三年级几何一笔画学生版

合集下载

小学奥数习题版三年级几何一笔画学生版

小学奥数习题版三年级几何一笔画学生版

知识要点一笔画一笔画【例1】 判断下列各图能否一笔画出,并说明理由。

【例2】 判断下列各图能否一笔画出,并说明理由。

(6)(4)(3)(2)(1)多笔画【例3】 下面各图至少需要几笔才能画成?(3)(2)(1)【例4】判断图中的三个图形各需要几笔才能画出?请把能一笔画的图形的画法用字母和箭头表示出来。

【例5】观察下面的图形,判断其需要几笔才能画出?多笔画改一笔画【例6】下图中的两个图形均不能一笔画出,你能将原图形中的某一线段取消使之能够一笔画成吗?【例7】下图能一笔画成吗?如果不能,请你添上或减去一根线段使它能一笔画出来。

【例8】 判断下列图形能否一笔画.若能,请给出一种画法,若不能,请说明需要几笔才能画出,并请加一条线或去一条线,将其改成可一笔画的图形.FI H EBA G图aD C 图 bJ I H GDCLKF E BA 图 c【例9】 将下图改为一笔画.生活中的一笔画【例10】 (第十二届“华罗庚金杯”少年数学邀请赛初赛试题(小学组))同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻的旗帜色彩不同,则贝贝至少需要___种颜色的旗子。

如果贝贝从某营地出发,不走重复的路就______(填“能”或“不能”)完成这项任务。

【例11】 下图是一个公园的道路平面图,要使游客走遍每条路且不重复,问出、入口应设在哪里?HI FED CBA【例12】下图中每个小正方形的边长都是100米。

小明沿线段从A点到B点,不许走重复路,他最多能走多少米?【例13】小明假日去看画展,展览分四个展区,展览馆内外一共有六扇门,平面图如下,请问小明能否不重复地穿过每一扇门?如果不能,请说明理由。

如果能,应从哪开始走?【例14】下图是某博物馆的平面图,共有五个主题展馆,相邻两馆之间有门相通,并且设有入口.博物馆的入口以及展馆门口挂了颜色各异的彩旗,请问你能否从入口进入一次不重复地穿过所有的门采集到所有颜色的彩旗吗?如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例15】在一条河的中间有两个小岛,周围有六座桥与两岸相通.问能否找到一条路线,从一岸出发,不重复走遍所有的桥,然后到达对岸?【例16】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个岛连接起来(如下图所示).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在.下面,我们考虑如下两个问题:⑴若再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理由.⑵架设几座桥可以使游人走遍所有的桥回到出发地?【例18】下图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径,若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?【例19】(2008年中国台湾小学数学竞赛选拔赛复赛)有一个城市的街道图是由一些矩形所构成,如下图。

三年级上册数学课件奥数一笔画全国通用版共7张PPT

三年级上册数学课件奥数一笔画全国通用版共7张PPT
另一几点位终点;
❖ 3、如何改成一笔画
❖ 关键是想办法减少奇点得个数
2
提示:要想走完每 一条路,又能尽快 出来,那么最短的 路线就是第一步:先看是不是连通图 ❖ 第二步:标奇偶点,看奇点个数(两个以 上的不可以)
❖ 2、如何一笔画出
❖ 第一种:都是偶点的,从任意点开始,还是到这一点结束 ❖ 第二种:只有两个奇点的,必须以其中一个奇点位起点,
6
3
3
4
3
4
3
3
2
(2)
方法:
2
2
2
(3)
1、标奇偶点;2、看奇点个数:都是偶点 得一定可以,并且从任意点开始,还是到 这一点结束;只有两个奇点,其余都是偶 点得可以一笔画出,但必须以其中那个一 个奇点位起点,另一几点位终点;奇点个 数超过两个就一定不能一笔画出。
例3
23
判断下面图形是否能一笔画出,如果不能请改
学习目标
❖ 1、判断是不是一笔画图形; ❖ 2、怎么画; ❖ 3、怎么改成一笔画。
例1 判断一下图形是否能一笔画出
(1)
(2)
(3)
特点:(1) (2)是不连通图 (3)(4)是连通图
(4)
例2 下面的连通图那些可以一笔画出,那些不能?
22
3
2
2
3
2
2
44 2
2
44
2
22 (1)
3
3
3 (4)
3
成可以一笔画得图形
4 32
3
4
4
4
4
4
4
4
3
4
3
2 33
2
4
4
(1)

小学奥数-三年级-一笔画PPT课件

小学奥数-三年级-一笔画PPT课件
多笔画化为一笔画 1.窍门:减少奇点的个数。 2.方法:去线、添线(在两个奇点之间)。
26
世界是美的, 只要有一双发现美的眼睛; 数学是美的, 只要有一颗发现美的心灵。
谢谢大家!
27
一笔画成。
13
【随堂练习4】下列哪些图形能一笔画出来,哪 些不能?
14
随堂练习5
根据今天学习知识,先判断下列图形能不能 一笔画成?再想一想该从哪里开始画?最后 再动手画画看。
15
例3
一辆洒水车要给某城市的街道洒水,街道地 图如下:你能否设计一条洒水车洒水的路线 ,使洒水车不重复地走过所有的街道,再回 到出发点?
小广场
超市
文具店
菜市场
电器城 服装城
16
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
17
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
18
【例4】下面的图形都不能一笔画成,你能否 在图中添上一条线段,使它能一笔画成。
19
【例5】请你判断下图能否一笔画?若不能, 你能用什么方法把它改成一笔画? 解:方法一:去线。
图4
图5
12
总结:
一个图形能否一笔画成,关键在于图中单数点的多少。 (1)一笔画必须是连通的(图形的各部分之间连接在一起) (2)凡是图形中没有单数点的一定可以一笔画成。可选任一
个点做起点,且一笔画后可以回到出发点。 (3)凡是图形中只有一个或者两个单数点,一定可以一笔画
成。画时必须从一个单数点为起点,以另一单数点为终点。 (4)凡是图形中单数点的个
我们刚才画的图形都有几个交点? 几个双数点?几个单数点?
9

精品三年级奥数a第四章 一笔画

精品三年级奥数a第四章 一笔画
例2: 下面的图中,哪些可以一笔画成?用箭头表示 出画的路线,看还有其它的路线吗?试着找一找,画 一画。
分析:图①中的A、B、C、D四个点中,A和C是奇点,B和D是偶点,所
以,可以一笔画成。 图②中的A、C、E、F四个奇点,所以不能一笔画成。 图③中的十个点中,全部都是偶点,所以可以一笔画成。 在画图①时,可以选择A点为起点,C点为终点;也可以选择C点为起点, A点为终点;画图③时,可以选择任意一个点为起点和终点。
除以上两种情况外,其它的图,都不能一笔画成;
第四章 一笔画
【技巧感悟 】
例1:下面的图形可以用一笔画成吗?
分析: 图①中有两个奇点,其余都是偶点,可以一笔画成。 图2中有4个单点,所以不能一笔画成。
第四章 一笔画
【热身演练 】
(1) 根据下面图形的箭头所指路线,一笔将图画完。
第四章 一笔画
【技巧感悟 】
第四章 一笔画
【热身演练 】
(4) 下面是一个儿童乐园的平面图。如果要在乐园里不重复地走 一遍,请你给儿童乐园安排一个出口和一个入口的位置。
第四章 一笔画
【技巧感悟 】
例5:请把下面的点用线连起来,使其中一 幅图可以一笔画成,另一幅却不能一笔画成。
分析解答:先把图①用线连起来,根据一笔画 的规律,在把图①进行调整,变成与它结果相 反的图②。
分析:这道题是与生活实际联 系比较紧密的题,看似比较复杂, 其实并不难。因为题目中并不要考 虑行走的路程的长短问题,只要能 进入活动楼后能不重复路线绕一周 即可。所以,可以把这张平面图的 每间教室和活动楼外面都看成一个 点,用线段将它们有序地连接起来, 然后再看怎样一笔画完。
第四下图是聪聪家住的小区平面图。每一条线段代表的是一条路。 一天,聪聪和他的一个同学两人分别从A点和B点出发,绕小区一 周,最后从C点出去,请问他们谁走的路应该长一些?

三年级一笔画试题及答案

三年级一笔画试题及答案

三年级一笔画试题及答案
试题:
1. 请画出一个一笔画的正方形。

2. 画出一个一笔画的五角星。

3. 尝试用一笔画完成一个三角形。

4. 画出一个一笔画的圆形。

5. 用一笔画连接以下点:A(1,1),B(3,2),C(4,5),D(2,6),E(0,4)。

答案:
1. 一笔画正方形的画法:从任意一个角开始,先画一条边,然后顺时
针或逆时针连接下一个角,直到四条边都画完。

2. 一笔画五角星的画法:从任意一个顶点开始,画一条直线到下一个
顶点,然后跳过一个顶点画到下一个顶点,以此类推,直到所有顶点
都连接起来。

3. 一笔画三角形的画法:从任意一个顶点开始,画一条线到另一个顶点,然后画一条线到第三个顶点,最后画一条线回到起始顶点。

4. 一笔画圆形的画法:从圆的任意一点开始,画一条弧线,然后继续
画弧线直到回到起点。

5. 连接点A(1,1),B(3,2),C(4,5),D(2,6),E(0,4)的一笔画方法:从A点开始,画线到B点,然后到C点,接着到D点,最后到E点,
最后画线回到A点。

三年级思维--几何--一笔画与多笔画(思维拓展专项练习)学生版

三年级思维--几何--一笔画与多笔画(思维拓展专项练习)学生版

知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。

什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点。

(2)知道什么样的图形可以一笔画出。

(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?例题精讲一笔画与多笔画【例1】我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点.下图中,哪些点是偶点?哪些点是奇点?【巩固】下图中,哪些点是奇点,哪些点是偶点?【例2】观察下面的图形,说明哪些图可以一笔画完,哪些不能,为什么?对于可以一笔画的图形,指明画法.【巩固】下面的图形,哪些能一笔画出?哪些不能一笔画出?【例3】同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要种颜色的旗子,如果贝贝从某营地出发,不走重复路线就(填“能”或“不能”)完成任务.【例4】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?ECD B A【例5】下图中的线段表示小路,请你仔细观察,认真思考,能够不重复的爬遍小路的是甲蚂蚁还是乙蚂蚁?该怎样爬?【例6】邮递员叔叔向11个地点送信一次信,不走重复路,怎样走最合适?【例7】(2010年第8届走美杯3年级初赛第6题)有16个点排成的44方阵。

小学数学一笔画课件

小学数学一笔画课件

THANKS FOR WATCHING
感谢您的观看
03
一笔画问题的解题方法
逐步推理法
总结词
通过逐步推理,按照一定的逻辑顺序,确定笔画的路径。
详细描述
逐步推理法是一种常用的解题方法,它通过逐步分析图形的特点和规律,推断出 笔画的路径。这种方法需要有一定的逻辑推理能力,对于一些较为复杂的图形, 需要仔细分析其结构,找出正确的笔画路径。
奇偶点分析法
拉回路是指一条通过图形的每条边且每条边只通过一次的闭合路径。
02
奇点与偶点
在图形中,如果一个节点发出的线条数是奇数,则该节点称为奇点;如
果一个节点发出的线条数是偶数,则该节点称为偶点。
03
哈密顿路径和哈密顿回路
哈密顿路径是指一条通过图形的每条边且每条边只通过一次的路径,但
不一定是闭合路径;哈密顿回路是指一条通过图形的每条边且每条边只
计算机科学
一笔画问题在计算机科学 中也有广泛应用,例如在 计算机图形学、算法设计 等领域。
实际应用
一笔画问题在现实生活中 也有很多应用,如地图的 绘制、电路设计、交通规 划等。
02
一笔画问题的数学原理
欧拉公式
欧拉公式
对于一个连通图,其边数和顶点数的关系可以用公式(V - E + F = 2)来表示,其中(V)表示顶点数,(E)表示边数,(F)表示面 数。这个公式是解决一笔画问题的重要依据。
问题的能力。
创新的一笔画问题
总结词
创意问题,挑战性
VS
详细描述
创新的一笔画问题通常涉及更为复杂和创 意的图形,如不规则多边形、立体图形等 ,这类问题旨在激发学生的创造力和挑战 精神。同时,这类问题也可能涉及到数学 中的其他知识点,如平面几何、立体几何 等。

小学三年级奥数一笔画课件

小学三年级奥数一笔画课件
有一个或者两个 单数点的连通图 可以一笔画
画时以一个单数点为 起点,另一个单数点 为终点
判断下列图形能否一笔画
图1
图3
图5
图2
图4
图6
例1:下面的图能不能一笔画成?如果能, 应怎样画?
1 3 5 7 2 4 6
分析:1、2、3、4、5、6六个点都是两条线的交点,是偶点,7是四条线的交 点,,也是偶点,没有奇点,能一笔画成。
(1)凡是图形中没有单数点的(全是双数点)一定可 以一笔画成。从任意一点出发。 (2)凡是图形中只有一个或者两个单数点(单数点为1个 或者单数点为2个),一定可以一笔画成。画时必须从一 个单数点为起点,以另一单数点为终点。 (3)凡是图形中单数点的个数多于两个时,此图肯定是 不能一笔画成。
根据今天学习知识,先判断下列图 形能不能一笔画成?再想一想该从 哪里开始画?最后再动手画画看。
邮 局


甲乙两个邮递员去送信,两人以同样的速度走 遍所有的街道,甲从A点出发,乙从B点出发, 最后都回到邮局(C)。如果要选择最短的线路, 谁先回到邮局?
邮 局


甲乙两个邮递员去送信,两人以同样的速度走 遍所有的街道,甲从A点出发,乙从B点出发, 最后都回到邮局(C)。如果要选择最短的线路, 谁先回到邮局?
邮 局


甲乙两个邮递员去送信,两人以同样的速度走 遍所有的街道,甲从A点出发,乙从B点出发, 最后都回到邮局(C)。如果要选择最短的线路, 谁先回到邮局?
能走通(快)
邮 局


甲乙两个邮递员去送信,两人以同样的速度走 遍所有的街道,甲从A点出发,乙从B点出发, 最后都回到邮局(C)。如果要选择最短的线路, 谁先回到邮局?(A先到达邮局)

最新小学奥数一笔画ppt课件

最新小学奥数一笔画ppt课件

图1
图2
图3
连通的图形有可能一笔画
图4
图5
你能用一笔画出下列图形吗?
两条相交的线处都有一个交点。
数一数下列图形各有几个交点?
(4 )个
( 2 )个
(9 )个
( 5 )个
交点分为两种
(1)从这点出发的线的数目 是双数的,叫双数点(偶点)。 (2)从这点出发的线的数目 是单数的,叫单数点(奇点)。
3.酸性回流可脱羧。
F6 5
1
N7 8 HN
OO
43
12
N
OH HCl H2O
盐酸环丙沙星*
化学名:1-环丙基-6-氟-1,4-二氢-4 -氧代-7-(1-哌嗪基)-3-喹啉羧酸盐 酸盐水合物
OO F
OH
N
N
N H3C
氧氟沙星**:1)抗菌活性比右旋体强8-128倍, 比消旋体强2倍;
合 喹诺酮类 成 磺胺类及抗菌增效剂 抗 抗结核药及其他 菌 抗真菌药

抗病毒药
按结构可分为三类: 三环胺类:盐酸金刚烷胺(P492) 核苷及其类似物 多肽类
喹诺酮类药物的发展√
Ⅰ. 抗菌谱窄(抗G-菌),易产生耐药性, 作用时间短,毒性大,以萘啶酸和吡咯米 酸为代表(62-69年)
Ⅱ. 广谱(抗G-菌、抗G+菌和绿脓杆菌), 不易产生耐药性,毒副作用小,以吡哌酸 为代表,用于泌尿道、肠道感染和耳鼻喉 感染(70-77年)
CH3
OH OH
H3C
H3CO
O
O
OH CH3 O
N N N
利福喷丁√区别
抗菌谱同利福平,作用强2-10倍
O ONa OH 2H 2O
NH2
对氨基水杨酸钠√

小学奥数《一笔画成》PPT课件

小学奥数《一笔画成》PPT课件
画,就是从图形的 某点出发,笔不离开纸, 每条线只画一次,不重 复。
观察图中的点,看它 们分别与几条线相连
1 与一条线相连的点:
2 与两条线相连的点: 3 与三条线相连的点: 4 与四条线相连的点:
单数点:与单数条线相连的 点。 双数点:与双数条线相连的 点。
下列图形中有几个单数点?图形能不能 一笔画成?
有2个或0个单数点的图 形能一笔画成,单数点 在一笔画中只能作为起 点或终点。
怎么画?
1 下图能一笔画成吗?
如果不能,用什么方法使它一笔画成?
下图是某小区主干道平面图,甲乙两人 同时分别从A、B两点出发,以相同的速 度走遍所有的主干道,最后到达C点。 谁能先到?

三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)

三年级上册数学试题-奥数.几何.一笔画与多笔画(B级)

一、 一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法。

什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、 一笔画问题(1) 能一笔画出的图形必须是连通的图形;(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4) 奇点个数超过两个的图形,一定不能一笔画.三、 多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.(1) 知道什么样的的是奇点?什么样的点是偶点。

(2) 知道什么样的图形可以一笔画出。

(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?【例 1】 判断下列图a 、图b 、图c 能否一笔画.【考点】一笔画问题 【难度】2星 【题型】解答【解析】 图a 能,因为有2个奇点,图aNML KF DECBA 图bODCBA图cGFEDCBA一笔画与多笔画B知识框架重难点例题精讲图b 不能,因为图形不是连通的, 图c 能,因为因为图中全是奇点【答案】a 能,b 不能,c 能【例 2】 同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻营地的旗帜色彩不同,则贝贝最少需要 种颜色的旗子,如果贝贝从某营地出发,不走重复路线就 (填“能”或“不能”)完成任务.【考点】一笔画问题【难度】2星【题型】填空【关键词】2007年,第十二届,华杯赛,六年级,初赛,第10题【解析】最少需要4种颜色的旗子。

2018三年级奥数.几何.一笔画与多笔画(C级)学生版

2018三年级奥数.几何.一笔画与多笔画(C级)学生版

知识框架一、一笔画的认识所谓图的一笔画,指的就是:从图的一点出发,笔不离纸,遍历每条边恰好一次,即每条边都只画一次,不准重复.从上图中容易看出:能一笔画出的图首先必须是连通图.但是否所有的连通图都可以一笔画出呢?下面,我们就来探求解决这个问题的方法.什么样的图形能一笔画成呢?这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.二、一笔画问题(1)能一笔画出的图形必须是连通的图形;(2)凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;(3)凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;(4)奇点个数超过两个的图形,一定不能一笔画.三、多笔画问题我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.重难点(1)知道什么样的的是奇点?什么样的点是偶点.(2)知道什么样的图形可以一笔画出.(3)不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?一笔画与多笔画例题精讲【例1】下图是某地区所有街道的平面图.甲、乙二人同时分别从A、B 出发,以相同的速度走遍所有的街道,最后到达C.如果允许两人在遵守规则的条件下可以选择最短路径的话,问两人谁能最先到达C?【例2】右图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个进口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?【巩固】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?E CDB A 【例3】下图中的每条线都表示一条街道,线上的数字表示这条街道的里数.邮递员从邮局出发,要走遍各条街道,最后回到邮局.问:邮递员怎样走,路线最合理?【例4】右图是某地区街道的平面图,图上的数字表示那条街道的长度.清晨,洒水车从A出发,要洒遍所有的街道,最后再回到A.问:如何设计洒水路线最合理?欢迎关注:奥数轻松学余老师薇芯:69039270【例5】在3×3的方阵中每个小正方形的边长都是100米.小明沿线段从A点到B点,不许走重复路,他最多能走多少米?欢迎关注:奥数轻松学余老师薇芯:69039270【例6】如图是某餐厅的平面图,共有五个小厅,相邻两厅之间有门相通,并且设有入口.请问你能否从入口进入一次不重复地穿过所有的门.如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?【例7】(2009“数学解题能力展示"读者评选活动五年级初赛6题)某城市的交通系统由若干个路口(右图中线段的交点)和街道(右图中的线段)组成,每条街道都连接着两个路口.所有街道都是双向通行的,且每条街道都有一个长度值(标在图中相应的线段处).一名邮递员传送报纸和信件,要从邮局出发经过他所管辖的每一条街道最后返回邮局(每条街道可以经过不止一次).他合理安排路线,可以使得自己走过最短的总长度是.【例8】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个小岛连接起来(如图a).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?【巩固】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?【例9】一个邮递员投递信件要走的街道如右图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局.怎样走才能使所走的行程最短?全程多少千米?课堂检测【随练1】一辆清洁车清扫街道,每段街道长1公里,清洁车由A出发,走遍所有的街道再回到A.怎样走路程最短,全程多少公里?【随练2】右图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由.如果能,应从哪开始走?家庭作业【作业1】下列图形分别是几笔画?怎样画?【作业2】从A点出发,走遍右上图中所有的线段,再回到A点,怎样走才能使重复走的路程最短?【作业3】邮递员要从邮局出发,走遍左下图(单位:千米)中所有街道,最后回到邮局,怎样走路程最短?全程多少千米?【作业4】有一个邮局,负责21个村庄的投递工作,下图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?欢迎关注:奥数轻松学【作业5】在六面体的顶点B和E处各有一只蚂蚁(见右图),它们比赛看谁能爬过所有的棱线,最终到达终点D.已知它们的爬速相同,哪只蚂蚁能获胜?【作业6】下图是一个街区街道的平面图.邮递员从邮局出发,跑遍所有街道投送信件.请你为他安排一条最短的路线,并按图中标出的千米数算出这条路线的长度(单位:千米).教学反馈学生对本次课的评价○特别满意○满意○一般家长意见及建议家长签字:2122△邮局2113。

小学三年级数学4:一笔画问题

小学三年级数学4:一笔画问题
全由偶点组成的图形,一定可以一笔画,画的时候可以从任何一点出发,最后仍回到这点。
凡是有两个奇点的图形,一定可以一笔画,画的时候从一个奇点出发,以另一个奇点为终点。
1、下面的图形能否一笔画,如果能,请画出来?
2、下图是一个公园道路的平面图,要使游客走遍每条路而且不重复,问出入口应设在哪里?
3、下面的图形,最少需要几笔画出,画一画。
A
B
第四讲、一笔画问题
一笔画:所谓的一笔画,就是从图形的某一点出发,笔不离开纸,而且每条线都只画一次不准重复。
下图三个图形哪个可以一笔画?
(1)(2)(3)
像图(3),没有连成一体的图形叫不连通图。
像图(1)(2)连成一体的图形叫连通图。
研究:
图形中与偶数条线相连接的点叫偶点。
图形中与奇数条线相连接的点叫奇点。
练习:
一、基本练习:
1、判断奇点、偶点:
奇点:奇点:奇点:
偶点:偶点:偶点:
2、下面的各图分别是几笔划?
二、提高练习:
1、下面的图形能否一笔画,如果能,请画出来?
请你一笔画出下列图形:
3、下图分别至少需要画几笔?分别画出来:
4、在下图中每条小线段长度都是1厘米,从A点到B点,不许走重复路,最多可以走多少厘米?标出走法?

一起学奥数--一笔画(三年级)

一起学奥数--一笔画(三年级)

A
B
F E
A
B
E F
C
D C
D
【分析】1、左图是一个平面示意图,要分析 路线与出入口问题,应该把左图转化为点线 示意图。
2、只要点ቤተ መጻሕፍቲ ባይዱ示意图能够一笔画成,就能达到 一次走遍各通道而又不必重复的进出方法。
3、左下图,除了C、D两点为奇点,其它的 为偶点。因此,只要C或D点进,D或C点出 就能达到要求。
4、我们可以设定一条线路: D E F A B E C B D
西岛
北岸 东岛
南岸
【分析】1、首先得把实景图转化为示意图。 用点和线分别来表示两个岛、两岸及七座桥。 注意:先画点,再按桥连通两个点
2、如果这个示意图,能够做到一笔画,则 可以证明能够不重复、不遗漏的经过每座桥, 否则就没法实现。
3、数连接每个点的线,发现四个点都是奇 点,所以没法完成一笔画。即没法做到不重 复、不遗漏的经过每一座桥。
动动手: p.62随堂1
一笔画规则: 1、如果一个连在一起的图中,奇点个数为0或2,那么这个图形可以一笔画。 2、如果一个连在一起的图中,奇点个数不是0或2,那么这个图形就不能一
笔画成。
如何一笔画成: 奇点个数为0时,可从任何一个点开始画,最后回到始点; 当奇点个数为2时,可以从任一个奇点开始,最后到另一个奇点终止。
思考: 1、一个图形中奇点是否可以为奇数个(引起对数奇偶性的兴趣) 2、为什么偶点不影响一笔画(养成学生搞清问题根源的习惯)
例2、如下图中的线段代表小路,A、B处各有一只蚂蚁。哪只蚂蚁能够不重复 地爬完这5条小路?
A
D 【分析】1、由以上总结可知,奇点的数量决定了是否可
以一笔画成图形。本题蚂蚁能够不重复地爬完5条小路,

三年级奥数专题:一笔画

三年级奥数专题:一笔画

三年级奥数专题:一笔画(一)如果一个图形可以用笔在纸上连续不断而且不重复地一笔画成,那么这个图形就叫一笔画。

显然,在下面的图形中,(1)(2)不能一笔画成,故不是一笔画,(3)(4)可以一笔画成,是一笔画。

同学们可能会问:为什么有的图形能一笔画成,有的图形却不能一笔画成呢?一笔画图形有哪些特点?关于这个问题有一个著名的数学故事——哥尼斯堡七桥问题。

哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。

所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?当时的许多人都热衷于解决七桥问题,但是都没成功。

后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。

欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。

我们把一个图形上与偶数条线相连的点叫做偶点,与奇数条线相连的点叫做奇点。

如下图中,A,B,C,E,F,G,I是偶点,D,H,J,O是奇点。

欧拉的一笔画原理是:(1)一笔画必须是连通的(图形的各部分之间连接在一起);(2)没有奇点的连通图形是一笔画,画时可以以任一偶点为起点,最后仍回到这点;(3)只有两个奇点的连通图形是一笔画,画时必须以一个奇点为起点,以另一个奇点为终点;(4)奇点个数超过两个的图形不是一笔画。

利用一笔画原理,七桥问题很容易解决。

因为图中A,B,C,D 都是奇点,有四个奇点的图形不是一笔画,所以一个散步者不可能不重复地一次走遍这七座桥。

顺便补充两点:(1)一个图形的奇点数目一定是偶数。

因为图形中的每条线都有两个端点,所以图形中所有端点的总数必然是偶数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

知识要点
一笔画问题是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.
我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.
1、判断图形能否一笔画的规律:
⑴ 能一笔画出的图形必须是连通的图形.
⑵ 凡是只由偶点组成的连通图形,一定可以一笔画出.画时可以由任一偶点为起点.最后仍回到这点.
⑶ 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点为起点.另一个奇点为终点.
⑷ 奇点个数超过两个的图形,一定不能一笔画.
2、我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,奇点个数必为偶数,如果有2n 个奇点(n 为自然数),那么这个图一定可以用n 笔画成.公式是:奇点数2÷=笔画数,即22n n ÷=.
一笔画
一笔画
【例1】判断下列各图能否一笔画出,并说明理由。

【例2】判断下列各图能否一笔画出,并说明理由。

(6)
(5)
(4)
(3)
(2)
(1)
多笔画
【例3】下面各图至少需要几笔才能画成?
(3)
(2)
(1)
【例4】判断图中的三个图形各需要几笔才能画出?请把能一笔画的图形的画法用字母和箭头表示出来。

【例5】观察下面的图形,判断其需要几笔才能画出?
多笔画改一笔画
【例6】下图中的两个图形均不能一笔画出,你能将原图形中的某一线段取消使之能够一笔画成吗?
【例7】下图能一笔画成吗?如果不能,请你添上或减去一根线段使它能一笔画出来。

【例8

判断下列图形能否一笔画.若能,请给出一种画法,若不能,请说明需要几笔才能画出,并请加一条线或去一条线,将其改成可一笔画的图形.
F
I
H
E
B
A G
图a
D
C
图b
J
I
H
G
D
C
L
K
F
E
B
A
图c
H
G
C
F
E
B
A
【例9】将下图改为一笔画.
生活中的一笔画
【例10】(第十二届“华罗庚金杯”少年数学邀请赛初赛试题(小学组))同学们野营时建了9个营地,连接营地之间的道路如图所示,贝贝要给每个营地插上一面旗帜,要求相邻的旗帜色彩不同,
则贝贝至少需要___种颜色的旗子。

如果贝贝从某营地出发,不走重复的路就______(填“能”
或“不能”)完成这项任务。

【例11】下图是一个公园的道路平面图,要使游客走遍每条路且不重复,问出、入口应设在哪里?
H
I
F
E
D
C
B
A
【例12】下图中每个小正方形的边长都是100米。

小明沿线段从A点到B点,不许走重复路,他最多能走多少米?
【例13】小明假日去看画展,展览分四个展区,展览馆内外一共有六扇门,平面图如下,请问小明能否不重复地穿过每一扇门?如果不能,请说明理由。

如果能,应从哪开始走?
【例14】下图是某博物馆的平面图,共有五个主题展馆,相邻两馆之间有门相通,并且设有入口.博物馆的入口以及展馆门口挂了颜色各异的彩旗,请问你能否从入口进入一次不重复地穿过所有的门采集到所有颜色的彩旗吗?如果可以,请指明穿行路线,如果不能,应关闭哪个门就可以办到?
【例15】在一条河的中间有两个小岛,周围有六座桥与两岸相通.问能否找到一条路线,从一岸出发,不重复走遍所有的桥,然后到达对岸?
【例16】如下图所示,两条河流的交汇处有两个岛,有七座桥连接这两个岛及河岸.问:一个散步者能否一次不重复地走遍这七座桥?
【例17】18世纪的哥尼斯堡城是一座美丽的城市,在这座城市中有一条布勒格尔河横贯城区,这条河有两条支流在城市中心汇合,汇合处有一座小岛A和一座半岛D,人们在这里建了一座公园,公园中有七座桥把河两岸和两个岛连接起来(如下图所示).如果游人要一次走过这七座桥,而且对每座桥只许走一次,问如何走才能成功?这个有趣的问题引起了著名数学家欧拉的注意,他证明了七桥问题中提到的走法根本不存在.下面,我们考虑如下两个问题:
⑴若再架一座桥,游人能否走遍所有这八座桥?若能,这座桥应架在何处?若不能,请说明理
由.
⑵架设几座桥可以使游人走遍所有的桥回到出发地?
【例18】下图是某博物馆的平面图,相邻两个展厅之间有一扇门相通,每一个展厅都有一门通往馆外.问参观者能否不重复地一次穿过每一扇门?若能,请找出一条可行路径,若不能,请说明理由.如果允许关闭某一扇门,问参观者能否不重复地穿过每一扇开着的门?
【例19】(2008年中国台湾小学数学竞赛选拔赛复赛)有一个城市的街道图是由一些矩形所构成,如下图。

一位警察要从A点出发巡逻,行经每一条路至少一次后回到A点。

请问他至少要行走多少米?
【例20】一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。

怎样走才能使所走的行程最短?全程多少千米?
【例21】农技站有一块边长为30米的正方形试验田,如下图所示,用纵横田埂划分成九个作物实验区。

农技员从A处进入后能不能不走重复的路,把实验田埂全部走一遍?若不可能,请找出一条走重复路线最少的捷径。

全程要走多少米?
【例22】有一个邮局,负责21个村庄的投递工作,图中的点表示村庄,线段表示道路.邮递员从邮局出发,怎样才能不重复地经过每一个村庄,最后回到邮局?
一课一练
【练习1】请试着将下列图形一笔画出。

【练习2】判断下列各图能否一笔画出,并说明理由。

(2)(3)(4)
(1)
【练习3】观察下面的图形,判断其需要几笔才能画出?
【练习4】如图是一个超市的平面图,超市共有六个门,小明想一次走遍所有通道而又不走重复路线,请你帮他设计一种进出方法.
【练习5】某对外开发的花房有六间展览室,每相邻的两室间有一扇门相通,平面图如下图所示。

A处为入口,若要使参观者能够从入口进去一次不重复的经过所有的门,出口应该设在哪里?
【练习6】(2007年秋明心奥数挑战赛)下图是某街区的示意图,各线段代表马路。

街区为正方形,边长400米,各小区都是100米200
米的长方形。

在S处的某人想找到G处的那个人,但是,由于他缺乏运动,所以,想尽量走最长的路,顺便锻炼锻炼,并且不想走重复的路。

那么,他最多可以走多少米?
【练习7】如下图所示,有,,,
A B C D四个小岛,各岛之间有七座桥,游人想要一次不重复的走遍这七
座桥,能做到吗?有几种走法?要怎么走?
【练习8】下图是某展览厅的平面图,它由五个展室组成,任两展室之间都有门相通,整个展览厅还有一个入口和一个出口,问游人能否一次不重复地穿过所有的门,并且从入口进,从出口出?
入口
出口
补充题库
【补充1】地上有一个六面体形状的木块(如下图),小蚂和小蚁都打算在上面做巢,它们分别选择了六面体的顶点B和E处,为了独占木块,它们决定进行一场比赛,赢的就可以拥有这个木块。

比赛内容是看谁能爬过所有的棱线,最终到达终点D。

已知它们的爬速相同,那么哪只蚂蚁能获胜?
【补充2】已知长方体木块的长是80厘米,宽40厘米,高80厘米(如下图),并且要求蜘蛛在爬行过程中只能前进,不能后退,同一条棱不能爬两次.请问这只蜘蛛最多要爬行多少厘米?。

相关文档
最新文档