数列的实际应用
数列在日常生活中的应用
数列在日常生活中的应用储蓄与人们的日常生活密切相关,它对支援国家建设、安排好个人与家庭生活具有积极意义。
数列的知识在解决活期储蓄、分期存款及分期付款等问题时,充分体现了数列在生活中的广泛应用。
一、关于数列的理论数列是按一定的次序排成的一列数,数列中的每一个数都叫做数列的项。
如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就是等差数列。
德国著名数学家高斯在十岁时就已经用等差数列的思想解答了1+2+3+…+99+100=5050这个问题。
假设等差数列的首项为a1,第n项为an,那么数列前n项的和为Sn=n(a1+an)/2或者Sn=na1+n(n-1)d/2(其中d是等差数列的公差)。
二、数列在日常生活中的应用我们的生活离不开储蓄,计算储蓄所得利息的基本公式是:利息=本金×存期×利率。
根据国家的规定,个人取得储蓄存款利息应依法纳税,计算公式为:应纳税额=利息全额×税率。
其中的税率为20%。
1、差数列在分期存款中的应用分期存款是分期存入后一次取出的一种储蓄方式。
一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一出生就在孩子每年生日那天到银行储蓄5000元一年定期,若年利率为0.2%保持不变,当孩子十八岁上大学时,将所有存款(含利息)全部取回,那么取回的钱的总数是多少?第一期存款利息:a1=5000×0.2%×18;第二期存款利息:a2=5000×0.2%×17;……第十七期存款利息:a17=5000×0.2%×2;第十八期存款利息:a18=5000×0.2%×1。
于是,应该得的全部利息就是上面各期利息的和,因为a1至a18构成一个等差数列,所以把各期利息加起来就是:S18=a1+a2+……+a17+a18。
根据等差数列前n项和的公式Sn=n(a1+an)/2可知:S18=18×(5000×0.2%×18+5000×0.2%×1)×1/2=1710(元)。
日常生活具体数列的例子
日常生活具体数列的例子在我们的日常生活中,数列被广泛地应用于各种场合。
从购物、生物、运动到计算机科学,数列都被用来处理数据,辅助决策。
那么,日常生活中的具体数列有哪些呢?下面我将从不同角度为大家举出一些例子:一、购物中的数列我们在购物中经常遇到各种数列。
比如,我们买卫生纸时,店员告诉我们这款卫生纸一包有12卷,而一包又分为两层,每层有6卷。
那么,我们可以得到以下数列:12, 6, 6其中,第一项12表示一包卫生纸的总卷数,第二项6表示一层卫生纸的卷数,第三项6表示一包卫生纸的层数。
再比如,我们看到打折商品时,常常会看到“买3送1”的优惠条件。
这时,我们可以把这个优惠条件看作是一个等差数列,公差为1,首项为1,求n项和就是这个优惠条件的总价:S(n) = n∗a1 + n(n−1)2∗d其中,n表示买几件商品,a1表示第一件商品的价格,d表示优惠后每件商品的价格。
二、生物中的数列在生物学上,数列有非常重要的应用。
比如,DNA序列就是通过数列来描述的。
DNA不同的碱基可以用不同的数字代替,从而把DNA序列转化为数字序列。
这个数字序列就是数列。
除了DNA序列,还有一些其他生物现象也可以转化为数列。
比如,斐波那契数列是由兔子繁殖规律演化而来。
斐波那契数列中的每一项都是前两项之和。
当我们把兔子看做是生物现象时,这个数列就可以用来描述兔子的数量变化。
又比如,可以用格雷码来描述DNA中两个序列的差异。
格雷码是一个数列,在这个数列中,每一项与前一项只有一位不同。
通过比较两份DNA序列的格雷码,科学家可以找出这两份DNA序列的差异。
三、运动中的数列运动中也有很多数列应用。
比如,高中时我们学过的运动员跑圈问题。
题目大意是:两名运动员从同一起点同时起跑,一个运动员以每秒4米的速度匀速奔跑,另一个运动员以每秒5米的速度匀速奔跑。
如果要第一名运动员追上第二名运动员,需要跑多久?这道题的答案可以通过数列来解决。
定义第一个运动员跑了x秒,那么第一个运动员跑的路程就是4∗x,第二个运动员跑的路程就是5∗x。
数列实际应用
数列实际应用
数列是按照一定规律排列的数的集合,它在数学中有广泛的应用,同时也在现实生活中有许多实际应用。
以下是一些数列在实际中的应用:
1.金融和经济学:在金融和经济学中,数列可以用于建模和分析投资回报、股票价格的变化、经济增长等。
例如,等差数列可以用来描述定期投资的增长,而等比数列可以用来建模复利效应。
2.工程:在工程领域,数列可以用于描述周期性变化。
例如,振动和波动的频率可以通过正弦或余弦函数的数列来表示。
这在机械工程、电子工程和声学等领域都有应用。
3.计算机科学:在计算机科学中,数列被广泛用于算法和数据结构。
例如,斐波那契数列常用于递归算法和动态规划,而等差数列和等比数列可以用于表示计算机内存中的数据结构。
4.统计学:在统计学中,数列可以用于建模和分析随机过程。
例如,随机游走模型中的数列描述了随机变量的变化。
这在风险管理、市场分析等方面有应用。
5.物理学:在物理学中,数列可以用于描述时间和空间中的变化。
例如,牛顿的运动定律中的等差数列描述了运动物体的位移随时间的变化。
6.生物学:在生物学中,数列可以用于描述生物体的生长、衰老和其他变化。
例如,菲波那契数列可以用于描述植物的分枝结构。
7.电信和通信:在通信领域,数列可以用于描述信号的变化。
例如,正弦数列可用于表示模拟信号,而二进制数列可用于表示数字信号。
8.交通规划:数列可以用于模拟交通流量的变化。
例如,等差数列可以用于描述车辆在道路上的运动,有助于交通规划和优化。
这些都只是数列在实际中的一些例子,数列的应用领域非常广泛,涵盖了几乎所有科学和工程领域。
数列在实际中的应用
数列在实际中的应用数列是数学中的重要概念,它是按照一定规律排列的一系列数字。
数列在实际生活中有着广泛的应用,从自然科学到社会科学,都离不开数列的运用。
本文将探讨数列在实际中的应用,并分析其在不同领域的具体应用案例。
一、自然科学中的数列应用1. 物理学中的数列应用物理学是研究物质和能量以及它们之间相互作用规律的学科。
数列在物理学中有着广泛的应用,例如在运动学中,常常会涉及到时间和位置、速度、加速度之间的关系。
当物体按照规律运动时,其位置、速度和加速度都可以表示为数列。
通过数列的分析,可以了解物体的运动规律和变化趋势。
2. 化学中的数列应用化学是研究物质的组成、结构、性质、变化以及它们之间的相互作用的学科。
数列在化学中的应用主要体现在化学反应的动力学研究上。
例如,在某些化学反应中,反应物的浓度随时间的变化可以用数列来表示。
通过数列的分析,可以研究反应速率、反应程度等化学动力学参数。
二、社会科学中的数列应用1. 统计学中的数列应用统计学是研究数据收集、整理、分析和解释的学科。
数列在统计学中的应用非常广泛,例如在人口统计研究中,常常会涉及到人口的年龄、性别、地区等信息。
这些信息可以通过数列进行统计和分析,从而得出人口结构、人口变化趋势等重要结果。
2. 经济学中的数列应用经济学是研究人类在有限资源下如何选择以满足无限需求的学科。
数列在经济学中的应用主要体现在经济指标的预测和分析上。
例如,国民经济中的GDP、通货膨胀率、失业率等指标的变化趋势可以用数列来表示和分析,通过数列的预测和分析,可以为经济决策提供参考。
三、数列在工程技术中的应用1. 电路中的数列应用在电子工程中,数列有着广泛的应用。
例如,在信号传输中,根据不同的调制方式,信号可以用二进制数列、多进制数列、矩阵数列等不同形式表示。
通过数列的编码和解码,可以实现信号的高效传输和正确解读。
2. 计算机科学中的数列应用数列在计算机科学中有着极为重要的应用。
(全面版)等差数列的应用举例和实际问题总结
(全面版)等差数列的应用举例和实际问题总结等差数列是数学中常见且重要的数列之一。
它在实际生活和各个领域中有着广泛的应用。
本文将通过举例和问题总结,介绍等差数列在实际中的应用。
1. 等差数列的应用举例1.1. 购物优惠某商场推出了一种特殊的购物优惠活动:购买第一个商品60% off,第二个商品50% off,第三个商品40% off,以此类推。
假设小明购买了5个商品,依次为 A、B、C、D、E。
A 商品原价为100元。
我们可以通过等差数列来计算小明购买这5个商品的总价格。
设第 n 个商品的价格为 An,其中 n 表示商品的顺序。
已知 A1 = 100,公差 d = -10%(每个商品的折扣比例递减10%)。
则 An 可以表示为 An = A1 + (n-1)d。
我们将这个等差数列列出来:A1 = 100A2 = 100 + (2-1)(-10) = 90A3 = 100 + (3-1)(-10) = 80A4 = 100 + (4-1)(-10) = 70A5 = 100 + (5-1)(-10) = 60小明购买的5个商品的总价格为 100 + 90 + 80 + 70 + 60 = 400 元。
1.2. 运动训练假设一个人每天进行跑步训练,每天的距离比上一天增加相同的固定值。
设这个人第一天跑了1公里,而第n(n>1)天跑的距离为An。
假设固定增加的距离为d = 0.5公里。
我们可以通过等差数列来计算这个人连续7天的训练距离。
A1 = 1A2 = 1 + (2-1)(0.5) = 1.5A3 = 1 + (3-1)(0.5) = 2A4 = 1 + (4-1)(0.5) = 2.5A5 = 1 + (5-1)(0.5) = 3A6 = 1 + (6-1)(0.5) = 3.5A7 = 1 + (7-1)(0.5) = 4这个人连续7天的训练距离分别为 1公里,1.5公里,2公里,2.5公里,3公里,3.5公里和4公里。
§6-4数列实际应用举例
03
解题步骤
将贷款总额$P=100000$,年利率$r=6%$换算成月利率,还款总期数
$n=3 times 12$代入公式,计算得出每期还款额$M$。
物品增长或衰减问题
物品增长或衰减公式
$N = N_0 times (1 pm r)^t$,其中$N$表示最终数量,$N_0$表示初始数量,$r$表示增 长率或衰减率,$t$表示时间。
跨学科综合应用能力的提升
未来社会将更加注重人才的综合素质和跨学科应用能力,学生需要 提高将数列知识与其他学科知识相结合解决问题的能力。
创新思维与实践能力的培养
在解决实际问题时,需要具备创新思维和实践能力。因此,学生需 要在学习过程中注重培养自己的创新意识和实践能力。
THANKS FOR WATCHING
根据学生的学习方法和态度,给出针对性建议,引导学生树立正确 的学习观念,培养良好的学习习惯。
实际应用能力指导
针对学生在实际应用中的表现,提供解题思路和方法指导,帮助学 生提高解题能力。
展望未来发展趋势
数列知识的深化与拓展
随着数学学科的不断发展,数列知识将在更广泛的领域得到应用, 学生需要不断深化和拓展数列知识。
判断周期性数列
通过图表观察数列是否存在周期性 变化规律,如三角函数型数列等。
图表法在复杂问题中优势
直观性强
图表法能够将抽象的数列问题具体化、形象化,降低理解难度。
易于发现规律
通过图表可以更容易地发现数列中的隐含规律和性质。
便于比较和分析
在解决多个数列问题时,利用图表进行比较和分析可以更加高效 和准确。
VS
解题步骤
可以先观察销售额的增长趋势,尝试建立 递推关系或拟合曲线进行预测。如果数据 呈现等差或等比数列的特点,也可以直接 应用相应数列的求和公式进行求解。
数列在日常生活中的应用
运输成本控制
利用数列分析,可以精确 计算运输成本,为企业制 定合理的价格策略提供依 据。
运输安全保障
通过数列分析,可以发现 运输过程中的安全隐患, 采取有效措施保障运输安 全。
04
CATALOGUE
医学与健康
医学研究
疾病预测
药物研发
建筑材料
混凝土的配合比设计
混凝土是建筑工程中常用的建筑材料之一,其配合比设计对工程质量有着至关重要的影响。通过数列 的方法进行配合比设计,可以更加准确地确定各种材料的比例关系,提高混凝土的强度和耐久性。
钢材的规格与数列
在建筑工程中,钢材也是必不可少的建筑材料之一。不同规格的钢材具有不同的力学性能和适用范围 ,通过数列的方法可以对各种规格的钢材进行分类和排列,便于工程中选用合适的钢材规格。
药物副作用监测
通过收集和分析患者的用药数据,可以及时发现 药物的副作用和不良反应,保障患者安全。
05
CATALOGUE
教育与培训
课程设计
数学课程
数列是数学教育中的重要内容,用于教授学生数列的基本概念、 性质和计算方法。
编程课程
在编程中,数列常用于算法设计和数据结构,如数组和链表等。
经济学课程
在经济学中,数列用于描述经济数据的变化趋势和规律,如时间序 列分析。
物流管理
01
02
03
库存管理
利用数列表示不同商品的 销售量,可以预测商品的 库存需求,避免库存积压 和浪费。
配送路线优化
通过数列分析,可以找到 最优的配送路线,降低物 流成本和提高配送效率。
物流数据分析
利用数列分析,可以对物 流数据进行挖掘和可视化 ,帮助企业做出更科学的 决策。
数列在日常经济生活中的应用-北师大版必修5教案
数列在日常经济生活中的应用前言数学是一门广泛应用于各个领域的学科,其中数列是一种最基本的数学工具。
在生活中,我们可以看到数列的应用,比如在经济学中,数列被广泛应用于分析和预测市场走势。
本文将讨论数列在日常经济生活中的应用,希望能够帮助读者更好地理解和应用数列。
重点一:财务分析数列在财务分析中被广泛使用。
例如,人们可以使用等差数列来计算他们的银行账户余额。
如果一个人每个月存入相同金额的钱,则他/她的账户余额将形成一个等差数列。
通过使用数列的公式和时间价值,可以计算出银行账户的余额,帮助人们更好地管理他们的财务状况。
此外,在股票市场的分析和预测中也使用了数列,股票市场中的股票价格是一个会不断变化的数列。
通过找到股票价格中的模式和规律,可以根据数列的趋势预测股票的价格变化,从而使人们做出更好的投资决策。
重点二:生产和供应数列在生产和供应方面同样非常有用。
例如,供应商可以使用等比数列来确定价格的优惠程度。
通过确定价格的变化趋势,供应商可以调整商品的风险和利润水平。
此外,生产部门也可以使用数列来决定生产率的增长速度。
通过确定与公司生产率相关的因素并建立数列模型,生产部门可以更好地了解生产率变化的趋势和周期性,并进行相应的应对。
重点三:销售和营销数列在销售和营销过程中同样扮演着重要角色。
例如,销售人员可以使用等差数列来记录销售额和客户数量。
通过检查数字的模式和规律,销售人员可以预测未来销售和客户数量的变化情况,从而采取相关的策略和措施以维持或增加销售额和客户数量。
此外,营销部门还可以使用等比数列来确定不同市场中的客户数量和每个市场的市场份额。
这有助于营销部门更好地制定市场策略和推广计划。
总结综述以上,数列在日常经济生活中扮演着重要角色。
它可以帮助人们更好地了解和分析市场趋势,并进行决策。
通过建立数列模型和算法,人们可以更好地用数学工具解决实际问题。
数列的实际应用问题
数列的实际应用问题例1.某地区预计从2005年初的前n 个月内,对某种商品的需求总量f n ()(万件)与月份n 的近似关系为f n n n n n N n ()()()()=+-∈≤1150135212, (I )求2005年第n 个月的需求量g(n )(万件)与月份n 的函数关系式,并求出哪个月份的需求量超过1。
4万件.(II )如果将该商品每月都投放市场P 万件,要保持每月都满足供应,则P 至少为多少万件? 解答:(I )由题意知,()g f 11115012331125==⨯⨯⨯=() 当n ≥2时,g n f n f n ()()()=--1)]1(235[)1(1501)235)(1(1501-----+=n n n n n n )12(251)]237)(1()235)(1[(1501n n n n n n n -=----+= 又125112111251⨯⨯-==()()g ,∴=-∈≤g n n n n N n ()()()1251212, 由1251214n n ().->得:n n 212350-+<,∴<<57n ,又n N n ∈∴=,6 即6月份的需求量超过1。
4万件(II )要保持每个月都满足供应,则每月投放市场的商品数P (万件)应满足Pn f n ≥()即)235)(1(1501n n n Pn -+≥,)235233(751)235)(1(15012---=-+≥∴n n n n P N n ∈ ,当8=n 时,)235)(1(1501n n -+的最大值为1。
14万件即P 至少为1。
14万件 练习:听P82例2例2.某外商到一开发区投资72万美元建起一座蔬菜加工厂,第一年各种经费12万美元,以后每年增加4万美元,每年销售蔬菜收入50万美元.设f n ()表示前n 年的纯收入(f n ()=前n 年的总收入-前n 年的总支出-投资额)(1)从第几年开始获取纯利润?(2)若干年后,外商为开始新项目,有两种处理方案:①年平均利润最大时以48万美元出售该厂;②纯利润总和最大时,以16万元出售该厂,问哪种方案最合算?解答:由题意知,每年的经费是以12为首项,4为公差的等差数列,设纯利润与年数的关系为f n (),则f n n n n n n n ()[()]=-+-⨯-=-+-501212472240722 (1)纯利润就是要求f n ()>0,∴-+->2407202n n解得218<<n 。
数列在实际问题中的应用
数列在实际问题中的应用在我们的日常生活和众多领域中,数列的身影无处不在。
从金融投资到生物繁殖,从工程建设到资源分配,数列都发挥着重要的作用。
它不仅是数学中的一个重要概念,更是解决实际问题的有力工具。
先来说说银行存款中的复利计算。
假设你在银行存入一笔本金 P,年利率为 r,存款期限为 n 年。
如果每年复利一次,那么 n 年后你的存款总额 A 就可以用等比数列的通项公式来计算:A = P(1 + r)^n 。
比如说,你存入 10000 元,年利率为 5%,存 5 年,那么 5 年后你的存款总额就是 10000×(1 + 005)^5 ≈ 1276282 元。
这里的每年的存款金额就构成了一个等比数列,通过这个数列的计算,我们可以清晰地了解到资金的增长情况,从而更好地规划自己的财务。
在房屋贷款的计算中,数列也同样有着重要的应用。
假设你向银行贷款 P 元,月利率为 r,还款期限为 n 个月。
等额本息还款方式下,每月还款额 M 可以通过等差数列和等比数列的知识来推导得出。
通过这样的计算,你可以清楚地知道每个月需要还款的金额,以及在还款过程中本金和利息的比例变化。
这有助于你合理安排每月的收支,避免出现逾期还款等问题。
数列在资源分配问题中也大显身手。
比如,一家公司有一定数量的资源要分配给不同的项目。
假设公司共有资源 R,有 n 个项目需要分配资源,每个项目的资源需求按照一定的比例增长或减少。
通过构建等差数列或等比数列,可以找到最优的资源分配方案,使得资源得到最有效的利用,从而实现公司的最大效益。
再看人口增长问题。
在理想情况下,人口的增长可以看作是一个等比数列。
假设初始人口为 P₀,年增长率为 r,经过 n 年后,人口数量P = P₀(1 + r)^n 。
通过对这个数列的分析,可以预测未来人口的变化趋势,为政府制定相关的政策,如教育、医疗、就业等方面的规划,提供重要的参考依据。
在工程建设中,数列也有着广泛的应用。
数列概念的应用
数列概念的应用数列是数学中的一个基本概念,它在现实生活和各种科学领域中有着广泛的应用。
在此,我们将讨论数列的概念和一些应用。
一、数列的概念数列是由一系列按照一定规律排列的数所组成的有限或无限集合。
它通常用数列的第一个元素和通项公式表示。
其中,第一个元素称为首项,通项公式是指每个元素与其前一项之间的关系式。
数列按照通项公式的不同形式可以归为等差数列、等比数列、等差减通项数列等。
二、等差数列的应用在现实生活中,等差数列有着广泛的应用。
比如常见的电费、燃气费等属于等差数列的概念。
以电费为例,我们可以根据月度电费的规律建立一个等差数列。
比如,设第一个月电费为100元,每个月增加10元,则第二个月为110元,第三个月为120元,第四个月为130元。
通过这个规律,我们可以简单地预测未来任意时间的电费,并控制用电量。
三、等比数列的应用等比数列也有很多应用,例如货币的利息也可以看作是等比数列。
另外,计算机科学中的指数增长等现象也可以用等比数列的概念来描述。
以汇率为例,我们可以根据两种货币之间的汇率变化建立一个等比数列。
如设初始汇率为1:6,每3个月升值0.1,则3个月后汇率为1:6.66,6个月后为1:7.44,9个月后为1:8.26。
通过这个规律,我们可以预测货币汇率的变化,选择最佳的时间进行汇兑。
四、等差减通项数列的应用等差减通项数列也有广泛的应用。
以租房子为例,房价可能随时间递减,但每次递减的数量可能不一样。
设初始租金为1000元,每月递减150元,则第二个月的租金为850元,第三个月为700元,第四个月为550元,第五个月为400元。
我们可以使用等差减通项数列的方法来计算未来任意时间的租金,并进行预算和控制开支。
总之,数列作为数学中的基本概念,有着广泛的应用。
通过数列的模型和其中的规律性,我们可以预测和控制未来的各种变化,使得我们的生活和工作更加的精准和有效。
高一数学中的数列在实际问题中的应用有哪些
高一数学中的数列在实际问题中的应用有哪些在高一数学的学习中,数列作为一个重要的知识板块,不仅在数学理论中具有重要地位,还在实际生活中有着广泛的应用。
通过数列,我们可以更好地理解和解决许多现实世界中的问题,从经济领域的投资和贷款计算,到自然科学中的生物繁殖和放射性物质衰变,再到日常生活中的排队和资源分配等。
接下来,让我们深入探讨一下高一数学中数列在实际问题中的具体应用。
一、经济领域1、储蓄与利息计算在银行储蓄中,常常会涉及到利息的计算。
假设我们将一笔本金 P存入银行,年利率为 r,存期为 n 年。
如果按照单利计算,到期后的本息和 A 可以用数列公式表示为:A = P(1 + nr) ;而如果按照复利计算,到期后的本息和 A 则为:A = P(1 + r)^n 。
通过这样的数列公式,我们可以清楚地计算出不同储蓄方式下的最终收益,帮助我们做出更明智的理财决策。
2、分期付款在购买一些价格较高的商品时,如汽车、房屋等,我们可能会选择分期付款。
假设购买一件价格为 P 的商品,分 n 期付款,每期利率为 r。
每期的还款金额可以通过数列计算得出,从而帮助我们规划好每月的财务支出,避免逾期还款和额外的利息费用。
3、投资回报在投资领域,数列也发挥着重要作用。
例如,我们投资一项每年回报率为 r 的项目,初始投资为 P,经过 n 年后的投资总额可以用数列公式计算。
通过对不同投资项目的回报进行数列分析,我们可以评估其风险和收益,选择最适合自己的投资组合。
二、科学研究1、生物繁殖在生物学中,许多生物的繁殖现象可以用数列来描述。
比如,某种细菌每小时繁殖的数量是前一小时的 2 倍,如果初始时有 x 个细菌,经过 n 小时后的细菌数量就是一个等比数列。
通过数列的计算,我们可以预测生物种群的增长趋势,为生态保护和资源管理提供重要依据。
2、放射性物质衰变放射性物质的衰变过程也符合数列规律。
假设某种放射性物质的半衰期为 T,初始质量为 M,经过 n 个半衰期后的剩余质量可以用数列公式表示为:M(1/2)^(n/T) 。
浅析数列在日常生活中的应用
浅析数列在日常生活中的应用在实际生活和经济活动中, 很多问题都与数列密切相关.如分期付款、个人投资理财以及人口问题、资源问题等都可运用所学数列知识进行分析,从而予以解决. 与此同时,数列在艺术创作上也有突出的作用. 数学家华罗庚曾经说过:"宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学. " 这是对数学与生活关系的精彩描述. 下面笔者将举几个生活中的小例子来浅谈一下数列在日常生活中的运用.一、在生产生活中在给各种产品的尺寸划分级别时, 当其中的最大尺寸与最小尺寸相差不大时, 常按照等差数列进行分级. 若为等差数列, 且有an=m,am=n. 则a(m+n)=0.其实等差数列生活中处处可见, 关键是发现它, 并用以解决实际问题. 在路灯的排列、银行的按揭贷款、银行的利息结算等等.例如1 台电脑售价为1 万元, 如果采取分期付款, 在1 年内将款全部还清的前提下,商家还提供下表所示的几种付款方案(月利率为1%). 假定你的父母为给你创建更好的学习条件,打算买台电脑,除一次性付款外商家还提供三种分期付款方式. 你能帮他们参谋选择一下吗?方案分几次付清付款方法每期所付款额方案1.分6 次付清. 购买后2 个月第1次付款, 再过2 个月第2 次付款……购买后12 个月第6 次付款方案2.分12 次付清. 购买后1 个月第1次付款, 再过1 个月第2 次付款……购买后12 个月第12 次付款方案3.分3 次付清. 购买后4 个月第1次付款,再过4 个月第2 次付款,再过4 个月第3 次付款分析:思路1: 本题可通过逐月计算欠款来处理,根据题意,到期还清即第12 个月的欠款数为0 元.设每次应付x 元,则:二、细胞分裂中的数列自然界是由许许多多的细胞组成的,细胞分裂产生新的生命, 人的孕育也是由细胞分裂开始的. 以某种细胞为例我们一起来分析一下细胞是如何分裂的.某种细胞每过30 分钟便由 1 个分裂成 2 个,经过 5 小时,这种细胞由 1 个分裂成几个?经过N 小时,细胞由1 个能分裂成几个?该细胞分裂数是公比为2 的等比数列方式增加.显然不用减去那最初的一个母细胞了,因为题目问的是:"经过5 小时, 这种细胞由一个分裂成几个,"当然是1024 了,又不是问由一个分裂"出"几个,那就要减去最初的母细胞了.显然N 时后,该细胞会由一个分裂"成"2(k-1)个(k为自然数,k=2N+1)即:N 时后,会有22N个细胞,(其中N 表示整时,单位为时,N=0,1,2,3,……)因此,经过N 时后,细胞由一个分裂成22N个(N=0,1,2,3,…)三、爬楼梯小明同学在小的时候喜欢爬楼梯, 不为什么,只是觉得这种阶梯状的建筑非常好玩,等到他长大了,可以一次跨上一级,也可以跨两级,所以,他想知道,有多少种不同的上到楼梯顶端的方案.首先假设楼梯只有一级,那么小明只有一种爬法;如果有 2 级,那么小明可以一级一级地往上爬,也可以一次就上两级,用算式表示为1+1 或2, 说明他上 2 级楼梯有 2 种不同的爬法;如果有 3 级,小明的第一步可以上一级,也可以上二级. 如果上一级,那么还剩下 2 级, 上面已经讨论过了有 2 种不同的爬法;如果上二级,那么还剩下 1 级,上面也已经讨论过了,只有 1 种爬法;合计起来就有2+1=3 种不同的爬法. 有算式表示为3=1+2(2 种不同的爬法)=2+1(1 种不同的爬法);如果有4 级,小明的第一步可以上一级,也可以上二级. 如果上一级, 那么还剩下3级,上面已经讨论过了有3 种不同的爬法;如果上二级,那么还剩下 2 级,上面也已经讨论过了,有 2 种不同的爬法;合计起来就有3+2=5 种不同的爬法. 用算式表示为4=1+3(3种不同的爬法)=2+2(2 种不同的爬法);……照这样推下去, 可以得一串斐波那契数列:1,2,3,5,8,13,21,34,55,89,……由此可知,爬上有10 级台阶的楼梯,一共有89 种不同的爬法.随着科学的进步,数学学科在我们的生活中扮演着一个不可忽视的重要角色,作为跨世纪的中学生, 我们不仅要学会数学知识,而且要会应用数学知识去分析、解决生活中遇到的问题,这样才能更好地适应社会的发展和需要. 数学既不严峻,也不遥远,它既和所有的人类活动有关,又对每一个真正感兴趣的人有益. 数学研究、科学研究从身边的活动做起. 让我们从一个小小的数列开始,多思考,找规律,相信任何问题都可以迎刃而解的.。
数列在日常生活中的应用
教材P38 例3 分期付款模型 教材 另一解法: 另一解法: 每期付款产生的本利和的累加 = 一年后付款的总额 解:设每期还款x元,则 设每期还款 元 x(1+1.0082+1.0084+…+1.00810)= 5000*1.00812 (
பைடு நூலகம்
3、有若干台型号相同的联合收割机收割小麦,若 、有若干台型号相同的联合收割机收割小麦, 同时投入工作到收割完毕需24小时 小时, 同时投入工作到收割完毕需 小时,但它们是 每隔相同的时间按顺序投入工作的, 每隔相同的时间按顺序投入工作的,每一台投入 工作后都一直工作到小麦收割完毕。 工作后都一直工作到小麦收割完毕。如果第一台 收割时间是最后一台的5倍 收割时间是最后一台的 倍,求用这种方法收割 完毕需多少时间? 完毕需多少时间?
a1 = 5a n a1 a2 an 24n + 24n + ⋯ + 24n = 1
a1=40
1、小王每日节省100元,想以零存整取的方式存入 、小王每日节省 元 银行,攒足 元购买冰箱, 银行,攒足2625元购买冰箱,如果月利率为 元购买冰箱 P=0.0075,问存两年能否够购买冰箱的钱? ,问存两年能否够购买冰箱的钱? 2、现有1万元存入银行,存30年,年利率为 ,利息 、现有 万元存入银行 万元存入银行, 年 年利率为r, 税20%,以下列方式存储,则到期本息共多少? ,以下列方式存储,则到期本息共多少? 定期一年 定期二年 定期三年
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)(原卷版)
1.4数列在日常经济生活中的应用(讲义+典型例题+小练)一、例述数列在生活中的应用数学不仅仅是我们生活中的工具,更大程度上是我们生活中的必需品,并影响着人们的生活。
以生活中的一个常见问题为例:例1:1.为了防止某种新冠病毒感染,某地居民需服用一种药物预防.规定每人每天定时服用一次,每次服用m毫克.已知人的肾脏每24小时可以从体内滤除这种药物的80%,设第n=).次服药后(滤除之前)这种药物在人体内的含量是n a毫克,(即1a mm=,求2a、3a;(1)已知12(2)该药物在人体的含量超过25毫克会产生毒副作用,若人需要长期服用这种药物,求m的最大值.举一反三:1.顾客采用分期付款的方式购买一件5000元的商品,在购买一个月后第一次付款,且每月等额付款一次,在购买后的第12个月将货款全部付清,月利率0.5%.按复利计算,该顾客每月应付款多少元(精确到1元)?二、银行储蓄与分期付款中的数列应用储蓄与贷款与国计民生、社会生活发展息息相关,大到支援国家建设,小到个人家庭的财政支出管理,处处都嵌套着数列的应用。
在人们日常的生活规划中,为未来进行资金储备的零存整取的存储模式是银行储蓄中常见的一种金融计算方式。
下面将以某一常见模式为例,进行数列在储蓄领域应用的解析。
(1)储蓄业务种类①活期储蓄②定期储蓄(整存整取定期储蓄、零存整取定期储蓄、整存零取定期储蓄、存本取息定期储蓄、定活两便储蓄)③教育储蓄④个人通知存款⑤单位协定存款(2)银行存款计息方式:①单利单利的计算是仅在原有本金上计算利息,对本金所产生的利息不再计算利息.其公式为:利息=本金×利率×存期以符号P代表本金,n代表存期,r代表利率,S代表本金和利息和(以下简称本利和),则有②复利把上期末的本利和作为下一期的本金,在计算时每一期本金的数额是不同的.复利的计算公式是(3)零存整取模型例1:1.复利是指一笔资金产生利息外,在下一个计息周期内,以前各计息周期内产生的利息也计算利息的计息方法,单利是指一笔资金只有本金计取利息,而以前各计息周期内产生的利息在下一个计息周期内不计算利息的计息方法.小闯同学一月初在某网贷平台贷款10000元,约定月利率为1.5%,按复利计算,从一月开始每月月底等额本息还款,共还款12次,直到十二月月底还清贷款,把还款总额记为x元.如果前十一个月因故不还贷款,到十二月月底一次还清,则每月按照贷款金额的1.525%,并且按照单利计算利息,这样的还款总额记为y元.则y-x的值为()(参考数据:1.01512≈1.2)A.0B.1200C.1030D.9002.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利(暂不考虑利息税).(1)若每月存入金额为x元,月利率r保持不变,存期为n个月,试推导出到期整取是本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?(3)若每月初存入一定金额,月利率为0.3%,希望到第12个月末整取时取得本利和2000元.那么每月初应存入的金额是多少?举一反三:1.某企业在2013年年初贷款M万元,年利率为m,从该年年末开始,每年偿还的金额都是a万元,并恰好在10年间还清,则a的值为()A.()()1010111M mm++-B.()101Mmm+C.()()1010111Mm mm++-D.()()1010111Mm mm+++2.银行有一种叫作零存整取的储蓄业务,即每月定时存入一笔相同数目的现金,这是零存;到约定日期,可以取出全部本利和,这是整取.规定每次存入的钱不计复利.银行按国家规定到期扣除20﹪的利息税(应纳税额=应纳税利息额×税率).(1)若每月存入金额为x 元,月利率r 保持不变,存期为n 个月,试推导出到期整取时本利和的公式;(2)若每月初存入500元,月利率为0.3%,到第36个月末整取时的本利和是多少?三、 环境资源利用中的数列应用进入21世纪以来,能源的短缺成为困扰人类社会发展的主要问题之一,尤其是不可再生资源的合理有效利用问题,更是人类社会进一步发展需要解决的首要问题。
探究数列的实际应用
探究数列的实际应用数列是数学中一个重要的概念,本文将探究数列在实际应用中的作用和意义。
从数学模型到实际问题的转化,数列给我们提供了一种有序的排列方式,使得我们可以更好地理解和解决实际问题。
一、数列在数学建模中的应用数列在数学建模中起到了至关重要的作用,通过数列可以描述出许多事物的发展规律。
例如,人口增长、经济增长、物种数量等等都可以用数列来表示。
在数学建模中,我们可以根据已有的数据进行分析和预测,从而对未来的发展趋势做出合理的判断和决策。
二、数列在经济学中的应用在经济学中,数列也发挥着重要的作用。
例如,经济增长率可以通过数列来表示,通过对经济增长率的分析,我们可以判断经济的发展趋势,制定出相应的经济政策。
此外,还可以通过数列来计算物价指数、消费价格指数等指标,从而对经济发展状况进行评估和监测。
三、数列在自然科学中的应用数列在自然科学中也有广泛的应用。
例如,物理学中的运动学问题中,可以通过数列来描述物体在运动中的位置、速度、加速度等变化规律,从而更好地理解和解决实际问题。
同样,在化学中,数列可以用来描述化学反应的速度与物质浓度的关系,从而对化学反应进行研究和控制。
四、数列在信息科学中的应用在信息科学中,数列也有广泛的应用。
例如,计算机编程中经常用到的算法中,常常需要用到数列的概念来处理和解决问题。
同时,在信号处理中,数列可以用来表示和处理各种信号,如音频信号、图像信号等。
数列能够提供一种有序的排列方式,使得信息的传输和处理更加高效和准确。
五、数列在其他领域的应用除了以上几个领域,数列还有许多其他的应用。
例如,在物流中,可以用数列来描述货物的运输过程;在排队论中,可以用数列来描述人员排队的等待时间;在生物学中,可以用数列来描述DNA序列的结构等等。
综上所述,数列在实际应用中起到了重要的作用。
不仅能够提供一种有序的排列方式,使得我们能够更好地理解和解决实际问题,还能够通过数学模型对未来进行预测和判断。
数列的实际应用
(1)“零存整取”的计算 “零存整取”是单利计算,属于等差数列求和问题.其本利和为 S=P(1+nr),其中 P 代表本金,n 代表存期,r 代表利率,S 代表本金与利息和,简称本利和. (2)“定期自动转存”的计算 “定期自动转存”是复利计算,属于等比数列求通项问题,到期后的本利和为 S=P(1 +r)n,其中 P 代表本金,n 代表存期,r 代表利率,S 代表本利和.注意复利计算是求等比 数列的第 n 项,而不是求和. (3)应用数列知识解决实际问题的步骤 ①根据实际问题提取数据;②建立数据关系,对提取的数据进行分析、归纳,建立数列 的通项公式或递推关系; ③检验关系是否符合实际, 符合实际可以使用, 不符合要修改关系; ④利用合理的结论对实际问题展开讨论.
变式训练 41:从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发 1 展旅游产业,根据规划,本年度投入 800 万元,以后每年投入将比上年减少 ,本年度当地 5 旅游业收入估计为 400 万元,由于该项建设对旅游业的促进作用,预计今后旅游业收入每年 1 会比上年增加 . 4 (1)设 n 年内(本年度为第 1 年)总投入 Sn 万元,旅游业总收入为 Tn 万元,写出 Sn、Tn 的 表达式; (2)第几年旅游业的总收入才能首次超过总投入?
等比数列前 n 项和的实际应用 【例 4】 某同学若将每月省下的零花钱 5 元在月末存入银行,月利按复利计算,月利为 0.2%,每够一年就将一年的本和利改存为年利按复利计算,年利为 6%,问三年取出本利共 多少元(结果保留到个位)?
思路点拨:解答本题可先建立数学模型用数列知识求解后再回归实际问题.
思路点拨: 生活中常见的增加(增长)问题, 可以考虑利用等差数列(等比数列)的知识来处 理.
解:由题设知今年学生人数为 b, 则 10 年后学生人数为 b(1+4.9‟)10=1.05b. 由题设可知,1 年后的设备数量为 a×(1+10%)-x=1.1a-x; 2 年后的设备数量为 (1.1a-x)×(1+10%)-x=1.12a-1.1x-x =1.12a-x(1+1.1); „ 10 年后的设备数量为 a×1.110-x(1+1.1+1.12+„+1.19) 1×1-1.110 =2.6a-x× 1-1.1 =2.6a-16x, 2.6a-16x a a 由题设得 =2× ,解得 x= . 1.05b b 32
数列的应用问题:中考数学数列的实际应用
数列的应用问题:中考数学数列的实际应用数列是中考数学中的一个非常重要的考点,而数列的应用也是我们在生活中经常遇到的。
本文将从实际问题出发,介绍数列在生活中的应用情况以及数列的求法。
一、数列的定义和求法数列是一个按照一定规律排列起来的数的序列。
数列中的数叫做项,用通项公式来表示一般是 an=f(n),其中,an 表示第 n 项,f(n)表示通项公式。
求数列的方法有很多种,其中比较常见的有:1、通项公式法:根据前几项数列的规律,推导出数列的通项公式,从而可以方便地求出任意一项的值。
2、递推公式法:根据前一项的值,递推得到后一项的值。
递推公式是指数列中后一项与前一项之间的关系式,如 an=an-1+2。
3、逆推法:从数列的最后一项开始向前推导,一步一步逆推,求得数列中任意一项的值。
二、数列的应用问题1、等差数列的应用等差数列是指数列中相邻两项之差是一个定值,通常用 a1,d 来表示,其中,a1 表示首项,d 表示公差。
在实际问题中,等差数列的应用非常广泛,比如身高增长问题、数学成绩问题、温度变化问题等等,都可以通过等差数列来解决。
例如,小明的身高从 140 厘米开始,每年增长 5 厘米,问 7 年后小明的身高是多少?首项 a1=140,公差 d=5,求第 7 项的值 an。
由于每年增长 5 厘米,所以公差为 5,即 d=5。
根据等差数列的通项公式:an=a1+(n-1)d,代入式子,得到 an=140+(7-1)*5=170。
所以,7 年后小明的身高为 170 厘米。
2、等比数列的应用等比数列是指数列中相邻两项之比是一个定值,通常用 a1,q 来表示,其中,a1 表示首项,q 表示公比。
在实际问题中,等比数列的应用也非常广泛,比如利润增长问题、人口增长问题、艺术品价格上涨问题等等。
例如,一件艺术品的价格每年以 8% 的速度上涨,现在的价格为4800 元,问 5 年后的价格是多少?首项 a1=4800,公比 q=1.08,求第 5 项的值 an。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列的实际应用
一、要点·疑点·考点
1.复利公式
按复利计算利息的一种储蓄,本金为a元,每期利率为r,存期为x,则本利和y=a(1+r)x
2.产值模型
原来产值的基础数为N,平均增长率为p,对于时间x的总产值y=N(1+p)x
3.单利公式
利息按单利计算,本金为a元,每期利率为r,存期为x,则本利和
y=a(1+xr)
二、课前热身
1.某种细胞开始有2个,1小时后分裂成4个,2小时后分裂成8个,3小时后分裂成16个…,按此规律,6小时后细胞的个数是()
(A)63(B)64(C)127(D)128
2.一种专门占据内存的计算机病毒开始时占据内存2KB,工作时3分钟自身复制一次(即复制后所占内存是原来的2倍),那么,开机后_______分钟,该病毒占据64MB(1MB=210KB)
3.某产品的成本每年降低q%,若三年后成本是a元,则现在的成本是()
(A)a(1+q%)3元(B)a(1-q%)3元
(C)a(1-q%)-3元(D)a(1+q%)-3元
4.某人到银行存了10000元,利息按单利计算,年利率为5%,则他在10年后的为____元
三、例题分析
1.等差数列模型
例1.一梯形的上、下底长分别是12cm,22cm,若将梯形的一腰10等分,过每一个分点作平行于底边的直线,求这些直线夹在两腰之间的线段的长度的和.
2.等比数列模型
例2.某市2003年共有1万辆燃油型公交车,有关部门计划于2004年投入128辆电力型公交车,随后电力型公交车每年的投入比上一年增加50%,试问:
(1)该市在2010年应该投入多少辆电力型公交车?
(2)到哪一年底,电力型公交车的数量开始超过该市公交车总量的?3.等差、等比数列综合问题模型例3.在一次人才招聘上,有A,B两家公司分别开出他们的工资标准:A公司允诺第一年月工资数为1500元,以后每年月工资比上一年月工资增加230元;B公司允诺第一年月工资数为2000元,以后每年月工资在上一年月工资基础上递增5%,设某人年初被A,B两家公司同时录取,试问:(1)若该人分别在A公司或B公司连续工作n年,则他在第n年的月工资收入分别是多少?(2)该人打算连续在一家公司工作10年,仅从工资收入总量较多作为应聘的标准(不记其他因素),该人应该选择哪家公司,为什么?
4.递推数列模型
例4.某地区原有森林木材存量为a,且每年增长率为25%,因生产建设的需要每年年底要砍伐的木材量为b设an为n年后该地区森林木材存量。
(1)求an的表达式;(2)为保护生态环境,防止水土流失,该地区每年的森林木材存量不少于如果那么该地区今后会发生水土流失吗?若会,需经过几年?变式练习:某下岗职工准备开办一个商店,要向银行贷款若干,这笔贷款按复利计算(即本年利息计入下一年的本金生息),利率为q(0<q<1).据他估算,贷款后每年可偿还A元,30年后还清.①求贷款金额;②若贷款后前7年暂不偿还,从第8年开始,每年偿还A元,仍然在贷款后30年还清,试问:这样一来,贷款金额比原贷款金额要少多少元?。