单自由度系统的有阻尼自由振动共22页文档
单自由度系统的有阻尼自由振动
![单自由度系统的有阻尼自由振动](https://img.taocdn.com/s3/m/b10aba017cd184254b353528.png)
0.8 (e nTd ) 20 0.16
ln5 20 nTd 20 n 2 n 1 2
由于 很小,ln5 40
ln5 W W ln5 1502 c 2 m k 2 2 40 g st 40 1980 0.122( Ns/cm)
nt
2 t n2 n
C2 e
2 t n2 n
)
代入初始条件 (t 0时 , x x0 , x x 0 )
C1
2 0 ( n n 2 n x ) x0
2 n
2
2 n
; C2
2 0 ( n n 2 n ) x0 x 2 2 n 2 n
可见阻尼使自由振动的周期增大,频率降低。当阻尼小时, 影响很小,如相对阻尼系数为5%时,为1.00125,为20%时, 影响为1.02,因此通常可忽略。
14
振幅的影响: 为价评阻尼对振幅衰减快慢的影响,引入减 幅系数η ,定义为相邻两个振幅的比值。
Ai Aewnti wnti td ewntd Ai 1 Ae
5
也可写成
x Ae nt sin(d t )
2 d n n2
—有阻尼自由振动的圆频率
x 0 , 则 设 t 0 时, x x0 , x
2 2 2 x n ( x nx ) 0 n 2 A x0 0 2 02 ; tg1 0 nx0 n n x
16
例4 如图所示,静载荷P去除后质量块越过平衡位置的最大 位移为10%,求相对阻尼系数。
17
x(t ) e
wnt
0 wn x0 x ( x0 cos wd t sin wd t ) wd
18
第一章(单自由度系统的振动)
![第一章(单自由度系统的振动)](https://img.taocdn.com/s3/m/83231d100b4e767f5acfce71.png)
单自由度系统的振动方程
c
k
m
s k
c
o
u
m
u
f (t)
mu(t) k[u(t) s ] cu(t) mg f (t)
k (u s ) cu
m
mg
f (t)
mg k s
mu(t) cu(t) k u(t) f (t)(单自由度系统振动方程的一般形式)
结论:只要以系统静平衡位置为坐标原点,那么在列写系统运动方程 时就可以不考虑系统重力的作用。
问题2
k1
k2
k3
m
k4
k1 k3
k2
√
k4
问题2
k1
k2
k3
m
k4
k1
k3
k2
╳
k4 k1
k3
k2
m
k4
问题3
无质量弹性杆
刚性杆
k
m
等效
k
m
F
k F /
第一章:单自由度系统的振动
第二讲:
无阻尼单自由度系统的自由振动
•正确理解固有频率的概念 •会求单自由度无阻尼系统的固有频率
无阻尼单自由度系统的自由振动
4
o 势能:V mg(R r)(1 cos ) 1 mg(R r) 2
2
R
m 简谐运动: max sin(nt )
B
rC
Tmax
3m 4
(
R
r
)2
(n
max
)
2
A
D
mg
Vmax
1 2
mg
(
R
r
)m2 ax
Tmax Vmax
单自由度系统(自由振动)
![单自由度系统(自由振动)](https://img.taocdn.com/s3/m/26abca077f1922791788e88a.png)
第二章 单自由度系统的自由振动本章以阻尼弹簧质量系统为模型,讨论单自由度系统的自由振动。
§2-1 无阻尼系统的自由振动无阻尼单自由度系统的动力学模型如图1.1所示。
设质量为m ,单位是kg 。
弹簧刚度为K ,单位是N /m ,即弹簧单位变形所需的外力。
弹簧在自由状态位置如图中虚线所示。
当联接质量块后,弹簧受重力W=mg 作用而产生拉伸变形∆:,同时也产生弹簧恢复力K ∆,当其等于重力W 时,则处于静平衡位置,即 W=K ⋅∆若系统受到外界某种初始干扰,使系统静平衡状态遭到破坏.则弹簧力不等于重力,这种不平衡的弹性恢复力,便使系统产生自由振动。
首先建立座标,为简便起见,可选静平衡位置为座标原点,建立铅垂方向的座标x ,从原点算起,向下为正,向上为负,表示振动过程中质量块的位置。
现设质量m 向下运动到x ,此时弹簧恢复力为K(∆+x),显然大于重力W ,由于力不平衡,质量块在合力作用下,将产生加速度运动,故可按牛顿运动定律(作用于一个质点上所有力的合力,等于该质点的质量和沿合力方向的加速度的乘积),建立运动方程,取与x 正方向一致的力、加速度、速度为正,可列如下方程 改写为 0=+kx xm (1-1-1 令mkp =2(1-1-2)单自由度无阻尼系统自由振动运动方程为02=+x p x(1-1-3)设方程的特解为 ste x =将上式代入(1-1-3)处特征方程及特征根为ips p s ±==+2,1220则(1-1-3)的通解为ptD pt C e C e C x ipt ipt sin cos 11+=+=- (1-1-4)C 、D 为任意积分常数,由运动的初始条件确定,设t=0时00,x xx x == (1-1-5)()x m x k W F=+∆-=∑量位静平衡位置 一自由度弹簧—质量系统 ∆==k mgW xx)则pt pxpt x x sin cos 00 += (1-1-6)经三角变换,又可表示为)sin(α+=pt A x(1-1-7)其中 001220,x px tg p x x A -=⎪⎪⎭⎫ ⎝⎛+=α (1-1-8) 自由振动的振幅A 和初相位角α与系统的参数和初始条件有关。
机械振动--第03课 单自由度系统:阻尼自由振动
![机械振动--第03课 单自由度系统:阻尼自由振动](https://img.taocdn.com/s3/m/1900671fce2f0066f53322cc.png)
c 2 k 2m m
称为系统的阻尼比,又称为相对阻尼系数。
粘性阻尼振动系统
cc 2 mk 2mn 2k /n
c cc
式 (2.3-1)可 以 写 成
mxcxkx0 x(0)x0, x(0)x0
x
2
n
x
2 n
x
0
(2.3-3)
根据 的大小,可得到三种不同形式的解:弱阻尼,临界阻尼和过阻尼。
▪ 阻尼是用来度量系统自身消耗振动能量的物理量。在理论分 析中最常用的阻尼是气体和液体的粘性阻尼,它是由于气体 或液体在某些机械部件中运动,因而扩散到气体或液体中的 热量等能量耗散的度量。
1. 引言
▪ 振动系统的无阻尼振动是对实际问题的理论抽象。 如果现实世界没有阻止运动的话,整个世界将处在 无休止的运动中。客观实际是和谐的,有振动又有 阻尼,保证了我们生活在一个相对安静的世界里。
。2粘
性
阻
尼
系
c
统的
自由2
振动k,
其
2m m
振 动 。实 际 阻 尼 小 于 临 界 阻 尼 的
位 系
统叫做欠阻尼系统或弱阻尼系统。
粘性阻尼振动系统
粘性阻尼振动系统
( 2) 1 , 临 界 阻 尼 ( critical damped)
这
时
,
系统
的c阻尼
系数c等于2
系
k
统
的
临
界
阻
c
尼
系2数,k这
粘性阻尼器
基于流体力学,作用于活塞上阻 力的大小近似地表示为
Fd
d 2 4
p
4L
d D
2
v
这表明,粘性阻尼器的阻尼力与 速度成正比,方向与速度相反,这时 阻尼系数为
第三讲单自由度系统的振动(阻尼)解读
![第三讲单自由度系统的振动(阻尼)解读](https://img.taocdn.com/s3/m/20a8e17377232f60ddcca1e6.png)
nt i
两端取自然对数得 其中
ln ln e nTd
nT
δ称为对数减缩系数
Td
2
0 1 2
c 0 2 m k
n
对数减缩率δ与阻尼比ζ之间的关系为:
n
2
0 1
2
2 1
2
2
( 2<<1 )
上式表明:对数减缩率δ与阻尼比ζ之间只差2π倍,δ也是反映阻尼
x
这种振动的 振 幅 是 随 时 间 A x0 不断衰减的, 称为衰减振动。 衰减振动的运 动图线如图所 示。 d
Ae nt
衰减曲线的包络线
A1
A2
A3
t
Td
x
由衰减振动的表达式:
Ae
A x0
nt
x Ae
nt
sin(d t )
A1
A2
A3
这种振动不符合周期振 动 f (t ) f (t nT ) 的定
机械振动学
2.1.2.单自由度系统的有阻尼自由振动
1.阻尼
上节所研究的振动是不受阻力作用的,振动的振幅是不随
时间改变的,振动过程将无限地进行下去。
实际中的振动系统由于存在阻力,而不断消耗着振动的能 量,使振幅不断地减小,直到最后振动停止。 振动过程中的阻力习惯上称为阻尼。 阻尼类型: 1)介质阻尼; 2)结构阻尼; 3)库仑阻尼
ωd =ω0 , Td =T
阻尼对振幅的影响
nt 2 2 x Ae sin( n t ) 由衰减振动运动规律: 0
Ae-nt相当于振幅
设在某瞬时ti,振动达到的最大偏离值为Ai有: 经过一个周期 Td ,系统到达另一个 比前者略小的最大偏离值Ai+1
结构动力学 -单自由度体系的振动
![结构动力学 -单自由度体系的振动](https://img.taocdn.com/s3/m/b8d6d938b84ae45c3a358c1d.png)
13
§2.2 无阻尼自由振动
自由振动(free vibration) :无外界干扰的体系振动形 态称为自由振动(free vibration)。振动是由初始位 移或初始速度或两者共同影响下所引起的。 无阻尼自由振动:如果阻尼系数等于零,则这种自由 振动称为无阻尼自由振动(undamped free vibration)。 假设由于外界干扰,质点离开平衡位置,干扰消失后, 质点将围绕静力平衡点作自由振动。
或:m y ( t) c y ( t) k ( t) y m y g ( t) P e( f t) f
Peff (t ) :等效荷载,即在地面加速度yg (t )影响下,结构的响
应就和在外荷载p (t )作用下的响应一样,只是外荷载 p (t )
等于质量和地面加速度的乘积。
干扰力的大小只能影响振幅A的大小,而对结构自
振周期T的大小没影响。
(2)自振周期与质量平方根成正比,质量越大,则
周期越大;自振周期与刚度的平方根成反比,刚度
越大,则周期越小。要改变结构的自振周期,只有
改变结构的质量或刚度。
24
§2.2 无阻尼自由振动
k g
m
st
(3)把集中质点放在结构上产生最大位移的地方,则可
1、位移以静力平衡位置作为基准的,而这样确定的位移 即为动力响应。
2、在求总挠度和总应力时,要把动力分析的结果与静
力分析结果相加。
9
§2.1运动方程的建立
3、支座运动的影响 结构的动位移和动应力既可以由动荷载引起,也
可以由结构支座的运动而产生。 1)由地震引起建筑物基础的运动; 2)由建筑物的振动而引起安置在建筑物内的设备 基底的运动等等。
单自由度体系的自由振动
![单自由度体系的自由振动](https://img.taocdn.com/s3/m/268bbbcf846a561252d380eb6294dd88d0d23d83.png)
令
ω2 = k
m
y + ω 2 y = 0
运动方程的解 y + ω 2 y = 0 可由振动的初 2
始条件来确定
常系数的线性齐次微分方程,其通解为
y(t) = A1 cosωt + A2 sinωt
若当 t = 0 时 y = y0 初位移
y(0) = y0 = A1 cosω × 0 + A2 sin ω × 0
因此,自振周期(或频率)的计算十分重 要。
例 计算自振频率
14
EI=常数
如果让振动体系沿振动方向发生单位位移时,所有刚 结点都不能发生转动(如横梁刚度为无穷大的刚架) 计算刚度系数方便。
两端刚结的杆的侧移刚度为:12EI
l3
一端铰结的杆的侧移刚度为:3EI
l3
例 计算自振频率
1
k11
EI=常数
12 EI l3
y = y0 初速度
y(0) = y0 = −ωA1 sinω × 0 + ωA2 cosω × 0
A1 = y0
A2
=
y0
ω
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
位移的多项表达式
位移、速度的单项表达式
3
y(t)
=
y0
cosωt
+
y0
ω
sin ωt
若令
y(t) = a sinϕ cosωt + a cosϕ sin ωt
结构自振周期、频率
6
自振周期的倒数称为工程频率 f = 1
(或频率),记作 f
T
频率 f 表示单位时间内的振动次数,其常用单位
单自由度振动系统固有频率及阻尼的测定-实验报告
![单自由度振动系统固有频率及阻尼的测定-实验报告](https://img.taocdn.com/s3/m/902ccc1859eef8c75fbfb351.png)
1
DC 输出:0~30V,2A
PAB 32~2A KIKUSUI(日本)
7
微型计算机
1
内部有 A/D、D/A 插卡
通用型
-3-
五.实验步骤
1. 打开微型计算机,运行进入“单自由度系统”程序。 2. 单击“设备虚拟连接”功能图标,进入设备连接状态,参照图六对显示试验设备进行联
线。连线完毕后,单击“连接完毕”,如连接正确,则显示“连接正确”,即可往下进 行,否则重新连接,直至连接正确。 3. 接通阻尼器励磁及功率放大器电源,调励磁电流为某一定值(分别为������ = 0.6A, 0.8A, 1.0A) 4. 测定自由衰减振动: 单击“自由衰减记录”功能图标,进入如图七显示界面。单击 (Start)键,开始测试。由 一电脉冲沿水平方向突然激励振动台,微机屏幕上显示自由衰减曲线。用鼠标调节光标 的位置,读出有关的数据。改变周期数 i 的数值,即可直接显示相应的周期和频率。 5. 测定幅频特性和相频特性: 单击“简谐激励振动”功能图标,按图八所示,单击“信号输入显示框中的频率,将弹、 出一个对话框,可以直接输入激励频率。也可单击频率的单步步进键进行激励调节。单 击 (Start)键,开始测试,开始强迫振动幅频特性和相频特性测量,其中2Hz~15Hz内大致 相隔1Hz设一个测点;15Hz~30Hz 内每隔5Hz设一个测点。 在显示检测框显示力信号和相应信号波形,以便观察信号的质量。幅值比显示振动位移
注:由于实验时间所限,加之读数难度较大,在������������ 附近没有加密测量相频点。这是实验中的失误。
-5-
七.实验数据处理
1. 根据自由衰减振动记录的有关数据,分析计算系统的固有圆频率������������及阻尼比ζ。
03-单自由度系统:阻尼自由振动
![03-单自由度系统:阻尼自由振动](https://img.taocdn.com/s3/m/ee1f2f2d5901020207409cee.png)
整理得:
2W 2 2 T1 T gAT 1 T
μ的物理意义是单位面积的阻尼系数。
23
第2章 单自由度系统--阻尼自由振动
24
第2章 单自由度系统--阻尼自由振动
25
第2章 单自由度系统--阻尼自由振动
例
习题课—单自由度系统阻尼简谐振动
解
26 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
粘性阻尼-若物体以较大速度在空气或液体中运 动,阻尼与速度平方成正比。但当物体以低速度在粘 性介质中运动(包括两接触面之间有润滑剂时)可以 认为阻尼与速度成正比。
物体运动沿润滑表面的阻力与速度的关系
Fc cx
4 Theory of Vibration with Applications
返回首页
--阻尼自由振动 第 2章 --阻尼自由振动 第 2章 单自由度系统 单自由度系统 引言
• 振动系统的无阻尼振动是对实际问题的理论抽象。 如果现实世界没有阻止运动的话,整个世界将处在 无休止的运动中。客观实际是和谐的,有振动又有 阻尼,保证了我们生活在一个相对安静的世界里。 • 最常见的阻尼是
2 2
xe
nt
(C1e
n2 - p2 t
C2 e
n2 - p2 t
)
临界阻尼(n = p )情形 r1 r2 n
Theory of Vibration with Applications
x e nt (C1 C2 t )
返回首页
第2章
单自由度系统--阻尼自由振动 运动微分方程
单自由度体系自由振动
![单自由度体系自由振动](https://img.taocdn.com/s3/m/c03951d476eeaeaad1f330ce.png)
单自由度体系自由振动一、无阻尼振动单自由度体系自由振动可分为有阻尼和无阻尼振动两种。
在模型建立过程当中,可以直接进行建立。
在运行时,只需将c=0即可。
ω增加,单位时间内振动次数增加。
无阻尼振动是简谐振动,振幅和初相位仅取决于初位移和速度。
初始干扰反映了外部初始赋予体系能量的大小。
由于不考虑振动过程中体系能量的耗散,因而体系的总能量保持不变,这就表现为振幅A保持不变,永不衰减。
于是振动一旦发生便永不停息,但这仅是一种理想状态。
二、对阻尼自由振动的讨论当阻尼系数c不为0时,体系做阻尼运动。
由于有能量的耗散,体系的运动幅度会逐渐减小,最终停止振动。
有阻尼单自由度体系,自由振动的运动方程为ωξωm c m k t ky t y c t y m 2,0)()()(2===++∙∙∙, 则原式可变为022=++∙∙∙ωξωy y 。
解微分方程有如下结果:2.1 当1<ξ时,即小阻尼运动,方程的解为:)sin(A )sin cos ()(000ϕωωωξωωξωξω+=++=--t e t y v t y e t y d t d d d t 其中2200201)(ξωωωξω-=++=d d y v y A可画出小阻尼体系自由振动时的y-t曲线如图所示:是一条逐渐衰减的波动曲线2.2 当1>ξ时,即大阻尼的情况,方程的解为:⎥⎥⎦⎤⎢⎢⎣⎡-+--+=-t ch y t sh v y e t y o t ωξωξξξωωξ11)1()(20220 上式不含有简谐振动的因子,是因为体系受干扰后偏离平衡位置所积蓄起来的初始能量在恢复平衡位置的过程中全部消耗克服阻尼,由于阻尼很大,不足以引起振动。
当初始速度,初始位移都大于0时,可画出大阻尼体系自由振动时的y-t曲线如图所示:2.3 当1=ξ时,即临界阻尼的情况,方程的解为:[]t v t y e t y t 00)1)(++=-ωω(当初始速度,初始位移都大于0时,可画出临界阻尼体系自由振动时的y-t曲线如下图所示;当体系在临界阻尼时,其运动衰减的最快,即他能在最短时间内无振动的回到平衡位置。
单自由度体系的有阻尼振动
![单自由度体系的有阻尼振动](https://img.taocdn.com/s3/m/707b5d2e2cc58bd63186bdfb.png)
m
m
令 c
k11
2m
m
y(t) 2y(t) 2 y(t) 0
其特征方程的根为 (- 2 1)
根据 取值不同,微分方程的解可分三种情况进行讨论
(1)<1,称为低阻尼的情况
特征根为两共轭复根。令c 1 2 则 ic
此时微分方程式的解为 y(t) et (C1cosct C2sinct)
从上式中可以看出,有阻尼的纯强迫振动仍为简谐振动, 其频率和周期都与阻尼无关。但位移比荷载滞后一个相位 角,当动荷载最大或最小时,位移并不是最大或最小,这 与无阻尼情况不同。
2
(4.488s1 )2
2)求阻尼比 及阻尼系数c。
1 ln A0 1 ln 0.005m 0.04
2π A1 2π 0.0039m
c
2m
2W g
2
9730.84103 N 9.8m s2
4.488s1
0.04
356506.2N s m
3)求振动5个周期后的振幅A5
A5
A e 5Tc 0
y(t) y(t) y*(t)
y(t) et (C1 cosct C2 sinct)
y (t) 可由待定系数法确定,设其形式为
y*(t) D1 cost D2 sint
则有
y*(t) D1 sint D2 cost
y*(t) D1 2 cost D2 2 sint
将它们代入微分方程,整理并分别令等号两边cost 和 sint 的相应系数相等,可得
结构力学
单自由度体系的有阻尼振动
一、阻尼与阻尼力
结构在振动过程中会受到周围介质的阻碍。例如,结构与支座 及构件之间各连接部位的摩擦,变形时材料内部的摩擦等等。 这些因素会引起振动能量的耗散,阻滞体系持续振动,我们把 这些因素称为阻尼。阻碍体系中质点运动的力称为阻尼力。
第二章-(第1节)单自由度系统的自由振动
![第二章-(第1节)单自由度系统的自由振动](https://img.taocdn.com/s3/m/fc05b15517fc700abb68a98271fe910ef12daec6.png)
tan 1
ωn x0 x 0
(2.1-11)
2.1 简谐振动
弹簧悬挂的物体沿铅锤方向的振动
当振动系统为静平衡时弹簧在 重力mg的作用下将有静伸长
s
mg k
(2.1-12)
在重力与弹簧力的作用下,
物体的运动微分方程为
mx mg k(s x) (2.1-13)
因为mg=ks,上式仍可简化为
mx kx
波变化。
2.1 简谐振动
振动周期
振动重复一次所需要的时间间隔,称之为振
动周期。 在简谐振动的情况下,每经过一个周期,相
位就增加2,因此
[n(t+T)+]-(nt+)=2
故有
T 2 n
(2.1-9)
实际上T代表发生一次完整运动所需要的时间
,周期通常以秒(s)计。
2.1 简谐振动
振动频率
在单位秒时间内振动重复的次数,称为振动 频率,一般用f 表示。
解:取偏角为坐标。从平衡位
置出发,以逆时针方向为正,锤的
切向加速度为 ,l故 有运动微分方
程为
ml2 mgl sin
假定角不大,可令sin,则
上式简化为 g 0
l
图 2.1-5
2.1 简谐振动
例题:列写振动微分方程求系统的周期(例2.1-2)
故
n2
g l
则振动周期为
T 2 2 l
n
g
2.1 简谐振动
或
② x(t) Asin(nt )
(2.1-7)
式中常数A和(=/2-)分别称为振幅和相角。方程(2.1-
7)说明该系统以固有频率n作简谐振动。
2.1 简谐振动 简谐振动的定义及矢量表示
第一部分 单自由度系统的振动
![第一部分 单自由度系统的振动](https://img.taocdn.com/s3/m/a14cf434f111f18583d05afc.png)
x0 + ζω n x0 & , A = x0 + ωd
2 2
x = Ae
−ζω n t
sin (ω d t + ϕ )
得 x0 = A sin ϕ ,
& x0 + ζω n x0
ωd
= A cos ϕ
ωd x0 tgϕ = & x0 + ζω n x0
系统的势能为: 系统的势能为:
k2 k1 1 1 1 1 2 2 U = k1 x1 + k 2 x2 = k1 x + k2 x 2 2 2 2(k1 + k 2 ) 2 2(k1 + k 2 ) 1 k1k 2 1 2 = x = ke x 2 2 4(k1 + k 2 ) 2
第一部分 单自由度系统的振动 3 有阻尼系统的自由振动(小阻尼情况) 有阻尼系统的自由振动(小阻尼情况) ●响应求解 −ζωn t [ D1 cos ωd t + D2 sin ωd t ] 第二种形式 x = e 式中D 为待定常数,决定于初始条件。 式中 1与D2为待定常数,决定于初始条件。 由
x = e −ζωnt [ D1 cos ωd t + D2 sin ωd t ] & x = −ζωn e −ζωnt ( D1 cos ωd t + D2 sin ωd t )
+e
−ζωn t
( − D1ωd sin ωd t + D2ωd cos ωd t )
& x0 + ζωn x0
得 x0 = D1 ,
第三章单自由度有阻尼系统的振动
![第三章单自由度有阻尼系统的振动](https://img.taocdn.com/s3/m/92f817c277232f60dccca120.png)
由(3-8)式得
N·s/cm
所以C= N·s/cm。
3—3在简谐激扰力作用下的强迫振动
单自由度粘性阻尼系统强迫振动的力学模型如图3-4所示。设系统中除了有弹性恢复力及阻尼力作用外,还始终作用着一个简谐扰力F(t)=F0sinωt,其中ω为激扰频率。由牛顿运动定律,直接写出系统的运动微分方程为:
式中P、f、T是无阻尼自由振动的固有圆频率、固有频率和周期。
由上可见,阻尼对自由振动的影响有两个方面:一方面是阻尼使自由振动的周期增大、频率减小,但在一般工程问题中n都比P小得多,属于小阻尼的情况。例 =n/p=0.05时,fd=0.9990f,Td=1.00125T;而在 =0.20时,fd=0.98f,Td=1.02T,所以在阻尼比较小时,阻尼对系统的固有频率和周期的影响可以略去不计,即可以近似地认为有阻尼自由振动的频率和周期与无阻尼自由振动的频率和周期相等。另一方面,阻尼对于系统振动振幅的影响非常显著,阻尼使振幅随着时间不断衰减,其顺次各个振幅是:t=t1时,A1=Ae-nt1;t=t1+Td时,A2=A ;t=t1+2Td时,A3=A ,…..。而相邻两振幅之比是个常数。即
s是待定常数。代入(3-1)式得 ,要使所有时间内上式都能满足,必须 ,此即微分方程的特征方程,其解为
(b)
于是微分方程(3-1)的通解为
(3-2)
式中待定常数c1与c2决定与振动的初始条件。振动系统的性质决定于根式 是实数、零、还是虚数。对应的根s1与s2可以是不相等的负实根、相等的负实根或复根。若s1与s2为等根时,此时的阻尼系数值称之为临界阻尼系数,记为cc,即cc=2mp。引进一个无量纲的量 ,称为相对阻尼系数或阻尼比。
单自由度系统的自由振动
![单自由度系统的自由振动](https://img.taocdn.com/s3/m/e70983670722192e4536f65a.png)
频率:ω; 幅值:A; 初始相位:t=0时矢量与坐 标轴的夹角。 y Asin(t )
1.两个(或两个以上)同频 率简谐振动的合成。
2.直观表示简谐振动位
x Acos(t )
移.速度.及加速度之间的 相对关系。
旋转矢量表示法—旋转矢量投影法
y
1.两个(或两个以上)同频
率简谐振动的合成。
A
A2
2
ω
φ A1
1
O
x
2.直观表示简谐振动位 移.速度.及加速度之 间的相对关系。
y
x
ωA
Ax
ω O
x ω A2
φ
x
复数表示法
长度为A的矢量以匀角速度ω在复平面上绕定点O逆时 针旋转,该矢量在实轴及虚轴上的投影与矢量端点处 复数z的实部和虚部相对应。
单自由度系统自由振动方程
x
2 0
x
0
0 k / m
单自由度系统自由振动方程的解 说明什么?
x C1 cos0t C2 sin 0t x Asin(0t )
无阻尼自由振动是以平衡位置为中心的简谐振动
振动角频率ω0是系统的固有特性,与初始条件无关
固有频率及 固有周期
f 0 1 2 2
k m
T0
1 f
2
m k
固有频率
x C1 cos0t C2 sin 0t
x Asin(0t )
ω0称作无阻尼系统的固有(角)频率,单位为 rad/s
0 k / m
固有频率及 固有周期
第2章单自由度系统的振动
![第2章单自由度系统的振动](https://img.taocdn.com/s3/m/6b4aad5c8e9951e79b892766.png)
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
n
k eq k i i1
串联时弹簧的等效刚度
(2-3)
在图2-4(b)所示的串联情况下,可以得到如下关系
Fs k1(x0x1)
Fsk2(x2x0)
将x0 消掉,可得
Fs keq(x2x1)
keq
1 k1
1 k2
(2-11) (2-12)
x(t)Acosnt
(2-13)
A和φ也是积分常数,同样由x(0) 和 x(0) 决定。 方程(2-13)表明系统以为ωn 频率的简谐振动,这 样的系统又称为简谐振荡器。(2-13)式描述的是最 简单的一类振动。
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
飞行器结构动力学
第2章 单自由度系统的振动
西北工业大学航天学院
飞行器设计工程系
文 立 华
主 讲 教 师
第2章 单自由度系统的振动
飞行器结构动力学
第2章 单自由度系统的振动
西北工业大学
第2章 单自由度系统的振动
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动 2.2 单自由度系统的强迫振动 2.3 单自由度系统的工程应用
表示,下面用牛顿定律来建立系统的运动方程。绘系 统的分离体图如图2-5(b)。
第2章 单自由度系统的振动
2.1 单自由度系统的自由振动
用 F(t)表示作用于系统上的外力,用x(t) 表示质量m 相对 于平衡位置的位移,可得:
F (t) F s(t) F d(t) m x (t)
(2 -7)
由于Fs(t)kx(t), Fd(t)cx(t) 方程(2-7)变为:
第二章 单自由度系统
![第二章 单自由度系统](https://img.taocdn.com/s3/m/f58036c308a1284ac8504359.png)
其中: n=1,2, … t0可以任意选取 ω=2π/T为周期激励的基频
2 t0 +T bn = ∫ F (t )sin nωtdt T t0
(一)周期激励作用下的强迫振动
对于线性系统,应用叠加原理,各激励力共同作用所引起的 系统稳态响应等于各激励力单独作用时引起的系统各稳态响应的 ∞ 和。 a
F (t)=
相位差 π 2
•
Fs
和Fd 频率相同
传给地基的力的最大值
FT = (kX ) 2 + (cω X ) 2 = kX 1 + (2ξγ ) 2
积极隔振
由于在 F sin ωt 作用下,系统稳态响应的振幅为
X=
则
F k (1 − γ 2 ) 2 + (2ξγ ) 2
FT = kX 1 + (2ξγ ) 2 =
M= X 1 = X0 (1 − γ 2 ) 2 + (2ξγ ) 2
γ = ω / ωn
等效静位移
X0 = F k
简谐激励下的强迫振动
共振条件
dM =0 dγ
γ * = 1 − 2ξ 2 ≈ 1
M max = M ( γ * ) = 1 2ξ 1 − ξ 2
旋转不平衡质量引起的强迫振动
系统的振动微分方程
解的讨论: 解的讨论:
λ1, 2 = − ξ ±
(
ξ 2 −1 ωn
)
当ξ = 1时,λ1 = λ2 = −ωn
x = ( B1 + B2t ) e −ωnt
不属于振动
当ξ > 1时,λ1、λ2都是负实数
x = B1e + B2 e
λ1t λ2 t
( −ξ + = Be