信号与系统实验完整版

合集下载

【精品】信号与系统实验报告

【精品】信号与系统实验报告

【精品】信号与系统实验报告一、实验目的1. 掌握理解连续时间信号的采样定理,理解采样过程中的信号重建方法。

2. 理解离散时间信号的傅里叶变换原理,掌握离散时间信号的时域和频域分析方法。

二、实验装置实验仪器:电脑、MATLAB、信号发生器、示波器、数据采集卡。

三、实验步骤实验1 信号的采样和重建1. 连接信号发生器和示波器,设置一个频率为300Hz的正弦波。

把信号发生器的电源关掉,连接一台示波器。

2. 用数据采集卡采样,采样频率为4kHz,采样时间为5ms。

3. 利用MATLAB编写程序,将采样的数据读入,并用差值重构法将信号重建。

绘制原始信号和重构信号的波形图并比较它们的相对误差。

实验2 离散时间信号的傅里叶变换1. 用信号发生器产生一个矩形波和一个三角波,信号频率分别为100Hz和400Hz。

3. 利用MATLAB编写程序,计算采样信号的离散时间傅里叶变换,并绘制矩形波和三角波的幅度谱和相位谱。

实验3 离散时间系统的响应1. 给定模拟系统的差分方程:y(n) - 0.5y(n-1) + 0.5y(n-2) = x(n),其中x(n)为输入信号,y(n)为输出信号。

利用MATLAB编写程序计算这个系统的单位冲击响应h(n)。

2. 用MATLAB绘制系统的波特图,并使用单位冲击响应h(n)计算差分方程的零极点分布,并绘制零极点图。

四、实验结果信号重构效果表现良好,重构误差小于0.1。

矩形波和三角波的频谱都存在明显的包络线,表明采样信号存在混叠现象。

幅度谱和相位谱分别呈现出典型的特征。

波特图和零极点图表明系统是稳定的。

随着时间的推移,系统的输出响应逐渐趋于稳定状态。

通过这三个实验,本人掌握了信号和系统的基本理论和实验方法,掌握了连续时间信号的采样定理,以及离散时间信号的傅里叶变换原理、离散时间系统的波特图、稳态和时变响应分析方法。

六、参考文献[1] 万晓原. 信号与系统-学习指南[M]. 清华大学出版社, 2008: 254-329.。

《信号与系统》实验报告(完整版)

《信号与系统》实验报告(完整版)

《信号与系统》实验报告(完整版)长江大学电工电子实验中心电路与系统(2)实验报告姓名高文昌班级电信10909班序号06指导教师黄金平老师成绩实验名称:连续信号的绘制一、实验目的1.掌握用Matlab 绘制波形图的方法,学会常见波形的绘制。

2.掌握用Matlab 编写函数的方法。

3.周期信号与非周期信号的观察。

加深对周期信号的理解。

二、实验内容1、用MATLAB 画出下列信号的波形。

(a) ][cos )(1t t f ε=; (b) )]2()2([2||)(2--+=t t t t f εε; (c) )]2()([sin )(3t t t t f ---=εεπ; (d) )sgn()()(24t t G t f =; (e) )2()(265-=t Q t G f ; (f) )sin(|)|2()(6t t t f πε-= (a )t=linspace(-10,10,400);f1=u(cos(t));figure(1),myplot(t,f1)xlabel('Time(sec)'),ylabel('f1(t)')(b)t=linspace(-4,4,400);f2=abs(t)/2.*(u(t+2)-u(t-2)); figure(2),myplot(t,f2)xlabel('Time(sec)'),ylabel('f2(t)');(c)t=linspace(-1,3,400);f3=sin(pi*t).*(u(-t)-u(2-t)); figure(3),myplot(t,f3)xlabel('Time(sec)'),ylabel('f3(t)')(d)t=linspace(-2,2,400); f4=sign(t).*rectpuls(t,2); figure(4),myplot(t,f4)xlabel('Time(sec)'),ylabel('f3(t)')(e)t=linspace(-1,4,400);f5=rectpuls(t,6).*tripuls(t-2,4); figure(5),myplot(t,f5)xlabel('Time(sec)'),ylabel('f5(t)')(f)t=linspace(-4,4,400); f6=u(2-abs(t)).*sin(pi*t) figure(6),myplot(t,f6)xlabel('Time(sec)'),ylabel('f6(t)')2、用基本信号画出图2.1-10中的信号。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验报告最终版

信号与系统实验报告最终版

实验报告2015年 6 月实验1 常见信号观测实验一、实验目的1.观察和测量各种典型信号;2.掌握有关信号的重要性,了解其在信号与系统分析中的应用。

二、实验原理说明 1.正弦函数信号; 2.指数函数信号; 3.指数衰减震荡函数信号; 4.抽样函数信号; 5.钟形函数信号; 三、实验原理波形产生原理框图如下图所示四、实验步骤1.打开实验箱,调节SW101(程序选择)按钮,使程序指示灯显示D3D2D1D0=0001,对应信号观测;(实验箱上电时默认D3D2D1D0=0001,因此不用调节)2.将跳线开关K801,K802,K803和K804连续到左侧;3. 用示波器分别测量TP801,TP802,TP803,TP804,TP805的波形,并记录下来。

测试点说明如下:(1)TP801:测试正弦函数信号波形(2)TP802:测试指数函数信号波形(3)TP803:测试指数衰减震荡函数信号波形(4)TP804:测试抽样函数信号波形(5)TP805:测试种形函数信号波形五、实验设备1.双踪示波器2.信号系统实验箱六、实验结果实验2 冲激响应与阶跃响应一、实验目的1.观察和测量RLC串联电路的阶跃响应与冲激响应的波形和有关参数,并研究其电路元件参数变化对响应状态的影响;2.掌握有关信号时域的测量方法。

二、实验原理说明实验如图1-1所示为RLC串联电路的阶跃响应与冲激响应的电路连接图,图2-1(a)为阶跃响应电路连接示意图;图2-1(b)为冲激响应电路连接示意图。

三、实验内容1.阶跃响应波形观察与参数测量设激励信号为方波,其幅度为1.5V,频率为500Hz。

实验电路连接图如图2-1(a)所示。

①连接P04与P914。

②调节信号源,使P04输出f=500Hz,占空比为50%的脉冲信号,幅度调节为1.5V;(注意:实验中,在调整信号源的输出信号的参数时,需连接上负载后调节)③示波器CH1接于TP906,调整W902,使电路分别工作于欠阻尼、临界和过阻尼三种状态,并将实验数据填入表格2-1中。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告

信号与系统实验报告
title('f1(t)')
xlabel('t')
ylabel('f1(t)')
subplot(2,2,2)
plot(k2,f2)%在子图2 绘f2(t)时波形图
title('f2(t)')
xlabel('t')
ylabel('f2(t)')
subplot(2,2,3)
plot(k,f);%画卷积f(t)的时域波形
y1=subs(f6,t-2);
subplot(1,3,1);
ezplot(y1);
title('f6(t-2)');
f2=sym('sin(2*pi*t)');
subplot(1,3,2);
ezplot(f2);
title('f2');
f7=y1+f2;
subplot(1,3,3);
ezplot(f7);
已知 及信号 ,用MATLAB绘出满足下列要求的信号波形。
(1)
(2)
(3)
(4)
(5)
实验程序:
(1)
syms t
f1=sym('(-t+4)*(u(t)-u(t-4))');
subplot(2,1,1);
ezplot(f1);
y1=subs(f1,t,-t);
f3=f1+y1;
subplot(2,1,2);
ezplot(f4);
title('f4');
(3)
syms t
f2=sym('sin(2*pi*t)');

信号与系统实验报告模版DOC

信号与系统实验报告模版DOC

实验一信号的时域分析1.1常见信号分类观察实验1.1.1 实验目的1.了解常用信号的波形特点2.掌握信号发生器的虚拟仪器的使用方法1.1.2 实验设备PC机一台,TD-SAS系列教学实验系统一套。

1.1.3实验原理及内容信号是随时间和空间变化的某种物理量,它一般是时间变量t的函数。

信号随时间变量t 变化的函数曲线成为信号的波形。

按照不同的分类原则,信号可分为:连续信号和离散信号;周期信号和非周期信号;实数信号和复数信号;能量信号和功率信号等。

本实验中利用信号发生器我们可以观察工程实际和理论研究中经常用到的正弦波、方波、脉冲等信号。

1.1.4实验步骤1.连续周期信号的产生与测量1)在该实验箱配套软件界面中,单击“信号发生器”进入其界面。

如图1-1-1所示选择参数,(CH1通道可以选择周期或非周期信号,CH2通道只能选择周期信号)点击确定。

图1-1-1 周期信号产生界面2)在实验箱配套软件界面中,单击“示波器”进入其界面,界面如图1-1-2所示。

用探笔测量实验箱上信号发生器单元的输出1和输出2端,(分别对应信号发生器界面的CH1和CH2通道)点击“运行”测量信号。

图1-1-2 示波器界面3)在示波器测量到信号后,点击“停止”,测量两路信号的各参数,验证其频率、幅值等值与所选参数匹配。

将实验数据记录到表1-1-1中。

(具体操作方法参见TD-SAS实验系统软件的安装及操作部分)4)选取其他波形及相关参数进行测量并验证。

2.连续非周期信号的产生与测量1)重新如图1-1-3所示选择参数,(当通道1选择位非周期信号时,通道2无输出)点击确定。

图1-1-3 脉冲信号产生界面2)进入示波器界面,用探笔测量实验箱上信号发生器单元的输出1端,(非周期信号只能从实验箱信号发生器单元输出1端输出)点击“运行”。

3)在实验箱的信号发生器单元,按下单次按钮,便产生一个周期的所选波形。

(此信号在其余时间全部是零)我们可以理解每个单次信号是一个非周期信号。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告好啦,今天咱们来聊聊信号与系统实验报告。

这话题有点儿“高大上”,但咱们不妨来点轻松的,把它聊得有趣一些。

先说说信号是什么。

信号其实就是一种信息传递的方式,可能是声音,可能是光,甚至是你手机屏幕上刷过的每一条消息。

简单来说,信号就是承载着信息的载体。

你看,像咱们日常生活中,电台广播,手机接收到的短信,甚至你家电视里放的广告,它们都是信号的一种表现形式。

啊,听起来有点儿复杂吧?其实不难,就像你一收到朋友发来的微信,手机屏幕上跳出来的就是一个信号。

信号怎么才能“正常工作”呢?这就得说到“系统”了。

系统呢,说白了就是一套能够处理信号的工具。

你想啊,信号如果没有一个合适的“平台”去接收、传递和处理,那就变得一团乱麻了。

就像是你给朋友发了个短信,但他手机坏了,信号接收不进去,结果信息就白发了。

系统在这里就相当于是一个“修理工”,它能让信号顺利通过、准确无误地到达目的地。

接下来说说我们在实验中的“主角”——信号与系统。

你看,实验嘛,往往让我们有点“心慌慌”。

不过,信号与系统的实验其实有点像玩拼图。

你得先弄清楚信号的各种“形状”,然后用系统去“加工处理”,让它变得符合要求。

比如,咱们常用的模拟信号,它是一个连续的过程,类似于咱们生活中的声音一样,是没有间断的。

而数字信号呢,就像你手机屏幕上的数字,离散的,断断续续的。

每种信号都有自己独特的“脾气”,你得了解它们的特点,才能搭配合适的系统。

你要是觉得这些实验有点儿复杂,那就来点儿幽默的比喻吧。

信号就像是你的朋友说的话,而系统就是你听的耳朵。

朋友说话的声音,可能因为距离远近,语速快慢,甚至音量的大小而有所不同。

系统就得根据这些变化去处理,比如调节音量、清晰度,甚至过滤掉不必要的噪声。

你想想,假如你能在嘈杂的环境下清楚地听到朋友的声音,那就是系统给你提供的帮助。

信号与系统的实验,就是在这种“听”和“说”之间找到平衡点。

咱们得说说实验中的一些基本工具了。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一连续时间信号1.1表示信号的基本MATLAB函数1.2连续时间负指数信号1、对下面信号创建符号表达式x(t)=sin(2πt/T)cos(2πt/T)。

对于T=6,8和16,利用ezplot 画出0<=t<=32内的信号。

什么是x(t)的基波周期?x1=sym('sin(2*pi*t/T)');x2=sym('cos(2*pi*t/T)');x=x1*x2x4=subs(x,4,'T');ezplot(x4,[0,32]);x8=subs(x,8,'T');ezplot(x8,[0,32]);x16=subs(x,16,'T');ezplot(x16,[0,32]);T=4 T=8T=162、对下面信号创建一个符号表达式x(t)=exp(-at)cos(2πt)。

对于a=1/2,1/4,1/8,利用ezplot确定td,td为|x(t)|最后跨过0.1的时间,将td定义为该信号消失的时间。

利用ezplot对每一个a值确定在该信号消失之前,有多少个完整的余弦周期出现,周期数目是否正比于品质因素Q=(2π/T)/2a?x1=sym('exp(-a*t)');x2=sym('cos(2*pi*t)');x=x1*x2;xa1=subs(x,1/2,'a');ezplot(xa1);xa2=subs(x,1/4,'a');ezplot(xa2);xa3=subs(x,1/8,'a');ezplot(xa3);a=1/2 a=1/4a=1/83、将信号x(t)=exp(j2πt/16)+exp(j2πt/8)的符号表达式存入x中。

函数ezplot不能直接画出x(t),因为x*(t)是一个复数信号,实部和虚部分量必须要提取出来,然后分别画出他们。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验报告:信号与系统实验一、实验目的1.了解信号与系统的基本概念和性质;2.掌握离散信号、连续信号的采样过程;3.理解信号的基本操作和系统的基本特性。

二、实验原理1.信号的分类:(1)连续时间信号:在每个时间点上都有定义;(2)离散时间信号:只在一些时间点上有定义。

2.信号的基本操作:(1)加法运算:将两个信号相加;(2)乘法运算:将两个信号相乘;(3)位移运算:将信号移动到不同的时间点;(4)缩放运算:对信号进行放大或缩小。

3.系统的基本特性:(1)时域特性:包括冲击响应、阶跃响应和频率特性等;(2)频域特性:包括幅频特性和相频特性等。

三、实验器材1.信号发生器2.示波器3.示波器探头4.计算机四、实验步骤1.连续信号采样(1)将信号发生器输出设置为正弦波信号;(2)通过示波器探头将信号输入计算机;(3)在计算机上设置适当的采样频率,对信号进行采样;(4)在示波器上观察到采样后的信号。

2.离散信号生成(1)在计算机上用MATLAB生成一个离散信号;(2)通过示波器探头将信号输入示波器;(3)在示波器上观察到生成的离散信号。

3.信号加法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的加法运算;(3)通过示波器探头将加法运算后的信号输入示波器,观察信号的叠加效果。

4.信号乘法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的乘法运算;(3)通过示波器探头将乘法运算后的信号输入示波器,观察信号的相乘效果。

五、实验结果与分析1.连续信号采样在设置适当的采样频率后,可以观察到信号在示波器上的采样图像。

信号的采样率过低会导致信号的失真,采样率过高则会造成资源的浪费。

2.离散信号生成通过MATLAB生成的离散信号能够在示波器上直观地观察到信号的序列和数值。

3.信号加法运算通过将两个信号进行加法运算后,可以观察到信号在示波器上的叠加效果。

加法运算能够实现信号的混合和增强等效果。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告

信号与系统实验报告

实验三常见信号的MATLAB表示及运算一、实验目的1. 熟悉常见信号的意义、特性及波形2. 学会使用MATLAB表示信号的方法并绘制信号波形3.掌握使用MATLAB进行信号基本运算的指令4.熟悉用MATLAB实现卷积积分的方法二、实验原理根据MA TLAB的数值计算功能和符号运算功能, 在MATLAB中, 信号有两种表示方法, 一种是用向量来表示, 另一种则是用符号运算的方法。

在采用适当的MATLAB语句表示出信号后, 就可以利用MATLAB中的绘图命令绘制出直观的信号波形了。

1.连续时间信号从严格意义上讲, MATLAB并不能处理连续信号。

在MATLAB中, 是用连续信号在等时间间隔点上的样值来近似表示的, 当取样时间间隔足够小时, 这些离散的样值就能较好地近似出连续信号。

在MATLAB中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号, 可以用两个行向量f和t来表示, 其中向量t是用形如的命令定义的时间范围向量, 其中, 为信号起始时间, 为终止时间, p为时间间隔。

向量f为连续信号在向量t所定义的时间点上的样值。

⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示, 那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

⑶常见信号的MATLAB表示单位阶跃信号单位阶跃信号的定义为:方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m函数文件,该文件名应与函数名同名即Heaviside.m。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= Heaviside(t)y=(t>0); %定义函数体, 即函数所执行指令%此处定义t>0时y=1,t<=0时y=0, 注意与实际的阶跃信号定义的区别。

方法二: 数值计算法在MATLAB中, 有一个专门用于表示单位阶跃信号的函数, 即stepfun( )函数, 它是用数值计算法表示的单位阶跃函数。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的信号与系统是电子信息类专业的一门重要基础课程,通过实验可以更深入地理解信号与系统的基本概念和原理,掌握信号的分析与处理方法,提高实践动手能力和解决实际问题的能力。

本次实验的目的主要包括以下几个方面:1、熟悉信号的表示与运算,包括连续时间信号和离散时间信号。

2、掌握线性时不变系统的特性和分析方法。

3、学会使用实验设备和软件工具进行信号的产生、采集、分析和处理。

4、培养观察、分析和总结实验结果的能力,以及撰写实验报告的规范和能力。

二、实验设备与软件本次实验使用的设备和软件主要有:1、计算机一台2、 MATLAB 软件三、实验内容与步骤(一)连续时间信号的表示与运算1、生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、三角波信号等。

在MATLAB 中,使用`sin`、`cos`函数可以生成正弦和余弦信号,例如:`t = 0:001:10; y = sin(2pit); plot(t,y);`可以生成一个频率为 1Hz 的正弦信号。

使用`square`函数可以生成方波信号,`sawtooth`函数可以生成三角波信号。

2、对连续时间信号进行基本运算,如加法、减法、乘法和微分、积分等。

信号的加法和减法可以直接将对应的函数相加或相减,例如:`y1 = sin(2pit); y2 = cos(2pit); y = y1 + y2; plot(t,y);`实现了正弦信号和余弦信号的加法。

乘法运算可以通过相应的函数相乘实现。

微分和积分可以使用`diff`和`cumtrapz`函数来完成。

(二)离散时间信号的表示与运算1、生成常见的离散时间信号,如单位脉冲序列、单位阶跃序列、正弦序列等。

单位脉冲序列可以通过数组的定义来实现,例如:`n = 0:10; x =1,zeros(1,10); stem(n,x);`单位阶跃序列可以通过逻辑判断来生成。

正弦序列使用`sin`函数结合离散时间变量生成。

信号与系统实验报告一

信号与系统实验报告一

信号与系统实验报告一实验一:信号与系统实验报告实验目的:1. 了解信号与系统的基本概念和理论知识;2. 学习使用MATLAB 对信号进行分析和处理;3. 掌握系统的时域和频域分析方法。

实验内容:本次实验包括以下两个部分:1. 信号的生成与表示;2. 系统的时域和频域分析。

一、信号的生成与表示1. 在MATLAB 中生成并绘制以下信号的波形图:(1) 正弦信号:A*sin(2*pi*f*t);(2) 方波信号:sign(sin(2*pi*f*t));(3) 带噪声的正弦信号:(1+N)*sin(2*pi*f*t)。

2. 对以上生成的信号进行分析和处理:(1) 计算各种信号的幅值、频率和相位;(2) 绘制各种信号的功率谱密度图。

二、系统的时域和频域分析1. 在MATLAB 中定义以下信号系统的单位脉冲响应h(n):(1) 线性时不变系统:h(n) = (0.4)^n * u(n),其中,u(n) 表示单位阶跃函数;(2) 非线性时变系统:h(n) = n * u(n)。

2. 对定义的信号系统进行时域和频域分析:(1) 绘制并分析系统的单位脉冲响应;(2) 计算系统的单位脉冲响应的离散时间傅里叶变换;(3) 绘制系统的幅频响应函数。

实验结果:1. 信号的生成与表示:(1) 正弦信号:根据给定的振幅A、频率f 和时间t,在MATLAB 中生成相应的正弦信号,并绘制出波形图。

根据波形图可以观察到正弦信号的周期性和振幅。

(2) 方波信号:根据给定的频率f 和时间t,在MATLAB 中生成相应的方波信号,并绘制出波形图。

方波信号由正负两个幅值相等的部分组成,可以通过绘制图形来观察到。

(3) 带噪声的正弦信号:根据给定的振幅A、频率f、时间t 和噪声系数N,在MATLAB 中生成带噪声的正弦信号,并绘制出波形图。

可以通过观察波形图来分析噪声对信号的影响。

2. 系统的时域和频域分析:(1) 线性时不变系统的单位脉冲响应:根据给定的线性时不变系统的单位脉冲响应函数,计算并绘制出相应的单位脉冲响应图。

信号与系统 实验报告

信号与系统 实验报告

信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。

本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。

二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。

三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。

其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。

2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。

采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。

重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。

四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。

然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。

最后,将重建得到的信号与原始信号进行对比,分析重建误差。

实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。

而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。

2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。

例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。

同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。

实验结果表明,不同系统对信号的频率特性有着明显的影响。

高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。

通过调节滤波器的参数,可以实现对信号频率的选择性衰减。

五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。

《信号与系统》实验报告

《信号与系统》实验报告

《信号与系统》实验报告目录一、实验概述 (2)1. 实验目的 (2)2. 实验原理 (3)3. 实验设备与工具 (4)二、实验内容与步骤 (5)1. 实验一 (6)1.1 实验目的 (7)1.2 实验原理 (7)1.3 实验内容与步骤 (8)1.4 实验结果与分析 (9)2. 实验二 (10)2.1 实验目的 (12)2.2 实验原理 (12)2.3 实验内容与步骤 (13)2.4 实验结果与分析 (14)3. 实验三 (15)3.1 实验目的 (16)3.2 实验原理 (16)3.3 实验内容与步骤 (17)3.4 实验结果与分析 (19)4. 实验四 (20)4.1 实验目的 (20)4.2 实验原理 (21)4.3 实验内容与步骤 (22)4.4 实验结果与分析 (22)三、实验总结与体会 (24)1. 实验成果总结 (25)2. 实验中的问题与解决方法 (26)3. 对信号与系统课程的理解与认识 (27)4. 对未来学习与研究的展望 (28)一、实验概述本实验主要围绕信号与系统的相关知识展开,旨在帮助学生更好地理解信号与系统的基本概念、性质和应用。

通过本实验,学生将能够掌握信号与系统的基本操作,如傅里叶变换、拉普拉斯变换等,并能够运用这些方法分析和处理实际问题。

本实验还将培养学生的动手能力和团队协作能力,使学生能够在实际工程中灵活运用所学知识。

本实验共分为五个子实验,分别是:信号的基本属性测量、信号的频谱分析、信号的时域分析、信号的频域分析以及信号的采样与重构。

每个子实验都有明确的目标和要求,学生需要根据实验要求完成相应的实验内容,并撰写实验报告。

在实验过程中,学生将通过理论学习和实际操作相结合的方式,逐步深入了解信号与系统的知识体系,提高自己的综合素质。

1. 实验目的本次实验旨在通过实践操作,使学生深入理解信号与系统的基本原理和概念。

通过具体的实验操作和数据分析,掌握信号与系统分析的基本方法,提高解决实际问题的能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
实验二连续时间系统的时域分析
一、实验目的:
1、掌握用Matlab进行卷积运算的数值方法和解析方法,加深对卷积积分的理解。

2、学习利用Matlab实现LTI系统的冲激响应、阶跃响应和零状态响应。

二、实验内容及步骤
实验前,必须首先阅读本实验原理,读懂所给出的全部范例程序。

实验开始时,先在计算机上运行这些范例程序,观察所得到的信号的波形图。

并结合范例程序应该完成的工作,进一步分析程序中各个语句的作用,从而真正理解这些程序。

1、编写程序Q2_1,完成
)(
1
t
f与)(
2
t
f两函数的卷积运算。

2、 编写程序Q2_2,完成)(1t f 与)(2t f 两函数的卷积运算。

3、编写程序Q2_3。

利用程序Q2_1,验证卷积的相关性质。

(a) 验证性质:)()(*)(t x t t x =δ (b) 验证性质:
)()(*)(00t t x t t t x -=-δ
4、编写程序Q2_4。

某线性时不变系统的方程为
)(8)(2)(6)(5)(t f t f t y t y t y +'=+'+'',
(a)系统的冲激响应和阶跃响应。

(b)输入()()t f t e u t -=,求系统的零状态响应)(t y zs 。

三. 实验结果
一:
dt=0.01 t1=0:dt:2 f1=0.5*t1 t2=0:dt:2 f2=0.5*t2
f=dt*conv(f1,f2) t=0:0.01:4
plot(t,f);axis([-1 5 0 0.8])
二:
dt=0.01
t=-3:dt:3
t1=-6:dt:6
ft1=2*rectpuls(t,2)
ft2=rectpuls(t,4)
y=dt*conv(ft1,ft2)
plot(t1,y)
axis([-4 4 0 5])
以上两题出现错误点:(1)最开始模仿例1的写法用function [f,k]=sconv,总提示出现
错误
(2)t0+t2 ≤ t ≤ t1+t3 不大能理解的运用个特点,在编写的时候总是被忽略。

导致t和t1设置的长度总出错。

三:
(a)
dt=0.01
t=0:dt:2
t0=0
t1=0:dt:2
t2=0:dt:2
t3=0:dt:6
f1=0.5*t1
f2=0.5*t2
f=dt*conv(f1,f2)
n=length(t)
x=zeros(1,n)
x(1,(t0-0)/dt+1)=1/dt
m=dt*conv(f,x)
plot(t3,m)
(b)
将(a)程序中的t0=0改为t0=2则可。

心得:有书本的P67中“与冲击函数或阶跃函数的卷积”性质和以上的仿真可以验证题目的性质成立。

出现的错误:(1)时间设置出现不合理(2)x=zeros(1,n)
x(1,(t0-0)/p+1)=1/p的编
写曾出现错误
四:
a=[1 5 6];
b=[0 2 8];
impulse(b,a,10) ; grid on
b=[0 2 8];
step(b,a,10); grid on
a=[1 5 6]
b=[2 8]
t=0:0.01:6
f=exp(-t)
y=lsim(b,a,f,t)
plot(t,y)
axis([0 6 0 1])
心得:根据实验指导,编写运算一次通过,初步掌握了利用软件求线性时不变系统的方程基本方法
【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】。

相关文档
最新文档