叠层芯片封装技术与工艺探讨

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叠层芯片封装技术与工艺探讨

一、引言

现代便携式电子产品对微电子封装提出了更高的要求,其对更轻、更薄、更小、高可靠性、低功耗的不断追求推动微电子封装朝着密度更高的三维封装方式发展,芯片叠层封装(stacked die package)是一种得到广泛应用的三维封装技术,叠层封装不但提高了封装密度,降低了封装成本,同时也减小了芯片之间的互连导线长度,从而提高了器件的运行速度,而且通过叠层封装还可以实现器件的多功能化,初级的3D芯片叠层封装就是把多个芯片在垂直方向上累叠起来,利用传统的引线封装结构,然后再进行封装。由于这种结构的特殊性,芯片和基板之间,芯片和芯片之间的互连是叠层封装的关键,现在普遍是以引线键合方式实现叠层封装的互连,其方式主要有2 种:一种是金字塔型的叠层封装,使用大小不同的芯片,上层的芯片的面积要小于下层,这样下层芯片表面就有足够的面积和空间可以用来进行引线键合;另一种是使用大小相同的芯片,通过在上下层芯片之间加入一层芯片(spacer)以便于下层芯片的引线键合,垫片是一块面积比上下层芯片小的普通硅片,使用这两种结构都可以制造出多层芯片的叠层封装。为避免对现有工艺进行大的改动,叠层封装一般通过减薄芯片的厚度来保证总的封装厚度不变,但是芯片厚度的减少会造成芯片刚度减少,易于变形,在热处理过程中芯片内应力集中点甚至会造成芯片的破坏,此外,由于塑封料厚度的减小,阻止水汽侵入芯片和塑封料界面的能力减弱,水汽的侵入会促使裂纹的产生和扩展。本文就LQFP系列3D封装在实际生产过程中所遇

到的问题及解决方案进行了详细的阐述。

二、超薄圆片减薄及划片

传统的MOS集成电路一般都是表面型器件,功耗小,无需考虑散热问题,所以对芯片厚度要求不高,芯片厚度主要由塑封体厚度而定,除了QFP、SOP 等扁平封装因受塑封体厚度限制,芯片厚度一般为300μm左右,其余芯片厚度一般为400μm左右,然而3D封装芯片厚度一般为200μm以下,这就必须考虑减薄后圆片的翘曲以及划片崩裂等问题。

2.1.薄圆片减薄后圆片翘曲成因及对策

2.1.1.翘曲原因

实践证明,减薄后,圆片翘曲主要是由机械切削造成的损伤层引起,这是因为,硅材料片是单晶硅片,硅原子按金刚石结构周期排列,而背面减薄就是通过机械切削的方式对圆片背面进行切削,切削必然会在圆片背面形成一定厚度的损伤层,损伤层的厚度与砂轮金刚砂直径成正比,背面损伤层的存在,破坏了圆片内部单晶硅的晶格排列,使圆片的内部存在较大的应力,当圆片很薄时,使圆片自身抗拒上述应力的能力就很弱,体现在外部,就是圆片翘曲,圆片翘曲与粗糙度、砂轮金刚砂直径及圆片直径成正比,另外,圆片厚度越大,圆片自身抗拒内部应力的能力越强。

2.1.2.3D封装减薄技术和传统封装减薄技术的差别

机械切削是常规的背面减薄技术,一般分为两阶段:即前段粗磨和后段细磨两部分,由于细磨后圆片比较光滑,并且细磨砂轮金刚砂直径一般在20μm以

下,细磨时容易产生较高的热量,所以,细磨切削量都较小,一般小于40μm,图1为减薄示意图。

在传统的MOS集成电路封装中,由于圆片厚度较厚,一般无须考虑背面减薄造成的背面损伤,粗磨一般选用金刚砂颗粒直径大于40μm,粗磨形成的损伤层大约为20μm左右,粗糙度约为1.5μm,细磨一般选用金刚砂颗粒直径小于20μm的砂轮,其损伤层大约为5μm左右,粗糙度约为0.5μm,由于后段细磨砂轮较粗,因此在圆片内部存在较大的应力,利用此工艺加工的Φ150mm(6英寸)圆片,如果完工厚度是400μm,翘曲度可达200μm左右,但是由于传统的MOS集成电路圆片较厚,一般还不会影响后序工序加工,也不会影响电路性能。

然而3D封装中芯片厚度一般在200μm以下,如果还采用上述减薄工艺,如果完工厚度是200μm,Φ200mm(8英寸)圆片翘曲度可达1500μm以上,由于其脆性较强,在交接转运过程中易受振动或外力的损伤,影响成品率,并且因背面加工的粗糙度偏高,这样的高低不平纹路,造成应力集中,使后续工艺划片,装片时产生隐含的裂纹,其结果影响产品的可靠性。为适应3D封装芯片加工,后段细磨改用直径更小的金刚砂颗粒使其粗糙度小于0.2μm,造成的背面损伤层小于2μm左右,虽然采用此工艺可以去除粗磨阶段形成的大部分损伤层,减小表面的粗糙度,达到较好的镜面效果,但细磨自身也会造成一定的损

伤,造成圆片翘曲。利用此工艺加工的Φ200mm(英寸)圆片,如果完工厚度是200μm,翘曲度达到180μm左右。

图2分别是使用不同砂轮减薄后,200倍显微镜下圆片的背面情况,可看出金刚砂颗粒较大的砂轮加工的圆片背面有较大的损伤,粗糙度随颗粒直径的增长依次增大,而使用金刚砂颗粒小于6μm砂轮粗糙度明显小,基本达到了镜面效果。

图3、4是Φ200mm圆片分别用不同砂轮减薄到200μm,圆片的翘曲情况对比。

2.1.

3.对策

从圆片翘曲的成因上看,减少机械切削造成的损伤层是减少减薄后圆片翘曲的关键,所谓3D封装中的减薄技术有别于过去的减薄技术,就在于砂轮的选择,即选择合适的砂轮,最大限度地减少机械切削造成的损伤层,降低翘曲度。

2.2.薄圆片划片崩裂的成因及对策

3D薄圆片划片主要问题是崩裂问题,如图5所示,如果崩裂严重,会造成芯片缺角,芯片直接报废;如果崩裂较轻微,裂纹没有碰及铝线,该缺陷不易被发现,但是会影响封装后IC的可靠性,相比两种情况,后者的后果更为严重。

2.2.1.崩裂成因

划片刀刃口是金刚砂颗粒粘合而成,呈锯齿状,金刚砂的暴露量越大,划片刀就越锋利,在划片过程中,划片刀刃口的金刚砂颗粒不断的被磨损、剥落和更新,以保证刃口锋利,得到较好的切割效果,如图6所示,划槽边缘较光滑。

如果被磨损金刚砂颗粒没有及时更新,导致划片刀变钝,切割温度过高,即所谓划片刀过载,会产生正反面崩片,由于切割时圆片正面所受压力小于反面,且正面直接被水冲洗冷却效果好,所以崩片一般背面较正面更严重,崩片表现在正面,一般就是划槽毛刺较大,如图7所示,崩片表现在反面,即背崩现象,如图8所示,如果圆片较厚,背崩一般不会影响正面有效电路区,如果圆片较薄,背崩就可能延伸到圆片正面,发生崩裂,如图9所示。

相关文档
最新文档