器的负极连接到输出电容器的正极。

3. 电荷传输阶段:经过连接后,电荷开始从输入电容器的正极移动到输出电容器的负极。

这导致输出电容器的正电荷增加,而输入电容器的正电荷减少。

这一过程完成后,切换器再次将两个电容器分离。

4. 输出电容充电阶段:当两个电容器再次分离时,输出电容器
的正极处于开路状态。

这导致输出电容器开始充电,并逐渐达到与输入电容器相同的电荷状态。

同时,输入电容器处于放电状态。

通过不断重复这四个步骤,电荷泵能够将从低电势端获得的电荷传输到高电势端。

这种器件广泛应用于瞬变电压提升、信号整形与增益等电路中。

电荷泵的工作原理

电荷泵的工作原理

电荷泵的工作原理
电荷泵是一种电子元件,其主要功能是将电荷从一处地方移动到另一处地方。

它能够将电荷从低电势的地方(如地点A)抽取出来,并将它们推向高电势的地方(如地点B)。

通过这个过程,电荷泵能够实现电势差的转化。

电荷泵的工作原理基于电场力和电荷在电场中受力运动的机制。

它通常由两个电容器(称为C1和C2)和两个开关(称为S1
和S2)组成。

当S1关闭、S2打开时,C1电容器开始充电,
电荷会从电源源端逐渐流向C1电容器。

此时,C2电容器的上端则连接着一部分电荷,下端则与地相连。

当C1电容器充满电荷后,S1打开、S2关闭,C1与C2电容
器之间的连接会断开,此时C1中的电荷无法通过S1进一步
流动。

不过,C1上依然存在电势差,导致C1的正极电势高于地势。

在这种情况下,C2的下端相对于C1的正极形成低电势区域,同时C2的上端还存在一定的高电势。

由于电荷在电场力下会从高电势区域移向低电势区域,因此在
S1打开、S2关闭的情况下,C1中的电荷会通过外部电路流向
C2的上端,从而完成电荷泵的工作。

这个过程中,电荷从低
电势的地方(C1的正极)被推向高电势的地方(C2的上端),实现电势差的转化。

需要注意的是,电荷泵的工作过程中通常需要一个外部能量源(如电池)来提供能量,以维持电荷的移动。

否则,电荷泵只
能将有限的电荷从低电势地方移向高电势地方,直至全部电荷流动完成。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电荷泵工作原理电荷泵电压反转器是一种DC/DC变换器,它将输入的正电压转换成相应的负电压,即VOUT= -VIN。

另外,它也可以把输出电压转换成近两倍的输入电压,即VOUT≈2VIN。

由于它是利用电容的充电、放电实现电荷转移的原理构成,所以这种电压反转器电路也称为电荷泵变换器(Charge Pump Converter)。

电荷泵的应用电荷泵转换器常用于倍压或反压型DC-DC 转换。

电荷泵电路采用电容作为储能和传递能量的中介,随着半导体工艺的进步,新型电荷泵电路的开关频率可达1MHz。

电荷泵有倍压型和反压型两种基本电路形式。

电荷泵电路主要用于电压反转器,即输入正电压,输出为负电压,电子产品中,往往需要正负电源或几种不同电压供电,对电池供电的便携式产品来说,增加电池数量,必然影响产品的体积及重量。

采用电压反转式电路可以在便携式产品中省去一组电池。

由于工作频率采用2~3MHz,因此电容容量较小,可采用多层陶瓷电容(损耗小、ESR 低),不仅提高效率及降低噪声,并且减小电源的空间。

虽然有一些DC/DC 变换器除可以组成升压、降压电路外也可以组成电压反转电路,但电荷泵电压反转器仅需外接两个电容,电路最简单,尺寸小,并且转换效率高、耗电少,所以它获得了极其广泛的应用。

目前不少集成电路采用单电源工作,简化了电源,但仍有不少电路需要正负电源才能工作。

例如,D/A 变换器电路、A/D 变换器电路、V/F或F/V 变换电路、运算放大器电路、电压比较器电路等等。

自INTERSIL公司开发出ICL7660电压反转器IC后,用它来获得负电源十分简单,90 年代后又开发出带稳压的电压反转电路,使负电源性能更为完善。

对采用电池供电的便携式电子产品来说,采用电荷泵变换器来获得负电源或倍压电源,不仅仅减少电池的数量、减少产品的体积、重量,并且在减少能耗(延长电池寿命)方面起到极大的作用。

现在的电荷泵可以输出高达250mA的电流,效率达到75%(平均值)。

电荷泵大多应用在需要电池的系统,如蜂窝式电话、寻呼机、蓝牙系统和便携式电子设备。

便携式电子产品发展神速,对电荷泵变换器提出不同的要求,各半导体器件公司为满足不同的要求开发出一系列新产品,本文将作一个概况介绍。

电荷泵的分类电荷泵分类电荷泵可分为:•开关式调整器升压泵,如图1(a)所示。

•无调整电容式电荷泵,如图1(b)所示。

•可调整电容式电荷泵,如图1(c)所示。

图1 电荷泵的种类电荷泵工作过程3 种电荷泵的工作过程均为:首先贮存能量,然后以受控方式释放能量,以获得所需的输出电压。

开关式调整器升压泵采用电感器来贮存能量,而电容式电荷泵采用电容器来贮存能量。

电荷泵的结构电容式电荷泵通过开关阵列和振荡器、逻辑电路、比较控制器实现电压提升,采用电容器来贮存能量。

电荷泵是无须电感的,但需要外部电容器。

由于工作于较高的频率,因此可使用小型陶瓷电容(1mF),使空间占用小,使用成本低。

电荷泵仅用外部电容即可提供±2 倍的输出电压。

其损耗主要来自电容器的ESR(等效串联电阻)和内部开关晶体管的RDS(ON)。

电荷泵转换器不使用电感,因此其辐射EMI可以忽略。

输入端噪声可用一只小型电容滤除。

它的输出电压是工厂生产精密预置的,调整能力是通过后端片上线性调整器实现的,因此电荷泵在设计时可按需要增加电荷泵的开关级数,以便为后端调整器提供足够的活动空间。

电荷泵十分适用于便携式应用产品的设计。

从电容式电荷泵内部结构来看,如图2 所示它实际上是一个片上系统。

图2 电容式电荷泵内部结构电荷泵工作原理电荷泵变换器的基本工作原理如图3所示。

它由振荡器、反相器及四个模拟开关组成,外接两个电容C1、C2 构成电荷泵电压反转电路。

振荡器输出的脉冲直接控制模拟开关S1及S2;此脉冲经反相器反相后控制S3及S4。

当S1、S2 闭合时,S3、S4 断开;S3、S4 闭合时,S1、S2 断开。

当S1、S2 闭合、S3、S4 断开时,输入的正电压V+向C1 充电(上正下负),C1 上的电压为V+;当S3、S4闭合、S1、S2断开时,C1向C2放电(上正下负),C2上充的电压为-VIN,即VOUT=-VIN。

当振荡器以较高的频率不断控制S1、S2 及S3、S4 的闭合及断开时,输出端可输出变换后的负电压(电压转换率可达99%左右)。

由图 3 可知,电荷泵电压反转器并不稳压,即有负载电流时,输出电压将有变化。

输出电流与输出电压的变化曲线(输出特性)称为输出特性曲线,其特点是输出电流越大,输出电压变化越大。

一般以输出电阻Ro来表示输出电流与输出电压的关系。

若输出电流从零增加到Io时,输出电压变化为△V,则输出电阻Ro 为:Ro = △V/Io输出电阻Ro 越小,输出电压变化越小,输出特性越好。

如何选择电荷泵1、效率优先,兼顾尺寸如果需要兼顾效率和占用的 PCB 面积大小时,可考虑选用电荷泵。

例如电池供电的应用中,效率的提高将直接转变为工作时间的有效延长。

通常电荷泵可实现 90% 的峰值效率,更重要的是外围只需少数几个电容器,而不需要功率电感器、续流二极管及 MOSFET。

这一点对于降低自身功耗,减少尺寸、BOM 材料清单和成本等至关重要。

2、输出电流的局限性电荷泵转换器所能达到的输出负载电流一般低于 300mA,输出电压低于 6V。

多用于体积受限、效率要求较高,且具有低成本的场合。

换言之,对于 300mA 以下的输出电流和 90% 左右的转换效率,无电感型电荷泵 DC/DC 转换器可视为一种成本经济且空间利用率较高的方式。

然而,如果要求输出负载电流、输出电压较大,那么应使用电感开关转换器,同步整流等 DC/DC 转换拓扑。

3、较低的输出纹波和噪声大多数的电荷泵转换器通过使用一对集成电荷泵环路,工作在相位差为 180 度的情形,这样的好处是最大限度地降低输出电压纹波,从而有效避免因在输出端增加滤波处理而导致的成本增加。

而且,与具有相同输出电流的等效电感开关转换器相比,电荷泵产生的噪声更低些。

对于 RF 或其它低噪声应用,这一点使其无疑更具竞争优势。

电荷泵选用要点作为一个设计工程师选用电荷泵时必然会考虑以下几个要素:•转换效率要高无调整电容式电荷泵 90%可调整电容式电荷泵 85%开关式调整器 83%•静态电流要小,可以更省电;•输入电压要低,尽可能利用电池的潜能;•噪音要小,对手机的整体电路无干扰;•功能集成度要高,提高单位面积的使用效率,使手机设计更小巧;•足够的输出调整能力,电荷泵不会因工作在满负荷状态而发烫;•封装尺寸小是手持产品的普遍要求;•安装成本低,包括周边电路占PCB 板面积小,走线少而简单;•具有关闭控制端,可在长时间待机状态下关闭电荷泵,使供电电流消耗近乎为0。

新型电荷泵变换器的特点80 年代末90 年代初各半导体器件厂生产的电荷泵变换器是以ICL7660为基础开发出一些改进型产品,如MAXIM 公司的MAX1044、Telcom 公司的TC1044S、TC7660 和LTC 公司的LTC1044/7660等。

这些改进型器件功能与ICL7660相同,性能上有改进,管脚排列与ICL7660完全相同,可以互换。

这一类器件的缺点是:输出电流小;输出电阻大;振荡器工作频率低,使外接电容容量大;静态电流大。

90 年代以后,随着半导体工艺技术的进步与便携式电子产品的迅猛发展,各半导体器件公司开发出各种新型电荷泵变换器,它们在器件封装、功能和性能方面都有较大改进,并开发出一些专用的电荷泵变换器。

它们的特点可归纳为:1. 提高输出电流及降低输出电阻早期产品ICL7660在输出40mA时,使-5V 输出电压降为-3V(相差2V),而新型MAX660输出电流可达100mA,其输出电阻Ro仅为6.5Ω,MAX660在输出40mA时,-5V输出电压为-4.74V(相差仅0.26V),即输出特性有较大的提高。

MAX682 的输出电流可达250mA,并且在器件内部增加了稳压电路,即使在250mA 输出时,其输出电压变化也甚小。

这种带稳压的产品还有AD 公司的ADM8660、LT 公司的LT1054 等。

2. 减小功耗为了延长电池的寿命或两次充电之间的间隔,要尽可能减小器件的静态电流。

近年来,开发出一些微功耗的新产品。

ICL7660 的静态电流典型值为170μA,新产品TCM828的静态电流典型值为50μA,MAX1673 的静态电流典型值仅为35μA。

另外,为更进一步减小电路的功耗,已开发出能关闭负电源的功能,使器件耗电降到1μA 以下,另外关闭负电源后使部分电路不工作而进一步达到减少功耗的目的。

例如,MAX662A、AIC1841 两器件都有关闭功能,在关闭状态时耗电< 1μA,几乎可忽略不计。

这一类器件还有TC1121、TC1219、ADM660 及ADM8828等。

3. 扩大输入电压范围ICL7660电荷泵电路的输入电压范围为1.5~10V,为了满足部分电路对更高负压的需要,已开发出输入电压可达18及20V的新产品,即可转换成-18 或-20V的负电压。

例如,TC962、TC7662A 的输出电压范围为3~18V,ICL7662、Si7661 的输入电压可达20V。

4. 减少占印板的面积减少电荷泵变换器占印板面积有两种措施:采用贴片或小尺寸封装IC,新产品采用SO封装、μMAX封装及开发出尺寸更小的SOT-23封装;其次是减小外接电容的容量。

输出电流一定时,电荷泵变换器的外接电容的容量与振荡器工作频率有关:工作频率越高,电容容量越小。

工作频率在几kHz到几十kHz时,往往需要外接10μF的泵电容;新型器件工作频率已提高到几百kHz,个别的甚至到1MHz,其外接泵电容容量可降到1~0.22μF。

ICL7660 工作频率为10kHz,外接10μF电容;新型TC7660H 的工作频率提高到120kHz,其外接泵电容已降为1μF。

MAX1680/1681 的工作频率高达1MHz,在输出电流为125mA 时,外接泵电容仅为1μF。

TC1142 工作频率200kHz,输出电流20mA 时,外接泵电容仅为0.47μF。

MAX881R 工作频率100kHz,输出电流较小,其外接泵电容仅为0.22μF。

若采用SOT-23 封装的器件及贴片式电容,则整个电荷泵变换器的面积可做得很小。

5. 输出负电压可设定(调整)一般的电荷泵变换器的输出负电压VOUT = -VIN,是不可调整的,但新型产品MAX1673可外接两个电阻R1、R2来设定输出负电压。

输出电压VOUT 与R1、R2 的关系为:VOUT = -(R2/R1)VREF式中VREF为外接的基准电压。

MAX881R、ADP3603~ADP3605、AIC1840/1841 等都有这种功能。

相关文档
最新文档